

1 **Complex genetic architecture of three-dimensional craniofacial shape variation in**
2 **domestic pigeons**

3

4 **Authors:** Elena F. Boer¹, Emily T. Maclary¹, and Michael D. Shapiro^{1*}

5

6 **Affiliations:** ¹School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA

7

8 *Author for correspondence:

9 Michael D. Shapiro, School of Biological Sciences, 257 South 1400 East, Salt Lake City, UT
10 84112 USA; phone: +1 801 581 5690; fax: +1 801 581 4668; email: mike.shapiro@utah.edu

11

12 **Abstract**

13 Deciphering the genetic basis of vertebrate craniofacial variation is a longstanding biological
14 problem with broad implications in evolution, development, and human pathology. One of the
15 most stunning examples of craniofacial diversification is the adaptive radiation of birds, in which
16 the beak serves essential roles in virtually every aspect of their life histories. The domestic
17 pigeon (*Columba livia*) provides an exceptional opportunity to study the genetic underpinnings
18 of craniofacial variation because of its unique balance of experimental accessibility and
19 extraordinary phenotypic diversity within a single species. We used traditional and geometric
20 morphometrics to quantify craniofacial variation in an F_2 laboratory cross derived from the
21 straight-beaked Pomeranian Pouter and curved-beak Scanderoon pigeon breeds. Using a
22 combination of genome-wide quantitative trait locus scans and multi-locus modeling, we
23 identified a set of genetic loci associated with complex shape variation in the craniofacial
24 skeleton, including beak curvature, braincase shape, and mandible shape. Some of these loci
25 control coordinated changes between different structures, while others explain variation in the
26 size and shape of specific skull and jaw regions. We find that in domestic pigeons, a complex
27 blend of both independent and coupled genetic effects underlie three-dimensional craniofacial
28 morphology.

29

30 **Introduction**

31 The vertebrate skull serves essential roles in numerous biological processes, including
32 respiration, feeding, communication, and protecting the brain and sense organs. Throughout
33 vertebrate evolution, dramatic diversification of craniofacial morphology has accompanied
34 successful occupation of diverse ecological and dietary niches. Identifying the genetic programs
35 that underlie variation in the form and function of the craniofacial complex is a longstanding goal
36 with implications in diverse biological fields, including evolutionary biology, ecology, embryology,
37 molecular biology, and genetics. In addition, deciphering the genetic basis of craniofacial
38 variation represents an important clinical objective, as many human craniofacial disorders are
39 caused by genetic mutations that disrupt morphogenesis and result in phenotypes that fall
40 outside of the spectrum of normal variation (Trainor 2010; Twigg and Wilkie 2015).

41 Studies of the genetic basis of vertebrate craniofacial variation often focus on traits with
42 a relatively simple genetic basis and/or represent complex craniofacial variation as simplified
43 measurements. For example, in wild species of birds, researchers have identified genes that are
44 putatively associated with simple measures of beak variation, such as overall size (*IGF1*) in
45 Black-bellied seedcrackers (vonHoldt *et al.* 2018); length (*COL4A5*) in great tits (Bosse *et al.*
46 2017); and length (*CALM1*), width (*BMP4*), and overall size (*ALX1*, *HMGAA2*) in Darwin's finches
47 (Abzhanov 2004; Abzhanov *et al.* 2006; Mallarino *et al.* 2011; Lamichhaney *et al.* 2015, 2016).
48 Our understanding of the genetic architecture of 3D craniofacial shape remains comparatively
49 limited, in part because of the inherent challenges of quantifying complex morphological
50 variation and implementing forward genetic approaches to map the underlying genetic
51 architecture. A number of recent studies use 3D phenotypes and genetic mapping to determine
52 the architecture of craniofacial variation in several vertebrates, including dogs, cichlids, mice,
53 and humans (Albertson *et al.* 2003, 2005b; Roberts *et al.* 2011; Schoenebeck *et al.* 2012;
54 Powder *et al.* 2014; Pallares *et al.* 2015; Shaffer *et al.* 2016; Marchant *et al.* 2017; Claes *et al.*
55 2018; Xiong *et al.* 2019; Katz *et al.* 2020). A consistent take-home message from this body of

56 work is that the craniofacial skeleton and its underlying genetic architecture is remarkably
57 complex; in many cases, multiple genetic loci explain only a small percentage of overall
58 craniofacial shape variation. Sometimes, the major genetic or developmental controls of
59 variation appear to be unique to a particular species or population, while others show overlap
60 among species (e.g., BMP signaling in birds, cichlids, and dogs (Abzhanov 2004; Albertson *et*
61 *al.* 2005a; Schoenebeck *et al.* 2012)).

62 The massive diversity of craniofacial morphology among birds has inspired excellent
63 comparative morphometric analyses of shape variation across species (recent examples include
64 (Campàs *et al.* 2010; Mallarino *et al.* 2012; Fritz *et al.* 2014; Bright *et al.* 2016, 2019; Cooney *et*
65 *al.* 2017; Young *et al.* 2017; Felice and Goswami 2018; Yamasaki *et al.* 2018; Navalón *et al.*
66 2019, 2020)). In contrast, there are few examples of pairing geometric morphometric shape
67 analysis with genome-wide scans to identify the genetic architecture of avian craniofacial
68 variation (but see (Yusuf *et al.* 2020)). The domestic pigeon (*Columba livia*) provides an
69 extraordinary opportunity to disentangle the genetic architecture of complex craniofacial
70 variation. Pigeons have spectacular craniofacial variation among hundreds of breeds within a
71 single species; the magnitude of their intraspecific diversity is more typical of interspecific
72 diversity (Baptista *et al.* 2009). Recently, Young *et al.* (Young *et al.* 2017) used geometric
73 morphometrics to compare craniofacial shape among breeds of domestic pigeon and diverse
74 wild bird species and concluded that the shape changes that differentiate pigeon breeds
75 recapitulate the major axes of variation in distantly related wild bird species. However, unlike
76 most distantly related species, domestic pigeon breeds are interfertile, so we can establish
77 laboratory crosses between anatomically divergent forms and map the genetic architecture of
78 variable traits.

79 The goal of this study is to identify the genetic architecture of craniofacial shape variation
80 in an F_2 population derived from pigeon breeds with dramatically different craniofacial
81 morphologies. First, we report traditional linear measurements that define the height, width, and

82 depth of three craniofacial substructures: the upper beak, braincase, and mandible. Then, we
83 use geometric morphometrics to quantify three-dimensional shape variation in these three
84 substructures. Finally, we use these morphological data to perform genome-wide QTL scans
85 and multi-locus modeling to map the genetic architecture of complex craniofacial variation,
86 including beak curvature.

87

88 **Results**

89 To identify the genetic architecture underlying craniofacial shape variation in domestic
90 pigeons, we performed an F_2 intercross between a male Pomeranian Pouter (Pom) and two
91 female Scandaroons (Scan) (Figure 1A-D, Supplemental Figure 1). These two breeds display
92 highly divergent craniofacial morphologies, in addition to other variable phenotypes (e.g.,
93 plumage color, hindlimb epidermal appendages (Domanyan *et al.* 2014, 2016)). The Pom breed
94 has a straight beak that is qualitatively similar to the beak of many other domestic pigeon
95 breeds, as well as the ancestral rock pigeon (Figure 1A,C, Supplemental Figure 1). In contrast,
96 the curved beak of the Scanderoon breed is one of the most extreme craniofacial phenotypes
97 observed in any domestic pigeon breed (Figure 1B,D, Supplemental Figure 1).

98 To visualize and quantify variation in the Pom x Scan F_2 population, we scanned the
99 cross founders and 116 F_2 individuals using micro-computed tomography (micro-CT) and
100 generated three-dimensional surface models of the craniofacial skeleton (Figure 1E). We
101 developed an atlas of 73 landmarks that collectively define the shape of the upper beak,
102 braincase, and mandible (Supplemental Figure 2, Supplemental Table 1) and applied the
103 landmark set to the cross founders and all F_2 individuals.

104

105 *Morphometric analyses of linear dimensions*

106 We first measured 10 linear distances between landmark pairs that define the length,
107 width, and depth of three skull and jaw substructures – upper beak, braincase, and mandible –

108 to quantify variation in the Pom x Scan F₂ population (Supplemental Table 2). We found that all
109 linear measurements are normally distributed within the population, with the exception of rostral
110 mandible width (Supplemental Figure 3). To determine if craniofacial size and shape are
111 predicted by body size, we performed a linear regression of each linear measurement on body
112 mass, a commonly-used proxy for body size ((Hallgrímsson *et al.* 2019); Supplemental Figure
113 4). Most (8/10) skull and jaw linear measurements had a significant and positive allometric
114 association with body size; only braincase length and width were independent of body size
115 (Supplemental Figure 4). After extracting non-allometric variation, we compared the residuals of
116 each linear measurement between sexes and found that males had significantly longer and
117 deeper craniofacial structures relative to females (Supplemental Figure 4). In contrast, among
118 the measurements of craniofacial width, only rostral braincase and caudal mandible width were
119 sex-dependent (Supplemental Figure 4). These results demonstrate that both allometric and
120 non-allometric shape variation exist within the Pom x Scan F₂ population, and that craniofacial
121 length and depth are regulated in part by a sex-linked factor that has only a limited effect on
122 width.

123

124 *QTL on 5 linkage groups are associated with linear variation in craniofacial structures*

125 To identify genomic regions associated with variation in craniofacial length, width, and
126 depth, we performed genome-wide quantitative trait locus (QTL) scans for each of the 10 linear
127 measurements. We identified significant major-effect QTL for 6 linear measurements
128 representing all three skull and jaw substructures (Table 1), including upper beak width and
129 depth (Figure 2), braincase length and width (Supplemental Figure 5), and mandible length and
130 width (Supplemental Figure 6). Two of the major-effect QTL (LG1 and LG8) are especially
131 notable because they control variation in correlated traits.

132

133 *A QTL on LG1 is associated with beak width and depth*

134 Upper beak width and depth are significantly positively associated in the cross ($R^2 = 0.4$,
135 $p < 2e-16$, Figure 2C). Perhaps not surprisingly, both measurements mapped to the same QTL
136 on LG1 (upper beak width: LOD = 7.4, PVE = 25.4%, Figure 2A; upper beak depth: LOD = 5.4,
137 PVE = 19.3%, Figure 2B). The LG1 Pom allele is dominant, as upper beak width and depth of
138 heterozygotes are indistinguishable from Pom homozygotes (Figure 2D). F_2 individuals
139 homozygous for the Scan allele had significantly wider and deeper upper beaks than individuals
140 homozygous for the Pom allele (Figure 2D).

141 The LG1 LOD support interval is a 4.16-Mb region that includes 41 protein-coding genes
142 (Figure 2E-F). To prioritize candidate genes within the interval, we cross-referenced the gene
143 list to RNA expression data from pigeon facial primordia from the Racing Homer breed
144 (developmental stage equivalent to Hamburger-Hamilton chicken stage 29, or HH29;
145 (Hamburger and Hamilton 1951)). Of the 41 genes in the upper beak width/depth interval, 33
146 genes are expressed in the developing pigeon face (Figure 2F, Supplemental Table 3). Notably,
147 *FGF6* is located near the center of the QTL interval (34 kb downstream of the LG1 peak
148 marker). *FGF6* is expressed in craniofacial structures during chicken embryogenesis (Kumar
149 and Chapman 2012), and *Fgf6*^{-/-} mutant mice have shorter snouts than their wildtype littermates
150 (Floss *et al.* 1997), demonstrating a role for this gene in outgrowth of vertebrate facial
151 structures.

152

153 A QTL on LG8 is associated with beak depth and mandible width

154 A second major-effect QTL on LG8 was associated with upper beak depth (LOD = 5.7,
155 PVE = 20.3%), but not width (Figure 2B). F_2 heterozygotes have a wider beak than either
156 homozygote (Figure 2G). The LG8 QTL functions additively with the LG1 QTL described above:
157 two copies of the LG1 Scan allele increased beak width for all LG8 genotypes (Figure 2G). The
158 0.36-Mb LOD support interval on LG8 contains only 5 genes (*USP33*, *ZZZ3*, *AK5*, *PIGK*, *ST6*),
159 all of which are expressed in embryonic pigeon craniofacial tissues (Supplemental Figure 7,

160 Supplemental Table 4), but none are known to play a role in craniofacial development in other
161 species.

162 A major-effect QTL associated with mandible width overlaps with the upper beak depth
163 QTL on LG8 (LOD = 6.4, PVE = 22.5%, Supplemental Figure 6). Upper beak depth and
164 mandible width are significantly correlated in the Pom x Scan F₂ population (R² = 0.25, p =
165 1.65e-08): F₂ individuals with deeper upper beaks tend to have wider mandibles (Supplemental
166 Figure 6).

167

168 *QTL controlling single linear dimensions*

169 Finally, we identified three additional major-effect QTL associated with variation in linear
170 measurements of the braincase and mandible. QTL on LG2 (LOD = 5.6, PVE = 19.8%), LG5
171 (LOD = 4.7, PVE = 16.9%), and LG10 (LOD = 5.0, PVE = 18.2%) are significantly associated
172 with braincase length, braincase width, and mandible length, respectively (Supplemental
173 Figures 5-6, Supplemental Tables 5-7). Taken together, our whole-genome scans revealed a
174 set of seven major-effect QTL associated with linear measurements of the head skeleton that
175 each explain 17-25% of the total phenotypic variance. We identified significant correlations
176 between linear measurements of the same structure (e.g., upper beak width and depth) and of
177 different structures (e.g., upper beak depth and mandible width); therefore, in some cases,
178 regulation of multiple axes of craniofacial variation is coordinated by a single genomic locus.

179

180 *Geometric morphometric analyses of craniofacial shape variation*

181 Linear measurements provide a simple description of some of the major axes of shape
182 variation, but do not fully capture the complex 3D nature of the skull and mandible. We therefore
183 used geometric morphometric methods (Zelditch *et al.* 2012; Adams *et al.* 2013) to analyze 3D
184 shape variation by dividing the head into two substructures: (1) upper beak and braincase (UBB,
185 49 landmarks), and (2) lower beak or mandible (MAN, 24 landmarks). We assessed UBB and

186 MAN shape integration by performing a two-block partial least squares (2B-PLS) analysis, which
187 demonstrated that the main axis of integration (PLS1) is craniofacial curvature (r-PLS: 0.81, $p <$
188 0.001, Supplemental Figure 8A). In both substructures, allometry represents a small but
189 significant component of shape variation: UBB and MAN shape are significantly positively
190 associated with their respective centroid size (UBB $R^2 = 0.109$, $p < 0.001$; MAN $R^2 = 0.069$, $p <$
191 0.001); birds with larger head skeletons have a straighter, longer UBB and wider MAN
192 (Supplemental Figure 8A-C). Allometry is an evolutionarily important associate of shape (De
193 Beer 1940; Alberch *et al.* 1979; Hallgrímsson *et al.* 2019); however, we focused our further
194 analyses on non-allometric shape variation within the Pom x Scan F₂ population by using the
195 residuals from the shape ~ centroid size regression.

196

197 Upper beak and braincase (UBB) shape variation

198 Principal components analysis (PCA) demonstrated that the first 17 UBB PCs contribute to 90%
199 of non-allometric shape variation in the Pom x Scan F₂ population (Figure 3A). The first two
200 UBB PCs account for ~41% of total shape variation (Figure 3A). The principal axis of UBB
201 shape variation (PC1, 30.11% of shape variation) represents variation in curvature along the
202 entire length of the UBB anterior-posterior axis (Figure 3C, Supplemental Movie 1) and defines
203 the most conspicuous difference between the craniofacial skeletons of the Pom and Scan
204 founder breeds (Figure 1A-D). Within the PC1 morphospace, most F₂ individuals are
205 constrained by the cross founders, but cluster closer to the Pom founder than the Scan founder
206 (Figure 3B).

207 While PC1 incorporates landmarks from the entire UBB, PC2 (11.37% of UBB shape
208 variation) is defined almost exclusively by variation in braincase shape (Figure 3D). The UBB
209 PC2 axis describes the transition from a wide and shallow braincase (negative PC2 score) to a
210 narrow and deep braincase (positive PC2 score; Figure 3D, Supplemental Movie 2). PC3-PC5
211 each account for 5-10% of UBB shape variation and describe complex 3D shape changes that

212 involve landmarks from the upper beak and braincase (Figure 3E, Supplemental Figure 9,
213 Supplemental Movies 3-5).

214

215 *Mandible (MAN) shape variation*

216 In the Pom x Scan F₂ population, 90% of MAN shape is described by the first 13 PCs
217 (Figure 4A). The first three PCs each describe >10% of variation and collectively account for
218 ~60% of total shape variation (Figure 4A). MAN PC1 (29.53% of total variation) describes a
219 concomitant change in width and curvature, which results from displacement of both anterior
220 and posterior landmarks (Figure 4C, Supplemental Movie 6). Unlike UBB PC1, MAN PC1
221 morphospace is not constrained by the cross founders: many F₂ individuals have higher PC1
222 scores (narrower/straighter mandibles) than the founders (Figure 4B, Supplemental Figure 10).

223 Positive scores for MAN PC2 (19.24% of variation) describe a narrowing at the center of
224 the mandible and an elongation of the anterior mandible (Figure 4D, Supplemental Movie 7).
225 PC3 (11.7% of variation) defines rotation in the posterior portion of the mandible that results in
226 both increased posterior mandible width and reduced curvature along the entire length of the
227 mandible in individuals with positive PC3 scores (Figure 4E, Supplemental Movie 8). PC4-6,
228 which each account for 5-10% of total MAN variation, describe complex shape changes that
229 affect aspects of mandible width (PC4, Supplemental Figure 11, Supplemental Movie 9), height
230 (PC5, Supplemental Figure 12, Supplemental Movie 10), and curvature (PC6, Supplemental
231 Figure 13, Supplemental Movie 11).

232

233 *QTL associated with three-dimensional shape of the UBB*

234 Next, we used the scores from the UBB and MAN PCs that explain >5% of total shape
235 variation (PC1-5 for UBB, PC1-6 for MAN) to scan for QTL associated with shape variation. We
236 identified four QTL associated with variation in UBB shape (summarized in Table 1). The UBB
237 PC2 LOD support interval is a 17.3-Mb region that contains 171 genes, of which 146 are

238 expressed during pigeon craniofacial development (Figure 5, Supplemental Table 8). F_2
239 individuals homozygous for the Pom allele have higher UBB PC2 scores (taller, narrower
240 braincases) than Scan homozygotes (Figure 5D), consistent with the shapes of the founders.

