

1 **Insights into the drivers of radiating diversification in biodiversity
2 hotspots using *Saussurea* (Asteraceae) as a case**

3

4 Xu Zhang^{1, 2, 3*}, Jacob B. Landis^{4, 5*}, Yanxia Sun^{1, 2}, Huajie Zhang¹, Tao Feng¹, Nan Lin¹, Bashir B.
5 Tiamiyu¹, Xianhan Huang⁶, Tao Deng⁶, Hengchang Wang^{1, 2}, Hang Sun⁶

6 ¹CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical
7 Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China;

8 ²Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan
9 430074, Hubei, China;

10 ³University of Chinese Academy of Sciences, Beijing, 100049 China;

11 ⁴ School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell
12 University, Ithaca, NY 14850, USA;

13 ⁵ BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA;

14 ⁶Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany,
15 Chinese Academy of Sciences, Kunming, Yunnan, 650201 China

16 *These authors contributed equally to this work.

17

18 Authors for correspondence:

19 Tao Deng

20 Email: dengtao@mail.kib.ac.cn

21

22 Hengchang Wang

23 Email: hcwang@wbgcas.cn

24

25 Hang Sun

26 Email: sunhang@mail.kib.ac.cn

27

28

29

30 **Abstract**

31 • The Qinghai-Tibet Plateau (QTP) encompasses areas with a remarkably high degree
32 of biodiversity, harboring exceptional species-rich radiations. How these radiations
33 formed by interacting with geology, climate and ecology remains seldom examined.

34 • We investigate the roles of abiotic (environmental) and biotic (species-intrinsic)
35 factors in driving radiating diversification of *Saussurea* (Asteraceae) by deploying a
36 number of time-dependent, paleoenvironment-dependent and trait-dependent models, as
37 well as ecological distribution data.

38 • We show that three main clades of *Saussurea* begin to diversify in the Miocene
39 almost simultaneously, with increasing diversification rates toward the present and
40 negative dependence to paleotemperature. Acceleration in diversification rates are
41 correlated with adaptive traits, as well climate lability, niche breadth and species range.

42 • We conclude that fluctuation of paleoclimate along with complex QTP environments
43 provided opportunities for increased diversification rates of *Saussurea* with diverse
44 adaptive traits, highlighting the importance of combinations of clade-specific traits and
45 ecological niches in driving rapid radiation.

46 **Key words:** radiating diversification, *Saussurea*, the Qinghai-Tibet Plateau, biodiversity
47 hotspots, adaptive traits, diversification rates, ecological niche.

48

49 **Introduction:**

50 The diversification pattern of species-rich rapid radiations reflects the evolutionary
51 dynamics of biodiversity hotspots (Linder & Verboom, 2015). Understanding how these
52 radiating lineages formed in response to historical process can advance our knowledge of
53 adaptive evolution and enhance our ability to predict the threats to biodiversity posed by
54 global warming (Ding *et al.*, 2020). Mountainous regions represent just one-eighth of
55 terrestrial land surface but are home to one-third of all species and exceptional species-
56 rich radiations (Antonelli, 2015; Schwery *et al.*, 2015; Antonelli *et al.*, 2018). Particularly
57 enigmatic is the Qinghai-Tibet Plateau (QTP) region, also known as the “Third Pole,”
58 characterized by a complex geographical history and encompassing areas of remarkably
59 high degree of biodiversity (Favre *et al.*, 2015; Xing & Ree, 2017; Chen *et al.*, 2018;
60 Ding *et al.*, 2020; Spicer *et al.*, 2020). The QTP stands out as the earth’s highest and
61 largest plateau, and includes the Himalaya and Hengduan Mountains which are listed as
62 two of the 36 hotspots of biodiversity in the world (Myers *et al.*, 2000; Li *et al.*, 2014;
63 Wen *et al.*, 2014; Favre *et al.*, 2015). The presence of steep environmental gradients in
64 temperature and precipitation create abundant micro-habitats providing a variety of
65 ecological niches essential for evolutionary radiations on the QTP (Mosbrugger *et al.*,
66 2018; Muellner-Riehl *et al.*, 2019). While a plethora of studies have suggested that
67 diversification of plants on the QTP have evolved in association with plateau uplifting
68 processes (reviewed by Wen *et al.*, 2014), how such high species diversity form in such a
69 short period of geologic time, and the interactions with geography, climate and ecology,
70 remain seldom examined.

71 Evolutionary and diversification patterns of plants are often correlated with
72 environmental abiotic forces, such as abrupt changes in climate or geological tectonic
73 events that drive speciation and extinction rates, and/or species-intrinsic/biotic factors,

74 such as interactions among species and key innovation traits (Drummond *et al.*, 2012;
75 Hughes & Atchison, 2015; Condamine *et al.*, 2018; Muellner-Riehl *et al.*, 2019; Nürk *et*
76 *al.*, 2019). There is a gap in our current understanding of radiating diversification drivers
77 in the flora of the QTP, with previous studies mostly providing only a temporal
78 (molecular dating) framework associating rapid radiations with the time span of plateau
79 uplifting (e.g. Wang *et al.*, 2009; Zhang *et al.*, 2014; Xu *et al.*, 2019). Employing models
80 assuming continuous variation in diversification rates over time that depend on
81 paleoenvironmental variables is essential to precisely determine how diversification rates
82 are affected by abiotic environmental changes (Condamine *et al.*, 2013; Sun *et al.*, 2020).
83 In addition to abiotic factors, diversification shifts are often correlated with the evolution
84 of certain functional traits (Hughes & Atchison, 2015). Examples include geophytism in
85 monocots leading to higher rates of diversification (Howard *et al.*, 2020),
86 polyploidization promoting species diversification of *Allium* (Han *et al.*, 2020), and
87 pollinator shifts, fruit types as well as elevational changes in the Andean bellflowers
88 (Lagomarsino *et al.*, 2016). Furthermore, the inclusion of ecological niche data is also
89 crucial, because this reflects the interplay between historical processes and species
90 intrinsic factors (Lavergne *et al.*, 2010; Folk *et al.*, 2019; Muellner-Riehl *et al.*, 2019).

91 Here, we address the knowledge gap of rapid diversification by examining the roles
92 of abiotic (environmental) and biotic (species-intrinsic) factors in driving radiating
93 diversification of the species-rich genus *Saussurea* DC. (Asteraceae). *Saussurea* is one of
94 the most diverse genera in Asteraceae, serving as an ideal study system for investigating
95 the evolutionary patterns of a rapid radiation. The genus comprises approximately 400
96 species that are distributed in Asia, Europe and North America, with the highest diversity
97 in the QTP (Wang *et al.*, 2009; Shi & Raab-Straube, 2011; Chen, 2015; Zhang, *et al.*,
98 2019a). Uncertainty in the number of species has largely been attributed to the complex
99 taxonomy of related QTP taxa (Chen & Yuan, 2015), indicative of a recent radiation.

100 *Saussurea* exhibits extraordinary morphological diversity. For example, the most
101 impressive species groups are the ‘snowball plants’ or ‘snow rabbits’, *S. subg.*
102 *Eriocoryne*, with a thick woolly indumentum (densely haired), and the so-called
103 ‘greenhouse plants’ or ‘snow lotuses’, *S. subg. Amphilaena*, in which the synflorescence
104 is hidden by semi-transparent, white, yellowish or purple leafy bracts (Shi & Raab-
105 Straube, 2011; Chen, 2015). *Saussurea* is present in virtually all possible habitats of the
106 QTP, including steppes, moist forests, cold and dry alpine meadows, and scree slopes
107 above 5,000 m, demonstrating a highly adaptive capability (Shi & Raab-Straube, 2011).
108 Previous studies suggested that attractive morphological traits were the result of
109 convergent adaptation to diverse environments in the QTP (Kita *et al.*, 2004; Wang *et al.*,
110 2009; Zhang, *et al.*, 2019a), yet their contributions to the high-level diversity of
111 *Saussurea* are still elusive. While biogeographic analysis inferred that *Saussurea* arose
112 during the Miocene in the Hengduan Mountains (Xu *et al.*, 2019), limited information
113 about macro-evolutionary patterns related to historical climate and geologic processes
114 were provided due to the lack of modeling diversification rates.

115 A robust phylogenetic framework is the basis for large-scale analyses of evolutionary
116 patterns (Koenen *et al.*, 2020), yet previous studies mainly relied on fragment DNA
117 markers (e.g. Han *et al.*, 2020; Howard *et al.*, 2020; Sun *et al.*, 2020), which have been
118 revealed to provide insufficient phylogenetic signals and always yield parallel
119 relationships for phylogenies of rapid radiations (Whitfield & Lockhart, 2007; Wang *et*
120 *al.*, 2009). In the present study, we reconstructed a robust time-calibrated phylogeny of
121 *Saussurea* using 226 complete plastomes to explore the role played by abiotic and biotic
122 factors in this rapidly radiating clade. If evolutionary dynamics are driven primarily by
123 abrupt abiotic perturbations, we would expect diversification rate shifts following major
124 climate changes that extirpated certain lineages while favoring the radiation of others. In
125 contrast, if biotic factors or interactions among species are the dominant drivers of

126 evolution, we would expect diversification shifts to be correlated with the evolution of
127 functional traits and/or the colonization of new habitats (Condamine *et al.*, 2018). While
128 in a joint-effect scenario, diversification rates may vary continuously through time and
129 paleoenvironments may shift with some clade-specific traits. We could hypothesize that
130 fluctuations of terrestrial and climatic systems provide vast ecological opportunities,
131 which are seized by lineages with ample adaptive traits and promote rapid radiating,
132 emphasizing the decisive role of morphological diversity/plasticity and ecological niche
133 availability. To test these hypotheses, we deployed a number of time-dependent,
134 paleoenvironment-dependent and trait-dependent models, as well as ecological
135 distribution data. Our study is designed to address the effects of paleoenvironmental and
136 biological drivers on radiating diversification in the biodiversity hotspots, while
137 providing a compelling example of the pivotal roles of morphological diversity and
138 ecological niche.

139 Materials and Methods

140 Plastome Sampling, Sequencing and Assembly

141 To build a dated phylogeny of the genus *Saussurea*, we newly sequenced plastomes for
142 63 species and downloaded 163 additional plastomes from GenBank (accessed 29
143 November 2019); collectively these species included 199 taxa of *Saussurea* and 27
144 outgroup taxa. Collection details of the specimens were provided in Supporting
145 Information Table S1. Total genomic DNA of was extracted from silica-gel dried leaves
146 with a modified hexadecyltrimethylammonium bromide (CTAB) method (Yang *et al.*,
147 2014). Purified DNA was fragmented and used to construct short-insert (500 bp) libraries
148 per the manufacturer's instructions (Illumina). Libraries were quantified using an Agilent
149 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and were then
150 sequenced on an Illumina HiSeq 4000 platform at Novogene Co., Ltd. in Kunming,

151 Yunnan, China. Raw reads were directly assembled with the organellar assembler
152 NOVOPLASTY v.2.7.2 (Dierckxsens *et al.*, 2017), using a seed-and-extend algorithm
153 employing the plastome sequence of *Saussurea japonica* (Genbank accession:
154 MH926107.1) as the seed input, and all other parameters kept at default settings.
155 Assembled plastome sequences were initially annotated using Plastid Genome Annotator
156 (PGA) (Qu *et al.*, 2019), and then manually checked in GENEIOUS v.9.0.5 (Kearse *et*
157 *al.*, 2012).

158 **Estimates of Divergence Times**

159 Our prior study suggested that including noncoding regions in phylogenetic analysis can
160 maximize the power to resolve relationships of *Saussurea* (Zhang, *et al.*, 2019a). Whole
161 plastome sequences of 226 samples containing one inverted repeat region were aligned
162 using MAFFT v.7.22 (Katoh & Standley, 2013). Poorly aligned regions were removed
163 with TRIMAL v.1.2 (Capella-Gutiérrez *et al.*, 2009) using the command ‘-automated1’.
164 Age estimates were obtained using Markov Chain Monte Carlo (MCMC) analysis in
165 BEAST v.1.10.4 (Suchard *et al.*, 2018). We used a GTR + I + Γ nucleotide substitution
166 model, uncorrelated relaxed lognormal clock and a birth-death model for the tree prior
167 (Suchard *et al.*, 2018). The MCMC analysis was run for 500 million generations,
168 sampling every 10,000 generations, resulting in 50,000 samples in the posterior
169 distribution of which the first 10,000 samples were discarded as burn-in. Convergence
170 and performance of the MCMC runs were checked using TRACER v.1.6 (Rambaut *et al.*,
171 2018). A maximum clade credibility (MCC) tree was then reconstructed in
172 TREEANNOTATOR v.1.8.4 (Rambaut & Drummond, 2010), with median age and 95%
173 height posterior density (HPD) annotated. Two high confident fossil calibrations with
174 lognormal distributions were assigned: (A) The crown age of *Carduus-Cirsium* group
175 was set to a minimum age of 14 million years ago (Mya) based on the Middle Miocene
176 achenes identified as *Cirsium* (Mai, 1995; Barres *et al.*, 2013); (B) The split of *Centaurea*

177 and *Carthamus* was calibrated with a minimum age of 5 Mya, based on the records of
178 pollen and achenes for *Centaurea* dating from the Early Pliocene (Popescu, 2002).
179 Additionally, the crown age of Cardueae was set to 39.2 Mya as a secondary calibration
180 with a normal distribution based on the estimation by Barres *et al.* (2013).

181 **Estimates of Diversification rate**

182 We explored the diversification dynamics of *Saussurea* using BAMM 2.5.0 (Rabosky,
183 2014), which employs a reversible-jump MCMC to sample a large number of possible
184 diversification regimes from a given time-calibrated phylogeny. We pruned the MCC tree
185 for BAMM analysis and retained only one sample of each species. Prior values were
186 selected using the ‘setBAMMpriors’ function in the R package BAMMtools v.2.1.7 (R
187 Core Team, 2014; Rabosky *et al.*, 2014). Due to the controversial species number in
188 *Saussurea*, the incomplete taxon sampling was appropriately set as 0.5 for all following
189 analyses. The MCMC was run for 500 million generations and sampled every 50,000
190 generations. Post-run analyses were performed using the BAMMtools, with an initial
191 10% of the MCMC run discarded as burn-in, and the remaining data assessed for
192 convergence and ESS values > 200 . Rates-through-time plots were generated using
193 ‘PlotRateThroughTime’ function for the entire genus as well as three clades. Speciation
194 rates of *Saussurea* species were obtained using the ‘getTipRates’ function. Considering
195 recent criticism relating to the statistical methods for lineage specific diversification
196 models like BAMM (Moore *et al.*, 2016; but also see Rabosky *et al.*, 2017), we also
197 employed the semiparametric DR statistic to calculate speciation rates, following the
198 method described in Jetz *et al.* (2012) and Sun *et al.* (2020). Analysis of variance
199 (ANOVA) was performed to determine whether differences among three phylogenetic
200 clades and among four traditional subgenera were significant. In addition, we used TESS
201 v.2.1 (Höhna *et al.*, 2016) in R to detect the abrupt changes in speciation and extinction
202 rates, applying the R-scripts of Condamine *et al.* (2018).

203 **Paleoenvironment dependent analyses**

204 To quantify the effects of past environmental conditions on *Saussurea* diversification, we
205 used RPANDA v1.9 (Condamine *et al.*, 2013) to fit a series of time- and temperature-
206 dependent likelihood diversification birth-death (BD) models, following the methodology
207 of Condamine *et al.* (2018). Briefly, seven models were tested: BD model with constant λ
208 (speciation rate) and μ (extinction rate) (i); BD model with λ dependent to time (ii) and
209 environment (iii) exponentially, and constant μ ; BD model with constant λ , and μ
210 dependent to time (iv) and environment (v) exponentially; and BD model with λ and μ
211 dependent to time (vi) and environment (vii) exponentially. Thus, we can obtain the
212 equations: $\lambda(E) = \lambda_0 \times e^{\alpha E}$ and $\mu(E) = \mu_0 \times e^{\beta E}$, in which λ_0 and μ_0 are the speciation and
213 extinction rates for a given environmental variable. The values of α and β are the rates of
214 change according to the environment, and positive values for them mean a positive effect
215 of the environment on speciation or extinction (Condamine *et al.*, 2013). We used
216 paleotemperature over the last 12 million years (Myrs) (retrieved from Zachos *et al.*,
217 2008) as environmental variables, and randomly sampled 500 trees from the BEAST
218 posterior distribution (outgroups removed) to accommodate phylogenetic and dating
219 uncertainties. The R package PSPLINE v.1.0 (Ben & Roberto, 2008) was used to
220 visualize the speciation rates variating with paleoenvironmental variables.

