

1 Whole Genome and Exome Sequencing Reference Datasets from A 2 Multi-center and Cross-platform Benchmark Study

3
4 Yongmei Zhao^{1#}, Li Tai Fang², Tsai-wei Shen¹, Sulbha Choudhari¹, Keyur Talsania¹,
5 Xiongfong Chen¹, Jyoti Shetty³, Yuliya Kriga³, Bao Tran³, Bin Zhu⁴, Zhong Chen⁵,
6 Wangqiu Chen⁵, Charles Wang⁵, Erich Jaeger⁶, Daoud Meerzaman⁷, Charles Lu⁸,
7 Kenneth Idler⁸, Yuanting Zheng⁹, Leming Shi⁹, Virginie Petitjean¹⁰, Marc Sultan¹⁰,
8 Tiffany Hung¹¹, Eric Peters¹¹, Jiri Drabek^{12,13}, Petr Vojta^{12,13}, Roberta Maestro^{13,14},
9 Daniela Gasparotto^{13,14}, Sulev Kõks^{13,15,16}, Ene Reimann^{13,17}, Andreas Scherer^{13,18},
10 Jessica Nordlund^{13,19}, Ulrika Liljedahl^{13,19}, Jonathan Foox²⁰, Christopher Mason²⁰,
11 Chunlin Xiao²¹, Wenming Xiao^{22#}

12
13 ¹ Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data
14 Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA

15 ²Bioinformatics Research & Early Development, Roche Sequencing Solutions Inc., Belmont,
16 CA, USA

17 ³Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory
18 for Cancer Research, Frederick, MD, USA

19 ⁴Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes
20 of Health, Bethesda, MD, USA

21 ⁵Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA

22 ⁶Core Applications Group, Product Development, Illumina Inc, Foster City, CA, USA

23 ⁷Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and
24 Information Technology, National Cancer Institute, National Institutes of Health, Bethesda,
25 MD, USA

26 ⁸Computational Genomics, Genomics Research Center (GRC), North Chicago, IL, USA

27 ⁹State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer
28 Center, Fudan University, Shanghai, China

29 ¹⁰Biomarker Development, Novartis Institutes for Biomedical Research, Switzerland

30 ¹¹Companion Diagnostics Development, Oncology Biomarker Development, Genentech,
31 South San Francisco, CA, USA

32 ¹²IMTM, Faculty of Medicine and Dentistry, Palacky University, Olomouc, the Czech Republic

33 ¹³Member of EATRIS ERIC - European Infrastructure for Translational Medicine

34 ¹⁴Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Unit of
35 Oncogenetics and Functional Oncogenomics, Italy

36 ¹⁵Perron Institute for Neurological and Translational Science, Nedlands, Australia

37 ¹⁶Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch,
38 Australia

39 ¹⁷Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia

40 ¹⁸Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland

41 ¹⁹Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory,
42 Uppsala University, Uppsala, Sweden

43 ²⁰Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA, 1305
44 York Ave., Y13-05, New York, NY, USA

45 ²¹National Center for Biotechnology Information, National Library of Medicine, National
46 Institutes of Health, Bethesda, MD, USA

47 ²²The Center for Devices and Radiological Health, U.S. Food and Drug Administration, FDA,
48 Silver Spring, MD, USA
49

50 #Correspondence shall be addressed to: Yongmei Zhao at Yongmei.Zhao@nih.gov or
51 Wenming Xiao at Wenming.Xiao@fda.hhs.gov
52
53

54 **Abstract**

55
56 With the rapid advancement of sequencing technologies in the past decade, next generation
57 sequencing (NGS) analysis has been widely applied in cancer genomics research. More
58 recently, NGS has been adopted in clinical oncology to advance personalized medicine.
59 Clinical applications of precision oncology require accurate tests that can distinguish tumor-
60 specific mutations from errors or artifacts introduced during NGS processes or data analysis.
61 Therefore, there is an urgent need to develop best practices in cancer mutation detection
62 using NGS and the need for standard reference data sets for systematically benchmarking
63 sequencing platforms, library protocols, bioinformatics pipelines and for measuring accuracy
64 and reproducibility across platforms and methods. Within the SEQC2 consortium context,
65 we established paired tumor-normal reference samples, a human triple-negative breast
66 cancer cell line and a matched normal cell line derived from B lymphocytes. We generated
67 whole-genome (WGS) and whole-exome sequencing (WES) data using 16 NGS library
68 preparation protocols, seven sequencing platforms at six different centers. We
69 systematically interrogated somatic mutations in the paired reference samples to identify
70 factors affecting detection reproducibility and accuracy in cancer genomes. These large
71 cross-platform/site WGS and WES datasets using well-characterized reference samples will
72 represent a powerful resource for benchmarking NGS technologies, bioinformatics pipelines,
73 and for the cancer genomics studies.

74

75

76 **Background & Summary**

77

78 The NGS technology has become a powerful tool for precision medicine. More researchers
79 and clinicians are utilizing NGS to identify clinically actionable mutations in cancer patients
80 and to establish targeted therapies for patients based on the patient's genetic makeup or
81 genetic variants of their tumor¹, there is a critical need to have a full understanding of the
82 many different variables affecting the NGS analysis output. The rapid growing number of
83 sample processing protocols, library preparation methods, sequencing platforms, and
84 bioinformatics pipelines to detect mutations in cancer genome, presents great technical
85 challenges for the accuracy and reproducibility of utilizing NGS for cancer genome mutation
86 detections. To investigate how these experimental and analytical elements may affect
87 mutation detection accuracy, recently we carried out a comprehensive benchmarking study
88 using both whole-genome (WGS) and whole-exome sequencing (WES) data sets generated
89 from two well-characterized reference samples: a human breast cancer cell line (HCC1395)
90 and a B lymphocytes cell line (HCC1395BL) derived from the same donor (NBT-RS47789). We
91 generated WGS and WES data using various NGS library preparation protocols, seven NGS
92 platforms at six centers (NBT-A46164B).