241 The UBB PC3 interval is a 1.3-Mb region that contains only 4 genes (*GAB3*, *SMARCA1*,
242 *TENM1*, *SH2D1A*), all of which are expressed during pigeon craniofacial development
243 (Supplemental Figure 14, Supplemental Table 9). In mouse embryos, *Gab3* and *Smarca1* are
244 expressed in the first branchial arch (Brunskill *et al.* 2014), but their role in craniofacial
245 development remains unknown. For UBB PC3, Pom homozygotes have lower scores (smaller
246 braincase and longer, straighter upper beak) than Scan homozygotes, consistent with the result
247 that the Pom founder sets the lower limit of the UBB PC3 morphospace (Figure 3B).

248 We identified two major-effect QTL associated with UBB PC4 on LG10 and LG11
249 (Supplemental Figure 15). The 10.2-Mb (LG10) and 16.0-Mb (LG11) intervals respectively
250 contain 45 and 177 genes that are expressed during pigeon craniofacial development
251 (Supplemental Figure 15, Supplemental Tables 10-11).

252

253 QTL associated with three-dimensional shape of the MAN

254 We also identified four QTL associated with MAN shape variation (summarized in Table
255 1). The LOD support intervals for the two MAN PC3 QTL encompass 1.9-Mb and 7.2-Mb
256 genomic regions that contain 21 and 31 expressed genes, respectively (Figure 6B-C,E-F,
257 Supplemental Tables 12-13). Notably, the LG2 interval includes the entire *HOXA* gene cluster.
258 *HOXA2* is expressed during pigeon craniofacial development (Supplemental Table 12) and
259 serves essential and evolutionarily-conserved roles in hindbrain, neural crest, and craniofacial
260 patterning (Parker *et al.* 2018).

261 For MAN PC4, we identified a 1.4-Mb interval that contains 21 genes that are expressed
262 during pigeon craniofacial development, including *FGF18* (Supplemental Figure 11,

263 Supplemental Table 14). In mouse embryos, *Fgf18* functions in a molecular circuit with *Foxf* and
264 *Shh* to regulate craniofacial development in mice (Xu *et al.* 2016; Yue *et al.* 2020).

265 Finally, the MAN PC5 LOD support interval is 0.54 Mb in length and includes 6
266 expressed genes (*ATG7*, *VGLL4*, *TAMM41*, *SYN2*, *TIMP4*, *PPARG*), none of which are known
267 to contribute to craniofacial development (Supplemental Figure 12, Supplemental Table 15). In
268 summary, we identified eight major-effect QTL that regulate 3D UBB and MAN shape variation,
269 some of which contain genes with known roles in craniofacial development in other species, and
270 others that do not.

271

272 *Multi-locus QTL models describe major axes of Pom x Scan craniofacial shape variation*

273 Our initial one-dimensional scans for major-effect QTL did not identify significant loci
274 associated with UBB or MAN PC1. We predict this may be because, even after parsing skull
275 and jaw shape variation into its component parts (PCs), UBB and MAN PC1 still describe highly
276 complex 3D shape changes that likely have a polygenic basis. Although one-dimensional scans
277 can detect multiple QTL (Broman *et al.* 2003), it is possible that PC1 shape is regulated by the
278 combined action of many minor-effect QTL that we are underpowered to detect. Therefore, as
279 an alternative strategy, we implemented multi-locus modeling and identified sets of 11 and 16
280 minor-effect QTL associated with UBB and MAN PC1 shape variation, respectively
281 (Supplemental Tables 16 and 17). Although the multi-locus models suggest that each QTL set
282 accounts for almost all of UBB and MAN PC1 shape variation (92.2% and 99.1%, respectively),
283 additional undetected QTL might also contribute to UBB and MAN PC1 shape regulation, as
284 estimated QTL effects are often biased upward, especially in relatively small mapping
285 populations (Xu 2003).

286

287 **Discussion**

288 Domestic species are remarkable repositories of phenotypic diversity (Darwin 1868;
289 Andersson 2001; Rimbault and Ostrander 2012; Sánchez-Villagra *et al.* 2016). Unlike distantly
290 related species with highly divergent phenotypes, breeds and strains of the same species –
291 including those with radically different craniofacial traits – are interfertile, making genetic
292 crosses and genomic comparisons experimentally tractable. Here, we used pigeon breeds with
293 distinctive traits to map the genetic architecture of size and shape changes in the upper beak,
294 braincase, and mandible. Overall, our results show that in pigeons, skull and jaw morphology
295 has a complex genetic architecture, consistent with analyses of craniofacial shape in wild birds
296 and other vertebrates (Albertson *et al.* 2003, 2005b; Schoenebeck *et al.* 2012; Pallares *et al.*
297 2015; Shaffer *et al.* 2016; Claes *et al.* 2018; Xiong *et al.* 2019; Yusuf *et al.* 2020; Katz *et al.*
298 2020).

299

300 *Coordinated and independent control of craniofacial traits*

301 We identified 15 major-effect QTL associated with variation in skull and jaw shape in a
302 pigeon F_2 intercross (Figure 7). The QTL support intervals are dispersed across autosomes and
303 the Z-chromosome, collectively span 117 Mb (~10%) of the pigeon genome, and include 1104
304 genes. We measured skull and jaw shape using two methods – linear measurements and 3D
305 shape – and found that QTL associated with variation in linear and 3D shape of the same
306 structures did not overlap (Figure 7). Consistent with this finding, the 3D shape changes we
307 quantified were not driven by changes in a single linear measurement, but were instead
308 complex shape changes involving coordinated displacement of many landmarks. For the most
309 part, skull and jaw shape QTL also did not overlap (Figure 7). Likewise, evidence from other
310 species demonstrates that the vertebrate upper and lower jaws are largely modular structures
311 that can evolve independently under separate genetic control. This genetic and developmental
312 modularity, in turn, might facilitate the semi-independent evolutionary diversification of jaw and
313 skull structures (Stockard and Johnson 1941; Drake and Klingenberg 2010; Parsons *et al.* 2011,

314 2018; Fish *et al.* 2011; Klingenberg 2014; Fish 2016; Felice and Goswami 2018; Bardua *et al.*
315 2019).

316 Our QTL mapping experiments identified a set of genomic regions associated with
317 craniofacial variation, but we currently do not know if these loci are specific to the Pomeranian
318 Pouter and Scanderoon breeds, or if we have uncovered loci that broadly regulate craniofacial
319 morphogenesis across pigeons, birds, or vertebrates. QTL mapping provides a powerful and
320 direct link between genotype and phenotype but is also inherently limited because a mapping
321 experiment can only assay genetic variation within a genetic cross, rather than survey genetic
322 and morphological variation across the entirety of a species.

323

324 *Craniofacial curvature in pigeons*

325 One of our principal goals was to identify genetic regulators of beak curvature. Our
326 geometric morphometric analyses confirmed that craniofacial curvature was indeed the
327 predominant axis of variation in the Pom x Scan F₂ population. One unexpected finding from the
328 geometric morphometric analyses is that within the UBB, beak curvature does not occur in
329 isolation, but instead is linked to braincase curvature in a consistent and predictable manner
330 (Figure 3C and Supplemental Movie 1). UBB and MAN curvature are also morphologically
331 integrated (Supplemental Figure 8A), suggesting that coordinated genetic programs contribute
332 to development of the upper and lower beak. However, we did not identify QTL that regulate
333 both UBB and MAN shape. It is possible that shared QTL are either beyond our limit of
334 detection in the Pom x Scan cross, or that distinct UBB and MAN QTL harbor genes that belong
335 to a common genetic program.

336 Along the UBB PC1 (curvature) axis, we found that many Pom x Scan F₂ progeny
337 approach or exceed the shape of the Pom founder, but never the Scan founders. This finding
338 suggests that the straight-beaked Pom phenotype (closer to the ancestral condition) results
339 from a variety of genotype combinations at different loci, but the extreme craniofacial curvature

340 that defines the Scan breed probably requires the combined action of specific alleles at many
341 loci. The Scandaroon is one of the oldest breeds of domestic pigeon (Levi 1986); millennia of
342 artificial selection likely fixed a polygenic program to consistently produce the breed-defining
343 enlarged and curved beak. Our F_2 population was probably not big enough to have an
344 appreciable (or any) number of offspring with the right allelic combinations to recapitulate the
345 Scan craniofacial phenotype.

346

347 *Complex genetic architecture of an exaggerated craniofacial trait*

348 The enlarged, curved craniofacial skeleton of the Scandaroon breed is a spectacular
349 example of an exaggerated trait (an elaboration of an ancestral trait). To date, our
350 understanding of the genetic basis of exaggerated traits remains relatively limited relative to trait
351 reduction or loss. The pigeon craniofacial skeleton offers a unique opportunity to compare trait
352 exaggeration and reduction: in addition to the exaggerated beak morphology of the Scandaroon
353 breed, many breeds have dramatically reduced beaks (e.g., breeds from the Owl and Tumbler
354 families). In our recent investigation of the genetic basis of the short beak phenotype in pigeons,
355 we found that a single major-effect locus explains the majority of variation in beak reduction
356 (Boer *et al.* 2021).

357 Here, we tested the outcome of shuffling the genomes of two divergent pigeon breeds
358 and found that, even in this relatively simple context, many genetic regions are involved in
359 determining craniofacial exaggeration. The results of the Pom x Scan F_2 intercross are
360 consistent with findings from classical genetic experiments performed in pigeons over the last
361 century (Christie and Wriedt 1924; Sell 2012), in which elaboration of beak size has a separate
362 and more complicated genetic architecture than beak reduction. Our results are also consistent
363 with studies of craniofacial genetics from diverse vertebrates; the prevailing model is that the
364 genetic architecture of craniofacial variation is highly polygenic (Richmond *et al.* 2018; Yusuf *et*
365 *al.* 2020). In humans, a multitude of genes encoding members of diverse molecular classes

366 (e.g., cell adhesion and motility, signal transduction, transcriptional regulation, ribosome
367 biogenesis) are implicated in both normal and pathogenic craniofacial variation (Shaffer *et al.*
368 2016; Claes *et al.* 2018; Weinberg *et al.* 2018; Richmond *et al.* 2018; Xiong *et al.* 2019).

369 Recent examples of trait exaggeration in other tissues, such as ornamental feathering in
370 pigeons (Shapiro *et al.* 2013; Domyan *et al.* 2016) or fleshy snouts in cichlids (Concannon and
371 Albertson 2015; Conith *et al.* 2018) show that morphological exaggeration can have a relatively
372 simple genetic basis, in which a majority of the variation is explained by one or two genetic
373 factors. In contrast, our results from the pigeon craniofacial skeleton suggest that multiple loci
374 exert a substantial influence on beak elaboration.

375

376 **Materials and methods**

377 *Animal husbandry and 3D imaging*

378 All animal experiments, husbandry, and housing protocols for this study were approved
379 by the University of Utah Institutional Animal Care and Use Committee (protocols 10-05007, 13-
380 04012, and 19-02011).

381 An intercross between a male Pomeranian Pouter and two female Scandaroons was
382 performed to generate 131 F₂ offspring (Domyan *et al.* 2014, 2016). Cross founders and F₂
383 individuals that survived to at least 6 months of age (n = 116) were euthanized and submitted to
384 the University of Utah Preclinical Imaging Core Facility for micro-CT imaging. For each bird, a
385 whole-body scan was performed on a Siemens Inveon micro-CT using the following
386 parameters: voxel size = 94 μ m, photon voltage = 80 kV, source current = 500 μ A, exposure time
387 = 200 ms. Scans were reconstructed using a Feldkamp algorithm with Sheep-Logan filter and a
388 calibrated beam hardening correction. Of the F₂ individuals that did not survive to maturity, 15
389 were used to construct the genetic map (see section on Genotyping and linkage map
390 assembly).

391

392 *Surface model generation and landmarking*

393 From the micro-CT image data, a substack that included the cranium was extracted from
394 the whole-body DICOM file stack and saved in the NifTI format (*.nii) using ImageJ 1.52q. NifTI
395 files were imported into Amira 6.5.0 software (Thermo Fisher Scientific) to generate a 3D
396 surface model of the cranial skeleton. Using the threshold feature in Amira's Segmentation
397 Editor, the cranial skeleton was segmented from soft tissue. The resulting surface model was
398 simplified and saved in the HxSurface binary (*.surf) format. Surface meshes were converted to
399 the Polygon (Stanford) ASCII file format (*.ply) using i3D Converter v3.80 and imported into
400 IDAV Landmark Editor v3.0 (UC Davis) for landmarking. An atlas of midline and bilateral Type 1
401 (defined by anatomy) and Type 3 (defined mathematically) landmarks on the braincase (29
402 landmarks), upper beak (20 landmarks), and mandible (24 landmarks) was developed using the
403 pigeon atlas described in (Young *et al.* 2017) as a foundation. After landmarks were applied to
404 116 F₂ individuals and the cross founders, the coordinates were exported as a NTsys landmark
405 point dataset (*.dta) for geometric morphometric analysis.

406

407 *Morphometric analyses and shape change visualization*

408 For each F₂ individual and the cross founders, linear distances between sets of two
409 landmarks (Supplemental Table 1) were measured in Landmark Editor. For each linear
410 measurement, normal distribution within the F₂ population was assessed using Shapiro-Wilk's
411 test in R v3.6.3 (R Core Team 2020). To account for differences in body size, each linear
412 measurement was fit to a linear regression model (linear measurement ~ body mass) and
413 residuals were calculated in R. To compare residuals between sexes, a two-sided Wilcoxon test
414 was implemented in R.

415 Geometric morphometric analyses were performed using the R package geomorph
416 v3.3.1 (Collyer and Adams 2018, 2020; Adams *et al.* 2020). Briefly, the NTsys landmark point
417 dataset was read in using the *readland.nts* function. The location of missing landmarks was

418 estimated using the function `estimate.missing(method = "TPS")`. We performed bilateral
419 symmetry analysis via the function `bilat.symmetry(iter = 1)` and the symmetrical component of
420 shape variation was extracted. After subsetting the data into two modules representing either
421 upper beak and braincase (UBB) or mandible (MAN), we performed a Generalized Procrustes
422 Analysis using the `gpage` function. To analyze allometry, a linear model (shape ~ centroid size)
423 was fit using the `procD.lm` function and we used the residuals for analysis of allometry-free
424 shape. We performed principal components analysis using the `gm.prcomp` function and
425 analyzed integration using the `two.b.pls` function.

426 We visualized shape changes in geomorph and in the R package Morpho v2.8
427 (<https://github.com/zarquon42b/Morpho>). The geomorph function `plotRefToTarget` was used to
428 generate wireframes. We generated surface mesh deformations, heatmaps, and movies in
429 Morpho with the `tps3d`, `shade3d`, `meshDist`, and `warpmovie3d` functions. For all mesh-based
430 visualizations, deformations were applied to a reference mesh. The reference mesh was
431 created by warping a Pom x Scan F₂ mesh to the mean shape.

432

433 *Genotyping and linkage map assembly*

434 For cross founders and a subset of F₂ individuals, we performed genotyping-by-
435 sequencing (GBS) as previously described (Domyan *et al.* 2016). GBS libraries for an additional
436 20 F₂ individuals, as well as supplemental libraries to improve coverage for 17 previously-
437 sequenced individuals, were prepared and sequenced by the University of Minnesota Genomics
438 Center. GBS libraries were sequenced on a NovaSeq 1x100 SP FlowCell. Target sequencing
439 volume was ~4.75 million reads/sample.

440 GBS reads were trimmed using CutAdapt (Martin 2011), then mapped to the Cliv_2.1
441 reference genome (Holt *et al.* 2018) using Bowtie2 (Langmead and Salzberg 2012). Genotypes
442 were called using Stacks2 by running `refmap.pl` with the Pom and one of the two Scan founders
443 designated as parents (Catchen *et al.* 2011, 2013). To account for the three-founder cross

444 structure, we subsequently removed all markers where the genotypes of the two Scan founders
445 differed; therefore, all alleles could be identified as originating from either the Pom or Scan
446 founder breeds.

447 Genetic map construction was performed using R/qtl (www.rqtl.org; (Broman *et al.*
448 2003)). For autosomal markers, we eliminated markers showing significant segregation
449 distortion ($p < 0.01$ divided by the total number of markers genotyped, to correct for multiple
450 testing). We assembled and ordered sex-linked scaffolds separately, due to differences in
451 segregation pattern for the Z chromosome. We identified Z-linked scaffolds by assessing
452 sequence similarity and gene content between pigeon scaffolds and the Z chromosome of the
453 annotated chicken genome assembly (Ensembl Gallus_gallus-5.0).

454 Pairwise recombination frequencies were calculated for all autosomal and Z-linked
455 markers. We identified markers with identical genotyping information by using the
456 *findDupMarkers* function, and then removed all but one marker in each set of duplicates. Within
457 individual Cliv_2.1 scaffolds, markers were filtered by genotyping rate; to retain the maximum
458 number of scaffolds in the final map, we performed an initial round of filtering to remove markers
459 where fewer than 50% of birds were genotyped. Large scaffolds (> 40 markers) were
460 subsequently filtered a second time to remove markers where fewer than 66% of birds were
461 genotyped.

462 We used the R/qtl functions *dropmarker* and *calc.errorlod* to assess genotyping
463 errors within individual scaffolds. Markers were removed if dropping the marker led to an
464 increased LOD score, or if removing a non-terminal marker led to a decrease in preliminary
465 linkage group length of >10 cM that was not supported by physical distance. Individual
466 genotypes were removed if they showed an error LOD score >5 (Lincoln and Lander 1992).
467 After these iterative rounds of filtering and quality control, we assembled final linkage groups
468 from 3759 autosomal markers and 422 Z-linked markers using the parameters (max.rf 0.15,

469 min.lod 6). Scaffolds in the same linkage group were manually ordered based on calculated
470 recombination fractions and LOD scores.

