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Abstract

The genetic variation in the human gut microbiome is responsible for conferring a
number of crucial phenotypes like the ability to digest food and metabolize drugs. Yet, our
understanding of how this variation arises and is maintained remains relatively poor. Thus, the
microbiome remains a largely untapped resource, as the large number of co-existing species in
this microbiome presents a unique opportunity to compare and contrast evolutionary processes
across species to identify universal trends and deviations. Here we outline features of the human
gut microbiome that, while not unique in isolation, as an assemblage make it a system with
unparalleled potential for comparative population genomics studies. We consciously take a broad
view of comparative population genetics, emphasizing how sampling a large number of species
allows researchers to identify universal evolutionary dynamics in addition to new genes, which
can then be leveraged to identify exceptional species that deviate from general patterns. To
highlight the potential power of comparative population genetics in the microbiome, we re-
analyzed patterns of purifying selection across ~40 prevalent species in the human gut
microbiome to identify intriguing trends which highlight functional categories in the microbiome

that may be under more or less constraint.
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Introduction

The human microbiome is a complex ecosystem composed of hundreds of interacting
species. Although the diversity of the microbiome has been extensively studied at a species level,
each species harbors genetic diversity that is quite varied across hosts as well as within a host
over time (Zhu et al. 2010, 2019; Schloissnig et al. 2013; Faith et al. 2013). This genetic
diversity can confer a number of crucial traits to microbes as well as their hosts, such as the
ability to digest food, metabolize drugs, and evade antibiotics. However, our understanding of
how these genetic variants arise and segregate via population genetic forces — e.g., random
genetic drift, mutation, recombination, selection, and migration — across the hundreds of species
that call our guts home, is relatively nascent (Garud & Pollard 2020).

Our knowledge of how evolution proceeds in a community context is similarly
underdeveloped. Much of our intuition about the evolution of microorganisms come from
studying individual species (Good et al. 2017; Bruger & Marx 2018; Herron & Doebeli 2013;
Tenaillon et al. 2016; Xue et al. 2017; Lieberman et al. 2014). By contrast, the microbiome is
composed of hundreds of interacting species and strains in which both ecological and
evolutionary forces simultaneously act (Garud & Pollard 2020; Good & Hallatschek 2018).
Specifically, change in the frequency of an existing haplotype as well as the emergence of a new
haplotypes (i.e., evolution) can occur on the same timescale as changes in strain frequencies (i.e.,
ecology). These simultaneous ecological and evolutionary processes within the human gut
microbiome affords a unique opportunity. Rather than studying one species at a time, we can
study the population genetics and ecology of many (240) species almost simultaneously. Thus,
the human gut microbiome is a model system for studying comparative population genetics

across co-existing species in a natural environment.
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Comparative population genetics is a rich area of study that has yielded insights into
novel functional elements and population genetic processes in macroscopic organisms ranging
from mammals (Romiguier et al. 2014; Lindblad-Toh et al. 2011; Pollard et al. 2010; Davydov et
al. 2010) to Drosophila melanogaster (Clark et al. 2007; Lawrie & Petrov 2014). Now with the
availability of hundreds of thousands of new genomes from the deep sequencing of commensal
microbes (Pasolli et al. 2019; Almeida et al. 2019; Nayfach et al. 2019), similar comparative
analyses can be made across microbial species and populations. However, unlike typical
macroorganisms, the microbiome provides a rich opportunity to understand how ecological

interactions between species modulate evolutionary dynamics within individual species.