221 **Trait dependent analyses**

222 Nine characters were selected and coded based on descriptions in eFloras
223 (<http://www.efloras.org/>), herbarium specimens and taxonomic literature, or were
224 manually checked directly using online herbarium specimens from the Chinese Virtual
225 Herbarium (<http://www.cvh.ac.cn/>), JSTOR (<https://plants.jstor.org/>), and field collections
226 (Supporting Information Table S2). These characters included four binary morphological
227 traits: stemless (0) vs. cauliferous (1), stem glabrous (0) vs. densely haired (1), the

228 absence (0) vs. presence (1) of leafy bracts, and capitula solitary (0) vs. numerous (1);
229 four multistate morphological traits: leaf margin entire (1) vs. pinnately lobed (2) vs. both
230 types (3), leaves glabrous (1) vs. sparsely haired (2) vs. densely haired (3), phyllary in <5
231 (1) vs. 5 (2) vs. 6 (3) vs. >6 (4) rows, and phyllary glabrous (1) vs. sparsely haired (2) vs.
232 densely haired (3) vs. appendage (4); as well as the geographical habitats: widespread (0)
233 vs. alpine (1) vs. lowland (2).

234 The diversification rate shifts of binary traits were investigated using the hidden state
235 speciation and extinction (HiSSE) model, which allows us to demonstrate hypotheses
236 related to both the effects of the observed traits as well as incorporate unmeasured factors
237 (Beaulieu & O'Meara, 2016). As described in Beaulieu and O'Meara (2016), 25 models
238 were tested in the R package HISSE v.1.9.10: a full HiSSE model allowing all states to
239 vary independently; four binary state speciation and extinction (BiSSE)-like models that
240 excluded hidden states or constrained specific parameters of λ , μ , and transition rates (q);
241 four null HiSSE models with various character-independent diversification (CID) forms;
242 and 16 models assuming a hidden state associated with both observed character states
243 with a variety of constrained values for λ , μ , and q (Supporting Information Table S3).
244 The best-fitting model was selected based on likelihood-ratio tests under a Chi-square
245 distribution and Akaike's information criterion (AIC) (Akaike, 1974). We also used a
246 nonparametric FiSSE model (Fast, intuitive SSE model; Rabosky & Goldberg, 2017)
247 serving as a complement to measure the robustness of our results. For multistate traits,
248 MuSSE analyses were performed in the R package DIVERSITREE v.0.9.10 (FitzJohn,
249 2012) by fitting four distinct models with subsequent ANOVA testing: a null model with
250 fully constrained variables; a full model allowing all variables to change independently; a
251 model constraining each μ to be equal (free λ); and a model constraining the λ values for
252 each state to be equal (free μ). Further estimates for the parameters of λ , μ , and net
253 diversification rates ($\lambda - \mu$) for each state were obtained in a Bayesian approach by

254 incorporating a MCMC analysis with an exponential prior with 5,000 generations. A
255 GeoHiSSE analysis was used to test hypotheses about range-dependent diversification
256 processes (Caetano *et al.*, 2018), implemented in the HISSE package. Two models with a
257 range-independent diversification process and two other models in which the range have
258 an effect on the diversification rate of the lineages were deployed and compared, as
259 described in Caetano *et al.* (2018).

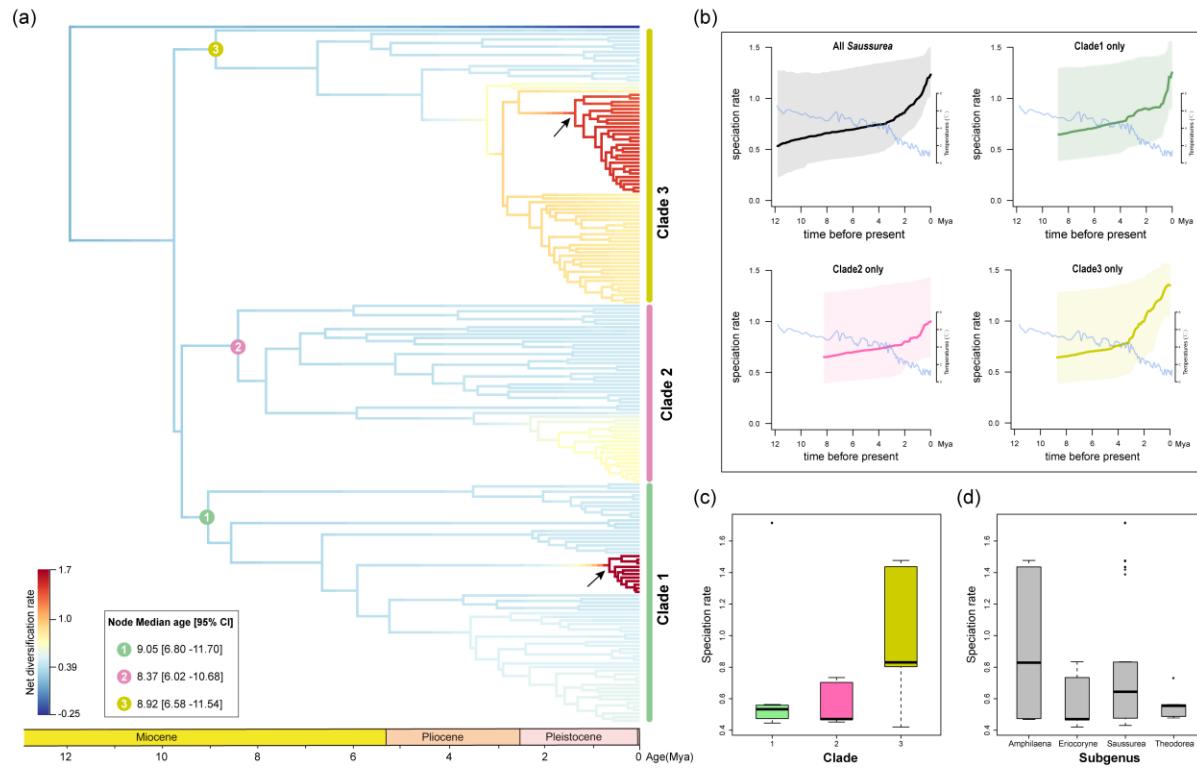
260 **Ecological distribution data and association with diversification rates**

261 We used the ‘occ_search’ function of RGBIF v.1.3.0 (Chamberlain & Boettiger, 2017) to
262 retrieve GPS coordinates for *Saussurea* species from GBIF on October 28, 2020. We
263 extracted only data records that were georeferenced and excluded any coordinates with
264 zero and/or integer latitude and longitude. We then removed geographic outliers defined
265 as boxplot outliers of species occurrences in R. Range size of each species was estimated
266 by applying a five kilometer buffer around each locality point using the ‘gBuffer’
267 function of RGEOS v.0.5-5 (<https://CRAN.R-project.org/package=rgeos>) following the
268 descriptions of Testo *et al.* (2019). Range size data were log-transformed before analysis
269 to overcome their skewed distribution (Testo *et al.*, 2019). We extracted the values of 19
270 bioclimatic variables (from 1970 to 2000) from WorldClim (<http://worldclim.org>) using
271 RASTER v.2.6-6 (<https://CRAN.R-project.org/package=raster>), and calculated a mean
272 value for each species. Highly correlated variables were identified with a Pearson’s
273 correlation coefficient > 0.75 , and were removed. The remaining eight most predicable
274 bioclimatic variables were: annual temperature (BIO1), mean diurnal range (BIO2),
275 isothermality (BIO3), max temperature of warmest month (BIO5), annual precipitation
276 (BIO12), precipitation seasonality (BIO15), precipitation of warmest quarter (BIO18) and
277 precipitation of coldest quarter (BIO19). The main variation of bioclimatic variables
278 representing climate lability was estimated by extracting the first two principal
279 components (PC1 and PC2) from a PCA in R. To calculate the ecological niche breadth,

280 we first estimated environmental niche models (ENM) in the R package ENMTOOLS
281 v.1.0.2 (Warren *et al.*, 2010), and then measured the spatial heterogeneity of the
282 distribution of suitability scores using Levins' B metrics (Levins, 1968) ('raster.breadth'
283 function).

284 To demonstrate whether ecological factors drove rapid diversification of *Saussurea*
285 species, multiple QuaSSE tests were performed under different models using
286 DIVERSITREE. Five models with increasing complexity were constructed to fit the
287 changes in speciation rates with climate lability (PCs of bioclimatic variables), niche
288 breadth and species range size. Moreover, we used the *ES-sim* tests (Harvey & Rabosky,
289 2018) to crosscheck the correlation pattern revealed by QuaSSE. In addition to the default
290 inverse equal splits statistic (Harvey & Rabosky, 2018), the DR statistic was also used as
291 a reliable estimator to investigate correlation between speciation rate and continuous
292 ecological factors using the R-scripts retrieved from Sun *et al.* (2020).

293 **Data availability**

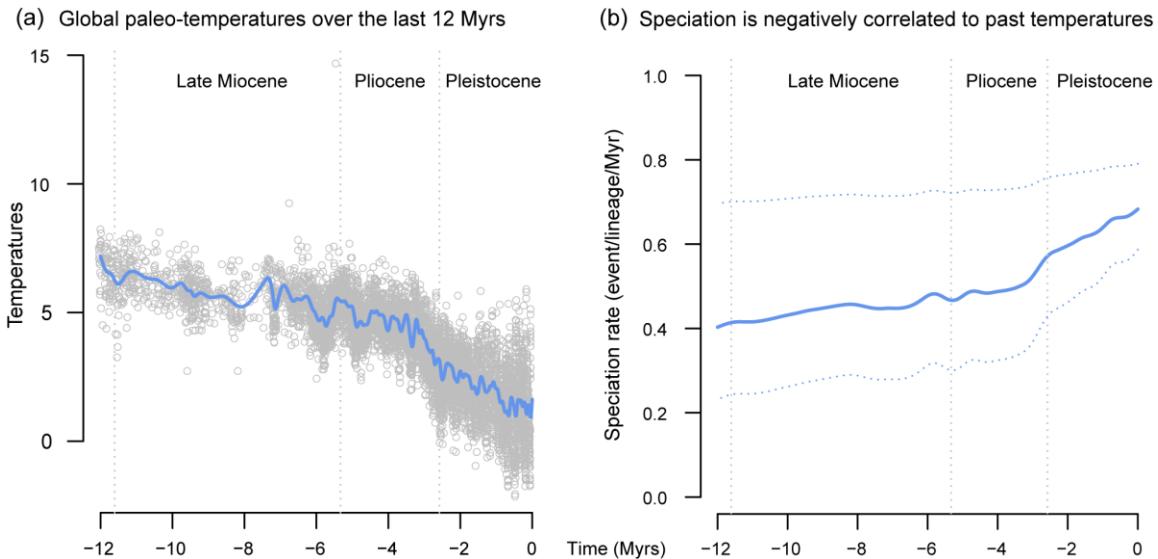

294 All newly sequenced plastomes were deposited in the National Center for Biotechnology
295 Information (NCBI) database with accession numbers provided in Supporting
296 Information Table S1. R scripts used in this study are available on GitHub
297 (<https://github.com/ZhangXu-CAS/Saussurea-diversification.git>).

298 **Results**

299 **Divergence time and diversification rate**

300 Our phylogeny resolved a median stem age of ca. 11.79 Mya (95% HPD, 8.38–15.35
301 Mya) for *Saussurea*, with three clades beginning to diversify in parallel during the
302 Miocene (ca. 9.05 Mya, ca. 8.37 Mya and ca. 8.92 Mya, respectively; Figs 1a, Supporting
303 Information Figs S1, S2), suggesting a rapid radiation in this period. Our tree topology
304 showed that four traditional morphology-based subgenera of *Saussurea* are paraphyletic,
305 indicating adaptive traits have occurred multiple times. BAMM analysis revealed a
306 scenario in which two shifts in net diversification rates occurred within *Saussurea* with
307 high posterior probability (Figs 1a, Supporting Information Figs S3). Rates-through-time
308 plots showed that while slightly offset in timing, diversification rates of the three clades
309 accelerated during the Pliocene (Figs 1a, 1b), when the temperature dropped sharply.
310 BAMM tip rates showed that clade-3 (0.981 events Myr⁻¹ per lineage) had significantly
311 higher mean speciation rate than clade-2 (0.560 events Myr⁻¹ per lineage) and clade-1
312 (0.708 events Myr⁻¹ per lineage) ($p < 0.001$, Supporting Information Tables S4, S5).
313 Among four morphological-based subgenera, speciation rates of *S. subg. Amphilaena*
314 (0.945 events Myr⁻¹ per lineage) was highest ($p < 0.001$, Fig 1c, Supporting Information
315 Tables S4, S5). While DR statistic revealed no significant difference among three main
316 clades ($p = 0.099$), and *S. subg. Saussurea* (1.106 events Myr⁻¹ per lineage) have the
317 highest mean speciation rate ($p = 0.022$, Supporting Information Fig S4, Tables S4, S6).
318 TESS analysis suggested that speciation and exaction shifts had higher posterior
319 probability during the Pleistocene, consistent with the BAMM results (Supporting
320 Information Fig S5).

321

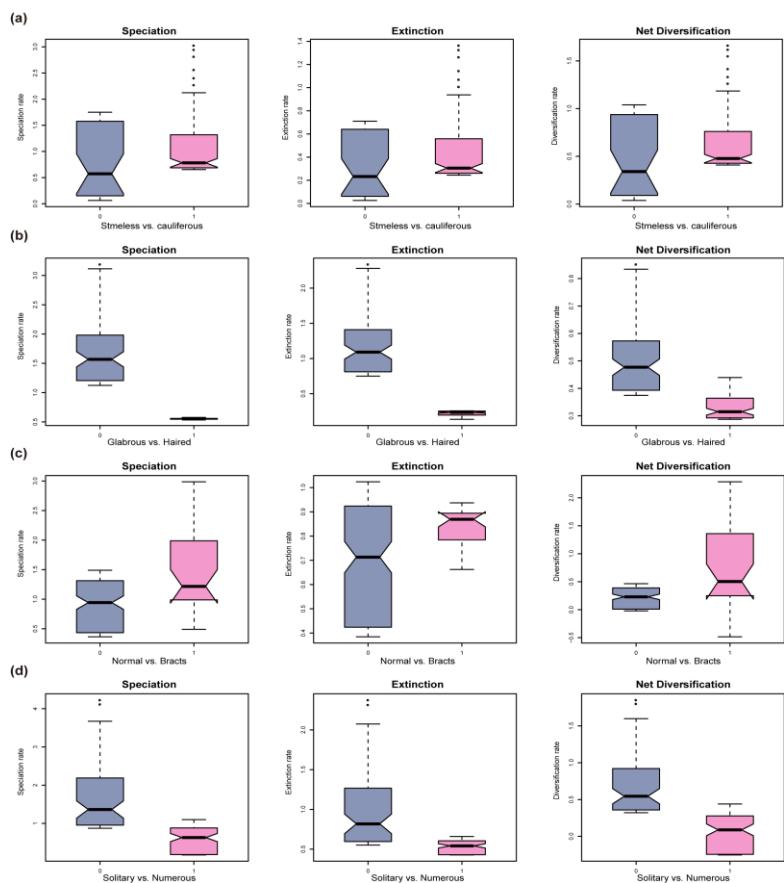


322 **Fig. 1** Diversification dynamics of *Saussurea* inferred from BAMM analysis. (a) BAMM identified
 323 two shifts in diversification rates (represented by arrows). The time of three clades beginning to
 324 diversify is provided. (b) Rates-through-time plots of all *Saussurea* species and three main clades
 325 separately, with trends in global climate change over 12 million years (Zachos *et al.* 2008) depicted.
 326 (c-d) BAMM tip rates of three clades and four morphology-based subgenera of *Saussurea*,
 327 respectively.