471

472 *QTL mapping and LOD interval identification*

473 We performed QTL mapping using R/qtl v1.46-2 (Broman *et al.* 2003). For each linear
474 measurement residual and shape PC phenotype, we ran a single-QTL genome scan using the
475 *scanone* function and Haley-Knott regression with sex as a covariate. For each phenotype, the
476 5% genome-wide significance threshold was calculated by running *scanone* with 1000
477 permutation replicates. A “major-effect QTL” was defined as any significant peak that was
478 identified in a single-QTL genome scan. For phenotypes with significant QTL peaks, we
479 calculated 1.5-LOD support intervals using the *lodint* function and estimated QTL effects via the
480 *plotPXG* function. We compared phenotypic means in Pom x Scan F₂ genotypic groups at peak
481 markers via one-way ANOVA and Tukey Test for pairwise comparisons in R. For single-locus
482 QTL, we calculated percent variance explained (PVE) using the *fitqtl* function.

483 To build multi-locus QTL models, two-dimensional genome scans were performed using
484 the *scantwo* function. We identified candidate additive and interactive QTL using LOD
485 thresholds *lod.full* = 9.1, *lod.fv1* = 7.1, *lod.int* = 6.3, *lod.add* = 6.3, and *lod.av1* = 3.3, as
486 suggested by the R/qtl authors (Broman and Sen 2009). Multi-locus models were built using the
487 *makeqtl*, *fitqtl*, and *refineqtl* functions. We identified genes within QTL intervals using a custom
488 R script and visualized their locations using the R packages ggplot2 v3.3.0 (Wickham 2016) and
489 ggenes v0.4.0 (<https://github.com/wilcox/ggenes>).

490

491 *RNA isolation, sequencing, and transcript quantification*

492 Fertilized pigeon eggs were collected from Racing Homer (RH) and Oriental Frill (OF)
493 breeding pairs and incubated to the equivalent of Hamburger-Hamilton stage 29 (HH29,
494 embryonic day 6). We dissected the facial primordia (n = 5 from each breed) and stored the

495 tissue in RNAlater (Thermo Fisher Scientific) at -80°C. We later extracted total RNA from each
496 tissue sample using the RNeasy Mini Kit with RNase-Free DNase Set and a TissueLyser LT
497 instrument (Qiagen). RNA-sequencing libraries were prepared and sequenced by the High-
498 Throughput Genomics and Bioinformatic Analysis Shared Resource at the University of Utah.
499 RNA sample quality was assessed using the RNA ScreenTape Assay (Agilent) and sequencing
500 libraries were prepared using the TruSeq Stranded mRNA Sample Prep Kit with oligo(dT)
501 selection (Illumina). 125-cycle paired-end sequencing was performed on an Illumina HiSeq 2500
502 instrument (12 libraries/lane).

503 We assessed sequencing read quality with FastQC (Babraham Bioinformatics) and
504 trimmed Illumina adapters with Cutadapt (Martin 2011). Reads were then aligned to the pigeon
505 Cliv_2.1 reference assembly (Holt *et al.* 2018) and quantified using Salmon (Patro *et al.* 2017).
506 Based on mean TPM (which was calculated from all samples), we characterized gene
507 expression level as no expression/below cutoff (<0.5 TPM), low (0.5-10 TPM), medium (11-
508 1000 TPM), or high (>1000 TPM), as described in the EMBL-EBI Expression Atlas
509 (<https://www.ebi.ac.uk/gxa/home>).

510

511 **Acknowledgements**

512 We are grateful to Nathan Young for generously sharing his time and expertise related to
513 geometric morphometrics. We also thank Rich Schneider for thoughtful discussions and input
514 on the project. We thank the organizer and instructors of the PR Statistics course on geometric
515 morphometrics: Oliver Hooker, Dean Adams, Michael Collyer, and Antigoni Kaliontzopoulou.
516 We are grateful to all past and present members of the Shapiro Lab, particularly Rebecca
517 Bruders, Alexa Davis, Eric Domyan, Hannah Van Hollebeke, and Anna Vickrey for technical
518 assistance and advice. We thank members of the Utah Pigeon Club and National Pigeon
519 Association for sample contributions. We acknowledge the University of Utah Preclinical
520 Imaging Core Facility, especially Tyler Thompson, for micro-CT imaging; the Center for High

521 Performance Computing at the University of Utah for computing resources; the University of
522 Utah High-Throughput Genomics Shared Resource for RNA library preparation and sequencing;
523 and the University of Minnesota Genomics Core for GBS library preparation and sequencing.

524

525 **Competing interests**

526 No competing interests declared.

527

528 **Funding**

529 This work was funded by the National Institutes of Health (F32DE028179 to EFB;
530 R35GM131787 to MDS) and the National Science Foundation (DEB1149160 to MDS). ETM
531 was supported by a fellowship from the Jane Coffin Childs Memorial Fund for Medical
532 Research.

533

534 **Data availability**

535 RNA-sequencing datasets generated for this study have been deposited to the NCBI SRA
536 database under BioProject PRJNA680754.

537

538 **References**

539 Abzhanov A., 2004 Bmp4 and Morphological Variation of Beaks in Darwin's Finches. *Science*
540 305: 1462–1465. <https://doi.org/10.1126/science.1098095>

541 Abzhanov A., W. P. Kuo, C. Hartmann, B. R. Grant, P. R. Grant, *et al.*, 2006 The calmodulin
542 pathway and evolution of elongated beak morphology in Darwin's finches. 442: 5.

543 Adams D. C., F. J. Rohlf, and D. E. Slice, 2013 A field comes of age: geometric morphometrics
544 in the 21st century. *Hystrix Ital. J. Mammal.* 24. <https://doi.org/10.4404/hystrix-24.1-6283>

545 Adams D. C., M. L. Collyer, and A. Kaliontzopoulou, 2020 Geomorph: Software for geometric
546 morphometric analyses. R package version 3.2.1

547 Alberch P., S. J. Gould, G. F. Oster, and D. B. Wake, 1979 Size and shape in ontogeny and
548 phylogeny. *Paleobiology* 5: 296–317. <https://doi.org/10.1017/S0094837300006588>

549 Albertson R. C., J. T. Streelman, and T. D. Kocher, 2003 Directional selection has shaped the
550 oral jaws of Lake Malawi cichlid fishes. *Proc. Natl. Acad. Sci.* 100: 5252–5257.
551 <https://doi.org/10.1073/pnas.0930235100>

552 Albertson R. C., J. T. Streelman, T. D. Kocher, and P. C. Yelick, 2005a Integration and evolution
553 of the cichlid mandible: The molecular basis of alternate feeding strategies

554 Albertson R. C., J. T. Streelman, T. D. Kocher, and P. C. Yelick, 2005b Integration and evolution
555 of the cichlid mandible: The molecular basis of alternate feeding strategies. *Proc. Natl.*
556 *Acad. Sci.* 102: 16287–16292. <https://doi.org/10.1073/pnas.0506649102>

557 Andersson L., 2001 Genetic dissection of phenotypic diversity in farm animals. *Nat. Rev. Genet.*
558 2: 130–138. <https://doi.org/10.1038/35052563>

559 Baptista L. F., J. E. M. Gómez, and H. M. Horblit, 2009 DARWIN'S PIGEONS AND THE
560 EVOLUTION OF THE COLUMBIFORMS: RECAPITULATION OF ANCIENT GENES.
561 23.

562 Bardua C., M. Wilkinson, D. J. Gower, E. Sherratt, and A. Goswami, 2019 Morphological
563 evolution and modularity of the caecilian skull. *BMC Evol. Biol.* 19: 30.
564 <https://doi.org/10.1186/s12862-018-1342-7>

565 Boer E. F., H. F. Van Hollebeke, C. Holt, M. Yandell, and M. D. Shapiro, 2021 A ROR2 coding
566 variant is associated with craniofacial variation in domestic pigeons

567 Bosse M., L. G. Spurgin, V. N. Laine, E. F. Cole, J. A. Firth, *et al.*, 2017 Recent natural selection
568 causes adaptive evolution of an avian polygenic trait. *Science* 358: 365–368.
569 <https://doi.org/10.1126/science.aal3298>

570 Bright J. A., J. Marugán-Lobón, S. N. Cobb, and E. J. Rayfield, 2016 The shapes of bird beaks
571 are highly controlled by nondietary factors. *Proc. Natl. Acad. Sci.* 113: 5352–5357.
572 <https://doi.org/10.1073/pnas.1602683113>

573 Bright J. A., J. Marugán-Lobón, E. J. Rayfield, and S. N. Cobb, 2019 The multifactorial nature of
574 beak and skull shape evolution in parrots and cockatoos (Psittaciformes). *BMC Evol.*
575 *Biol.* 19: 104. <https://doi.org/10.1186/s12862-019-1432-1>

576 Broman K. W., H. Wu, S. Sen, and G. A. Churchill, 2003 R/qtl: QTL mapping in experimental
577 crosses. *Bioinformatics* 19: 889–890. <https://doi.org/10.1093/bioinformatics/btg112>

578 Broman K. W., and S. Sen, 2009 *A guide to QTL mapping with R/qtl*. Springer, Dordrecht.

579 Brunskill E. W., A. S. Potter, A. Distasio, P. Dexheimer, A. Plassard, *et al.*, 2014 A gene
580 expression atlas of early craniofacial development. *Dev. Biol.* 391: 133–146.
581 <https://doi.org/10.1016/j.ydbio.2014.04.016>

582 Campàs O., R. Mallarino, A. Herrel, A. Abzhanov, and M. P. Brenner, 2010 Scaling and shear
583 transformations capture beak shape variation in Darwin's finches. *Proc. Natl. Acad. Sci.*
584 107: 3356–3360. <https://doi.org/10.1073/pnas.0911575107>

585 Catchen J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait, 2011 Stacks:
586 building and genotyping Loci de novo from short-read sequences. *G3 Bethesda Md* 1:
587 171–182. <https://doi.org/10.1534/g3.111.000240>

588 Catchen J., P. A. Hohenlohe, S. Bassham, A. Amores, and W. A. Cresko, 2013 Stacks: an
589 analysis tool set for population genomics. *Mol. Ecol.* 22: 3124–3140.
590 <https://doi.org/10.1111/mec.12354>

591 Christie W., and C. Wriedt, 1924 Die Vererbung von Zeichnungen, Farben und anderen
592 Charakteren bei Tauben. *Z. Für Indukt. Abstamm.- Vererbungslehre* 32: 233–298.
593 <https://doi.org/10.1007/BF01816754>

594 Claes P., J. Roosenboom, J. D. White, T. Swigut, D. Sero, *et al.*, 2018 Genome-wide mapping
595 of global-to-local genetic effects on human facial shape. *Nat. Genet.* 50: 414–423.
596 <https://doi.org/10.1038/s41588-018-0057-4>

597 Collyer M. L., and D. C. Adams, 2018 RRPP: An R package for fitting linear models to
598 high-dimensional data using residual randomization, (R. Freckleton, Ed.). *Methods Ecol.*
599 *Evol.* 9: 1772–1779. <https://doi.org/10.1111/2041-210X.13029>

600 Collyer M. L., and D. C. Adams, 2020 RRPP: Linear Model Evaluation with Randomized
601 Residuals in a Permutation Procedure, R package version 0.5.2

602 Concannon M. R., and R. C. Albertson, 2015 The genetic and developmental basis of an
603 exaggerated craniofacial trait in East African cichlids: GENETIC ARCHITECTURE OF
604 AN EXAGGERATED TRAIT. *J. Exp. Zoolog. B Mol. Dev. Evol.* 324: 662–670.
605 <https://doi.org/10.1002/jez.b.22641>

606 Conith M. R., Y. Hu, A. J. Conith, M. A. Maginnis, J. F. Webb, *et al.*, 2018 Genetic and
607 developmental origins of a unique foraging adaptation in a Lake Malawi cichlid genus.
608 *Proc. Natl. Acad. Sci.* 115: 7063–7068. <https://doi.org/10.1073/pnas.1719798115>

609 Cooney C. R., J. A. Bright, E. J. R. Capp, A. M. Chira, E. C. Hughes, *et al.*, 2017 Mega-
610 evolutionary dynamics of the adaptive radiation of birds. *Nature* 542: 344–347.
611 <https://doi.org/10.1038/nature21074>

612 Darwin C. R., 1868 *The variation of animals and plants under domestication*. John Murray,
613 London.

614 De Beer G., 1940 *Embryos and Ancestors*. Clarendon Press.

615 Domyan E. T., M. W. Guernsey, Z. Kronenberg, S. Krishnan, R. E. Boissy, *et al.*, 2014 Epistatic
616 and Combinatorial Effects of Pigmentary Gene Mutations in the Domestic Pigeon. *Curr.*
617 *Biol.* 24: 459–464. <https://doi.org/10.1016/j.cub.2014.01.020>

618 Domyan E. T., Z. Kronenberg, C. R. Infante, A. I. Vickrey, S. A. Stringham, *et al.*, 2016
619 Molecular shifts in limb identity underlie development of feathered feet in two domestic
620 avian species. *eLife* 5: e12115. <https://doi.org/10.7554/eLife.12115>

621 Drake A. G., and C. P. Klingenberg, 2010 Large-Scale Diversification of Skull Shape in
622 Domestic Dogs: Disparity and Modularity. *Am. Nat.* 175: 289–301.
623 <https://doi.org/10.1086/650372>

624 Felice R. N., and A. Goswami, 2018 Developmental origins of mosaic evolution in the avian
625 cranium. *Proc. Natl. Acad. Sci.* 115: 555–560. <https://doi.org/10.1073/pnas.1716437115>

626 Fish J. L., B. Villmoare, K. Köbernick, C. Compagnucci, O. Britanova, *et al.*, 2011 Satb2,
627 modularity, and the evolvability of the vertebrate jaw. *Evol. Dev.* 13: 549–564.
628 <https://doi.org/10.1111/j.1525-142X.2011.00511.x>

629 Fish J. L., 2016 Developmental mechanisms underlying variation in craniofacial disease and
630 evolution. *Dev. Biol.* 415: 188–197. <https://doi.org/10.1016/j.ydbio.2015.12.019>

631 Floss T., H. H. Arnold, and T. Braun, 1997 A role for FGF-6 in skeletal muscle regeneration.

632 Genes Dev. 11: 2040–2051. <https://doi.org/10.1101/gad.11.16.2040>

633 Fritz J. A., J. Brancale, M. Tokita, K. J. Burns, M. B. Hawkins, *et al.*, 2014 Shared

634 developmental programme strongly constrains beak shape diversity in songbirds. Nat.

635 Commun. 5: 3700. <https://doi.org/10.1038/ncomms4700>

636 Hallgrímsson B., D. C. Katz, J. D. Aponte, J. R. Larson, J. Devine, *et al.*, 2019 Integration and

637 the Developmental Genetics of Allometry. Integr. Comp. Biol. 59: 1369–1381.

638 <https://doi.org/10.1093/icb/icz105>

639 Hamburger V., and H. L. Hamilton, 1951 A series of normal stages in the development of the

640 chick embryo. J. Morphol. 88: 49–92. <https://doi.org/10.1002/jmor.1050880104>

641 Holt C., M. Campbell, D. A. Keays, N. Edelman, A. Kapusta, *et al.*, 2018 Improved Genome

642 Assembly and Annotation for the Rock Pigeon (*Columba livia*). G3 Bethesda 8: 1391–

643 1398. <https://doi.org/10.1534/g3.117.300443>

644 Katz D. C., J. D. Aponte, W. Liu, R. M. Green, J. M. Mayeux, *et al.*, 2020 Facial shape and

645 allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched

646 for known skeletal and facial development genes, (J. Cray, Ed.). PLOS ONE 15:

647 e0233377. <https://doi.org/10.1371/journal.pone.0233377>

648 Klingenberg C. P., 2014 Studying morphological integration and modularity at multiple levels:

649 concepts and analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369: 20130249.

650 <https://doi.org/10.1098/rstb.2013.0249>

651 Kumar M., and S. C. Chapman, 2012 Cloning and expression analysis of Fgf5, 6 and 7 during
652 early chick development. *Gene Expr. Patterns* GEP 12: 245–253.
653 <https://doi.org/10.1016/j.gep.2012.05.002>

654 Lamichhaney S., J. Berglund, M. S. Almén, K. Maqbool, M. Grabherr, *et al.*, 2015 Evolution of
655 Darwin's finches and their beaks revealed by genome sequencing. *Nature* 518: 371–
656 375. <https://doi.org/10.1038/nature14181>

657 Lamichhaney S., F. Han, J. Berglund, C. Wang, M. S. Almen, *et al.*, 2016 A beak size locus in
658 Darwins finches facilitated character displacement during a drought. *Science* 352: 470–
659 474. <https://doi.org/10.1126/science.aad8786>

660 Langmead B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2. *Nat.*
661 *Methods* 9: 357–359. <https://doi.org/10.1038/nmeth.1923>

662 Levi W. M., 1986 *The Pigeon*. Levi Publishing Co., Inc., Sumter, S.C.

663 Lincoln S. E., and E. S. Lander, 1992 Systematic detection of errors in genetic linkage data.
664 *Genomics* 14: 604–610. [https://doi.org/10.1016/s0888-7543\(05\)80158-2](https://doi.org/10.1016/s0888-7543(05)80158-2)

665 Mallarino R., P. R. Grant, B. R. Grant, A. Herrel, W. P. Kuo, *et al.*, 2011 Two developmental
666 modules establish 3D beak-shape variation in Darwin's finches. *Proc. Natl. Acad. Sci.*
667 108: 4057–4062. <https://doi.org/10.1073/pnas.1011480108>

668 Mallarino R., O. Campas, J. A. Fritz, K. J. Burns, O. G. Weeks, *et al.*, 2012 Closely related bird
669 species demonstrate flexibility between beak morphology and underlying developmental
670 programs. *Proc. Natl. Acad. Sci.* 109: 16222–16227.
671 <https://doi.org/10.1073/pnas.1206205109>

672 Marchant T. W., E. J. Johnson, L. McTeir, C. I. Johnson, A. Gow, *et al.*, 2017 Canine
673 Brachycephaly Is Associated with a Retrotransposon-Mediated Missplicing of SMOC2.
674 Curr. Biol. 27: 1573-1584.e6. <https://doi.org/10.1016/j.cub.2017.04.057>

675 Martin M., 2011 Cutadapt removes adapter sequences from high-throughput sequencing reads.
676 EMBnet.journal 17: 10. <https://doi.org/10.14806/ej.17.1.200>

677 Navalón G., J. A. Bright, J. Marugán-Lobón, and E. J. Rayfield, 2019 The evolutionary
678 relationship among beak shape, mechanical advantage, and feeding ecology in modern
679 birds*. Evolution 73: 422–435. <https://doi.org/10.1111/evo.13655>

680 Navalón G., J. Marugán-Lobón, J. A. Bright, C. R. Cooney, and E. J. Rayfield, 2020 The
681 consequences of craniofacial integration for the adaptive radiations of Darwin's finches
682 and Hawaiian honeycreepers. Nat. Ecol. Evol. 4: 270–278.
683 <https://doi.org/10.1038/s41559-019-1092-y>

684 Pallares L. F., P. Carbonetto, S. Gopalakrishnan, C. C. Parker, C. L. Ackert-Bicknell, *et al.*, 2015
685 Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes
686 Involved in Shape Determination, (G. Gibson, Ed.). PLOS Genet. 11: e1005607.
687 <https://doi.org/10.1371/journal.pgen.1005607>

688 Parker H. J., I. Pushel, and R. Krumlauf, 2018 Coupling the roles of Hox genes to regulatory
689 networks patterning cranial neural crest. Dev. Biol. 444: S67–S78.
690 <https://doi.org/10.1016/j.ydbio.2018.03.016>

691 Parsons K. J., W. J. Cooper, and R. C. Albertson, 2011 Modularity of the Oral Jaws Is Linked to
692 Repeated Changes in the Craniofacial Shape of African Cichlids. Int. J. Evol. Biol. 10.