A model system for comparative population genetics: the human gut microbiome

The human gut microbiome is a compelling system for comparative population genetics.
The short time scales on which evolutionary dynamics occur in the microbiome make it possible
to witness evolution in action as well as how evolution interacts with ecology (Zhao et al. 2019;
Garud et al. 2019; Yaffe & Relman 2020; Poyet et al. 2019; Roodgar et al. 2020). Moreover, the
meta-population structure of human microbiomes lends itself naturally to treating measurements
in spatially distant hosts as independent biological replicates, from which we can decode general
principles. Given the massive amounts of data now available from thousands of individuals from
around the world (Almeida et al. 2019; Pasolli et al. 2019), the time is ripe for the study of
evolution in the microbiome. Additionally, the ability to experimentally manipulate this system
(Roodgar et al. 2020) as well as its members (Barroso-Batista et al. 2014; Zhao et al. 2019;
Ramiro et al. 2020) enables validation of computational predictions and discovery of new

principles. Finally, the strong relevance of the microbiome to our health makes it a medically
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important system (Thomas et al. 2019; Ley et al. 2005; Jakobsson et al. 2010; Duvallet et al.
2017). Thus, comparative population genetic studies in the microbiome will not only elucidate
general principles relevant to the microbiome, but also the broader field of population genetics.
Here we elaborate on these fundamental facets of the microbiome that make it the ideal system to

study comparative population genetics in a naturally complex ecosystem.

1) Rapid evolution on short timescales

With relatively short generation times of only(~1-10 days in the human gut (Korem et al.
2015), microbes have the potential to rapidly evolve. This enables temporally resolved analyses
that are almost impossible to replicate in charismatic macroscopic organisms. A sense of the
evolutionary timescale of the human microbiome is best illustrated through a back-of-the-
envelope calculation: taking the low end of the range of generation times for the gut microbiome
of ~1 day (Korem et al. 2015; Milo & Phillips 2016) we find that it has evolved for ~9,000
generations before its host has reached age 25, a number that is on the order of the ~10,000
generations that humans have existed (Moorjani et al. 2016; Scerri et al. 2018). Alternatively
stated, the microbiome within a human host can evolve on a timescale similar to that of the entire

human species.

The ability to sample populations over a large number of generations can alter how
evolutionary biologists approach their questions. Instead of relying predominantly on
phylogenetic reconstruction from static data, researchers can effectively observe evolution in real
time. Over the course of just a few months, new genotypes can emerge and recombine over short

time scales, and ultimately become lost or fixed over extended time scales. Indeed, it recently has
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93  been observed that adaptation and recombination can occur in the human gut over a matter of
94  months (Zheng et al. 2020; Yaffe & Relman 2020; Poyet et al. 2019; Garud et al. 2019; Zhao et
95 al. 2019; Lin & Kussell 2017). However, the necessary temporal resolution of sampling remains
96  subject to the researcher’s question, as short-term adaptation in response to a temporary

97  environmental perturbation (e.g., a host consuming antibiotics over a few weeks) may require

98  denser sampling than evolution in a relatively unchanging environment.

99
100 2) Replication across hosts
101 Given that the human gut microbiome is a quasi-closed system, separate hosts can be

102  treated as replicate evolution studies, an observation that has been summarized by the captivating
103  moniker “seven billion microcosms” (Lieberman 2018). This level of replication can be

104  leveraged to identify targets of positive selection that recurrently accumulate fixation events in
105 independent hosts (i.e., parallel evolution; Xue et al. 2017; Bertels et al. 2019; Lieberman et al.
106  2014; Zhao et al. 2019; Poyet et al. 2019). By combining large cohort sizes with temporally

107  resolved sampling we can also examine how these signatures of parallelism change over time,
108  allowing us to dissect the temporal dynamics of adaptation (Barroso-Batista et al. 2014). For

109  example, targets of rapid adaptation typically harbor a disproportionate number of sites with

110  strong beneficial fitness effects, leading to the fixation of multiple mutations within a short

111 period of time (i.e., "coupon collecting"; Good et al. 2017). Alternatively, if the fitness effects of
112  sites in a gene depend on whether prior mutations have fixed elsewhere in the genome, then the
113 time between fixation events will be large (i.e., historical contingency; Gould 1990; Blount et al.
114 2008). The benefits of large cohorts are not limited to detecting adaptation. With large cohorts,

115  we can also observe deleterious alleles segregating at extremely low frequencies that are likely
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116  subject to purifyin selection (Lawrie & Petrov 2014). Combined with exciting recent theoretical
117  developments (Neher & Shraiman 2012; Nicolaisen & Desai 2012; Cvijovi¢ et al. 2018; Good
118  2020), the human gut microbiome is an ideal system to examine the evolutionary dynamics of

119  purifying selection.