328 Paleoenvironment dependent diversification

329 We used a maximum-likelihood framework to illustrate diversification dynamics
 330 dependent to paleoenvironment based on BD models to gain insight into the role of
 331 historical processes on diversification. Out of seven models, a model with temperature-
 332 dependent speciation fit the data best (Table 1). The best-fit model further indicated a
 333 negative dependence ($\alpha < 0$) between past temperature and speciation rate for *Saussurea*,
 334 while extinction rate remained constant, suggesting extinction was likely not affected by
 335 temperature fluctuations. RPANDA results demonstrated a diversification regime in
 336 which diversification rates had opposite responses to changes of temperature over time,

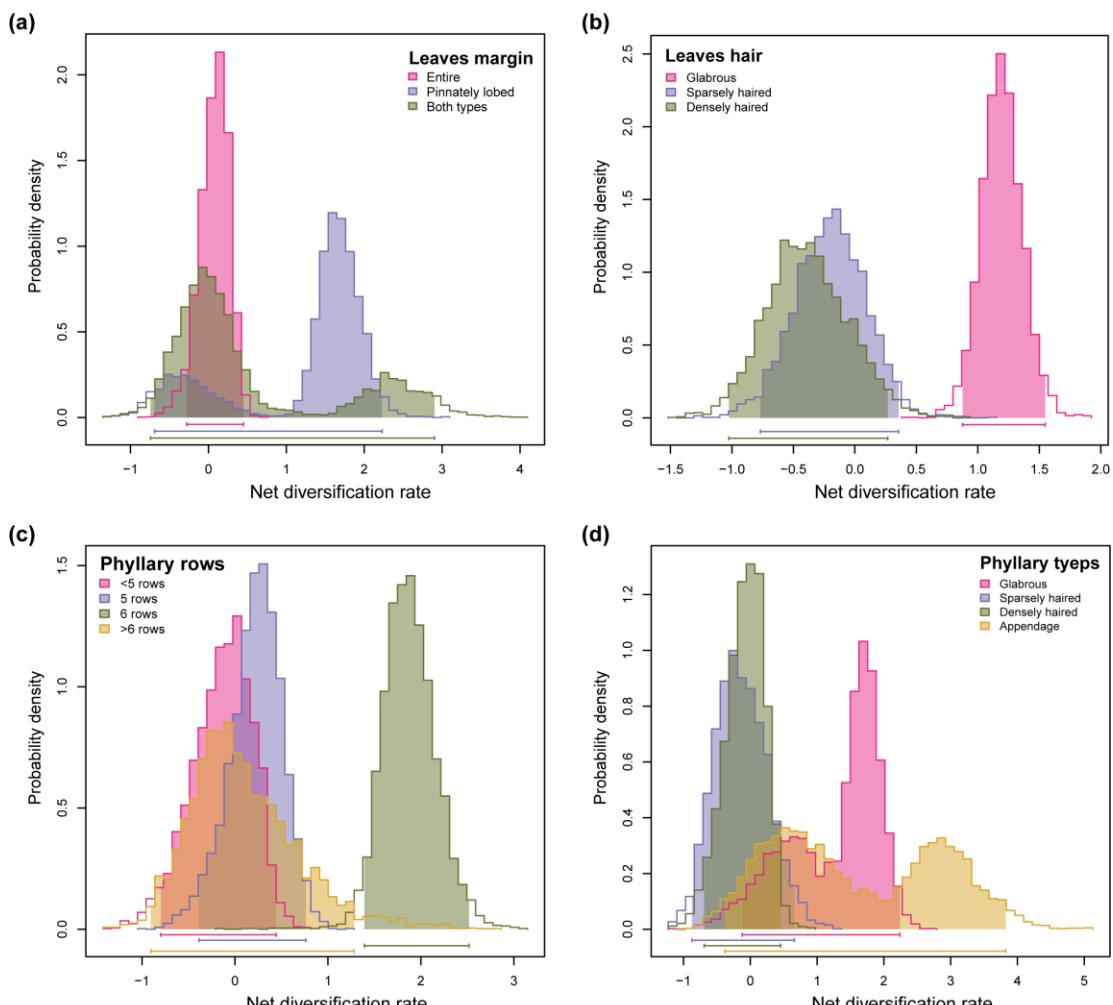
337 and accelerated sharply in the Pleistocene and increased toward the present (Fig. 2),
338 consistent with the conclusion of rates-through-time in BAMM analysis (Fig. 1b).

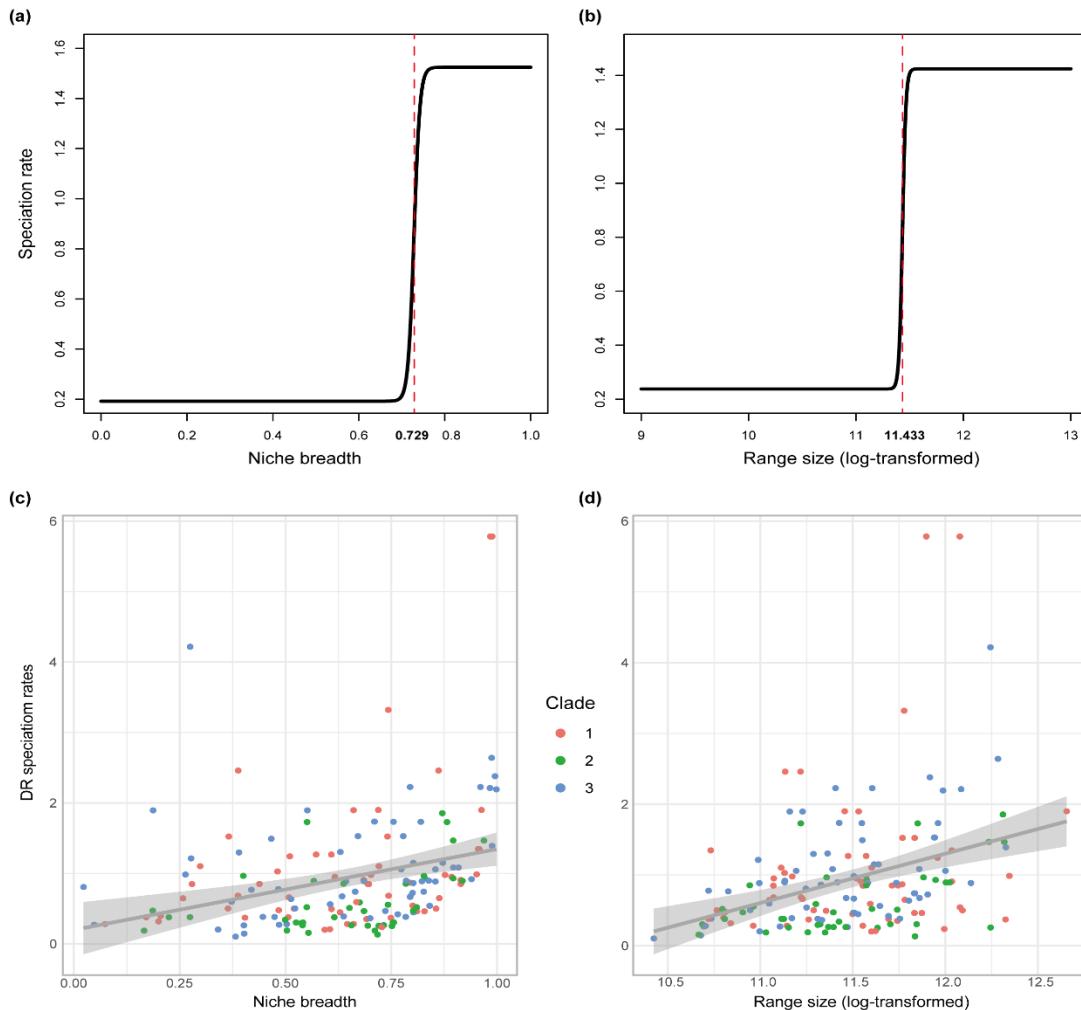


339 **Fig. 2** Paleoenvironment-dependent diversification processes in *Saussurea*. The best-fit
340 paleoenvironment-dependent model implemented in RPANDA shows negative dependence
341 between paleotemperatures (a) and speciation rate (b).

342 Trait dependent diversification

343 We investigated eight morphological characters and geographical habitat that serve as a
344 proxy for the effect of adaptive traits on diversification rate, to understand the role of trait
345 innovations in the rapid radiation of *Saussurea*. For all four binary traits, the best model
346 of the 25 models tested was the full HiSSE model with unique speciation, extinction and
347 transition rates between the two character states observed and the hidden states
348 (Supporting Information Tables S7). We then calculated mean speciation, extinction and
349 net diversification rates values from the model-averaged marginal ancestral state
350 reconstruction for each extant species in our tree. The results suggested that species with
351 cauliferous plant, glabrous stem, leafy bracts and solitary capitula have higher mean
352 speciation, extinction and net diversification (Table 2, Fig. 3). While the full HiSSE
353 model showed observed differences in diversification rates between the states of these


354 traits, it also indicated some unobserved traits drive the diversification. The
 355 complementary results from our FiSSE analysis supported the tendency of speciation rate
 356 revealed by HiSSE, but the only significant differences were between solitary capitula
 357 and numerous capitula (Table 2; $p = 0.024$).


Fig. 3 Binary trait dependent diversification of *Saussurea* inferred from HiSSE analysis. Speciation, extinction and net diversification rates are calculated by the model-averaged marginal ancestral state reconstruction for four binary traits: (a) stemless (0) vs. cauliferous (1), (b) stem glabrous (0) vs. densely haired (1), (c) the absence (0) vs. presence (1) of leafy bracts, and (d) capitula solitary (0) vs. numerous (1).

374 In the MuSSE analyses, ANOVA calculations all preferred models constraining each
 375 μ to be equal and allowing λ to vary (free λ), compared with either null models and full
 376 models (Supporting Information Table S8). The best-fitting model was then used as the
 377 starting point for a MCMC run of 5,000 generations to estimate the marginal distributions
 378 of rates for each traits using a state-dependent model (Fig. 4). Since all the models
 379 preferred constrained μ values, all of the estimated probability densities of μ overlapped
 380 (data not shown). The reconstructions of probability density of the net diversification
 381 rates ($\lambda - \mu$) showed that some traits, i.e. leaf margin and phyllary types, have an overlap

382 in net diversification rates among examined character states (Fig. 4a, d). The results
383 suggest that species with glabrous leaves have higher net diversification rates than
384 sparsely or densely haired species, consistent with higher mean rates for glabrous stem in
385 the HiSSE analysis. For the phyllary character, the glabrous state also showed higher net
386 diversification rates than sparsely or densely haired states despite some overlapping (Fig.
387 4d), and the rates of phyllary with six rows are higher than the remaining character states
388 (Fig. 4c). The GeoHiSSE analysis suggested a model with one hidden area and no range-
389 dependent diversification was the best fitting model (Supporting Information Table S9).
390 From the result, we can see that species with lowland habitats have a substantially higher
391 speciation, extinction and net diversification rates in comparison with both alpine and
392 widespread distributions (Supporting Information Fig. S6).

393 **Fig. 4** Multistate trait dependent diversification of *Saussurea* estimated from MuSSE analysis.
394 Marginal distributions of net diversification rates are estimated by the MCMC run of 5, 000
395 generations for four multistate traits: (a) leaves margin entire (1) vs. pinnately lobed (2) vs. both types
396 (3), (b) leaves glabrous (1) vs. sparsely haired (2) vs. densely haired (3), (c) phyllary in <5 (1) vs. 5 (2)
397 vs. 6 (3) vs. >6 (4) rows, and (d) phyllary glabrous (1) vs. sparsely haired (2) vs. densely haired (3) vs.
398 appendage (4).

399 **Fig. 5** Speciation rates of *Saussurea* correlated with ecological factors based on the QuaSSE best-
400 fitted model and *ES-sim* tests. Both (a) niche breadth and (b) species range size (log-transformed)
401 show positive sigmoidal curves in QuaSSE analysis with the midpoints (represented by the red dashed
402 line) of 0.729 and 11.433 on the x-axis respectively. *EM-sim* tests show significant positive
403 relationships between DR speciation rates and (c) niche breadth and (d) species range size. Species
404 from three clades are in different colors.

405 **Ecological drivers of diversification**

406 By correlating climate lability (PCs of bioclimatic variables), niche breadth and species
407 range size with speciation rates (Supporting Information Table S10), we explored the role
408 of ecological opportunities created by complex QTP environments in driving
409 diversification of *Saussurea*. The first two PCs of bioclimatic variables explained 75.7%
410 of the total climate variation in *Saussurea* (Supporting Information Fig. S7a). Among the
411 eight retained bioclimatic variables, the precipitation of warmest quarter (BIO18) had the
412 largest contribution to first two PCs, followed by the annual precipitation (BIO12) and
413 the mean diurnal range (BIO2) (Supporting Information Fig. S7b). Under the QuaSSE
414 analyses, PC1 of the climate variables showed a significant positive linear ($l.m = 0.330$,
415 $AIC = 1240.548$, $p\text{-value} = 0.005^{**}$) relationships with speciation rate, while climate
416 PC2 preferred a constant model ($AIC = 1183.524$, $p\text{-value} = 0.953$); both niche breadth
417 ($AIC = 529.532$, $p\text{-value} < 0.000^{**}$) and species range size ($AIC = 700.671$, $p\text{-value} <$
418 0.000^{**}) showed a significant positive sigmoidal (with drift) relationships with
419 speciation rate (Supporting Information Table S11). Under the best sigmoidal models, the
420 speciation rates of *Saussurea* kept a stable low state until the niche breadth and
421 distribution range reached at 0.729 and 11.433 (log-transformed), respectively
422 (midpoints; Fig. 5a, 5b). Under the *EM-sim* tests, both the DR statistic and the default
423 inverse equal splits statistic revealed the same correlation pattern, in which niche breadth
424 ($\rho = 0.363$ and 0.387 , $p = 0.027$ and 0.019) and range size ($\rho = 0.399$ and 0.411 , $p =$
425 0.018 and 0.011) showed significant positive relationship with speciation rates (Fig. 5c,
426 5d), while the correlation between speciation rates and climate lability (climate PC1: $\rho =$
427 0.170 and 0.188 , $p = 0.359$ and 0.335 ; climate PC2: $\rho = 0.098$ and 0.095 , $p = 0.649$ and
428 0.635) was not significant (Table 3).

429 Discussion

430 Our results demonstrate rapid diversification of *Saussurea* occurred in parallel during the
431 Miocene, a period with extensive tectonic movement and climatic fluctuation on the QTP.
432 A recent paper by (Louca & Pennell, 2020) raised limitations of macroevolutionary
433 studies using estimated diversification rates, though several recent papers have suggested
434 that more complex models (such as hidden state SSE models; (Helmstetter *et al.*, 2021)
435 and a hypothesis driven approach (Morlon *et al.*, 2020) circumvent many of the issues
436 raised. Therefore, we took an integrative approach to address the role that morphological
437 traits and environmental conditions played in the evolutionary history of *Saussurea*. The
438 rates of species diversification are revealed to be negatively correlated with
439 paleotemperature, and accelerate sharply in the Pliocene toward the present. Similar
440 patterns of increased diversification with global cooling have been documented in other
441 flowering plant lineages, e.g. Saxifragales (Folk *et al.*, 2019), rosids (Sun *et al.*, 2020)
442 and Campanulaceae (Lagomarsino *et al.*, 2016), as well as in mammals (Stadler, 2011)
443 and birds (Claramunt & Cracraft, 2015). Our trait dependent models detect some
444 observed phenotypic adaptation associated with diversification changes, and indicate
445 some unobserved traits also drive diversification, demonstrating a pivotal role of
446 morphological diversity in this radiating diversification. Accounting for ecological niche
447 data, we further reveal that acceleration in diversification rates are correlated with climate
448 lability (PCs of bioclimatic variables), niche breadth and the size of species' range.
449 Overall, we conclude that tectonic activity of the QTP along with global paleoclimate
450 cooling provided vast alpine niches for *Saussurea* species with ample adaptive traits,
451 highlighting the important role of morphological diversity and ecological niche
452 availability for species radiating to diverse environments.