693 Parsons K. J., Y. H. Son, A. Crespel, D. Thambithurai, S. Killen, *et al.*, 2018 Conserved but
694 flexible modularity in the zebrafish skull: implications for craniofacial evolvability. Proc. R.
695 Soc. B Biol. Sci. 285: 20172671. <https://doi.org/10.1098/rspb.2017.2671>

696 Patro R., G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, 2017 Salmon provides fast and
697 bias-aware quantification of transcript expression. Nat. Methods 14: 417–419.
698 <https://doi.org/10.1038/nmeth.4197>

699 Powder K. E., H. Cousin, G. P. McLinden, and R. Craig Albertson, 2014 A Nonsynonymous
700 Mutation in the Transcriptional Regulator *Ibh* Is Associated with Cichlid Craniofacial
701 Adaptation and Neural Crest Cell Development. Mol. Biol. Evol. 31: 3113–3124.
702 <https://doi.org/10.1093/molbev/msu267>

703 R Core Team, 2020 *R: A Language and Environment for Statistical Computing*. R Foundation
704 for Statistical Computing, Vienna, Austria.

705 Richmond S., L. J. Howe, S. Lewis, E. Stergiakouli, and A. Zhurov, 2018 Facial Genetics: A
706 Brief Overview. Front. Genet. 9: 462. <https://doi.org/10.3389/fgene.2018.00462>

707 Rimbault M., and E. A. Ostrander, 2012 So many doggone traits: mapping genetics of multiple
708 phenotypes in the domestic dog. Hum. Mol. Genet. 21: R52–R57.
709 <https://doi.org/10.1093/hmg/dds323>

710 Roberts R. B., Y. Hu, R. C. Albertson, and T. D. Kocher, 2011 Craniofacial divergence and
711 ongoing adaptation via the hedgehog pathway. Proc. Natl. Acad. Sci. 108: 13194–
712 13199. <https://doi.org/10.1073/pnas.1018456108>

713 Sánchez-Villagra M. R., M. Geiger, and R. A. Schneider, 2016 The taming of the neural crest: a
714 developmental perspective on the origins of morphological covariation in domesticated
715 mammals. *R. Soc. Open Sci.* 3: 160107. <https://doi.org/10.1098/rsos.160107>

716 Schoenebeck J. J., S. A. Hutchinson, A. Byers, H. C. Beale, B. Carrington, *et al.*, 2012 Variation
717 of BMP3 Contributes to Dog Breed Skull Diversity, (T. Leeb, Ed.). *PLoS Genet.* 8:
718 e1002849. <https://doi.org/10.1371/journal.pgen.1002849>

719 Sell A., 2012 *Pigeon Genetics: Applied Genetics in the Domestic Pigeon*. Sell Publishing.

720 Shaffer J. R., E. Orlova, M. K. Lee, E. J. Leslie, Z. D. Raffensperger, *et al.*, 2016 Genome-Wide
721 Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology,
722 (G. S. Barsh, Ed.). *PLOS Genet.* 12: e1006149.
723 <https://doi.org/10.1371/journal.pgen.1006149>

724 Shapiro M. D., Z. Kronenberg, C. Li, E. T. Domyan, H. Pan, *et al.*, 2013 Genomic diversity and
725 evolution of the head crest in the rock pigeon. *Science* 339: 1063–7.
726 <https://doi.org/10.1126/science.1230422>

727 Stockard C. R., and A. L. Johnson, 1941 Section III, in *The Genetic and Endocrinic Basis for
728 Differences in Form and Behavior*, Wistar Institute of Anatomy and Biology, Philadelphia.

729 Trainor P. A., 2010 Craniofacial birth defects: The role of neural crest cells in the etiology and
730 pathogenesis of Treacher Collins syndrome and the potential for prevention. *Am. J. Med.
731 Genet. A.* 152A: 2984–2994. <https://doi.org/10.1002/ajmg.a.33454>

732 Twigg S. R. F., and A. O. M. Wilkie, 2015 New insights into craniofacial malformations. *Hum.
733 Mol. Genet.* 24: R50–R59. <https://doi.org/10.1093/hmg/ddv228>

734 vonHoldt B. M., R. Y. Kartzinel, C. D. Huber, V. Le Underwood, Y. Zhen, *et al.*, 2018 Growth
735 factor gene IGF1 is associated with bill size in the black-bellied seedcracker *Pyrenestes*
736 *ostrinus*. *Nat. Commun.* 9: 4855. <https://doi.org/10.1038/s41467-018-07374-9>

737 Weinberg S. M., R. Cornell, and E. J. Leslie, 2018 Craniofacial genetics: Where have we been
738 and where are we going? *PLOS Genet.* 14: e1007438.
739 <https://doi.org/10.1371/journal.pgen.1007438>

740 Wickham H., 2016 *ggplot2: elegant graphics for data analysis*. Springer, Cham.

741 Xiong Z., G. Dankova, L. J. Howe, M. K. Lee, P. G. Hysi, *et al.*, 2019 Novel genetic loci affecting
742 facial shape variation in humans. *eLife* 8: e49898. <https://doi.org/10.7554/eLife.49898>

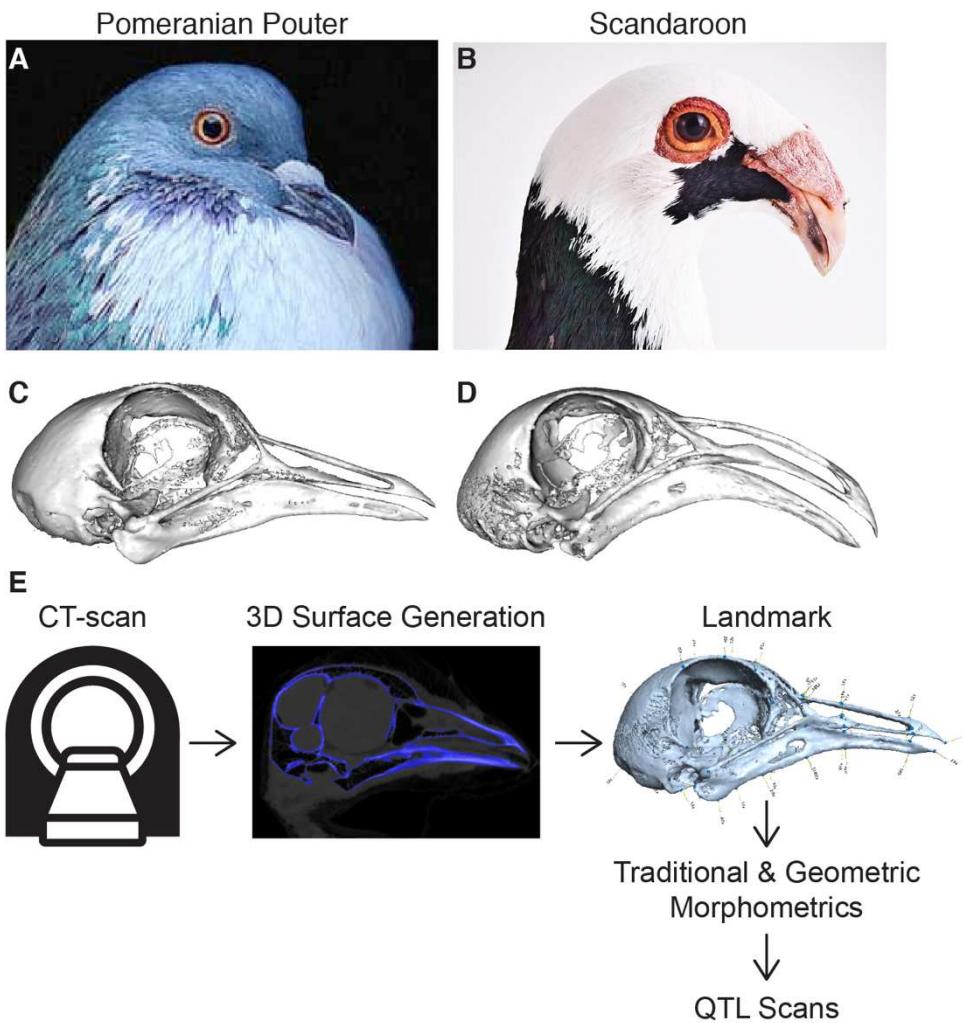
743 Xu S., 2003 Theoretical basis of the Beavis effect. *Genetics* 165: 2259–2268.

744 Xu J., H. Liu, Y. Lan, B. J. Aronow, V. V. Kalinichenko, *et al.*, 2016 A Shh-Foxf-Fgf18-Shh
745 Molecular Circuit Regulating Palate Development, (Y. Chai, Ed.). *PLOS Genet.* 12:
746 e1005769. <https://doi.org/10.1371/journal.pgen.1005769>

747 Yamasaki T., S. Aoki, and M. Tokita, 2018 Allometry and integration do not strongly constrain
748 beak shape evolution in large-billed (*Corvus macrorhynchos*) and carrion crows (*Corvus corone*). *Ecol. Evol.* 8: 10057–10066. <https://doi.org/10.1002/ece3.4440>

750 Young N. M., M. Linde-Medina, J. W. Fondon, B. Hallgrímsson, and R. S. Marcucio, 2017
751 Craniofacial diversification in the domestic pigeon and the evolution of the avian skull.
752 *Nat. Ecol. Evol.* 1: 95. <https://doi.org/10.1038/s41559-017-0095>

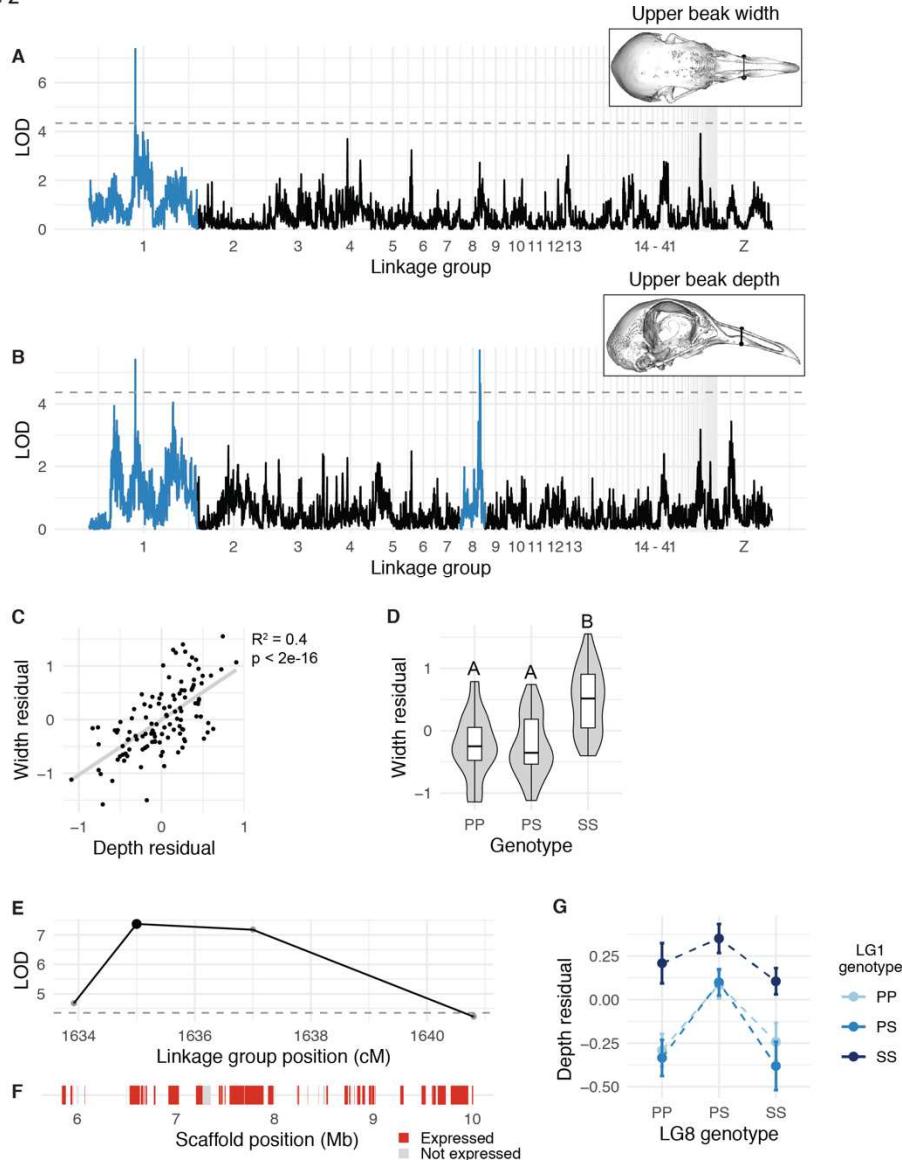
753 Yue M., Y. Lan, H. Liu, Z. Wu, T. Imamura, *et al.*, 2020 Tissue-specific analysis of *Fgf18* gene
754 function in palate development. *Dev. Dyn.* dvdy.259. <https://doi.org/10.1002/dvdy.259>


755 Yusuf L., M. C. Heatley, J. P. G. Palmer, H. J. Barton, C. R. Cooney, *et al.*, 2020 Noncoding
756 regions underpin avian bill shape diversification at macroevolutionary scales. *Genome*
757 *Res.* 30: 553–565. <https://doi.org/10.1101/gr.255752.119>

758 Zelditch M., D. L. Swiderski, and H. D. Sheets, 2012 *Geometric morphometrics for biologists: a*
759 *primer*. Elsevier/Academic Press, Amsterdam.

760

761


Figure 1

762
763
764
765
766
767
768
769

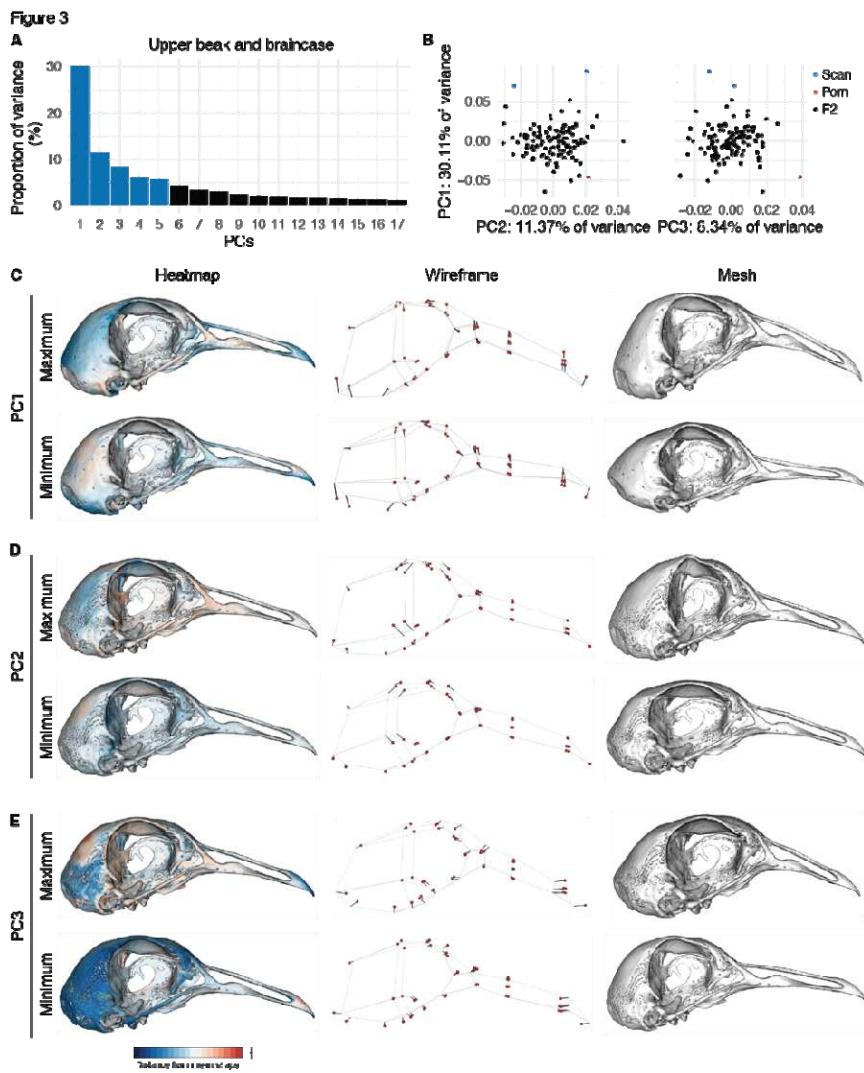
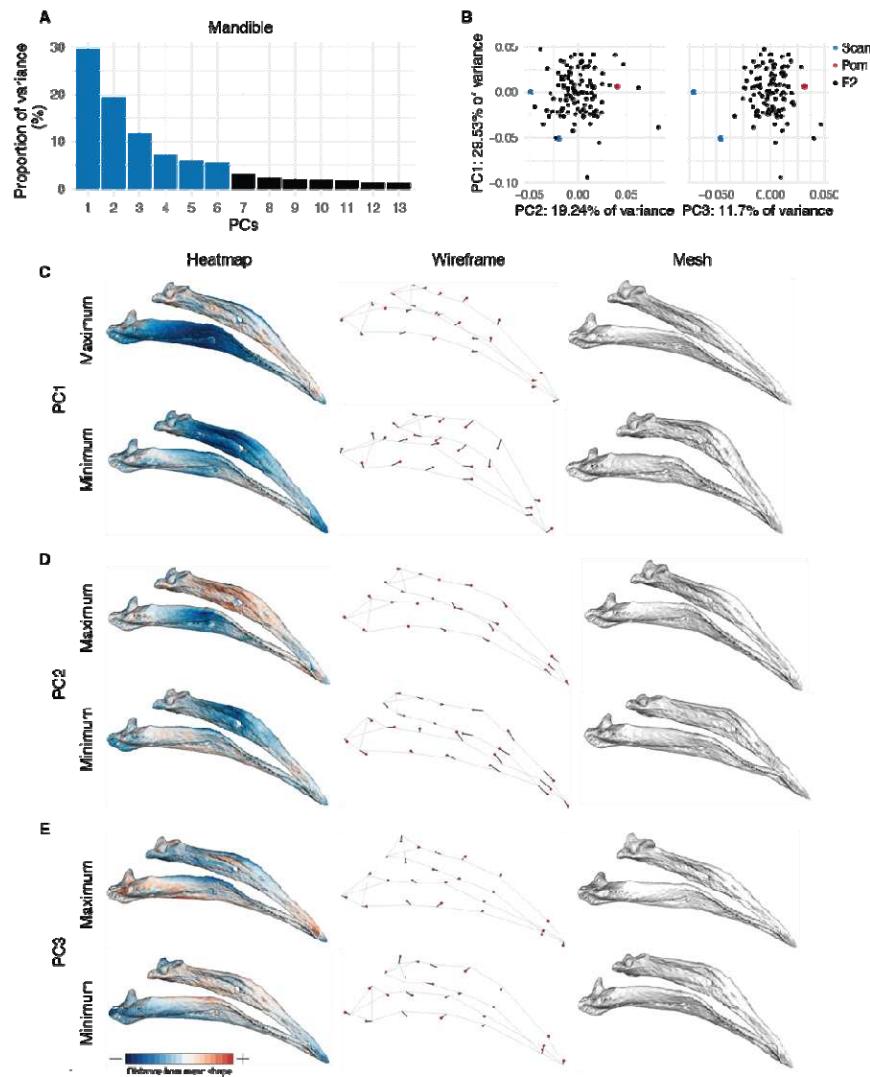