120
121 3) Ecology and evolution frequently interact
122 It is becoming increasingly clear that mutations in many microbial populations do not fix

123 or become extinct, instead remaining at intermediate frequencies for extended periods of time
124 (Good et al. 2017; Good & Hallatschek 2018). This “strain” level structure constitutes a form of
125  ecology that exists below the taxonomic level of species, and is commonly found within hosts for
126  most gut microbiota (Garud et al. 2019). The sheer prevalence of strain structure in the human
127  microbiome and the fact that they can differ on the order of a few nucleotides (Goyal et al. 2021)
128  suggests that ecological and evolutionary dynamics occur on similar timescales in microbial

129  systems, contrary to the historical belief that evolutionary timescales are longer than ecological
130 timescales (Slobodkin 1980). For example, strain frequencies can fluctuate on the same time

131  scale on which they acquire new genetic adaptations (Garud et al. 2019; Zhao et al. 2019). This
132 observation, along with the relative ease with which a large number of species can be sampled
133 across hosts, suggests that the human gut microbiome is a system with unmatched potential for
134  the exploration of eco-evolutionary dynamics.

135 The presence of overlapping ecological and evolutionary timescales in the microbiome
136  has spurred empirical and theoretical efforts to characterize eco-evolutionary interactions within
137  the gut. A prime example being a recent mathematical model that describes how the frequency of

138  astrain can change over time as de novo mutations accumulate, which affect how said strain
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139  consumes environmentally supplied resources in addition to its overall fitness (Good et al. 2018).
140  Thus, evolution can affect competition between strains with resource consumption as a

141  mediating factor, changes that ultimately alter community composition and structure. However,
142 it is unlikely that eco-evolutionary interactions within the gut can be sufficiently captured by
143  accounting for environmentally supplied resources alone. Rather, microorganisms often secrete
144  secondary metabolic compounds, supplying additional resources that can be consumed by other
145  species (i.e., cross-feeding). This metabolic dependency promotes species co-existence and

146 becomes increasingly likely in communities with many species, an ecological bedrock that

147  supports subsequent coevolution (D’Souza et al. 2018; Lilja & Johnson 2019). The widespread
148  nature of this phenomenon may explain empirical patterns where it appears as though the arrow
149  of causation between evolution and ecology is reversed, a prominent example being that the
150 diversification rate of a species is correlated with the number of species in its community (Madi

151 et al. 2020).

152
153 4) Experimental manipulation
154 While a natural system enables researchers to study complex phenomena that cannot be

155  recapitulated exactly in the laboratory, some degree of experimental manipulation is necessary to
156  validate predictions and generate new insights. Over the last few years, substantial progress has
157  been made towards characterizing the evolutionary dynamics of adaptation in microbial

158  populations. The use of lineage tracing via barcoding has allowed the distribution of fitness

159 effects of de novo mutations to be quantified in certain species (Levy et al. 2015) in addition to
160  providing evidence that the travelling wave is an appropriate model of microbial adaptation

161  (Nguyen Ba et al. 2019). The ease with which such techniques can be applied to non-model
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162  species varies, though gene deletion via transposon mutagenesis libraries has been shown to be
163  particularly effective for identifying loci that confer a growth advantage in environments with
164  different resources (Cain et al. 2020), different sets of co-occurring species (Thibault et al. 2019),
165  for species isolated from the gut (Ruiz et al. 2013), and in the gut microbiome of model

166  organisms (Powell et al. 2016; Zimmermann et al. 2019; Ludington & Ja 2020; Barreto et al.