453 We determined clade ages across *Saussurea* species using whole plastome sequences
454 and found that the divergence of the main species clades occurred in the Miocene almost

455 simultaneously. Compared to fragment DNA markers, plastomes have been shown to
456 provide more sufficient phylogenetic signals which are powerful in resolving deep
457 relationships of plant lineages (Parks *et al.*, 2009; Wicke *et al.*, 2011; Zhang *et al.*, 2020).
458 Our estimate for the origin of *Saussurea* (ca. 11.8 Ma) is consistent with the result from
459 single-copy nuclear genes obtained via Hyb-Seq (ca. 12.5 Mya) (Herrando-Moraira *et al.*,
460 2019) and the result from ITS sequences (12.6-10.3 Mya) (Wang *et al.*, 2009), but was
461 younger than the result of Xu *et al.* (2019) (ca. 18.5 Mya) using plastome coding regions
462 and the result of Barres *et al.* (2013) (ca. 20.0 Mya) using chloroplast markers. The study
463 of Barres *et al.* (2013) included only two species of *Saussurea* and used four chloroplast
464 markers, *trnL-trnF*, *matK*, *ndhF* and *rbcL*. Different from Xu *et al.* (2019) setting the split
465 of subtribe Arctiinae and subtribe Saussureinae as a minimum age to 8.0 Mya using the
466 achene fossil assigned to *Arctium*, our study omitted this calibration because only one
467 Arctiinae sample (*A. lappa*) was included in both studies and the relationship between
468 Arctiinae and Saussureinae remains unresolved (Herrando-Moraira *et al.*, 2019; Shen *et
469 al.*, 2020). In addition, we estimated divergence times using whole plastome sequences,
470 as our prior work showed that including noncoding regions can maximize the resolution
471 in resolving relationships of *Saussurea* (Zhang *et al.*, 2019a).

472 Recent large-scale studies of species diversification on the QTP have provided
473 convincing evidence for a Miocene diversification in plant lineages (Ding *et al.*, 2020) as
474 well as amphibians and reptiles (Xu *et al.*, 2020). A hypothesis for the rich biodiversity
475 found in mountainous regions like the QTP is uplift-driven diversification—that orogenic
476 activities create diverse habitats favoring rapid *in situ* speciation of resident lineages
477 (Xing & Ree, 2017; Chen *et al.*, 2019). Extensive plateau uplift in the Miocene further
478 intensified the Asian summer monsoon, which increased the precipitation for erosion
479 through river incision, leading to greater topographic relief (Nie *et al.*, 2018). This would
480 have promoted the differentiation of microhabitats associated with elevational gradients

481 and slope aspects, increasing the availability of ecological niches for radiating species
482 (Ding *et al.*, 2020). A previous study indicated that the *Saussurea* radiation was likely
483 driven by ecological opportunities, similar to those on islands, provided by largely
484 unoccupied habitats resulting from the extensive QTP uplifts (Wang *et al.*, 2009). Our
485 work provides compelling evidence of the vital role of ecological opportunities in
486 *Saussurea* diversification by statistically correlating species niche breadth and
487 distribution range to the speciation rate. A slight difference is that our result supports a
488 wide-range radiation rather than an ‘island isolation’, from the positive correlation
489 between range and speciation rate. We attribute the wide-range radiation of *Saussurea* to
490 the presence of unique pappus combinations (Shi & Raab-Straube, 2011; Chen, 2015),
491 which can promote the dispersal power of achenes to occupy more newly created niches.
492 Therefore, colonizing success benefited by wide-range dispersal helped *Saussurea*
493 species become one of the most diverse lineages on the QTP.

494 The negative correlation between paleotemperature and diversification rates in
495 *Saussurea* does not seem surprising given the high species richness of *Saussurea* found at
496 the high elevations of the QTP. Nonetheless, this insight is progressive for our
497 understanding of the formation of the QTP flora, as it represents one of the few attempts
498 to explicitly quantify the relationship between lineage diversification and a
499 paleoenvironmental variable. Geological evidence suggests that after 15 Mya, global
500 cooling and the further rise of QTP progressively led to more open, herb-rich vegetation
501 as the modern high plateau formed with its cool, dry climate (Spicer *et al.*, 2021). Thus,
502 diversification among *Saussurea* clades could have been driven by increased ecological
503 niches as suitable cold habitats became available. A sharply accelerated diversification
504 rate of *Saussurea* was detected in the Pliocene toward the present. The uplift of the
505 Hengduan Mountains region, at the southeastern margin of the QTP, is generally believed
506 to have been rapid and recent, occurring mainly between the late Miocene and late

507 Pliocene (Xing & Ree, 2017; Spicer *et al.*, 2020). During the Quaternary glaciation, the
508 Hengduan Mountains with its deep valleys would have provided numerous micro-refugia
509 within the altitudinal and aspect heterogeneity (Sun *et al.*, 2017; Spicer *et al.*, 2021). This
510 can explain why extensive morphological traits occur in parallel and evolved
511 convergently, a result likely driven by local adaptation to the micro-habitats that were
512 afforded by the complex and highly dissected landscape of the Hengduan Mountains.

513 Trait dependent analyses demonstrated that species exhibiting cauliferous plant,
514 glabrous stem, leafy bracts and solitary capitula have higher speciation rates. These traits
515 are usually observed in the subgenus *Amphilaena* (snow lotus), which is characterized by
516 attractive leafy bract and is the symbols of snow mountains in the QTP (Shi & Raab-
517 Straube, 2011; Chen, 2015). Snow lotus has abundant morphological variation and is a
518 taxonomically complex group, with some new species described recently (e.g. Eckhard
519 von, 2009; Chen & Yuan, 2015; Zhang, *et al.*, 2019b). Despite having significant
520 taxonomic characteristics, snow lotus is a non-monophyletic group, demonstrating that
521 these adaptive traits have multiple origins and arose by convergent evolution. In fact,
522 specialized leafy bracts, the so-called ‘glasshouse’ morphology, are prevalent among
523 alpine species, such as in Lamiaceae, Asteraceae, and Polygonaceae (reviewed by Sun *et*
524 *al.*, 2014). Leafy bracts reportedly protect pollen grains from damage by UV-B radiation
525 and rain, promote pollen germination by maintaining warmth, enhance pollinator
526 visitation by providing a vivid visual display during flowering, and facilitate the
527 development of fertilized ovules during seed development (Tsukaya, 2002; Yang & Sun,
528 2009; Song *et al.*, 2015). Convergent morphological evolution seems to be common for
529 plants adapting harsh environments of the QTP, examples include cushion (stemless)
530 plant, woolly hairs and the leafy bract (Sun *et al.*, 2014; Peng *et al.*, 2015; Yang *et al.*,
531 2019). Similar to leafy bract, the present of stemless and woolly hairs has been revealed
532 to occurred multiple times, and is thought to defense cold and arid climate on the plateau

533 (Sun *et al.*, 2014). However, both stemless plants and the presence of woolly hairs appear
534 to be not associated with an increase in diversification rate of *Saussurea*. A plausible
535 explanation for this is that species with stemless and woolly hairs are commonly found in
536 environments of the QTP with extremely high altitude with very low temperature, and
537 these species usually have long lifespans.

538 Some traits associated with high diversification rates appear to have no evidence for
539 ecological adaptation, such as solitary capitula and pinnate leaf margin. These may occur
540 in combination with other important adaptive traits. Some traits were not examined
541 because they are common across the entire genus, such as two rows of pappus and small
542 achenes (Shi & Raab-Straube, 2011; Chen, 2015). Although trait dependent analyses
543 showed several adaptive traits driving the increase of speciation rate, some unobserved
544 traits were also important for rapid diversification, highlighting the vital roles of
545 morphological diversity in the evolutionary history of *Saussurea*. Morphological
546 diversity is an essential but often neglected aspect of biodiversity (Chartier *et al.*, 2021).
547 Our work provides a valuable guide for conservation efforts in the protection of
548 morphological diversity of organisms, especially in the context of exacerbated
549 biodiversity loss due to global warming.

550 Our results provided evidence of a positive relationship between speciation rate and
551 niche breadth as well as species range. Among the few studies that have tested a niche
552 breadth–diversification relationship, a clear consensus has not been reached (Sexton *et*
553 *al.*, 2017). One argument for low niche breadth lineages having greater diversification
554 rates is that they are more likely to suffer from resource limitations and more susceptible
555 to range fragmentation, and thus allopatric speciation occurs more frequently (Vrba,
556 1987). An alternative view is that species with high niche breadth typically have larger
557 range sizes (Slatyer *et al.*, 2013) and are therefore more likely to have these ranges
558 fragmented by ecological or geographical barriers over evolutionary time, promoting

559 allopatric speciation (Rolland & Salamin, 2016). We argue that wider ecological niches
560 can help species diverging in the QTP cope with climatic fluctuation, occupy
561 microhabitats and promote morphological divergence. Note that anthropogenic activities
562 have led to landscape modification and habitat fragmentation, alternating the distributions
563 of a vast array of species (Boivin *et al.*, 2016), even in plateau areas (Chen *et al.*, 2014).
564 To promote future biodiversity resilience, the conservation of entire unfragmented
565 landscapes is necessary to preserve niche heterogeneity and enable species migrations at
566 will. Only this approach will conserve the processes of biodiversity dynamics as well as
567 the genetic library and the capacity for future adaptation in threatened species (Spicer *et*
568 *al.*, 2020).

569 Conclusion

570 Despite substantial processes on the taxonomy, phylogeny and biogeography of plant
571 lineages on the QTP (reviewed by Wen *et al.*, 2014), our knowledge of the diversification
572 rates associated with geological activities along with subsequent environmental
573 fluctuations and biotic interactions is still limited, especially for rapidly radiating species.
574 Our study integrates *Saussurea* into an marcoevolutionary diversification framework.
575 Using a genomic data set (plastome sequences) for reconstructing divergence history and
576 multiple statistical analyses, we quantify the roles of abiotic/environmental and
577 biotic/species-intrinsic factors in driving diversification of *Saussurea*. Our comprehensive
578 and large-scale analyses depict a plausible evolutionary scene for *Saussurea*, and provide
579 insights into the drivers of its radiating diversification. We document a Miocene
580 diversification pattern in which increased speciation rates are related to global cooling,
581 and correlate it to clade-specific traits and ecological niches. We hypothesize that the
582 current mega diversity of *Saussurea* is the result of interactions between geological
583 activity, global paleoclimate and ecological niche. Our results highlight the vital roles of
584 morphological diversity and available ecological niches in plants adapting to the

585 changing climate. Given the ongoing global warming and human expansion, causing the
586 disappearance of numerous undescribed species and extensive occupied habitats, our
587 present study together with previous macroevolutionary pattern studies (e.g. Condamine
588 *et al.*, 2018; Folk *et al.*, 2019; Testo *et al.*, 2019; Ding *et al.*, 2020; Sun *et al.*, 2020)
589 provide valuable theoretical basis for mitigating the threats posed to biodiversity.

590 **Acknowledgements**

591 We are grateful to all the collectors of *Saussurea* morphological data. We thank Ting-
592 Shen Han for helpful in the visualization of Fig.5. We thank Jun-tong Chen and Kai Xue
593 for providing the photos of *Saussurea* species. We also thank the members of the alpine
594 research group of KIB, Jianwen Zhang, Zhuo Zhou, Hongliang Chen, Lishen Qian, Lu
595 Sun and Yongzeng Zhang for helping with sample collection, and Yazhou Zhang for
596 helping with species identification. This study was supported by the Second Tibetan
597 Plateau Scientific Expedition and Research (STEP) program (2019QZKK0502), the
598 Strategic Priority Research Program of Chinese Academy of Sciences (XDA20050203),
599 the Key Projects of the Joint Fund of the National Natural Science Foundation of China
600 (U1802232), the Major Program of the National Natural Science Foundation of China
601 (31590823), the Youth Innovation Promotion Association of Chinese Academy of
602 Sciences (2019382), the Young Academic and Technical Leader Raising Foundation of
603 Yunnan Province (2019HB039), the Chinese Academy of Sciences "Light of West China"
604 Program, and the Biodiversity Survey, Monitoring and Assessment
605 (2019HB2096001006), and the International Partnership Program of Chinese Academy of
606 Sciences (151853KYSB20180009).

607 **Author contributions**

608 HW, HS, TD and XZ developed the idea and designed the experiment; XZ and JBL
609 performed the statistical analyses; XZ, JBL, TD, HS and HW interpreted the results and

610 wrote the manuscript. XZ, YS, TF, HZ, NL, TB, XH and TD collected the leaf materials;
611 All authors read, edited and approved the final manuscript.

612 **References**

613 **Akaike H. 1974.** A new look at the statistical model identification. *IEEE Transactions on*
614 *Automatic Control* **19**: 716-723.

615 **Antonelli A. 2015.** Multiple origins of mountain life. *Nature* **524**: 300-301.

616 **Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, et al. 2018.** Geological and climatic influences
617 on mountain biodiversity. *Nature Geoscience* **11**: 718-725.

618 **Barres L, Sanmartin I, Anderson CL, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R. 2013.** Reconstructing the evolution and biogeographic history of tribe Cardueae
619 (Compositae). *American Journal of Botany* **100**: 867-882.

620 **Beaulieu JM, O'Meara BC. 2016.** Detecting hidden diversification shifts in models of trait-
621 dependent speciation and extinction. *Systematic Biology* **65**: 583-601.

622 **Ben J, Roberto GG 2008.** "PSPLINE: Stata module providing a penalized spline scatterplot
623 smoother based on linear mixed model technology," Statistical Software Components
624 S456972, Boston College Department of Economics, revised 25 Jan 2009.

625 **Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD. 2016.** Ecological consequences of human niche construction: Examining long-
626 term anthropogenic shaping of global species distributions. *Proceedings of the National
627 Academy of Sciences* **113**: 6388.

628 **Caetano DS, O'Meara BC, Beaulieu JM. 2018.** Hidden state models improve state-dependent
629 diversification approaches, including biogeographical models. *Evolution* **72**: 2308-2324.

630 **Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009.** trimAl: a tool for automated
631 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**: 1972-1973.

632 **Chamberlain SA, Boettiger C. 2017.** R Python, and Ruby clients for GBIF species occurrence
633 data. *PeerJ Preprints* **5**: e3304v3301.

634 **Chartier M, von Balthazar M, Sontag S, Löfstrand S, Palme T, Jabbour F, Sauquet H, Schönenberger J. 2021.** Global patterns and a latitudinal gradient of flower disparity:
635 perspectives from the angiosperm order Ericales. *New Phytologist*
636 <https://doi.org/10.1111/nph.17195>.

637 **Chen B, Zhang X, Tao J, Wu J, Wang J, Shi P, Zhang Y, Yu C. 2014.** The impact of climate
638 change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau.
639 *Agricultural and Forest Meteorology* **189-190**: 11-18.

640 **Chen J, Huang Y, Brachi B, Yun Q, Zhang W, Lu W, Li H-n, Li W, Sun X, Wang G, et al. 2019.** Genome-wide analysis of Cushion willow provides insights into alpine plant divergence
641 in a biodiversity hotspot. *Nature Communications* **10**: 5230.

647 **Chen Y-S, Deng T, Zhou Z, Sun H. 2018.** Is the East Asian flora ancient or not? *National*
648 *Science Review* **5**: 920-932.

649 **Chen YS 2015.** Asteraceae II *Saussurea*. In: Hong D-Y, Sun H, Watson M, Wen J, Zhang X-C
650 eds. *Flora of Pan-Himalaya*. Beijing: Science Press.

651 **Chen YS, Yuan Q. 2015.** Twenty-six new species of *Saussurea* (Asteraceae, Cardueae) from the
652 Qinghai-Tibetan Plateau and adjacent regions. *Phytotaxa* **213**: 159-211.