Figure 1. Morphometric analyses of craniofacial shape and quantitative trait loci (QTL) mapping in a pigeon F₂ intercross. (A-B) Representative images of the Pomeranian Pouter (Pom, A) and Scandaroon (Scan, B) breeds of domestic pigeon used to generate the Pom x Scan F₂ intercross. (C-D) 3D surface models of the craniofacial skeletons of the male Pom (C) and one of the female Scan (D) cross founders. (E) Experimental approach to identify genetic architecture of craniofacial variation in the Pom x Scan cross. Image credits (used with permission): Drew Snyder (A); Richard Bailey (B).

Figure 2

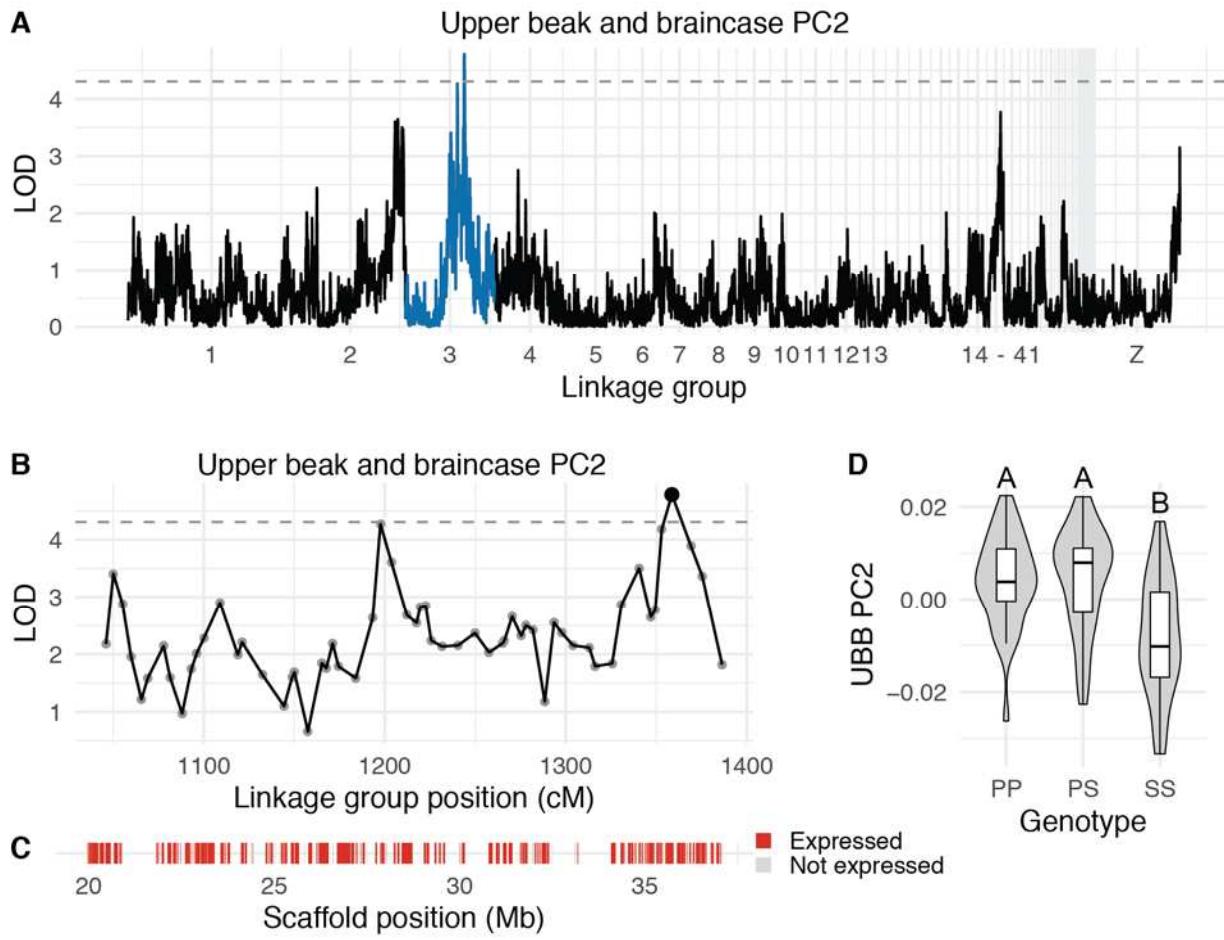
770


771 **Figure 2. QTL associated with upper beak width and depth.** (A-B) Genome-wide QTL scans
 772 for upper beak width (A) and depth (B). Dashed horizontal line indicates 5% genome-wide
 773 significance threshold and linkage groups with significant QTL peaks are highlighted in blue.
 774 (C) Scatterplot of upper beak width and depth measurements for all Pom x Scan F₂ individuals.
 775 Plotted values are residuals from regression on body mass. (D) Beak width effect plot. Letters
 776 denote significance groups, p-values determined via Tukey test: PP vs. SS = 4.3e-06, PS vs.
 777 SS = 9.1e-06. (E) LOD support interval for beak width QTL scan. Dots indicate linkage map
 778 markers; the larger black dot highlights the peak marker that was used to estimate QTL effects
 779 in (D). (F) Genes located within LOD support interval, color coded based on expression status in
 780 HH29 facial primordia. (G) Interaction plot between LG1 and LG8 QTL associated with upper
 781 beak depth. P = allele from Pom founder, S = allele from Scan founder.

782
783

784 **Figure 3. Upper beak and braincase (UBB) shape variation in the Pom x Scan F₂**
785 **population.** (A) Principal components (PCs) that collectively explain 90% of UBB shape
786 variation. PCs that account for more than 5% of variation are indicated in blue. (B) PCA plots of
787 PC1 vs. PC2 (left) and PC1 vs. PC3 (right). Founders are highlighted in blue (Scan) and red
788 (Pom), F₂ birds are denoted in black. (C-E) Visualizations of PC1 (C), PC2 (D), and PC3 (E)
789 minimum and maximum shapes in three ways: heatmaps displaying distance from mean shape
790 (left), wireframes showing displacement of landmarks from mean shape (center), and warped
791 meshes (right). For wireframes and meshes, shape changes are magnified to aid visualization:
792 1.5x for PC1, 2x for PC2, 3x for PC3.

Figure 4


793

794

795

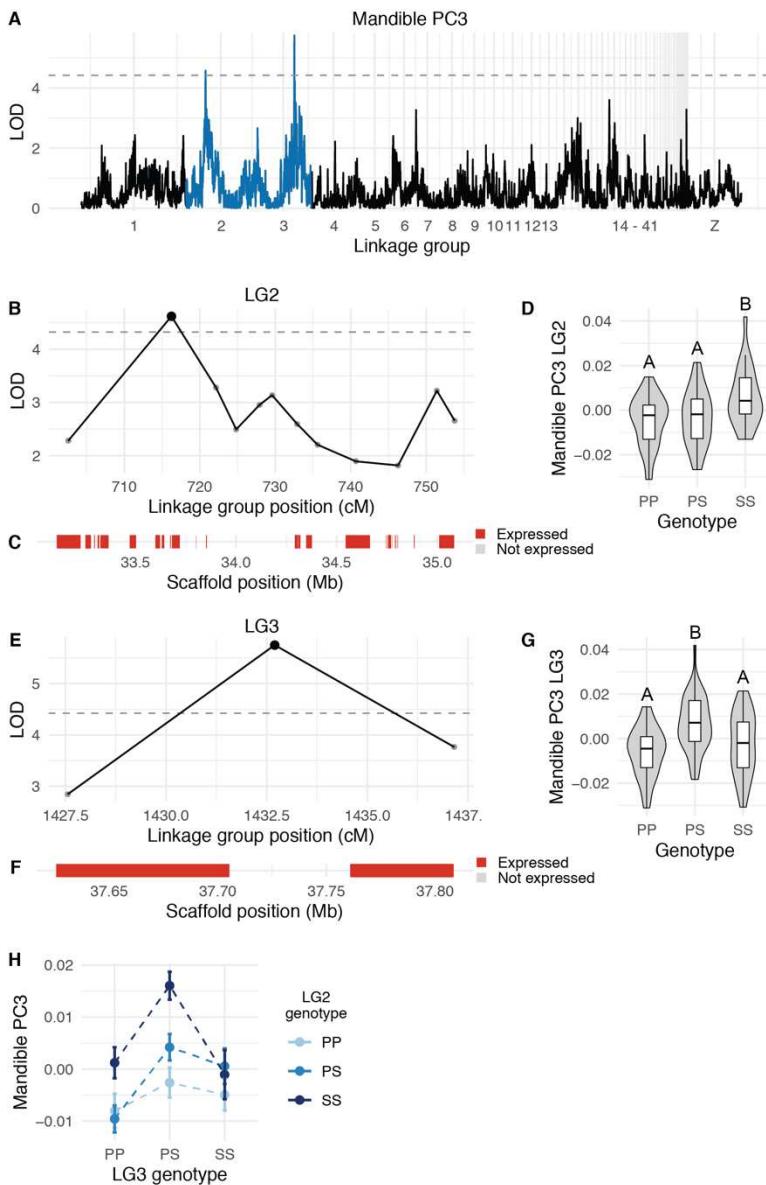

796 **Figure 4. Mandible (MAN) shape variation in the Pom x Scan F₂ population.** (A) Principal
797 components (PCs) that collectively explain 90% of MAN shape variation. PCs that account for
798 more than 5% of variation are indicated in blue. (B) PCA plots of PC1 vs. PC2 (left) and PC1 vs.
799 PC3 (right). Founders are highlighted in blue (Scan) and red (Pom), F₂ birds are denoted in
800 black. (C-E) Visualizations of PC1 (C), PC2 (D), and PC3 (E) minimum and maximum shapes in
801 three ways: heatmaps displaying distance from mean shape (left), wireframes showing
802 displacement of landmarks from mean shape (center), and warped meshes (right). For
803 wireframes and meshes, shape changes are magnified to aid visualization: 1.5x for PC1 and
804 2x for PC3.

Figure 5

Figure 5. QTL associated with UBB PC2. (A) Genome-wide QTL scan for UBB PC2. Dashed horizontal line indicates 5% genome-wide significance threshold and linkage groups with significant QTL peaks are highlighted in blue. (B) LOD support interval for UBB PC2 QTL scan. Dots indicate linkage map markers; the larger black dot highlights the peak marker that was used to estimate QTL effects. (C) Genes located within LOD support interval, color coded based on expression status in HH29 facial primordia. (D) QTL effect plot for UBB PC2. Letters denote significance groups, p-values determined via Tukey test: PP vs. SS = 6.4e-04, PS vs. SS = 3.1e-05. P = allele from Pom founder, S = allele from Scan founder.

Figure 6

815

816

817

818

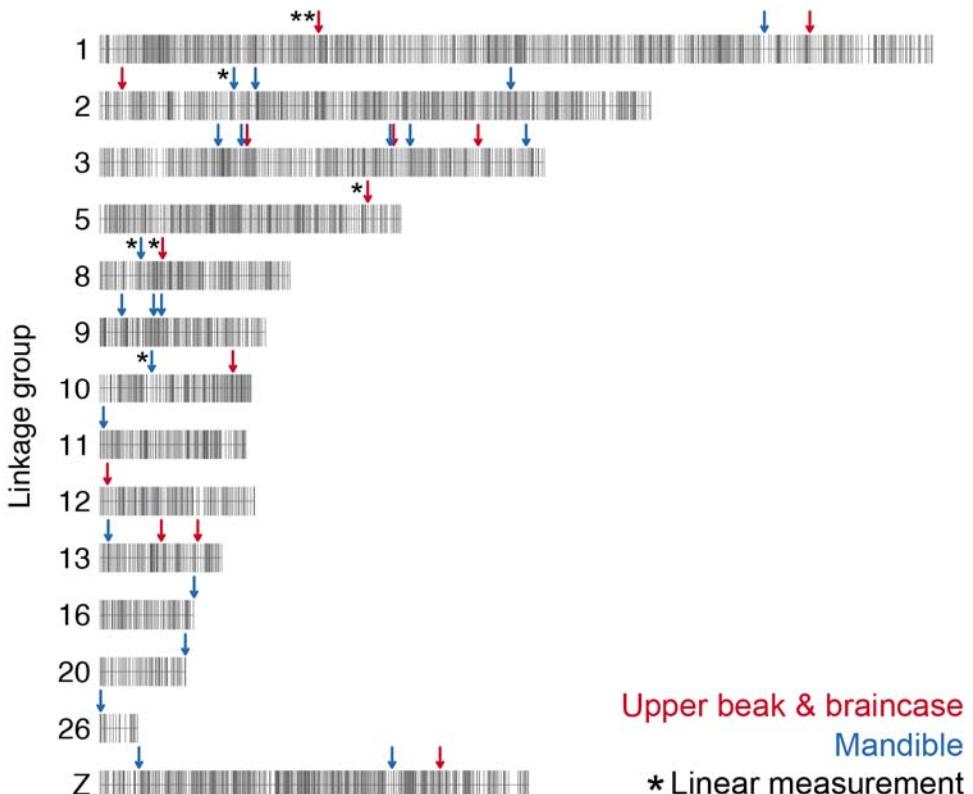
819

820

821

822

823


824

825

826

Figure 6. QTL associated with MAN PC3. (A) Genome-wide QTL scan for MAN PC3. Dashed horizontal line indicates 5% genome-wide significance threshold, and linkage groups with significant QTL peaks are highlighted in blue. (B) LOD support interval for MAN PC3 QTL on linkage group 2. Dots indicate linkage map markers; the larger black dot highlights the peak marker that was used to estimate QTL effects. (C) Genes located within LOD support interval, color coded based on expression status in HH29 facial primordia. (D) Effect plot for MAN PC3 QTL on LG2. Letters denote significance groups, p-values determined via Tukey test: PP vs. SS = 1.2e-04, PS vs. SS = 2.1e-03. (E) LOD support interval for MAN PC3 QTL on LG3. (F) Genes located within LG3 QTL. (G) Effect plot for QTL on LG3. Letters denote significance groups, p-values: PP vs. PS = 2.3e-05, PS vs. SS = 1.2e-02. (H) Interaction plot for MAN PC3 QTL on LG2 and LG3. P = allele from Pom founder, S = allele from Scan founder.

Figure 7

827
828
829
830
831
832
833

Figure 7. Summary of QTL associated with craniofacial shape in the Pom x Scan F₂ population. Only the linkage groups harboring significant QTL are displayed. Markers are indicated by vertical gray lines. Approximate positions of QTL peaks are labeled with arrows; red and blue arrows mark QTL associated with UBB or MAN shape, respectively. Linear measurement QTL are indicated by asterisks to the left of the corresponding arrow; QTL without asterisks are associated with 3D shape changes.