167  2020; Barroso-Batista et al. 2020). These experiments can serve as a compliment to traditional
168  comparative population genetic analyses, allowing us to test hypotheses formed from

169 metagenomic observational studies. While all these studies fall short of true in vivo manipulation
170  of human guts, they are useful approximations that allow for high-throughput manipulations to

171  be performed and evolutionary and ecological hypotheses to be tested.

172
173 5) Relevance to health
174 A significant benefit to studying comparative population genetics in the human gut

175  microbiome is that the findings made may have a direct relevance for human health. The species
176  composition of the gut microbiome is known to be essential for proper immunological (Belkaid
177 & Hand 2014), neurological (Yano et al. 2015), and metabolic development (Rowland et al.

178  2018), and is associated with a number of human diseases including colorectal cancer, diabetes
179  (Vallianou et al. 2018), and obesity (Ley et al. 2005, 2006). While the connection of the human
180  microbiome to host health has been primarily studied at the species level, genetic variants in the
181  microbiome play a crucial role for health as well. Specifically, microbiome genetic variants can
182  confer a number of critical traits to human hosts, including the digestion of new foods (Kenny et
183  al. 2020; Hehemann et al. 2010), antibiotic resistance (Gautam et al. 2018), and the

184  metabolization of drugs (Spanogiannopoulos et al. 2016). A comparative genomics approach will
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185 enable the discovery of new microbiome genetic variants (Sberro et al. 2019), which may

186  ultimately be useful for the future development of effective microbiome therapies.

187

188  Lessons from comparative population genetics in the microbiome

189 While our understanding of the microbiome and the discipline of comparative population
190  genetics have rapidly expanded since the emergence of next-generation sequencing almost two
191  decades ago, their intersection is relatively recent. Therefore, the potential of comparative

192  population genetics in the microbiome is still being realized. Here we present three goals for the
193  future of comparative population genetics: the need to identify 1) previously unknown functional
194  elements of microbial genomes, 2) evolutionary dynamics common to all species in the gut

195  microbiome, and 3) individual species and genomic features that deviate from general patterns.

196
197 1) Inference of Functionality
198 Currently, the annotation of genes in the microbiome and our understanding of their

199 functionality is severely lacking, with an estimated 40% being “hypothetical” (Almeida et al.
200 2019). Comparative population genetics has the potential to shed light on the functions of

201  existing hypothetical genes and assist with the identification of new ones. Much of the utility of
202  comparative population genetics derives from the neutral theory of molecular evolution, which
203  predicts that if mutations in functional regions of genomes tend to be deleterious, those regions
204  will evolve at a slower rate than effectively neutral nonfunctional regions (Kimura 1983). This
205 constraint allows for conserved elements of the genome to be identified between highly diverged
206  species; a “phylogenetic footprint” (Lawrie & Petrov 2014). Using this basic assumption,

207  comparative genomic analyses across groups of macroorganisms as diverse as Drosophila and
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208 mammals have yielded insight into novel proteins (Clark et al. 2007; Lawrie & Petrov 2014).
209  Now, recent efforts have been made to apply this approach to the microbiome (Fremin & Bhatt
210  2020). Specifically, Sberro et al. (2019) recently performed a comparative analysis on shotgun
211  microbiome metagenomic data and discovered thousands of novel small genes. Among their
212 discoveries was a novel small ribosome-associated protein that seems to be transcribed and
213  translated at high levels. Despite the fundamental functional significance of this protein, it may
214 have been missed due to the historical focus on model organisms such as E. coli and common
215  pathogens.

216 However, there is additional justification to claim that microorganisms harbor a

217  substantial number of unannotated functional elements. Population genetic theory coupled with
218  cellular energetics predicts that the vast majority of unannotated genes within the gut

219  microbiome likely play some functional role (Lynch & Marinov 2015; Martinez-Gutierrez &
220  Aylward 2019). For example, a single nonfunctional nucleotide within a microbial genome is
221  visible to purifying selection (Lynch & Marinov 2015), a stark contrast to macroorganisms

222 where junk DNA is highly prevalent (Lynch 2007). Coupled with the higher gene density in
223 microorganisms due to overlapping open reading frames (Johnson & Chisholm 2004), this