653 **Claramunt S, Cracraft J. 2015.** A new time tree reveals Earth history's imprint on the evolution
654 of modern birds. *Science Advances* **1**: e1501005.

655 **Condamine FL, Rolland J, Höhna S, Sperling FAH, Sanmartín I. 2018.** Testing the role of the
656 red queen and court jester as drivers of the macroevolution of apollo butterflies. *Systematic*
657 *Biology* **67**: 940-964.

658 **Condamine FL, Rolland J, Morlon H. 2013.** Macroevolutionary perspectives to environmental
659 change. *Ecology Letters* **16**: 72-85.

660 **Dierckxsens N, Mardulyn P, Smits G. 2017.** NOVOPlasty: de novo assembly of organelle
661 genomes from whole genome data. *Nucleic Acids Res* **45**: e18.

662 **Ding W-N, Ree RH, Spicer RA, Xing Y-W. 2020.** Ancient orogenic and monsoon-driven
663 assembly of the world's richest temperate alpine flora. *Science* **369**: 578.

664 **Drummond CS, Eastwood RJ, Miotto STS, Hughes CE. 2012.** Multiple Continental
665 Radiations and Correlates of Diversification in *Lupinus* (Leguminosae): Testing for Key
666 Innovation with Incomplete Taxon Sampling. *Systematic Biology* **61**: 443-460.

667 **Eckhard von R-S. 2009.** *Saussurea luae* (Compositae, Cardueae), a new species of Snow Lotus
668 from China. *Willdenowia* **39**: 101-106.

669 **Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN. 2015.** The
670 role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. *Biological*
671 *Reviews* **90**: 236-253.

672 **FitzJohn RG. 2012.** DIVERSITREE: comparative phylogenetic analyses of diversification in R.
673 *Methods in Ecology and Evolution* **3**: 1084-1092.

674 **Folk RA, Stubbs RL, Mort ME, Cellinese N, Allen JM, Soltis PS, Soltis DE, Guralnick RP.**
675 **2019.** Rates of niche and phenotype evolution lag behind diversification in a temperate
676 radiation. *Proceedings of the National Academy of Sciences* **116**: 10874.

677 **Han T-S, Zheng Q-J, Onstein RE, Rojas-Andrés BM, Hauenschild F, Muellner-Riehl AN,**
678 **Xing Y-W. 2020.** Polyploidy promotes species diversification of *Allium* through ecological
679 shifts. *New Phytologist* **225**: 571-583.

680 **Harvey MG, Rabosky DL. 2018.** Continuous traits and speciation rates: Alternatives to state-
681 dependent diversification models. *Methods in Ecology and Evolution* **9**: 984-993.

682 **Helmstetter AJ, Glemin S, Käfer J, Zenil-Ferguson R, Sauquet H, de Boer H, Dagallier L-**
683 **PMJ, Mazet N, Reboud EL, Couvreur TLP, et al. 2021.** Pulled Diversification Rates,
684 Lineages-Through-Time Plots and Modern Macroevolutionary Modelling. *bioRxiv*:
685 2021.2001.2004.424672.

686 **Herrando-Moraira S, Calleja JA, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-**
687 **Alvarado J, López-Pujol J, Mandel JR, Massó S, Montes-Moreno N, et al. 2019.** Nuclear
688 and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new
689 subtribal classification and a temporal diversification framework. *Molecular Phylogenetics*
690 and Evolution

691 **Höhna S, May MR, Moore BR. 2016.** TESS: an R package for efficiently simulating
692 phylogenetic trees and performing Bayesian inference of lineage diversification rates.
693 *Bioinformatics* 32: 789-791.

694 **Howard CC, Landis JB, Beaulieu JM, Cellinese N. 2020.** Geophytism in monocots leads to
695 higher rates of diversification. *New Phytologist* 225: 1023-1032.

696 **Hughes CE, Atchison GW. 2015.** The ubiquity of alpine plant radiations: from the Andes to the
697 Hengduan Mountains. *New Phytologist* 207: 275-282.

698 **Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012.** The global diversity of birds in
699 space and time. *Nature* 491: 444-448.

700 **Katoh K, Standley DM. 2013.** MAFFT multiple sequence alignment software version 7:
701 improvements in performance and usability. *Molecular Biology and Evolution* 30: 772-780.

702 **Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,**
703 **Markowitz S, Duran C, et al. 2012.** Geneious Basic: an integrated and extendable desktop
704 software platform for the organization and analysis of sequence data. *Bioinformatics* 28: 1647-
705 1649.

706 **Kita Y, Fujikawa K, Ito M, Ohba H, Kato M. 2004.** Molecular phylogenetic analyses and
707 systematics of the genus *Saussurea* and related genera (Asteraceae, Cardueae). *Taxon* 53: 679-
708 690.

709 **Koenen EJM, Ojeda DI, Steeves R, Migliore J, Bakker FT, Wieringa JJ, Kidner C, Hardy**
710 **OJ, Pennington RT, Bruneau A, et al. 2020.** Large-scale genomic sequence data resolve the
711 deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary
712 origin of all six subfamilies. *New Phytologist* 225: 1355-1369.

713 **Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. 2016.** The abiotic and
714 biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). *New*
715 *Phytologist* 210: 1430-1442.

716 **Lavergne S, Mouquet N, Thuiller W, Ronce O. 2010.** Biodiversity and Climate Change:
717 Integrating Evolutionary and Ecological Responses of Species and Communities. *Annual*
718 *Review of Ecology, Evolution, and Systematics* 41: 321-350.

719 **Levins R. 1968.** *Evolution in changing environments*. Princeton, NJ, USA: Princeton University
720 Press.

721 **Li X-H, Zhu X-X, Niu Y, Sun H. 2014.** Phylogenetic clustering and overdispersion for alpine
722 plants along elevational gradient in the Hengduan Mountains Region, southwest China.
723 *Journal of Systematics and Evolution* 52: 280-288.

724 **Linder HP, Verboom GA. 2015.** The Evolution of Regional Species Richness: The History of

725 the Southern African Flora. *Annual Review of Ecology, Evolution, and Systematics* **46**: 393-
726 412.

727 **Louca S, Pennell MW. 2020.** Extant timetrees are consistent with a myriad of diversification
728 histories. *Nature* **580**: 502-505.

729 **Mai DH. 1995.** *Tertiäre Vegetationsgeschichte Europas : Methoden und Ergebnisse*. Germany:
730 Gustav Fischer Verlag.

731 **Moore BR, Höhna S, May MR, Rannala B, Huelsenbeck JP. 2016.** Critically evaluating the
732 theory and performance of Bayesian analysis of macroevolutionary mixtures. *Proceedings of
733 the National Academy of Sciences* **113.34**: 9569-9574.

734 **Morlon H, Hartig F, Robin S. 2020.** Prior hypotheses or regularization allow inference of
735 diversification histories from extant timetrees. *bioRxiv*: 2020.2007.2003.185074.

736 **Mosbrugger V, Favre A, Muellner - Riehl AN, Päckert M, Mulch A 2018.** Cenozoic Evolution
737 of Geobiodiversity in the Tibeto - Himalayan Region. In: Hoorn C, Perrigo A, Antonelli A eds.
738 *Mountains, Climate and Biodiversity*. UK: Wiley-Blackwell, 429-448.

739 **Muellner-Riehl AN, Schnitzler J, Kissling WD, Mosbrugger V, Rijsdijk KF, Seijmonsbergen
740 AC, Versteegh H, Favre A. 2019.** Origins of global mountain plant biodiversity: Testing the
741 'mountain-geobiodiversity hypothesis'. *Journal of Biogeography* **46**: 2826-2838.

742 **Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000.** Biodiversity
743 hotspots for conservation priorities. *Nature* **403**: 853-858.

744 **Nie J, Ruetenik G, Gallagher K, Hoke G, Garzione CN, Wang W, Stockli D, Hu X, Wang Z,
745 Wang Y, et al. 2018.** Rapid incision of the Mekong River in the middle Miocene linked to
746 monsoonal precipitation. *Nature Geoscience* **11**: 944-948.

747 **Nürk NM, Atchison GW, Hughes CE. 2019.** Island woodiness underpins accelerated
748 disparification in plant radiations. *New Phytologist* **224**: 518-531.

749 **Parks M, Cronn R, Liston A. 2009.** Increasing phylogenetic resolution at low taxonomic levels
750 using massively parallel sequencing of chloroplast genomes. *BMC Biology* **7**: 84.

751 **Peng D-L, Niu Y, Song B, Chen J-G, Li Z-M, Yang Y, Sun H. 2015.** Woolly and overlapping
752 leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb.
753 *Journal of Plant Ecology* **8**: 159-165.

754 **Popescu SM. 2002.** Repetitive changes in Early Pliocene vegetation revealed by high-resolution
755 pollen analysis: revised cyclostratigraphy of southwestern Romania. *Review of Palaeobotany
756 and Palynology* **120**: 181-202.

757 **Qu XJ, Moore MJ, Li DZ, Yi TS. 2019.** PGA: a software package for rapid, accurate, and
758 flexible batch annotation of plastomes. *Plant Methods* **15**: 50.

759 **R Core Team 2014.** R: A language and environment for statistical computing. R Foundation for
760 Statistical Computing. Vienna, Austria.

761 **Rabosky DL. 2014.** Automatic Detection of Key Innovations, Rate Shifts, and Diversity-
762 Dependence on Phylogenetic Trees. *PLOS ONE* **9**: e89543.

763 **Rabosky DL, Goldberg EE. 2017.** FiSSE: A simple nonparametric test for the effects of a binary

764 character on lineage diversification rates. *Evolution* **71**: 1432-1442.

765 **Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG.**
766 2014. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic
767 trees. *Methods in Ecology and Evolution* **5**: 701-707.

768 **Rabosky DL, Mitchell JS, Chang J.** 2017. Is BAMM Flawed? Theoretical and Practical
769 Concerns in the Analysis of Multi-Rate Diversification Models. *Systematic Biology* **66**: 477-
770 498.

771 **Rambaut A, Drummond A.** 2010. *TreeAnnotator version 1.6. 1*. University of Edinburgh,
772 Edinburgh, UK: Available at: <http://beast.bio.ed.ac.uk>. [accessed 1 September 2019]

773 **Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA.** 2018. Posterior Summarization in
774 Bayesian Phylogenetics Using Tracer 1.7. *Systematic Biology* **67**: 901-904.

775 **Rolland J, Salamin N.** 2016. Niche width impacts vertebrate diversification. *Global Ecology and*
776 *Biogeography* **25**: 1252-1263.

777 **Schwery O, Onstein RE, Bouchenak-Khelladi Y, Xing Y, Carter RJ, Linder HP.** 2015. As old
778 as the mountains: the radiations of the Ericaceae. *New Phytologist* **207**: 355-367.

779 **Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA.** 2017. Evolution of Ecological
780 Niche Breadth. *Annual Review of Ecology, Evolution, and Systematics* **48**: 183-206.

781 **Shen J, Zhang X, Landis JB, Zhang H, Deng T, Sun H, Wang H.** 2020. Plastome Evolution in
782 *Dolomiaeae* (Asteraceae, Cardueae) Using Phylogenomic and Comparative Analyses. *Frontiers*
783 *in Plant Science* **11**: 376.

784 **Shi Z, Raab-Straube Ev** 2011. Cardueae. In: Wu ZY, Raven, P. H. & Hong, D. Y. ed. *Flora of*
785 *China*. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press, 42–194.

786 **Slatyer RA, Hirst M, Sexton JP.** 2013. Niche breadth predicts geographical range size: a general
787 ecological pattern. *Ecology Letters* **16**: 1104-1114.

788 **Song B, Stöcklin J, Peng D, Gao Y, Sun H.** 2015. The bracts of the alpine ‘glasshouse’ plant
789 *Rheum alexandrae* (Polygonaceae) enhance reproductive fitness of its pollinating seed-
790 consuming mutualist. *Botanical Journal of the Linnean Society* **179**: 349-359.

791 **Spicer RA, Farnsworth A, Su T.** 2020. Cenozoic topography, monsoons and biodiversity
792 conservation within the Tibetan Region: An evolving story. *Plant Diversity* **42**: 229-254.

793 **Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu F-X, Shi G, Spicer TEV, Zhou Z.** 2021. Why
794 ‘the uplift of the Tibetan Plateau’ is a myth? *National Science Review* **8**: nwaa091.

795 **Stadler T.** 2011. Mammalian phylogeny reveals recent diversification rate shifts. *Proceedings of*
796 *the National Academy of Sciences* **108**: 6187.

797 **Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A.** 2018. Bayesian
798 phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evolution* **4**:
799 vey016.

800 **Sun H, Niu Y, Chen Y-S, Song B, Liu C-Q, Peng D-L, Chen J-G, Yang Y.** 2014. Survival and
801 reproduction of plant species in the Qinghai–Tibet Plateau. *Journal of Systematics and*
802 *Evolution* **52**: 378-396.

803 **Sun H, Zhang J, Deng T, Boufford DE. 2017.** Origins and evolution of plant diversity in the
804 Hengduan Mountains, China. *Plant Diversity* **39**: 161-166.

805 **Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen Z, Soltis DE, Guralnick RP. 2020.**
806 Recent accelerated diversification in rosids occurred outside the tropics. *Nature
807 Communications* **11**: 3333.

808 **Testo WL, Sessa E, Barrington DS. 2019.** The rise of the Andes promoted rapid diversification
809 in Neotropical *Phlegmariurus* (Lycopodiaceae). *New Phytologist* **222**: 604-613.

810 **Tsukaya H. 2002.** Optical and anatomical characteristics of bracts from the Chinese "glasshouse"
811 plant, *Rheum alexandrae* Batalin (Polygonaceae), in Yunnan, China. *Journal of Plant
812 Research* **115**: 59-63.

813 **Vrba ES. 1987.** Ecology in relation to speciation rates: some case histories of Miocene-Recent
814 mammal clades. *Evolutionary Ecology* **1**: 283-300.

815 **Wang YJ, Susanna A, Von Raab-Straube E, Milne R, Liu JQ. 2009.** Island-like radiation of
816 *Saussurea* (Asteraceae: Cardueae) triggered by uplifts of the Qinghai-Tibetan Plateau.
817 *Biological Journal of the Linnean Society* **97**: 893-903.

818 **Warren DL, Glor RE, Turelli M. 2010.** ENMTools: a toolbox for comparative studies of
819 environmental niche models. *Ecography* **33**: 607-611.

820 **Wen J, Zhang J, Nie Z-L, Zhong Y, Sun H. 2014.** Evolutionary diversifications of plants on the
821 Qinghai-Tibetan Plateau. *Frontiers in Genetics* **5**: 4.

822 **Whitfield JB, Lockhart PJ. 2007.** Deciphering ancient rapid radiations. *Trends in Ecology &
823 Evolution* **22**: 258-265.

824 **Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D. 2011.** The evolution of
825 the plastid chromosome in land plants: gene content, gene order, gene function. *Plant
826 Molecular Biology* **76**: 273-297.

827 **Xing Y, Ree RH. 2017.** Uplift-driven diversification in the Hengduan Mountains, a temperate
828 biodiversity hotspot. *Proceedings of the National Academy of Sciences*: 201616063.

829 **Xu L-S, Herrando-Moraira S, Susanna A, Galbany-Casals M, Chen Y-S. 2019.** Phylogeny,
830 origin and dispersal of *Saussurea* (Asteraceae) based on chloroplast genome data. *Molecular
831 Phylogenetics and Evolution* **141**: 106613.

832 **Xu W, Dong W-J, Fu T-T, Gao W, Lu C-Q, Yan F, Wu Y-H, Jiang K, Jin J-Q, Chen H-M, et
833 al. 2020.** Herpetological phylogeographic analyses support a Miocene focal point of
834 Himalayan uplift and biological diversification. *National Science Review* nwaa263.

835 **Yang J-B, Li D-Z, Li H-T. 2014.** Highly effective sequencing whole chloroplast genomes of
836 angiosperms by nine novel universal primer pairs. *Molecular Ecology Resources* **14**: 1024-
837 1031.