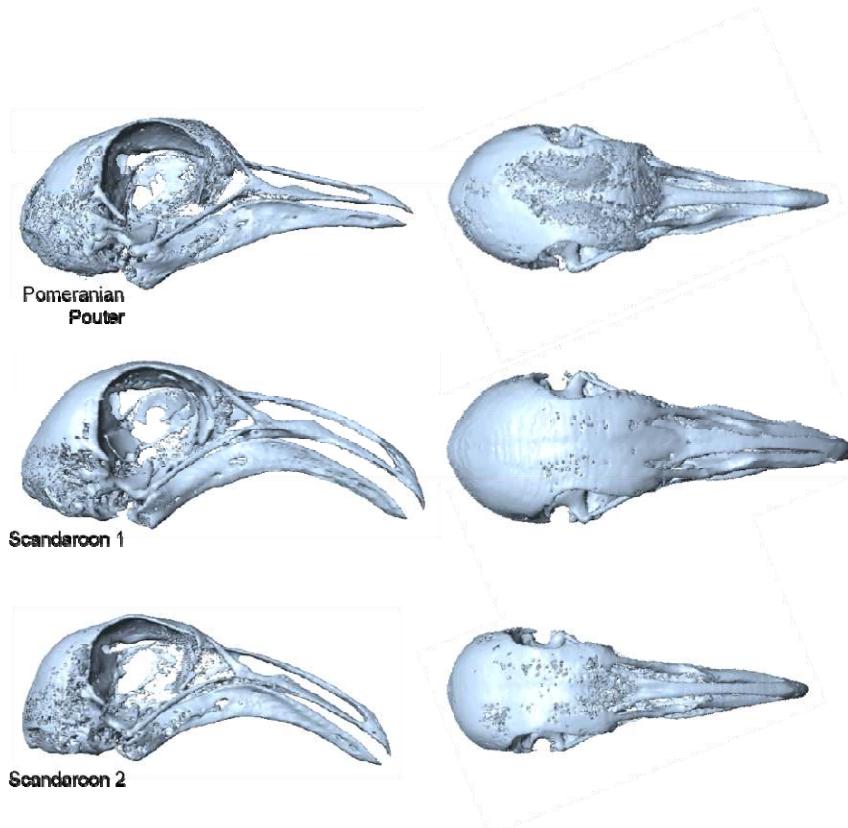
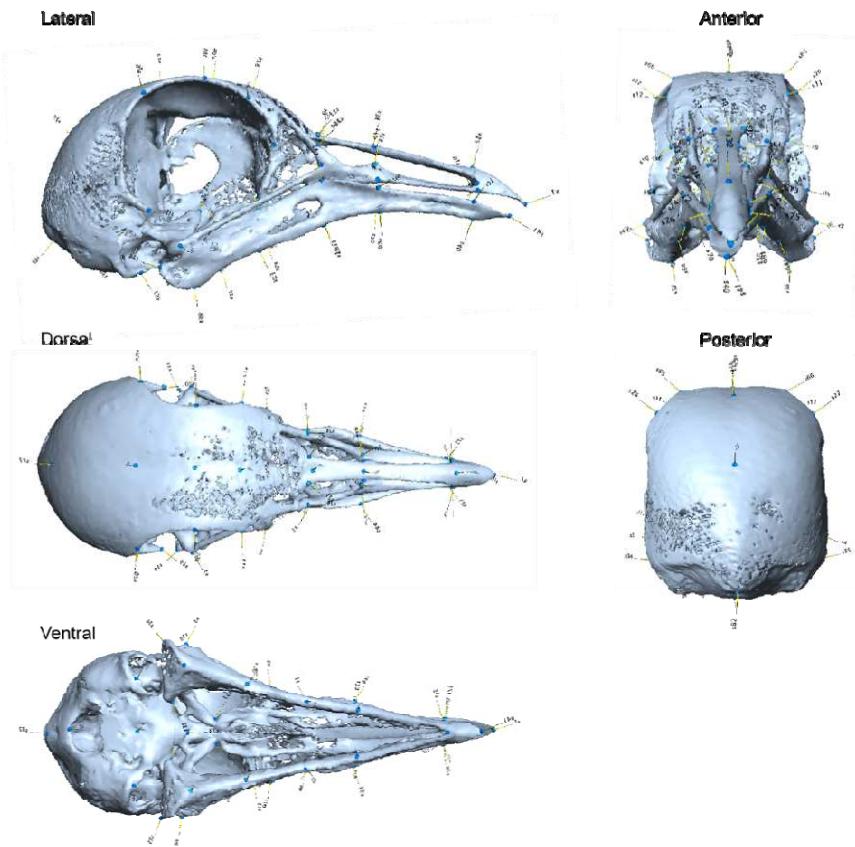
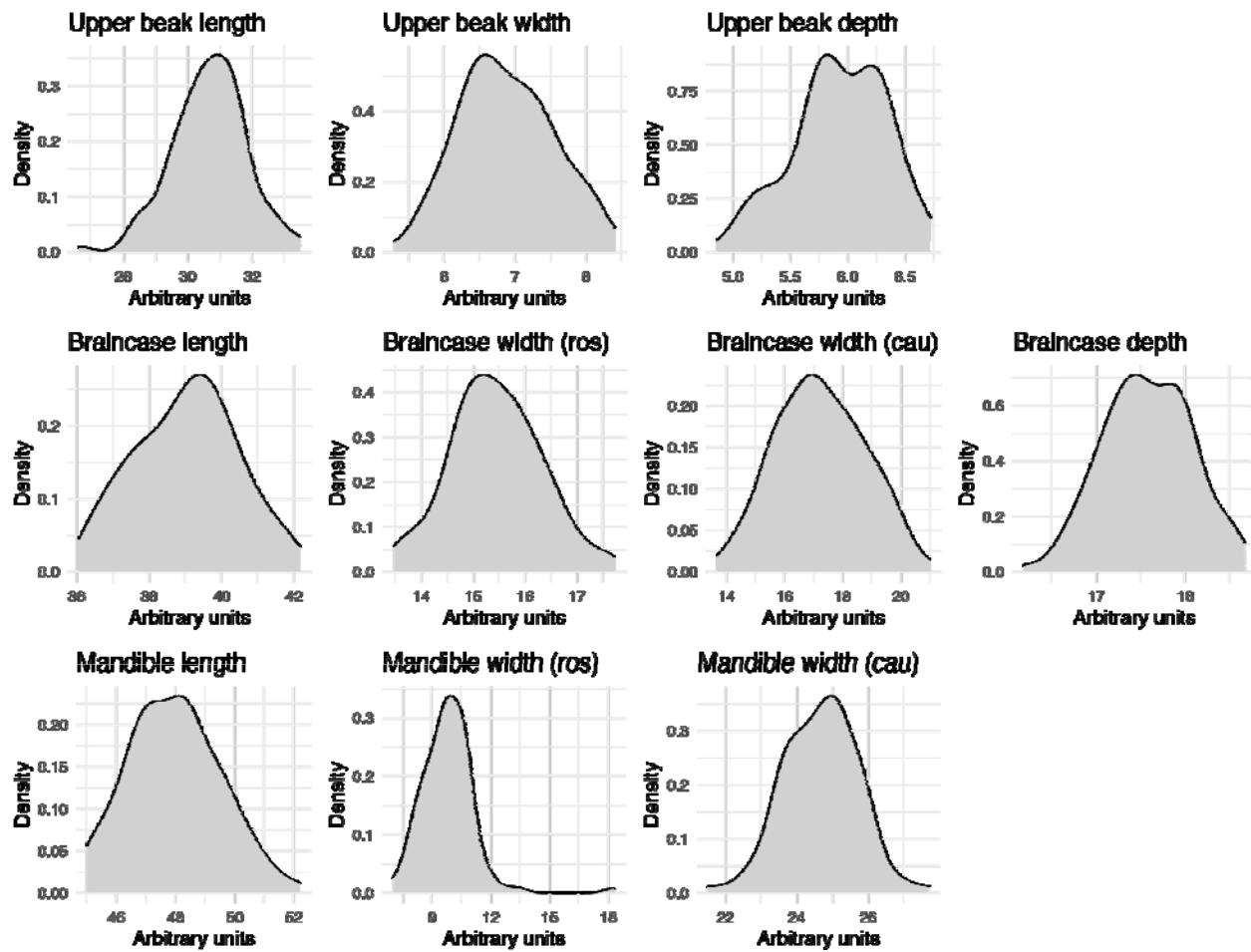

834
835

Table 1. QTL associated with skull and jaw linear measurements and shape.

QTL	LG	Position (cM)	LOD	PVE (%)	Interval size (Mb)	Total genes	Expressed genes
<i>Linear measurements</i>							
Upper beak width	1	1635.00	7.38	25.39	4.21	41	33
Upper beak depth	1	1635.00	5.41	19.32	4.21	41	33
Upper beak depth	8	688.81	5.71	20.27	0.32	5	5
Braincase length	2	1082.73	5.56	19.81	50.89	446	399
Braincase width (caudal)	5	680.84	4.65	16.86	0.48	5	5
Mandible length	10	236.20	5.05	18.16	0.88	26	24
Mandible width	8	699.06	6.41	22.46	0.09	2	2
<i>Shape</i>							
UBB PC2	3	1361.00	4.93	17.77	17.34	171	146
UBB PC3	13	454.00	4.53	16.45	1.30	4	3
UBB PC4	10	614.97	4.78	17.29	10.19	52	45
UBB PC4	11	426.06	4.57	16.59	15.99	209	177
MAN PC3	2	716.24	4.58	16.62	1.94	27	21
MAN PC3	3	1432.70	5.75	20.41	7.20	35	31
MAN PC4	11	15.00	6.42	22.51	1.42	34	21
MAN PC5	20	391.81	5.01	18.05	0.54	6	6

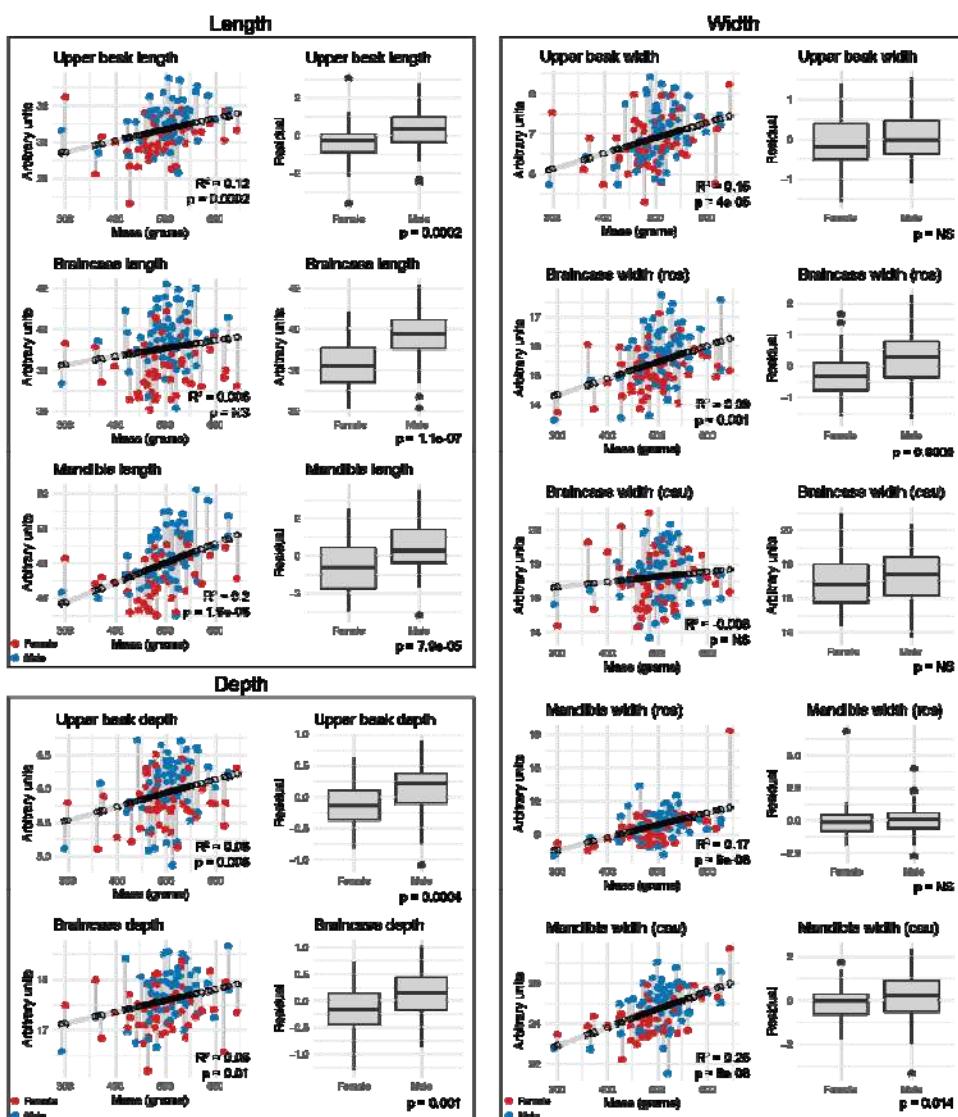

836
837
838
839

840

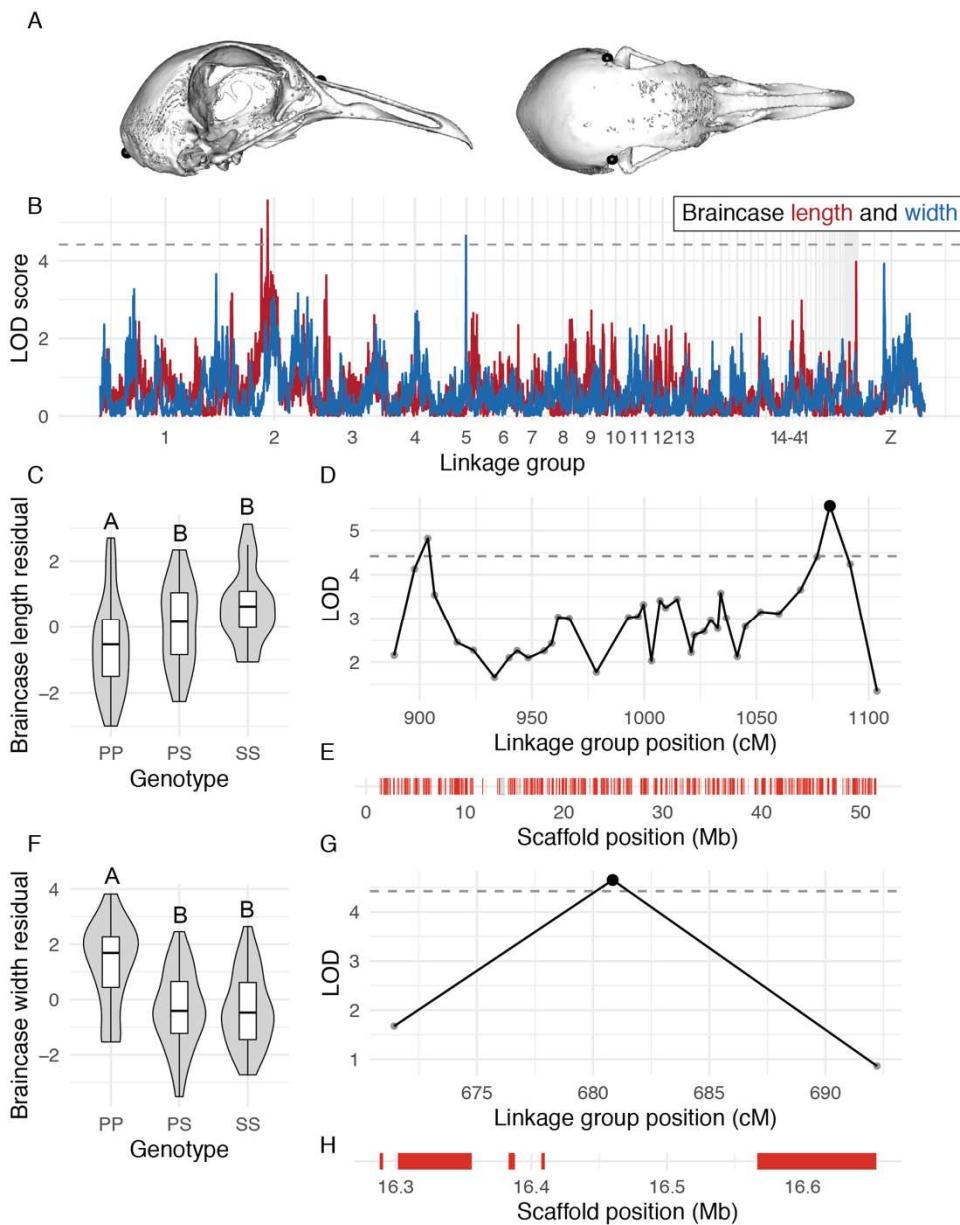


841
842
843
844

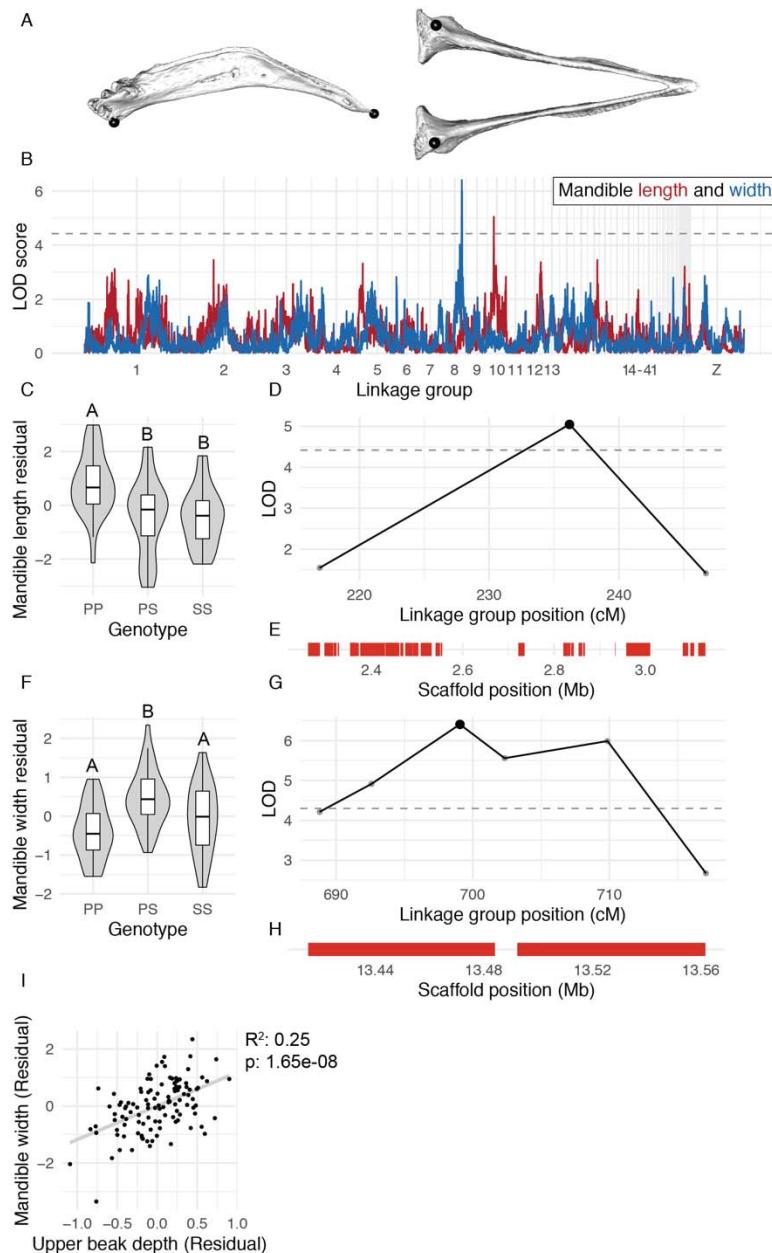
Supplemental Figure 1. Surface models of the Pom x Scan founders. Lateral (left) and dorsal (right) views of the craniofacial skeleton of the male Pom and female Scan founders used to generate the F_2 intercross.