224  prediction suggests that the gut microbiome is a particularly apt system for researchers who wish
225  to leverage statistical evidence provided by comparative population genomics to confirm the
226  purported functionality of a given gene. Indeed, researchers are likely already acting on this
227  prediction, as recent efforts combined comparative genomics with RNA-seq to identify ~2,000
228  novel structural RNAs in the microbiome (Fremin & Bhatt 2020). With hundreds of species

229  harboring genomes with high gene density across billions of hosts, the gut microbiome is still

10
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230 very much a proverbial “gold rush” for the discovery and characterization of novel proteins and

231 RNA:s.

232

233 2) Robust evolutionary patterns

234 Arguably, it is necessary to gain some degree of knowledge regarding the typical

235  evolutionary dynamics of a species in a given system before comparisons between species can be
236  performed. At first glance, it would appear as if the goal of identifying general evolutionary

237  patterns in the human gut microbiome is hopeless. There are few cases where population

238  geneticists would say that we have sufficient knowledge of the evolutionary dynamics of one
239  species, much less hundreds or thousands of species that interact in the same environment.

240  Operating under this assumption, we would conclude that the complexity of the microbiome is
241  irreducible. This is not entirely an unjustified claim, since if one is interested in the evolutionary
242 dynamics of an individual species, how can those dynamics be sufficiently characterized if you

243  cannot examine an isolated species in vivo?

244 The fault here is the idea that we need to understand the dynamics of individual species to
245  understand the general dynamics of the system. Instead, progress can be made by temporarily
246  abandoning the Cartesian framework that is ubiquitous in traditional biology (Levins &

247  Lewontin 1987) and embracing an alternative approach, where we exchange determinism for a
248  statistical property, the average over an ensemble of species. This rationale is essentially what
249  physicists realized in the 19" century (Pathria & Beale 2011) and has been applied in recent

250  years to examine the ecological dynamics of microorganisms, through the development of

251  mathematical models (Advani et al. 2018; Barbier & Arnoldi 2017) as well as the investigation

252 of empirical data (Ji et al. 2020; Grilli 2020; Descheemaeker & de Buyl 2020). It stands to
11
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253  reason that comparative population genetics could learn from such an approach. While our

254  argument here is primarily statistical, a spiritually similar argument has been made regarding the
255  use of effective models that coarse-grain over taxonomic details to identify quantitative patterns
256  in microbial ecology and evolution (Good & Hallatschek 2018).

257 Ultimately it is necessary to take stock of the set of patterns that remain robust across
258  phylogenetically diverged species within the human gut, allowing us to identify the evolutionary
259  dynamics that universally occur. Here, we will briefly examine a few notable evolutionary

260  patterns that have been observed across species.

261
262 i. Population Structure
263 The genetic composition of commensal bacteria varies considerably from host to host

264  (Schloissnig et al. 2013; Truong et al. 2017; Costea et al. 2017), suggesting that bacteria do not
265 rampantly migrate between hosts. Instead, for each species, hosts are typically colonized by a
266  handful of strains that seem to be unique to each host (Garud et al. 2019; Schloissnig et al. 2013).
267  The typical number of strains within a species is variable, likely reflecting the degree that strains
268 can diverge and evolve sufficient ecological differences necessary to co-exist (Good et al. 2018).
269  Though this within-host population structure does not seem to necessarily have bearing on

270  across-host population structure, as the global biogeography of genetic variants can vary

271  considerably across species. For example, the genetic diversity of Eubacterium rectale mirrors
272 the genetic diversity of hosts (Truong et al. 2017; Tett et al. 2019; Nayfach et al. 2016; Costea et
273 al. 2017; Karcher et al. 2020), whereas species such as B. vulgatus seem to show little or no

274 geographic structure. The mechanisms responsible for variation in the global biogeography of

275  species remains unclear. Vertical transmission from parents to infants may contribute, as strains