838 **Yang Y, Chen J, Song B, Niu Y, Peng D, Zhang J, Deng T, Luo D, Ma X, Zhou Z. 2019.**
839 Advances in the studies of plant diversity and ecological adaptation in the subnival ecosystem
840 of the Qinghai-Tibet Plateau. *Chinese Science Bulletin* **64**: 2856-2864.

841 **Yang Y, Sun H. 2009.** The Bracts of *Saussurea velutina* (Asteraceae) Protect Inflorescences from

842 Fluctuating Weather at High Elevations of the Hengduan Mountains, Southwestern China.
843 *Arctic, Antarctic, and Alpine Research* **41**: 515-521.

844 **Zachos JC, Dickens GR, Zeebe RE. 2008.** An early Cenozoic perspective on greenhouse
845 warming and carbon-cycle dynamics. *Nature* **451**: 279-283.

846 **Zhang J-Q, Meng S-Y, Allen GA, Wen J, Rao G-Y. 2014.** Rapid radiation and dispersal out of
847 the Qinghai-Tibetan Plateau of an alpine plant lineage *Rhodiola* (Crassulaceae). *Molecular*
848 *Phylogenetics and Evolution* **77**: 147-158.

849 **Zhang X, Deng T, Moore MJ, Ji Y, Lin N, Zhang H, Meng A, Wang H, Sun Y, Sun H. 2019a.**
850 Plastome phylogenomics of *Saussurea* (Asteraceae: Cardueae). *BMC Plant Biology* **19**: 290.

851 **Zhang X, Sun Y, Landis JB, Lv Z, Shen J, Zhang H, Lin N, Li L, Sun J, Deng T, et al. 2020.**
852 Plastome phylogenomic study of Gentianeae (Gentianaceae): widespread gene tree
853 discordance and its association with evolutionary rate heterogeneity of plastid genes. *BMC*
854 *Plant Biology* **20**: 340.

855 **Zhang Y, Tang R, Huang X, Sun W, Ma X, Sun H. 2019b.** *Saussurea balangshanensis* sp. nov.
856 (Asteraceae), from the Hengduan Mountains region, SW China. *Nordic Journal of Botany* **37**:
857 <https://doi.org/10.1111/njb.02078>.

858 **Figure legends:**

859 **Fig. 1** Diversification dynamics of *Saussurea* inferred from BAMM analysis. (a)
860 BAMM identified two shifts in diversification rates (represented by arrows). The time
861 of three clades beginning to diversify is provided. (b) Rates-through-time plots of all
862 *Saussurea* species and three main clades separately, with trends in global climate
863 change over 12 million years (Zachos *et al.* 2008) depicted. (c-d) BAMM tip rates of
864 three clades and four morphology-based subgenera of *Saussurea*, respectively.

865 **Fig. 2** Paleoenvironment-dependent diversification processes in *Saussurea*. The best-
866 fit paleoenvironment-dependent model implemented in RPANDA shows negative
867 dependence between paleotemperatures (a) and speciation rate (b).

868 **Fig. 3** Binary trait dependent diversification of *Saussurea* inferred from HiSSE
869 analysis. Speciation, extinction and net diversification rates are calculated by the
870 model-averaged marginal ancestral state reconstruction for four binary traits: (a)
871 stemless (0) vs. cauleriferous (1), (b) stem glabrous (0) vs. densely haired (1), (c) the
872 absence (0) vs. presence (1) of leafy bracts, and (d) capitula solitary (0) vs. numerous
873 (1).

874 **Fig. 4** Multistate trait dependent diversification of *Saussurea* estimated from MuSSE
875 analysis. Marginal distributions of net diversification rates are estimated by the
876 MCMC run of 5, 000 generations for four multistate traits: (a) leaves margin entire (1)
877 vs. pinnately lobed (2) vs. both types (3), (b) leaves glabrous (1) vs. sparsely haired
878 (2) vs. densely haired (3), (c) phyllary in <5 (1) vs. 5 (2) vs. 6 (3) vs. >6 (4) rows, and
879 (d) phyllary glabrous (1) vs. sparsely haired (2) vs. densely haired (3) vs. appendage
880 (4).

881 **Fig. 5** Speciation rates of *Saussurea* correlated with ecological factors based on the
882 QuaSSE best-fitted model and *ES-sim* tests. Both (a) niche breadth and (b) species
883 range size (log-transformed) show positive sigmoidal curves in QuaSSE analysis with
884 the midpoints (represented by the red dashed line) of 0.729 and 11.433 on the x-axis
885 respectively. *EM-sim* tests show significant positive relationships between DR
886 speciation rates and (c) niche breadth and (d) species range size. Species from three
887 clades are in different colors.

888

889 **Table 1** Results of RPANDA analyses.

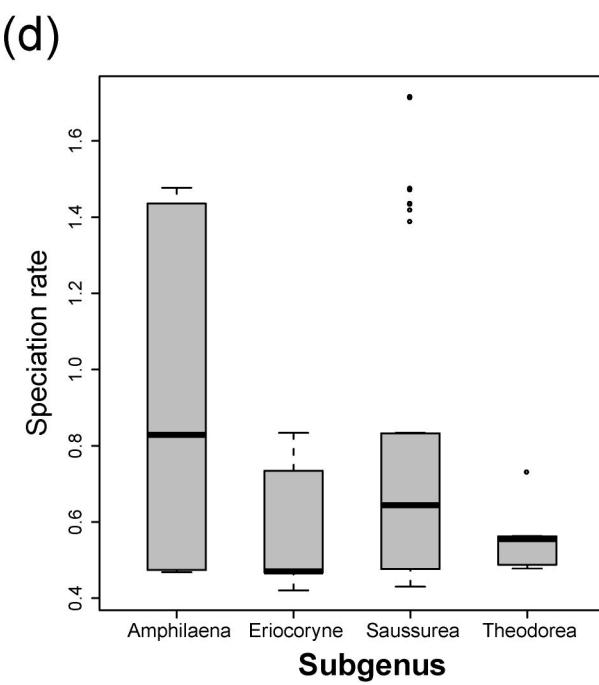
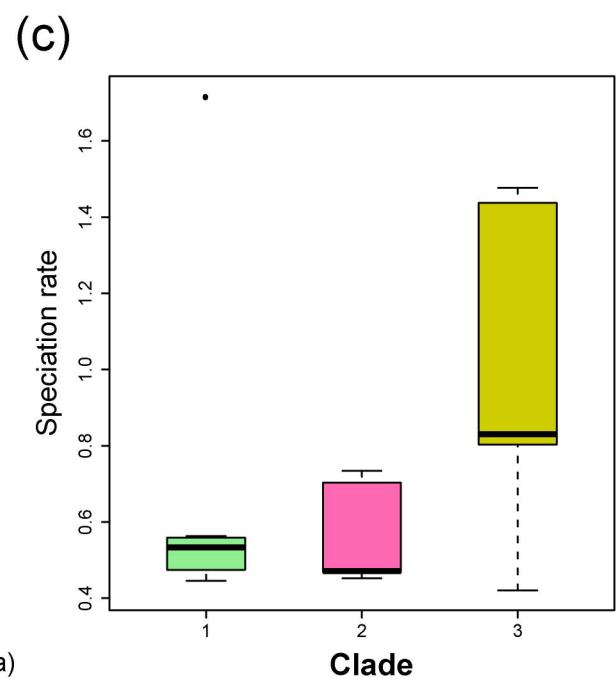
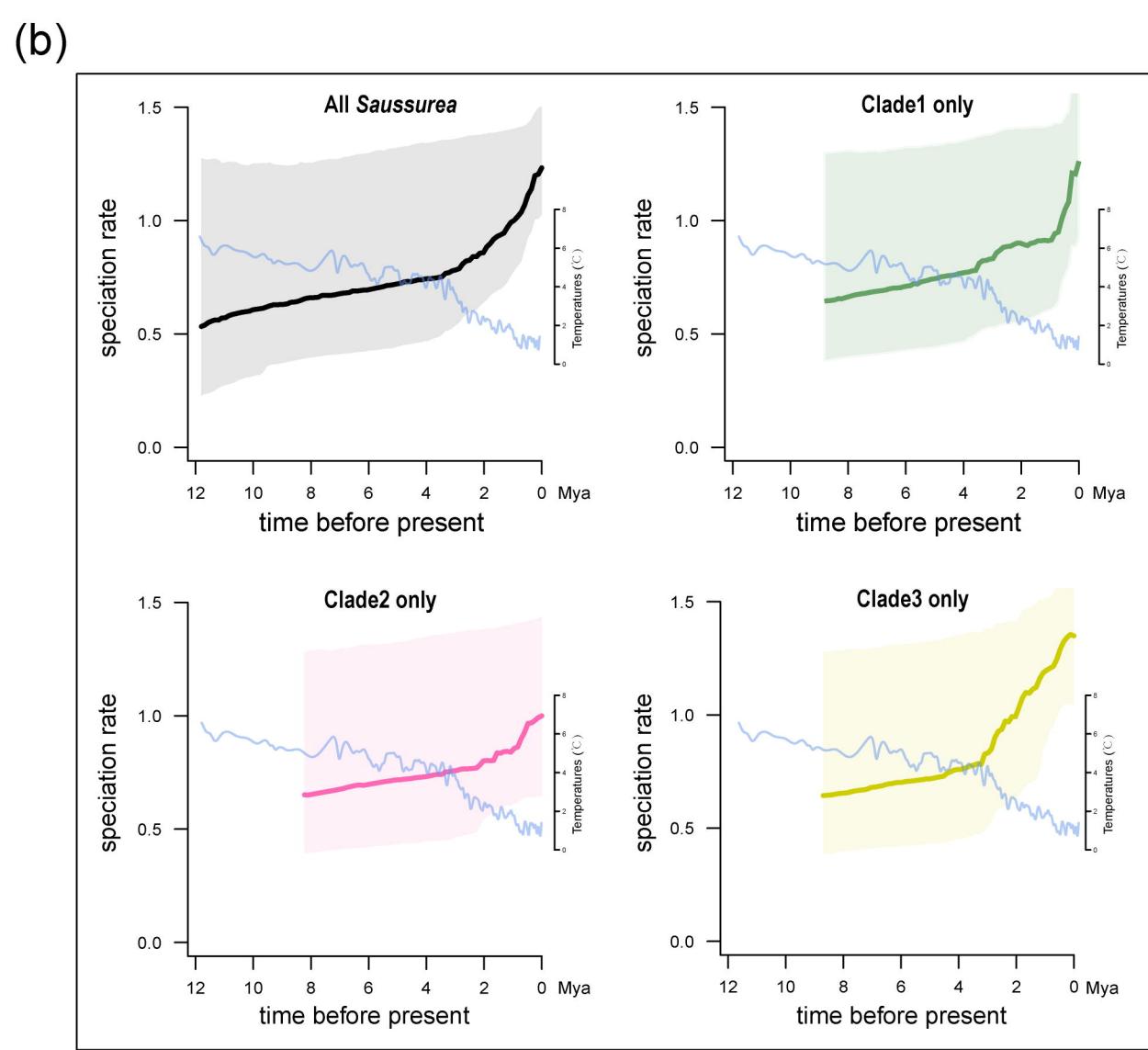
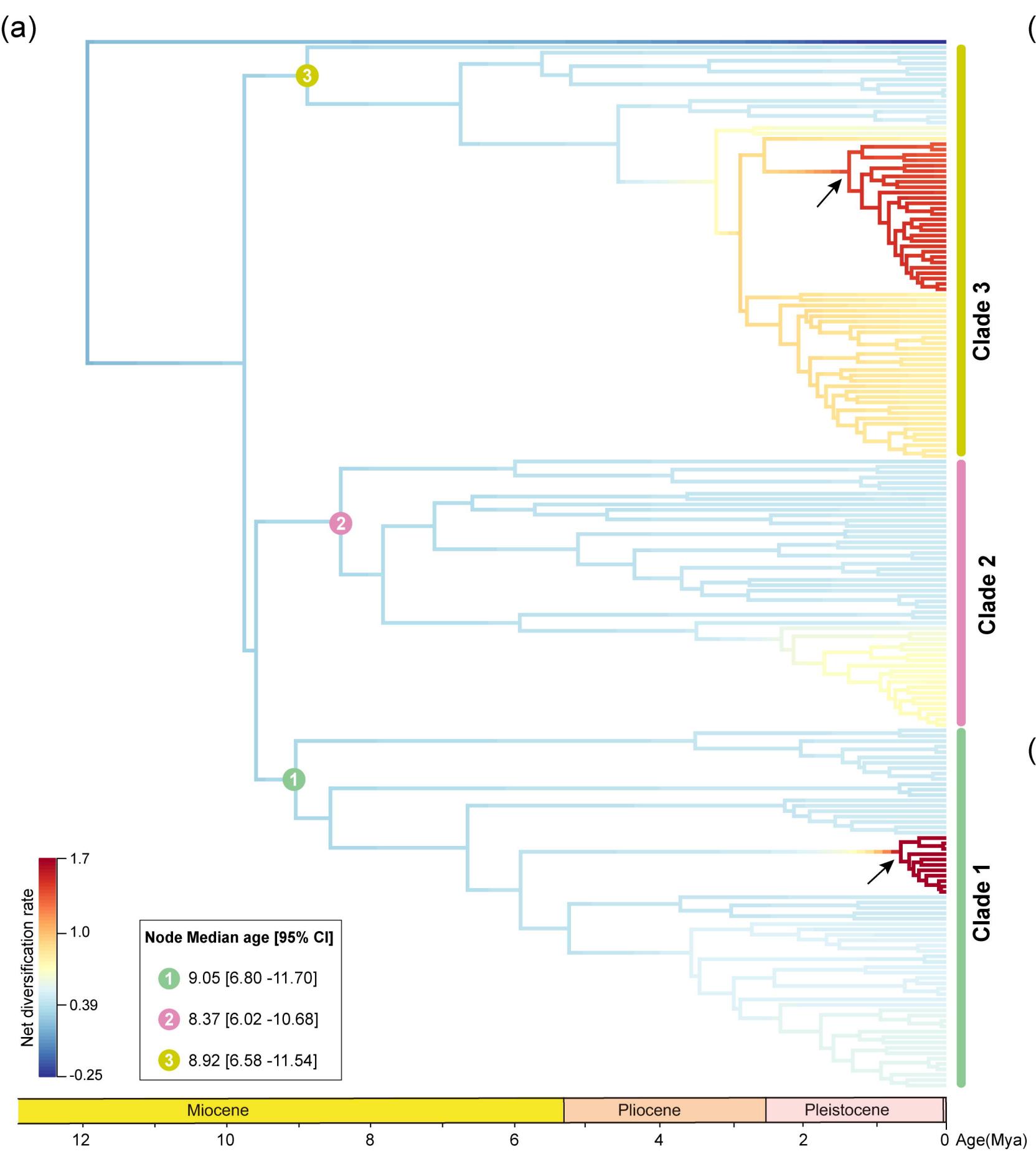
Models	NP	logL	AICc	λ_0	α	μ_0	β
Constant birth–death (1)	2	-325.7908	655.6424	0.7214	NA	0.3714	NA
λ_{Time} and μ_{constant} (2)	3	-325.2570	656.6364	0.6801	-0.0618	0.1562	NA
$\lambda_{\text{Temp.}}$ and μ_{constant} (3)	3	-324.4240	654.9705	0.7585	-0.0933	0.1610	NA
$\lambda_{\text{constant}}$ and μ_{Time} (4)	3	-325.4236	656.9698	0.7020	NA	0.3051	0.0475
$\lambda_{\text{constant}}$ and $\mu_{\text{Temp.}}$ (5)	3	-325.4355	656.9930	0.649	NA	0.1445	0.2067
λ_{Time} and μ_{Time} (6)	4	-325.1840	658.5732	0.6840	-0.0460	0.1843	-0.0036
$\lambda_{\text{Temp.}}$ and $\mu_{\text{Temp.}}$ (7)	4	-323.9815	656.168	0.693	-0.0017	0.1910	0.1159