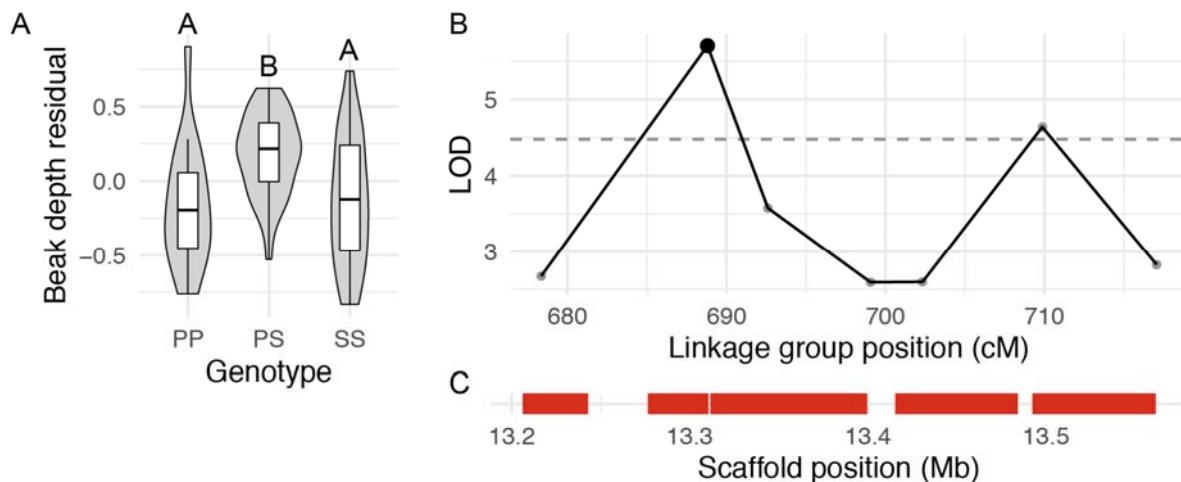
845
846 **Supplemental Figure 2. Pigeon craniofacial landmark atlas.** Landmark positions are
847 indicated by blue discs.


848
849
850
851
852
853

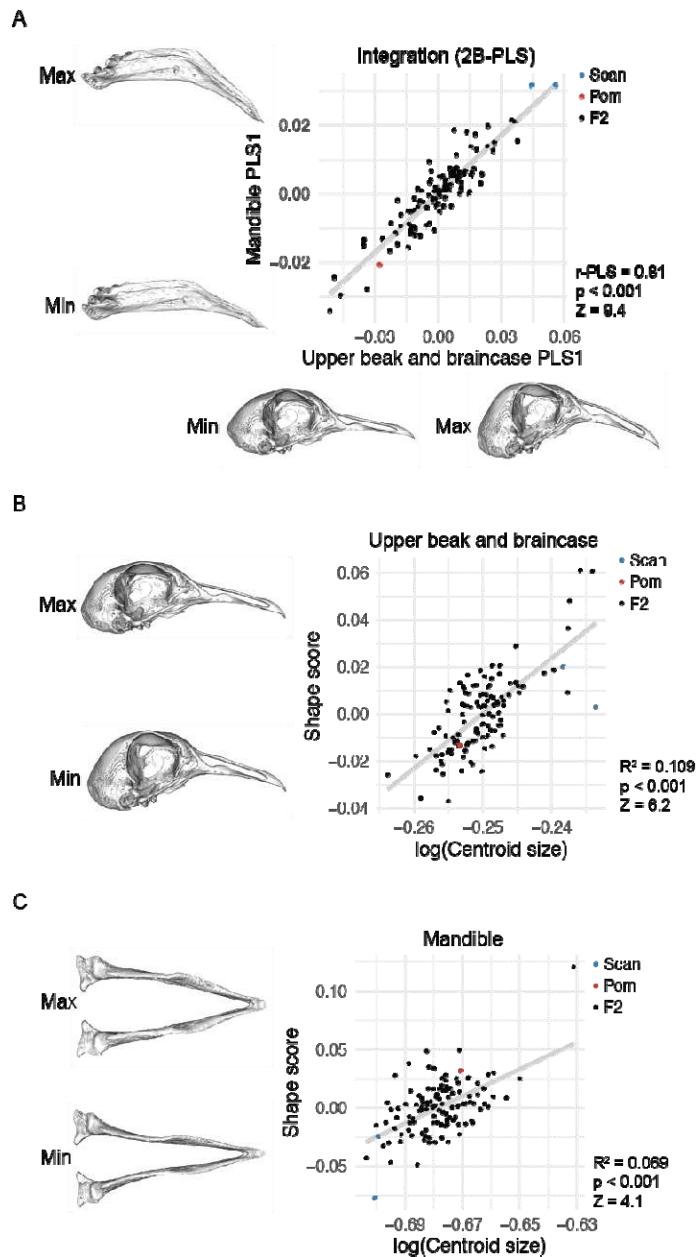
Supplemental Figure 3. Distribution of 11 linear measurements in the Pom x Scan F₂ population. With the exception of rostral mandible width, all linear measurements are normally distributed in the population (Shapiro-Wilk's test, $p > 0.05$). For rostral mandible width, a single F₂ individual is an outlier (MDS079, see Supplemental Figure 10) and causes a deviation from normality (Shapiro-Wilk's $p = 5.2e-09$).


854
855
856
857
858
859
860
861
862

Supplemental Figure 4. Linear regression of 11 craniofacial measurements on body mass. For all panels, linear measurement ~ mass regression is displayed on the left with associated R^2 and p-value are indicated in bottom right corner of each plot. Each dot represents raw measurement of an F_2 individual, color-coded by sex (male = blue, female = red). Each raw measurement is connected to an open circle that indicates its predicted value; grey connecting lines correspond to residual value used for QTL mapping. In each panel, the boxplot on the right displays residual values by sex; outliers are indicated by black dots. Associated p-values are indicated in bottom right corner of each plot (two-sided Wilcoxon test).

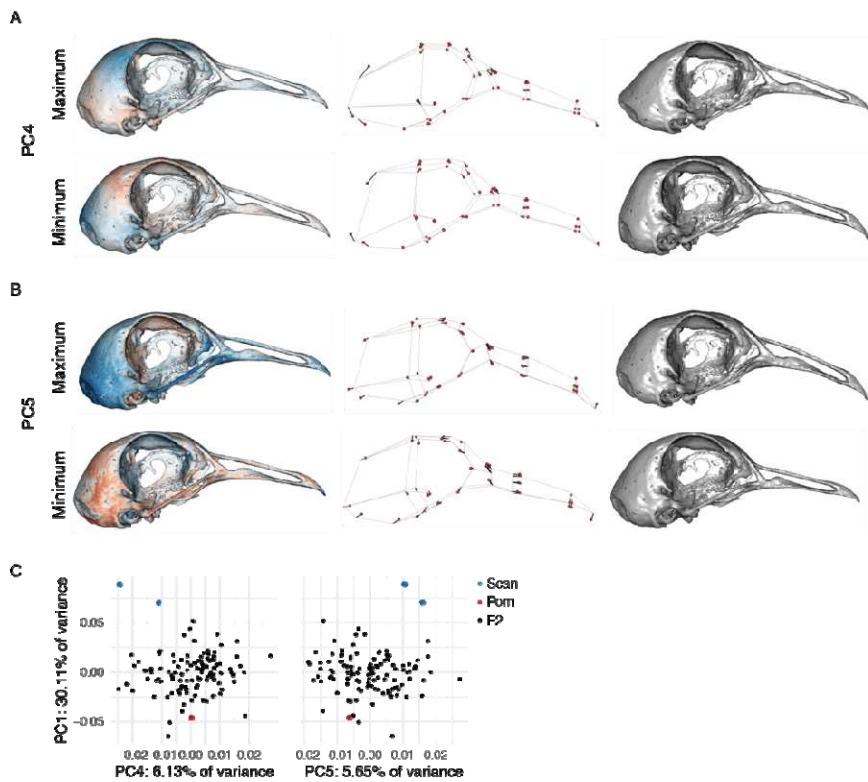

863
864
865
866
867
868
869
870
871
872
873
874
875

Supplemental Figure 5. QTL associated with braincase length and width. (A) Landmark pairs used to measure braincase length (left) and width (right). (B) QTL scans for braincase length (red) and width (blue). Dashed horizontal lines denotes 5% genome-wide significance threshold. (C) Effect plot for braincase length QTL on LG2. Letters denote significance groups, p-values determined via Tukey test: PP vs. PS = 8.7e-03, PP vs. SS = 2.2e-04. (D) LOD support interval for braincase length on LG2. Dots indicate linkage map markers; the black dot highlights the peak marker that was used to estimate QTL effects. (E) Genes located within braincase length QTL LOD support interval, color coded based on if gene is expressed in HH29 facial primordia (red) or not expressed (gray). (F) Effect plot for braincase width QTL on LG5. Letters denote significance groups, p-values: PP vs. PS = 5.8e-05, PP vs. SS = 7.5e-05. (G) LOD support interval for braincase width QTL on LG5. (H) Genes located within braincase width QTL on LG5. P = allele from Pom founder, S = allele from Scan founder.

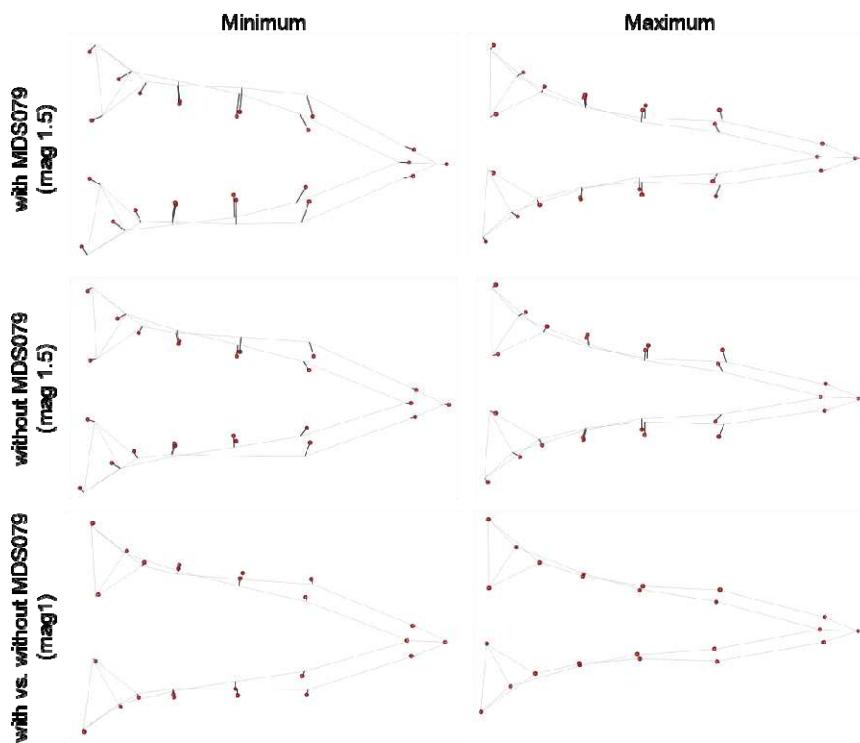


876

877 **Supplemental Figure 6. QTL associated with mandible length and width.** (A) Landmark
 878 pairs used to measure mandible length (left) and width (right). (B) QTL scans for mandible
 879 length (red) and width (blue). Dashed horizontal lines denotes 5% genome-wide significance
 880 threshold. (C) Effect plot for mandible length QTL on LG8. Letters denote significance groups,
 881 p-values determined via Tukey test: PP vs. PS = 5.9e-04, PP vs. SS = 1.1e-03. (D) LOD
 882 support interval for mandible length QTL. (E) Genes located within mandible length QTL LOD
 883 support interval. (F) Effect plot for mandible width QTL on LG10. Letters denote significance
 884 groups, p-values determined via Tukey test: PP vs. PS = 2.7e-05, PS vs. SS = 1.7e-02. (G)
 885 LOD support interval for mandible width QTL. (H) Genes located within mandible width QTL. (I)
 886 Scatterplot of upper beak depth and mandible width residuals for all F₂ individuals. P = allele
 887 from Pom founder, S = allele from Scan founder.

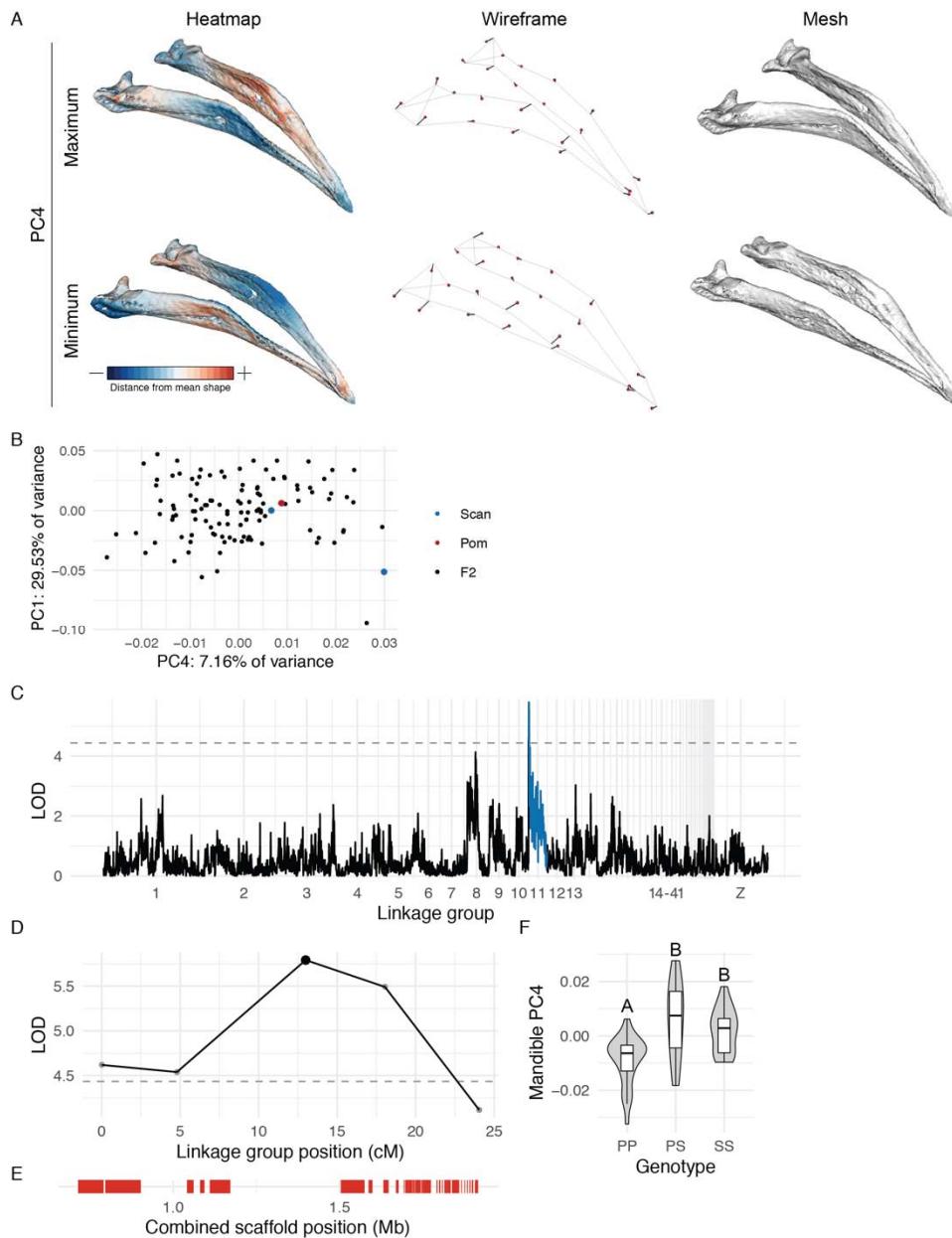


888
889 **Supplemental Figure 7. QTL on LG8 associated with upper beak width.** (A) Effect plot for
890 upper beak depth QTL. Letters denote significance groups, p-values determined via Tukey test:
891 PP vs. PS = 3.9e-04, PS vs. SS = 1.7e-02. (B) LOD support interval. (C) Genes in interval. P =
892 allele from Pom founder, S = allele from Scan founder.