12
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276  from certain species are more likely to colonize and persist in infant guts, the genera Bacteroides
277  and Bifidobacterium being noted examples (Lou et al. 2021). Though the benefit of being the
278  first to colonize a host is likely temporary, as the majority of strains are replaced over several
279  decades (Garud et al. 2019). Alternative mechanisms for varied levels of biogeography include
280 traits that promote airborne transmission being restricted to certain lineages (Brown 2000)

281  which may explain the variation in transmission rates among species (Brito et al. 2019), the

282  interaction of the microbiome with the genetics of its host (Goodrich et al. 2016), and even the
283  presence of spatial structure itself, which may promote the preservation of genetic variation

284  (Pearce & Fisher 2019), though these hypotheses remain to be fully tested.

285
286 ii. Recombination
287 Although all bacteria reproduce clonally, the degree to which bacteria recombine varies

288  widely. The recombination rate of a species determines whether populations evolve primarily via
289  changes in genotype frequencies over time or as changes in the frequencies of individual alleles
290 that are effectively independent (Neher & Shraiman 2011), which can have consequences for
291  whether gene-specific versus genome-wide selective sweeps are more common (Shapiro et al.
292  2012; B. Jesse Shapiro 2016; Bendall et al. 2016). To quantify recombination in

293  bacteria, researchers have begun to characterize the statistical association of alleles at different
294  loci (i.e., linkage disequilibria), where the degree of association can be viewed a function of the
295  recombination rate. For several species found in the gut, as well as environmental samples and
296  pathogens, linkage disequilibria tends to decay as the genetic distance between a pair of loci

297  increases, which suggests that recombination may be common (Crits-Christoph et al. 2020;

298  Sakoparnig et al. 2021; Lin & Kussell 2019). Such rampant recombination suggests that while

13
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299  microbes reproduce clonally, the label “asexual” is a misnomer. Instead, microorganisms are
300 increasingly being deemed as “quasi-sexual”, where a large number of loci evolve independently
301 instead of as genotypes despite the clonal nature through which they are reproduced (Smith et al.
302 1993; Rosen et al. 2015; B Jesse Shapiro 2016). However, observed levels of linkage

303  disequilibrium tend to be higher than what is expected under free recombination for many

304  species (Garud et al. 2019). Some species may be truly clonal (Smith et al. 1993; Vos & Didelot
305 2009), while others are likely subject to additional evolutionary forces that can generate

306 correlations between sites, such as demographic history and selection. Selection seems to play a
307 particularly prominent role, where recent developments in population genetic theory provide the
308 groundwork necessary for subsequent empirical investigation (Arnold et al. 2020; Good 2020).
309 These forces will need to be disentangled to understand the full extent of recombination in the

310 microbiome.

311
312 iii. Short term evolution within hosts
313 Recently, it was found that evolutionary changes can occur in the human gut microbiome

314  on short timescales of just a few months and even days(Garud et al. 2019; Ghalayini et al. 2018;
315 Roodgar et al. 2020; Zhao et al. 2019; Poyet et al. 2019; Yaffe & Relman 2020), and that strain
316  replacements are generally rare over that timescale. These evolutionary changes modify the

317  haplotypes of existing lineages and seem to derive from a mixture of de novo mutations and

318  horizontal gene transfer via recombination. The recombination-seeded events are a unique mode
319  of adaptation that highlight how a complex community can maintain a reservoir of adaptive

320  genetic material, which may be particularly useful in rapidly fluctuating environments where

321  evolution via de novo mutations may take a long time. Thus, complex communities may be able
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322 to modulate the mode and tempo of evolution of focal species (Madi et al. 2020). At longer time-
323  scales, these evolutionary changes tend to give way to ecology, as strain replacements become
324  common. So far, there does not seem to be any evidence that rates of evolution or strain

325 replacement differ across species, though future work may identify any differences. Though

326  these seemingly contrasting dynamics raise the broader point that being able to examine

327  evolutionary dynamics across a range of timescales will ultimately require researchers to intuit
328  what evolutionary and ecological dynamics are relevant on a given timescale and, ultimately,

329  construct models that bridge separate dynamics.