890 Bold columns represent the best model, in which speciation rate is negative dependence ($\alpha < 0$) to
 891 past temperature and extinction rate is constant. Detailed model sets are described in Condamine
 892 *et al.* (2013). Abbreviations: NP, number of parameters; logL, log-likelihood; AICc, corrected
 893 Akaike Information Criterion. Parameter estimates: λ_0 and μ_0 , speciation and extinction rates for a
 894 given environmental variable; and α , β , parameter controlling variation of speciation and
 895 extinction with paleo-environment, respectively.
 896

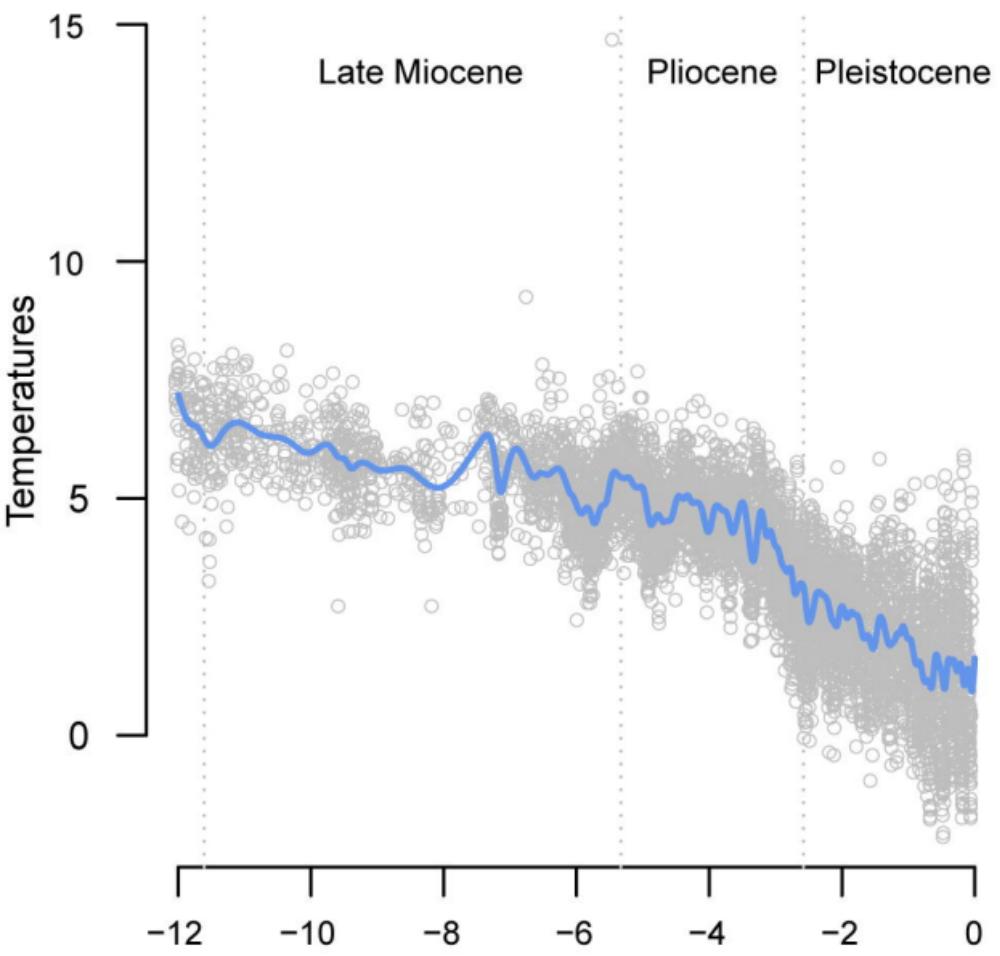
897 **Table 2** Summary of the mean rate values for four binary traits in HiSSE and FiSSE
 898 analysis.

Trait	HiSSE			FiSSE	
	λ	μ	$\lambda-\mu$	λ	<i>p</i> -value
Stemless	0.5947	0.2415	0.3532	0.9011	
Cauliferous	1.0893	0.3821	0.4502	0.9264	0.4416
Glabrous	1.7230	1.2100	0.5128	0.8971	
Densely haired	0.5531	0.2223	0.3308	0.8674	0.4096
Normal	0.8925	0.6849	0.2076	0.8987	
Bracts	1.3951	0.8752	0.5199	0.9412	0.5614
Capitula solitary	1.6920	0.9969	0.6952	1.0825	
Capitula numerous	0.5661	0.5253	0.0408	0.7828	0.0240

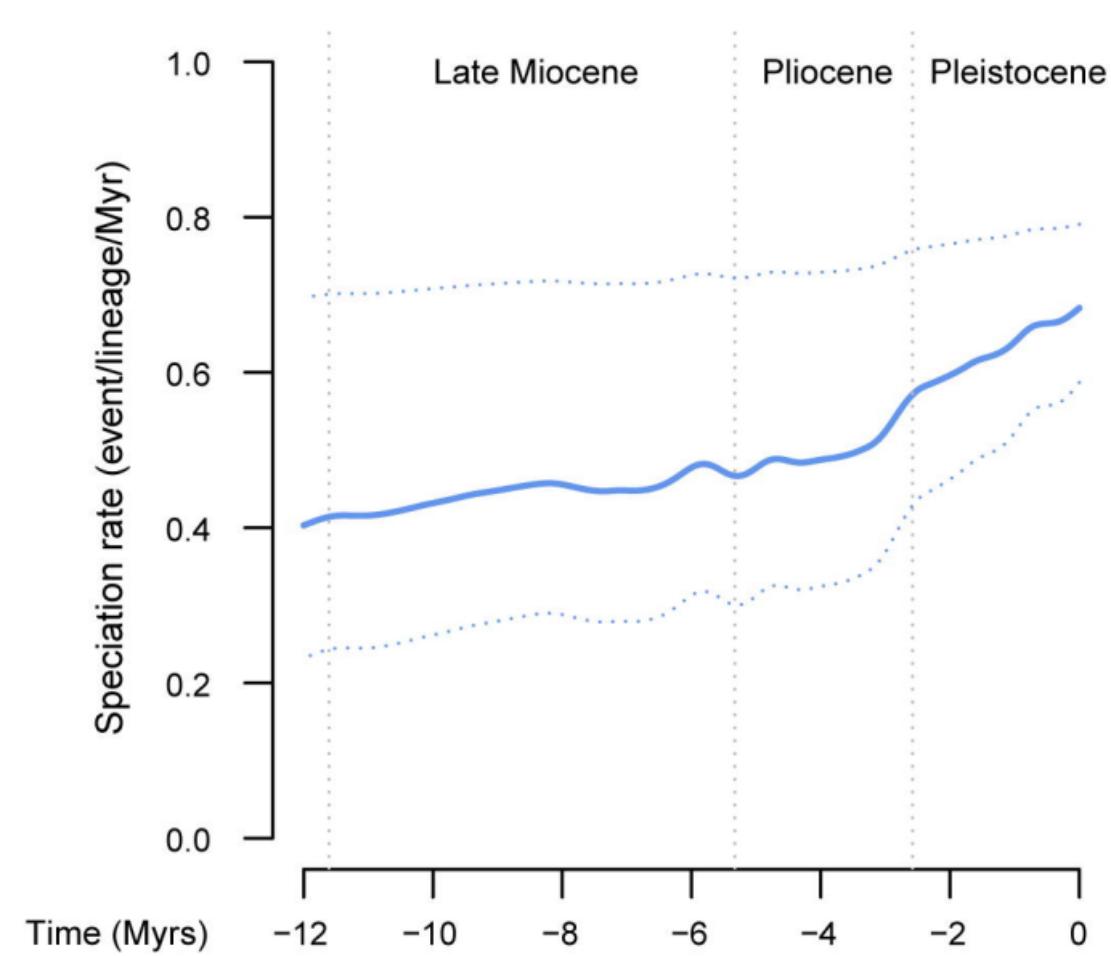
899 Traits with higher net diversification rates ($\lambda-\mu$) are in bold. For HiSSE analysis, mean rate values
 900 are calculated from the model-averaged marginal ancestral state reconstruction, and detailed
 901 model tests are provided in Supporting Information Table S7. For FiSSE analysis, the significant
 902 *p*-values for adjusted results are in bold.

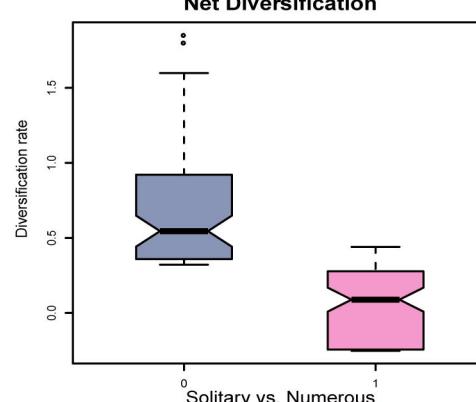
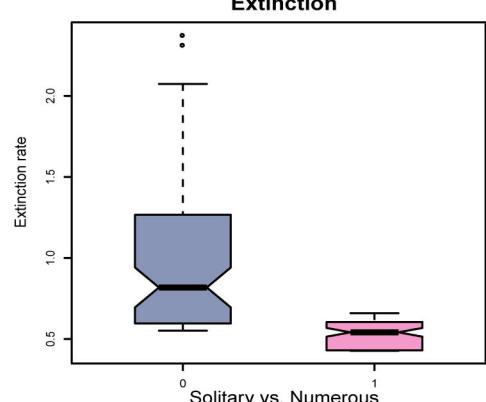
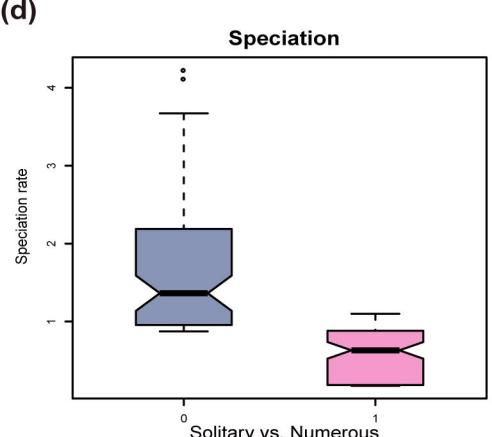
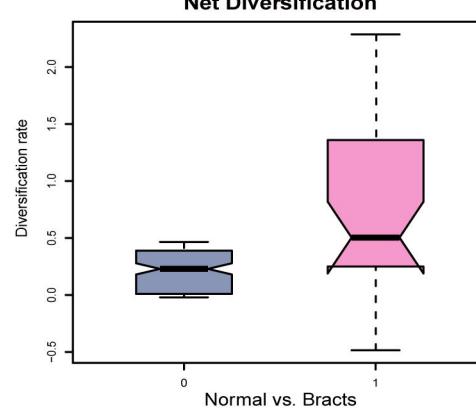
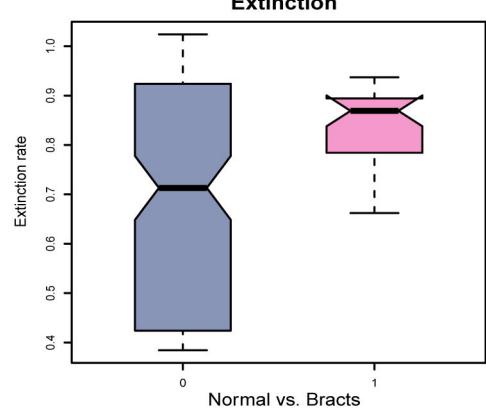
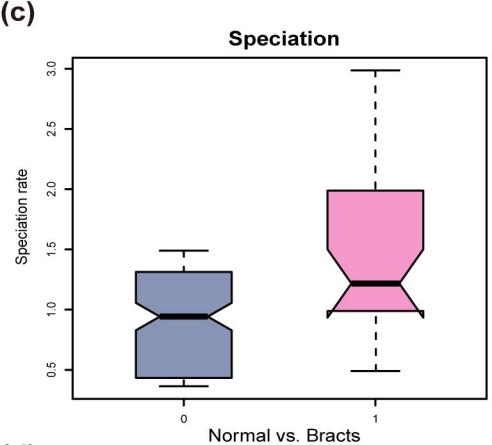
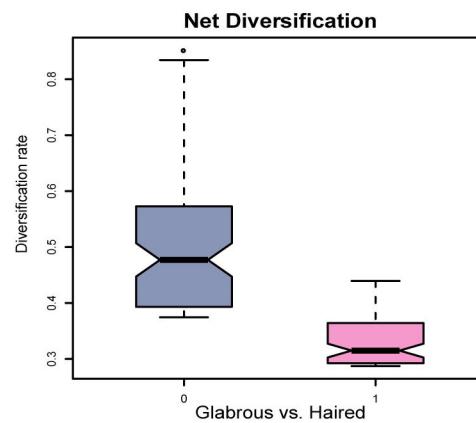
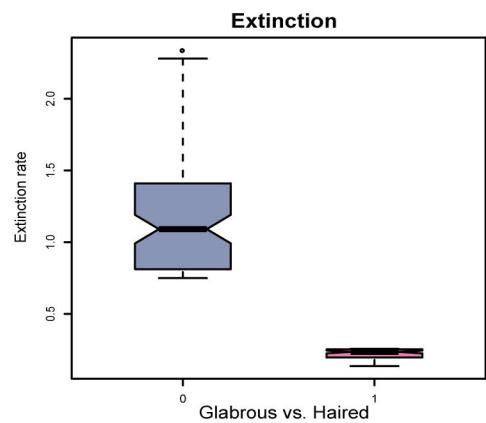
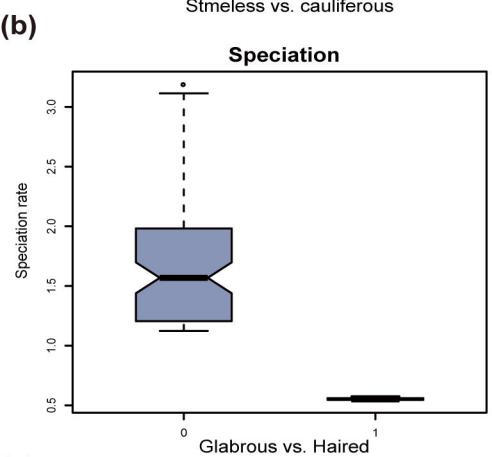
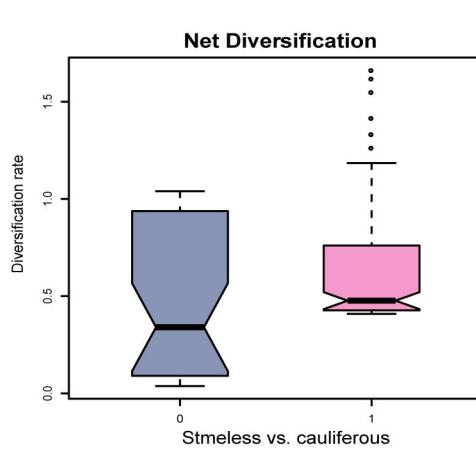
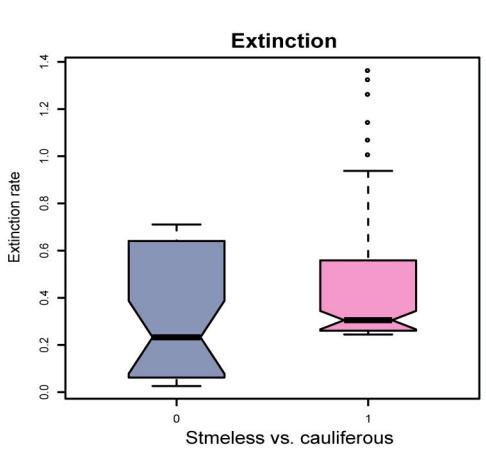
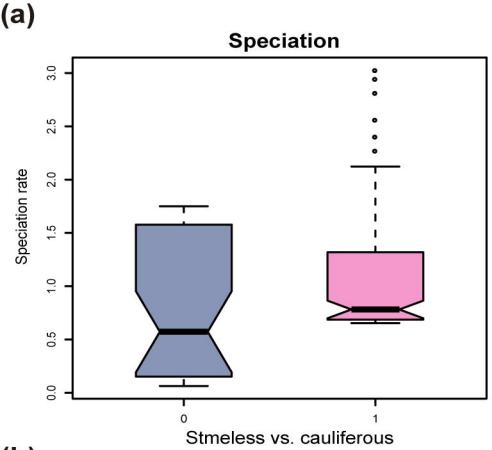