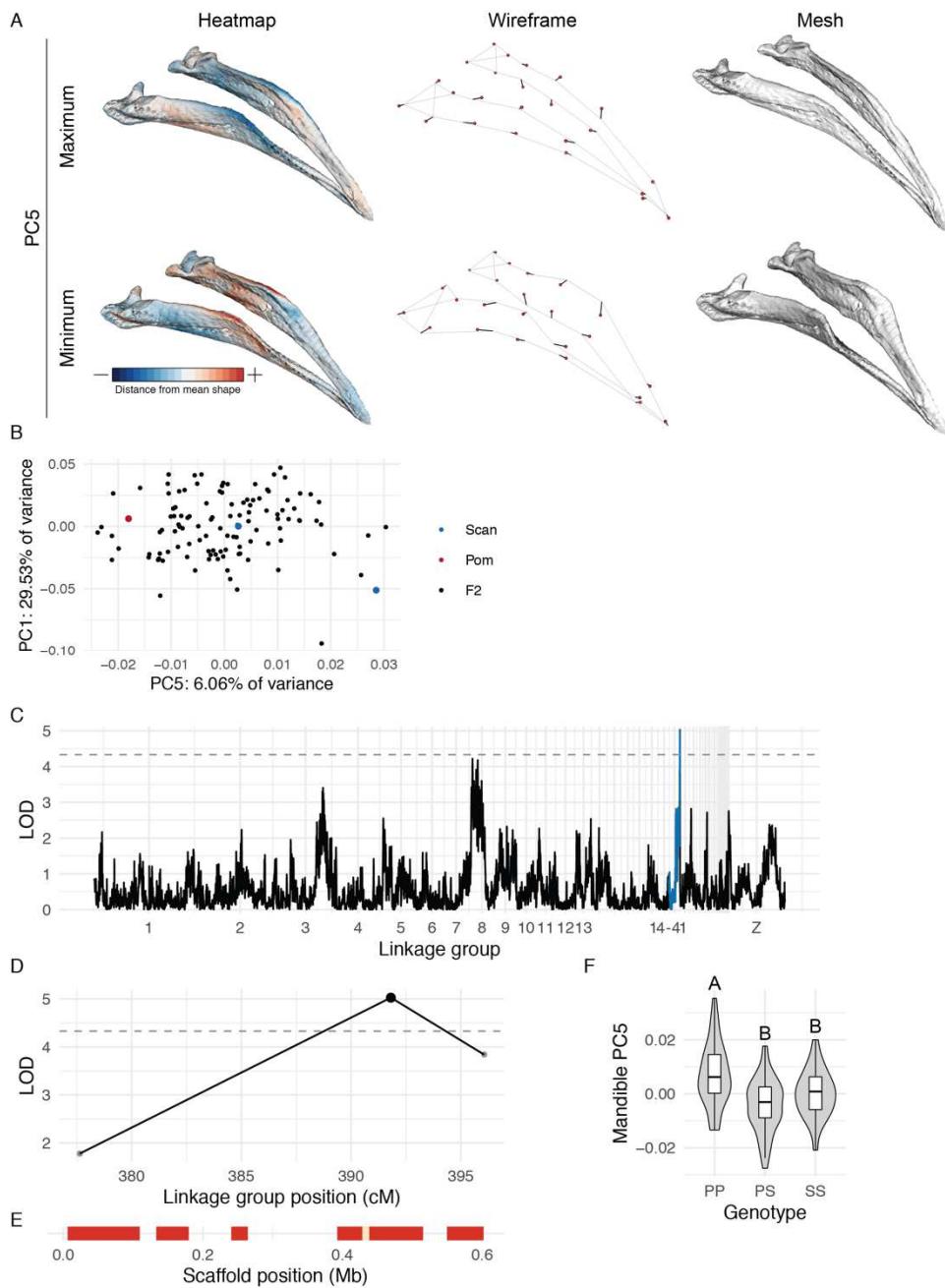

893
894
895
896

897 **Supplemental Figure 8. UBB and MAN integration and allometry.** (A) UBB PLS1 vs. MAN
898 PLS1 shape. (B) UBB shape ~ centroid size linear regression. (C) MAN shape ~ centroid size
899 linear regression. For all panels, minimum and maximum shapes are depicted by warped
900 meshes along corresponding axis. Shape changes were magnified 2x to aid visualization.

901
902
903 **Supplemental Figure 9. UBB PC4 and PC5 shape variation.** (A-B) Minimum and maximum
904 UBB PC4 (A) and PC5 (B) shapes, visualized as heatmaps (left), wireframes (center), and
905 warped meshes (right). For wireframes and meshes, UBB PC4 and PC5 shape is magnified 3x
906 to aid visualization. (C) PCA plots of UBB PC1 vs. PC4 (left) and PC5 (right).

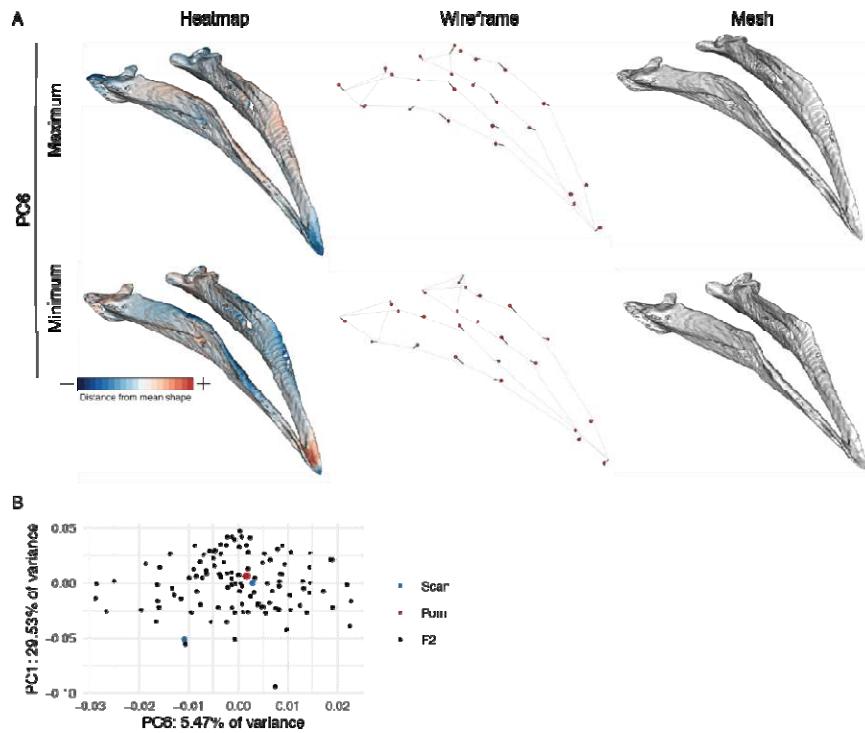

907

908

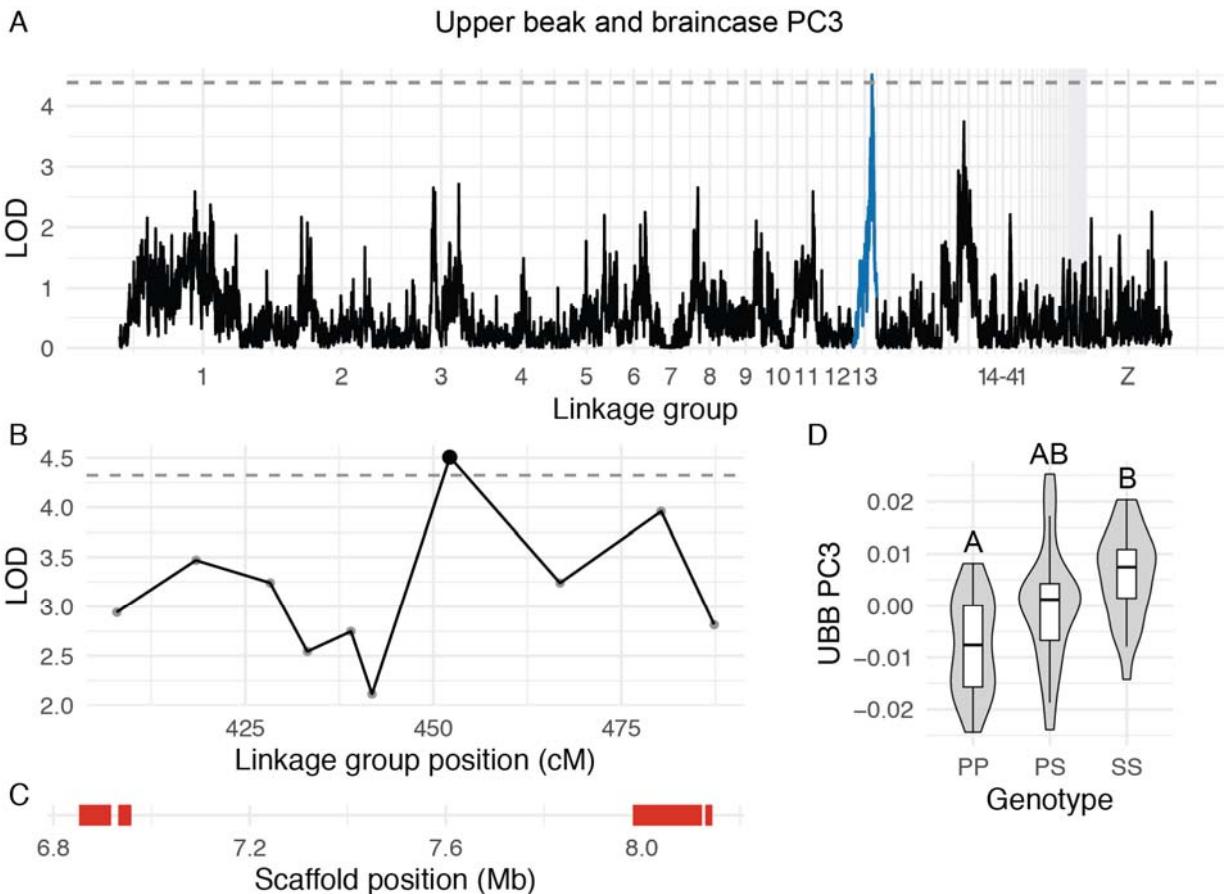

909

910 **Supplemental Figure 10. MAN PC1 shape with and without MDS079.** Dorsal views of MAN
911 wireframes showing minimum (left) and maximum (right) PC1 shapes if MDS079 is included
912 (top panel) or excluded (center panel) from the geometric morphometric analysis. MDS079 had
913 an exceptionally wide mandible and was an outlier from the rest of the F2 population along the
914 MAN PC1 axis (see PCA plot in Figure 4B). Although inclusion of MDS079 changed the
915 magnitude of the PC1 axis, it had virtually no effect on the shape described by MAN PC1, thus it
916 was kept in all downstream analyses.

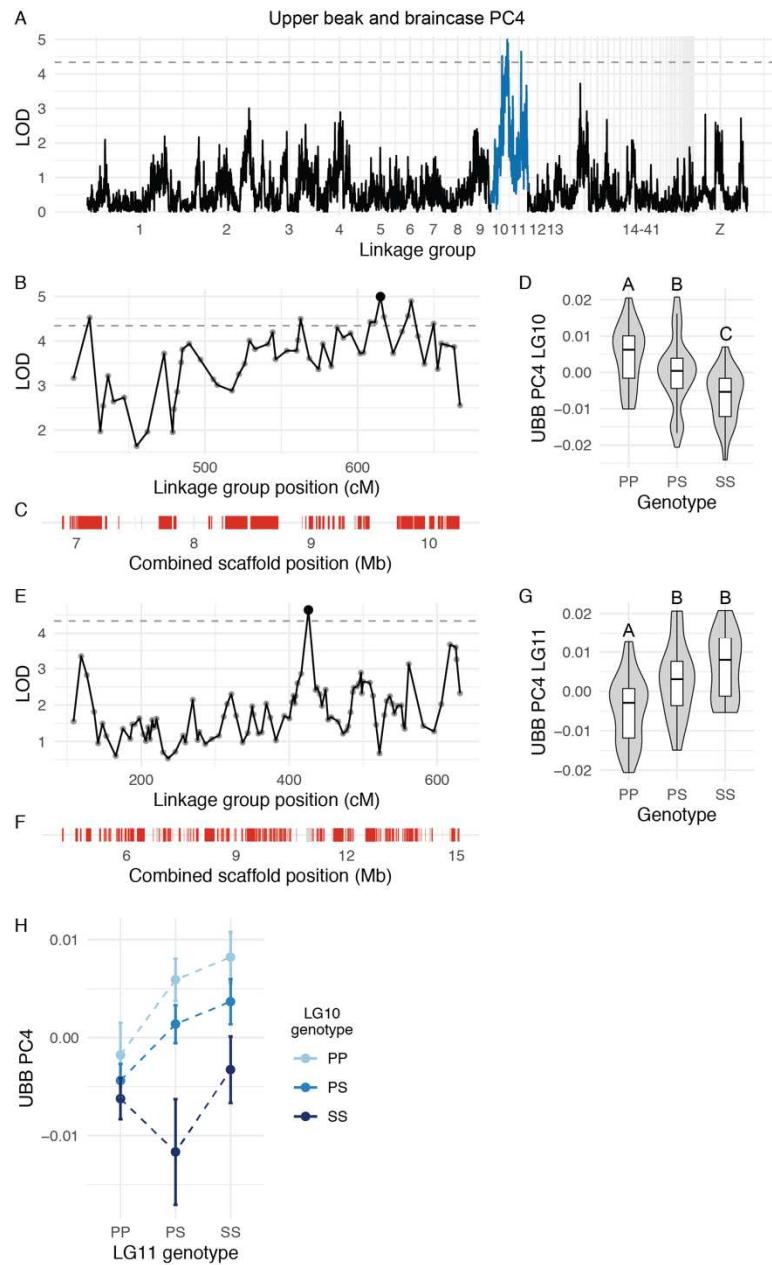
917
918
919
920
921
922
923
924


Supplemental Figure 11. MAN PC4 shape variation and associated QTL. (A) Minimum and maximum MAN PC4 shapes, visualized as heatmaps (left), wireframes (center), and warped meshes (right). For wireframes and meshes, shape is magnified 3x to aid visualization. (B) PCA plots of MAN PC1 vs. PC4. (C) Genome-wide QTL scan for MAN PC4. (D) MAN PC4 LOD support interval for QTL on LG11. (E) Genes in LG11 QTL interval. (F) LG11 QTL effect plot. Letters denote significance groups, p-values determined via Tukey test: PP vs. PS = 2.2e-06, PP vs. SS = 2.2e-03. P = allele from Pom founder, S = allele from Scan founder.

925


926

927 **Supplemental Figure 12. MAN PC5 shape variation and associated QTL.** (A) Minimum and
 928 maximum MAN PC5 shapes, visualized as heatmaps (left), wireframes (center), and warped
 929 meshes (right). For wireframes and meshes, shape is magnified 3x to aid visualization. (B) PCA
 930 plots of MAN PC1 vs. PC5. (C) Genome-wide QTL scan for MAN PC5. (D) MAN PC5 LOD
 931 support interval for QTL on LG20. (E) Genes in LG20 QTL interval. (F) LG20 QTL effect plot.
 932 Letters denote significance groups, p-values determined via Tukey test: PP vs. PS = 1.3e-05,
 933 PP vs. SS = 1.9e-02. P = allele from Pom founder, S = allele from Scan founder.


934
935
936
937
938

Supplemental Figure 13. MAN PC6 shape variation. (A) Minimum and maximum MAN PC6 shapes, visualized as heatmaps (left), wireframes (center), and warped meshes (right). For wireframes and meshes, shape is magnified 3x to aid visualization. (B) PCA plots of MAN PC1 vs. PC6.

939
940
941
942
943

Supplemental Figure 14. QTL associated with UBB PC3. (A) Genome-wide QTL scan for UBB PC3. (B) UBB PC3 LOD support interval for QTL on LG13. (C) Genes in LG13 QTL interval. (D) LG13 QTL effect plot. Letters denote significance groups, p-values determined via Tukey test: PP vs. SS = 5.3e-04. P = allele from Pom founder, S = allele from Scan founder.

944
945
946
947
948
949
950
951
952
953

Supplemental Figure 15. QTL association with UBB PC4. (A) Genome-wide QTL scan for UBB PC4. (B) UBB PC3 LOD support interval for QTL on LG10. (C) Genes in LG10 QTL interval. (D) LG10 QTL effect plot. Letters denote significance groups, p-values determined via Tukey test: PP vs. PS = 1.6e-02, PP vs. SS = 2.4e-05, PS vs. SS = 2.5e-02. (E) LOD support interval for LG11 QTL. (F) Genes in LG11 QTL support interval. (G) LG11 QTL effect plot. Letters denote significance groups, p-values determined via Tukey test: PP vs. PS = 2.4e-03, PP vs. SS = 7.5e-05. (H) Interaction between LG10 and LG11 QTL. P = allele from Pom founder, S = allele from Scan founder.

954 **Supplemental Movie 1. UBB PC1 shape variation.** Shape change magnified 1.5x.
955
956 **Supplemental Movie 2. UBB PC2 shape variation.** Shape change magnified 2x.
957
958 **Supplemental Movie 3. UBB PC3 shape variation.** Shape change magnified 3x.
959
960 **Supplemental Movie 4. UBB PC4 shape variation.** Shape change magnified 3x.
961
962 **Supplemental Movie 5. UBB PC5 shape variation.** Shape change magnified 3x.
963
964 **Supplemental Movie 6. MAN PC1 shape variation.** Shape change magnified 1.5x.
965
966 **Supplemental Movie 7. MAN PC2 shape variation.** Shape change magnified 1.5x.
967
968 **Supplemental Movie 8. MAN PC3 shape variation.** Shape change magnified 2x.
969
970 **Supplemental Movie 9. MAN PC4 shape variation.** Shape change magnified 3x.
971
972 **Supplemental Movie 10. MAN PC5 shape variation.** Shape change magnified 3x.
973
974 **Supplemental Movie 11. MAN PC6 shape variation.** Shape change magnified 3x.
975
976 **Supplemental Table 1. Description of skull and jaw landmarks.**
977
978 **Supplemental Table 2. Landmark pairs used for skull and jaw linear measurements.**
979
980 **Supplemental Table 3. Genes in the beak width and depth LG1 QTL interval.**
981
982 **Supplemental Table 4. Genes in the beak depth and mandible width LG8 QTL interval.**
983
984 **Supplemental Table 5. Genes in the braincase length LG2 QTL interval.**
985
986 **Supplemental Table 6. Genes in the braincase width LG5 QTL interval.**
987
988 **Supplemental Table 7. Genes in the mandible length LG10 QTL interval.**
989
990 **Supplemental Table 8. Genes in the UBB PC2 LG3 QTL interval.**
991
992 **Supplemental Table 9. Genes in the UBB PC3 LG13 QTL interval.**
993
994 **Supplemental Table 10. Genes in the UBB PC4 LG10 QTL interval.**
995
996 **Supplemental Table 11. Genes in the UBB PC4 LG11 QTL interval.**
997
998 **Supplemental Table 12. Genes in the MAN PC3 LG2 QTL interval.**
999
1000 **Supplemental Table 13. Genes in the MAN PC3 LG3 QTL interval.**
1001
1002 **Supplemental Table 14. Genes in the MAN PC4 LG11 QTL interval.**
1003
1004 **Supplemental Table 15. Genes in the MAN PC5 LG20 QTL interval.**

1005

1006 **Supplemental Table 16. Multi-locus QTL model associated with UBB PC1 shape variation.**

1007

1008 **Supplemental Table 17. Multi-locus QTL model associated with MAN PC1 shape**

1009 **variation.**

1010

1011