330
331 iv. Purifying selection
332 By comparing haplotypes of a given species from different hosts, we can focus on

333  patterns that are the outcome of evolutionary dynamics that have operated over an extended
334  timescale. One such pattern is how the ratio of nonsynonymous to synonymous divergences
335 (dy/ds) changes as synonymous divergence (dg) increases, which would indicate in what
336 direction selection tends to dominate over an extended timescale. Looking at empirical data from
337  the microbiome, it is clear that dy /ds tends to decrease with increasing d, suggesting that
338 purifying selection tends to dominate as lineages diverge (Fig. 1a; Garud et al. 2019).

339  Surprisingly, the shape of the relationship can be captured by an effective model of selection
340 composed of two parameters: a single selection coefficient and the fraction of sites subject to
341  selection (Garud et al. 2019). Some species clearly have values of d /d that are further from
342  this prediction than others, an observation that we will return to below. But as a first

343  approximation we can say that purifying selection explains genome-wide patterns of genetic

344  divergence across species within the gut (Fig. 1a).
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345
346 3) Identifying deviations from general trends
347 It may not be clear how a researcher can leverage universal evolutionary patterns to

348 identify genes and species of interest. Indeed, interest in identifying exceptional species and
349 targets of evolution is likely why many researchers compare species in the first place (Lawrie &
350 Petrov 2014; Leffler et al. 2012; Huber et al. 2020). Here, we will re-examine the relationship
351  between ds and dy /ds discussed earlier to illustrate how starting with a strong universal pattern
352  can provide a backdrop against which we identify deviations from the overall trend. We see that
353  certain species tend to fall above or below the prediction of an effective model of purifying

354  selection (Fig. 1a). To identify species that are subject to stronger or weaker purifying selection
355 than expected by chance, we first coarse-grain genes by their annotated metabolic pathways,
356 providing a set of variables shared across species. We can then permute species-level

357  observations within a given pathway and establish 95% confidence intervals, a non-parametric
358 test that allows us to identify species with exceptional dy /ds (Fig. 1b).

359 Though we coarse-grained genes by necessity, it allowed us to perform additional

360 analyses in which we leverage information across multiple species. First, we can see that certain
361 pathways typically have lower dy /ds than others, suggesting that they are subject to stronger
362  purifying selection (Fig. 1c). We can then identify pathways that are subject to stronger or

363  weaker purifying selection than expected by chance by permuting values of dy /dg across

364 pathways within each species and establishing confidence intervals (see Supplemental

365 Information). The results of this test align with our biological intuition, as essential pathways
366 tend to be under stronger purifying selection (e.g., glycolysis, nucleotide biosynthesis, Krebs

367 cycle, etc.), while pathways that rely on specific resources (e.g., sulfur metabolism) tend to be
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368  under relatively relaxed selection, an observation consistent with prior analyses using

369  polymorphism data (Schloissnig et al. 2013).

370 Building off of our permutation analysis, because we have observations from many

371  species, we can continue our comparative population genetic analyses and examine the statistical
372 properties of dy /ds across pathways. First, we can determine whether the relative spread of
373  dy/ds remains similar across pathways by examining whether the ratio of the standard deviation
374  to the mean (i.e., the coefficient of variation) remains constant. We find that this is the case, as
375 the mean dy/dg of a pathway ({(dy/ds)) across species is linear with respect to its variance

376 (O'(%N /ds> Fig. 1b). This observation is reminiscent of Taylor’s Law (Taylor 1961), a pattern often

377  found in ecological systems (Grilli 2020). Similar to Taylor’s Law, we find that the slope of this
378 relationship is not significantly different from two (¢t = 0.684; P = 0.248), which we can
379 interpret as the mean being equal to the standard deviation across pathways (CV =