903

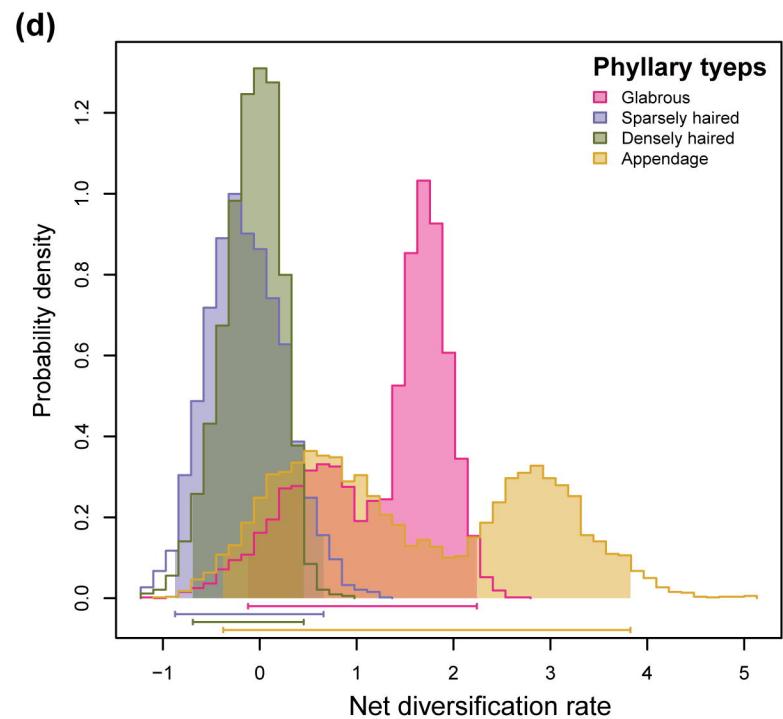
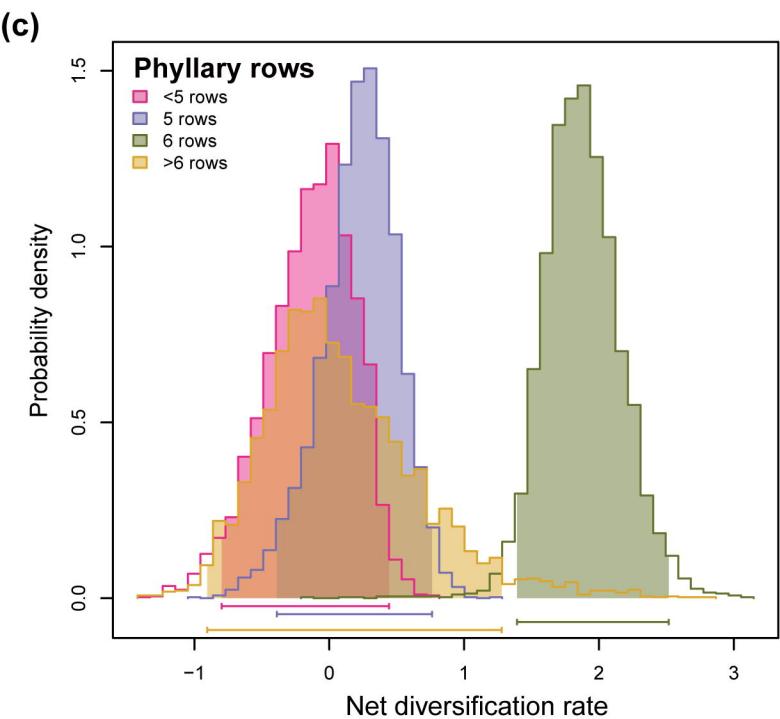
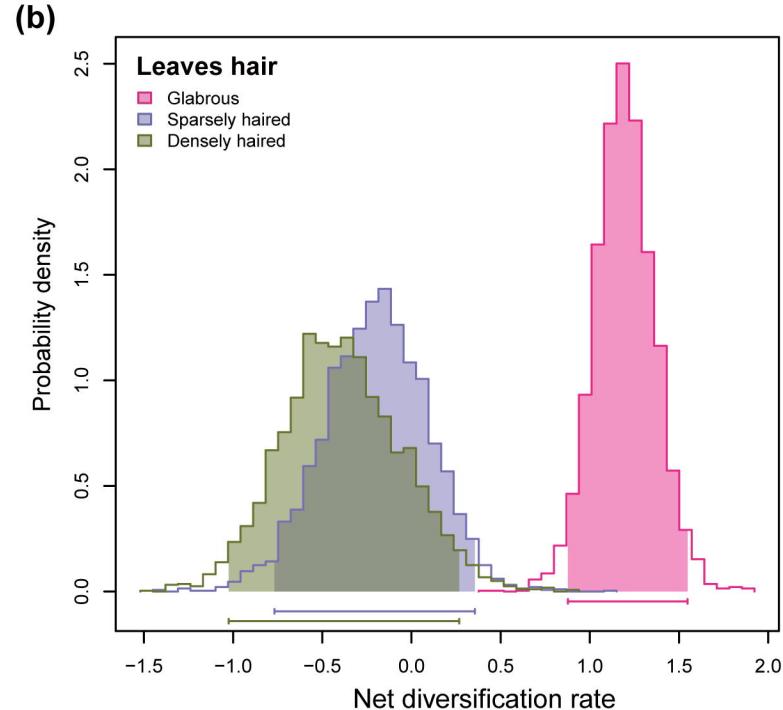
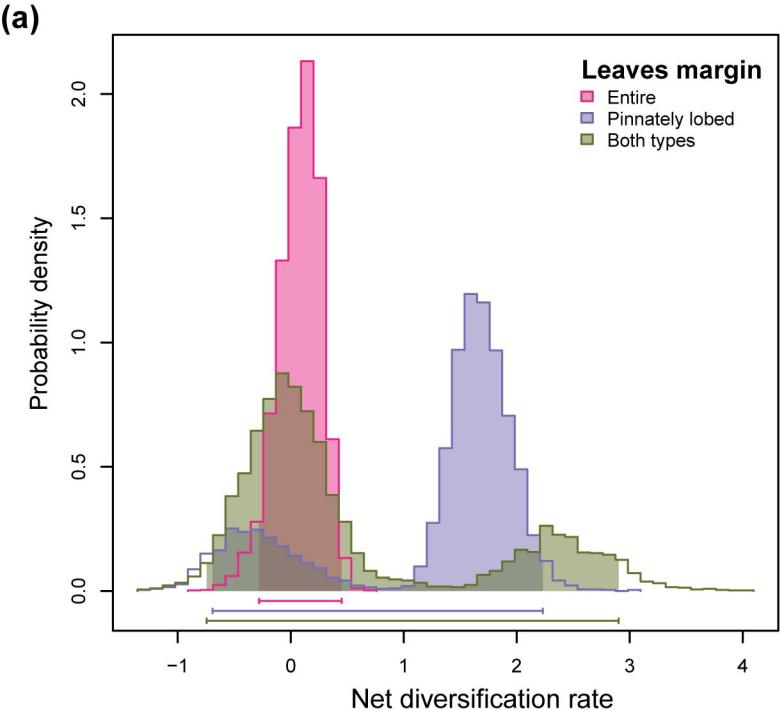
904 **Table 3** Summary of *ES-sim* tests for correlation between speciation rate and
 905 continuous ecological factors.

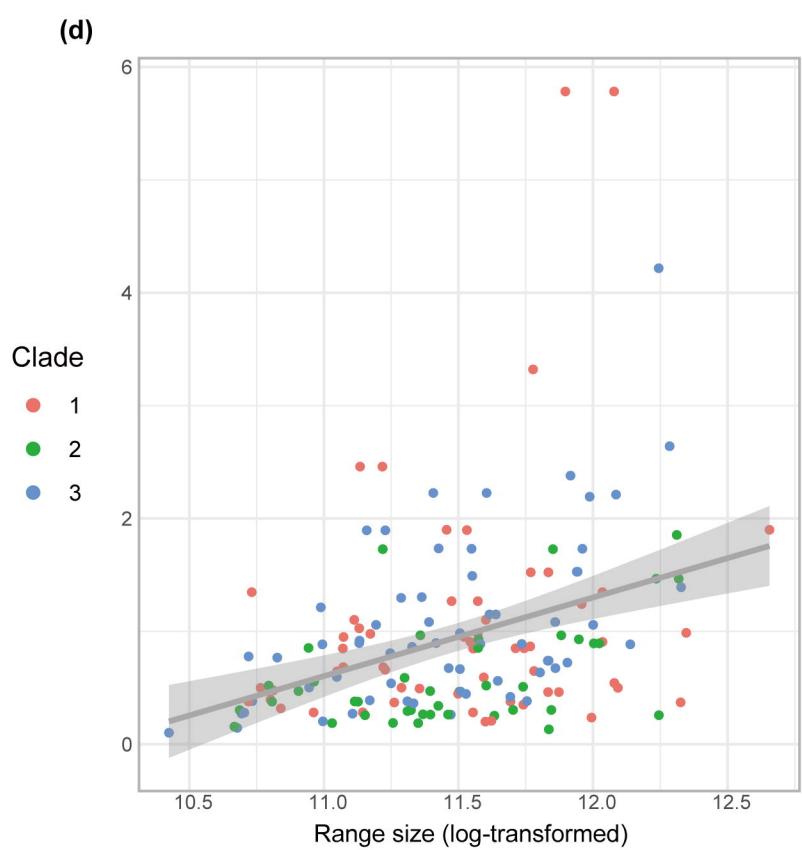
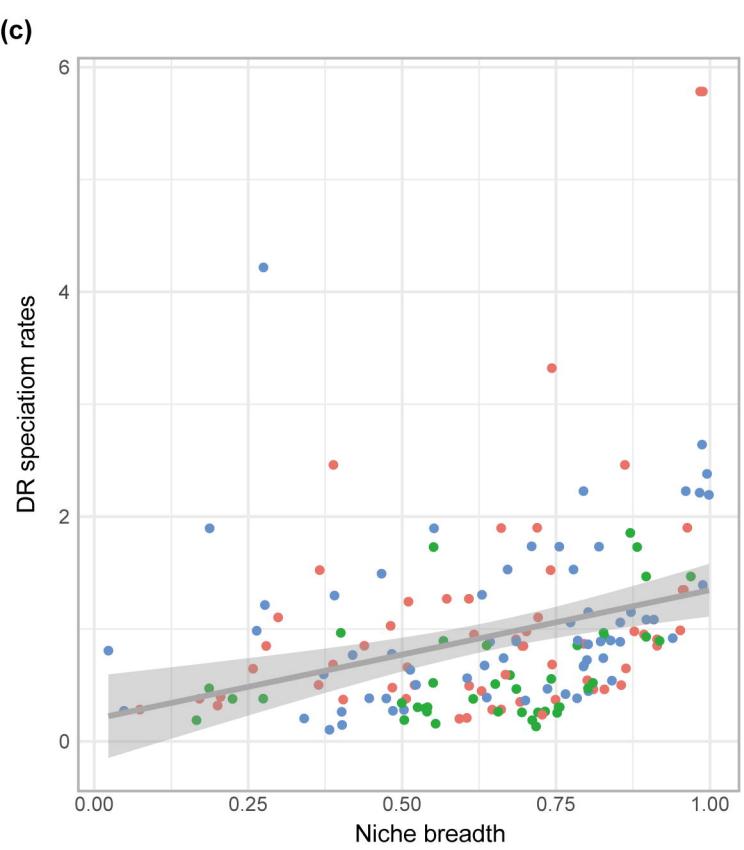
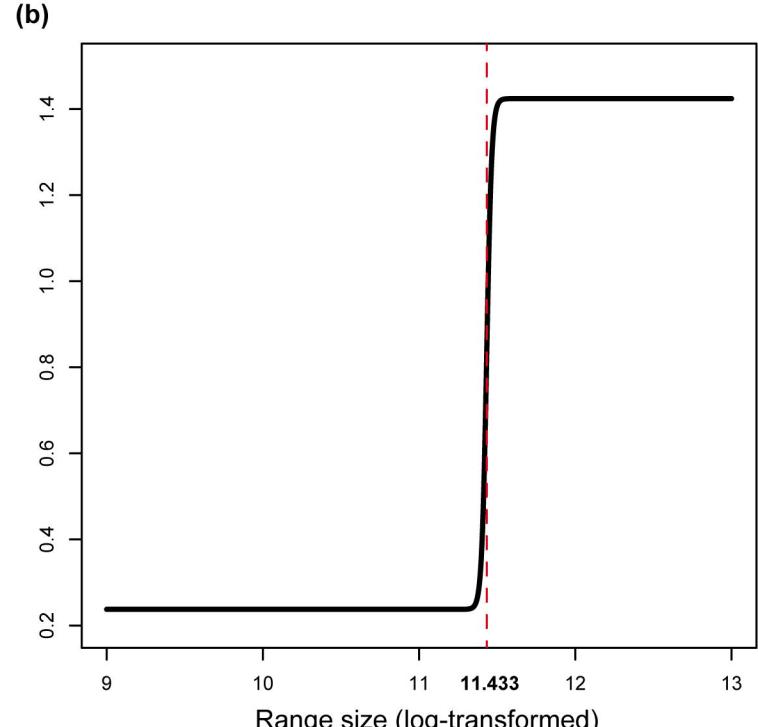
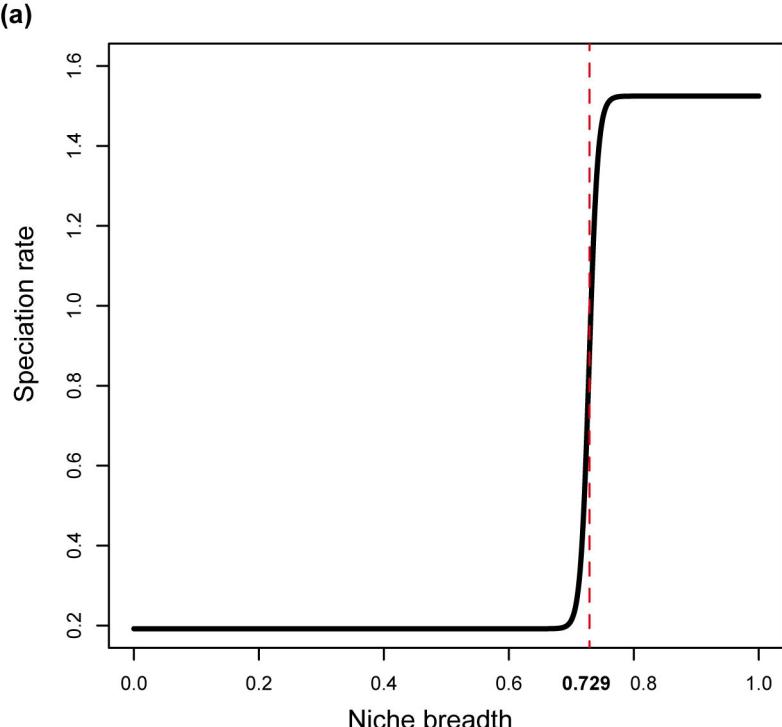

Ecological factors	<i>ES-sim</i> (DR statistic)		<i>ES-sim</i> (Inverse equal splits statistic)	
	ρ	<i>p</i> -value	ρ	<i>p</i> -value
ClimatePC1	0.170	0.359	0.188	0.335
ClimatePC2	0.098	0.649	0.095	0.635
Niche breadth	0.363	0.027	0.387	0.019
Range size	0.399	0.018	0.411	0.011

906 The significant *p*-values for the correlation are in bold. Rho (ρ) is the Pearson's correlation
 907 coefficient. Both the DR statistic and the default inverse equal splits statistic were used as reliable
 908 estimators. Detailed test statistic described in Harvey & Rabosky (2018).


909





(a) Global paleo-temperatures over the last 12 Myrs

(b) Speciation is negatively correlated to past temperatures