380 O'C%N sas/{dn/ ds)? = 1). This observation suggests that the relative dispersion of dy /dg remains

381 constant as the overall level of constraint within a pathway is relaxed. Though values of dy /ds
382  across pathways are not independent, as the correlation in dy /dg across pathways for a given
383  pair of species tends to decay with phylogenetic distance (8 = -0.104, P < 107°), suggesting that
384  the strength of purifying selection within a given essential pathway is moderately conserved

385  through evolutionary time. However, this does not provide an explanation of why certain

386 pathways are subject to stronger purifying selection than others, or why the strength of selection
387  varies across lineages, a question that can likely only be answered by incorporating additional
388  biological details about the pathways and species themselves (Bielawski & Yang 2004; Aguileta
389 etal. 2009). Rather, it illustrates how investigating deviations from an empirical pattern can lead

390 to novel findings.
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391

392  Future directions for comparative population genetics in the microbiome

393 The study of comparative population genetics in the human microbiome is nascent and
394  full of potential. There are multiple avenues of progress in the microbiome field that will benefit
395 comparative population genetics as a discipline. First, advances in sequencing technology will
396 allow us to refine our estimates of important quantities. For example, long-read technologies,
397  such as nanopore metagenomic sequencing, will allow researchers to quantify linkage between
398 physically distant sites (Bharti & Grimm 2019; Zlitni et al. 2020; Yaffe & Relman 2020; Karst et
399 al. 2021), providing higher resolution to uncover fundamental evolutionary processes of

400 recombination, mutation, and adaptation within and across species. These advances, coupled
401  with decreasing costs of library preparation (Baym et al. 2015), will allow researchers to sample
402  large cohorts over time and observe how genotypes dissipate into alleles and reemerge via

403  recombination over their sojourn times, enabling us to build more detailed evolutionary models.
404 Second, the fact that the gut exists as a physical environment is often overlooked.

405  Environmental factors such as temperature (Groussin & Gouy 2011) as well as spatial structure
406  (Tropini et al. 2017) can affect the evolutionary dynamics of microbial species. Even deceptively
407  simple features of the gut such as its resemblance to a chemostat or the peristaltic mixing that
408  arises due to digestion can produce complex ecological and evolutionary dynamics (Locey &
409 Lennon 2019; Cremer et al. 2016).

410

411 Finally, there is arguably as much a need to examine the targets of molecular evolution as
412  the general processes shaping genetic variation in the microbiome. The genes that contribute to

413  adaptation ultimately encode physical aspects of cells, which means that subsequent experiments
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will be necessary to gain a more complete understanding on how adaptation in the gut proceeds
and varies across species (Lynch & Trickovic 2020; Lynch et al. 2014). These advances and
considerations will allow researchers to understand the general evolutionary dynamics of the
microbiome, expanding the breadth and depth of comparative population genetics as a

discipline

Data Availability
The raw sequencing reads for the metagenomic samples used in this study were previously
described (Garud, et al., 2019). The source code for figure generation and associated metadata is

available on GitHub: https://github.com/garudlab/CompPopGenMicrobiomeReview.
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743  Figures

744  Fig. 1: a) The relationship between synonymous divergence on the x-axis (ds) and the ratio of
745  nonsynonymous and synonymous divergences (dy/ds) on the y-axis follows the form predicted
746 by purifying selection across species (Eq. S8 from Garud, Good et al. (2019)). Though by color-
747  coding individual species, we see that data points tend to be grouped by species identity, where
748  certain species fall above or below the prediction. b) By grouping genes by their pathways and
749  generating an appropriate null distribution via permutation, we can identify pathways that, under
750 the assumptions of the model, are under stronger or weaker purifying selection than expected by
751  chance. We can then examine how the mean dy /dg ({dy/ds)) of a given pathway relates to its

752  variance (aﬁN /a5)»)> Where the variance increases slightly faster than the square of (dy /ds),

753  suggesting that the coefficient of variation is greater than one (inset figure in b). ¢) By inverting
754  our permutation scheme, we can identify the set of species that are subject to stronger or weaker

755  purifying selection than expected by chance.
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