93

94 **Figure 1** shows our overall study design. Briefly, DNA was extracted from fresh cells or cell
95 pellets mimicking the formalin-fixed paraffin-embedded (FFPE) process with fixation time of
96 1, 2, 6, or 24 hours. A small amount of DNA from fresh cells of HCC1395 and HCC1395BL was
97 pooled at various ratios (3:1, 1:1, 1:4, 1:9 and 1:19) to create mixtures. Both fresh DNA and

98 FFPE DNA were profiled on NGS or microarray platforms following manufacturer
99 recommended protocols. To assess the reproducibility of WGS and WES, six sequencing
100 centers performed a total of 12 replicates (3x3 + 3) on each platform. In addition, 12 WGS
101 libraries constructed using three different library preparation protocols (TruSeq PCR-free,
102 TruSeq-Nano, and Nextera Flex) in four different quantities of DNA inputs (1, 10, 100, and 250
103 ng) were sequenced on an Illumina HiSeq 4000, and nine WGS libraries constructed using the
104 TruSeq PCR-free protocol were sequenced on an Illumina NovaSeq. Finally, Cytoscan
105 microarray and single-cell sequencing with 10X Genomics platform were performed to
106 uncover the cytogenetics and heterogeneity of two cell lines. Table 1 contains the details of
107 the platform, library protocols and read coverage information.
108

109 We first established reference call sets with evidence from 21 replicates of Illumina WGS runs
110 with coverage ranging from 50X to 100X (1150X in total). We split mutation call confidence
111 levels into four categories: HighConf, MedConf, LowConf, and Unclassified (NBT-RS47789). By
112 combining all WGS runs, we were able to further confirm and improve our call set with tumor-
113 normal pairs of 1500X data sets and identified mutations with VAF as low as 1.5%. A subset of
114 reference mutation calls was validated by targeted exome sequencing (WES at 2,500X
115 coverage) using HiSeq, and deep sequencing from AmpliSeq (at 2,000X coverage) using Miseq,
116 and Ion Torrent (at 34X coverage), and long-read WGS by PacBio Sequel (at 40X coverage). In
117 addition, we inferred subclones and heterogeneity of HCC1395 with bulk DNA sequencing. The
118 results were confirmed by single-cell DNA sequencing analysis (NBT-RS47789B).
119

120 With defined reference call sets, we then systematically interrogated somatic mutations to
121 identify factors affecting detection reproducibility and accuracy. By examining the interactions
122 and effects of NGS platform, library preparation protocol, tumor content, read coverage, and
123 bioinformatics process concomitantly, we observed that each component of the sequencing
124 and analysis process can affect the final outcome. Overall WES and WGS results have high
125 concordance and correlation. WES had a better coverage/cost ratio than WGS. However,
126 sequencing coverage of the WES target regions was not even. In addition, WES showed more
127 batch effects/artifacts due to laboratory processing and thus had larger variation between
128 runs, laboratories, and likely between researchers preparing the libraries. As a result, WES had
129 much larger inter-center variation and was less reproducible than WGS. Biological (library)
130 replicates removed some artifacts due to random events (“Non-Repeatable” calls) and offered
131 much better calling precision than did a single test. Analytical repeats (two bioinformatics
132 pipelines) also increased calling precision at the cost of increased false negatives. We found
133 that biological replicates are more important than bioinformatics replicates in cases where
134 high specificity and sensitivity are needed (NBT-RS47789B).
135

136 **Methods**

137
138 Detailed methods were described in our two papers (NBT-A46164B and NBT-RS47789B, in
139 press).

140 **Cell line culture and DNA extraction**

141 HCC1395; Breast Carcinoma; Human (*Homo sapiens*) cells (expanded from ATCC CRL-2324)
142 were cultured in ATCC-formulated RPMI-1640 Medium, (ATCC 30-2001) supplemented with
143 fetal bovine serum (ATCC 30-2020) to a final concentration of 10%. Cells were maintained at
144 37 °C with 5% carbon dioxide (CO₂) and were sub-cultured every 2 to 3 days, per ATCC
145 recommended procedures using 0.25% (w/v) Trypsin-0.53 mM EDTA solution (ATCC 30-
146 2101), until appropriate densities were reached. HCC1395BL; B lymphoblast; Epstein-Barr
147 virus (EBV) transformed; Human (*Homo sapiens*) cells (expanded from ATCC CRL-2325) were
148 cultured in ATCC-formulated Iscove's Modified Dulbecco's Medium, (ATCC Catalog No. 30-
149

150 2005) supplemented with fetal bovine serum (ATCC 30-2020) to a final concentration of 20%.
151 Cells were maintained at 37 °C with 5% CO₂ and were sub-cultured every 2 to 3 days, per
152 ATCC recommended procedures, using centrifugation with subsequent resuspension in fresh
153 medium until appropriate densities were reached. Final cell suspensions were spun down
154 and re-suspended in PBS for nucleic acid extraction.

155 All cellular genomic material was extracted using a modified Phenol- Chloroform-Iso-Amyl
156 alcohol extraction approach. Essentially, cell pellets were re-suspended in TE, subjected to
157 lysis in a 2% TritonX-100/0.1% SDS/0.1 M NaCl/10mM Tris/1mM EDTA solution and were
158 extracted with a mixture of glass beads and Phenol- Chloroform-Iso-Amyl alcohol. Following
159 multiple rounds of extraction, the aqueous layer was further treated with Chloroform-IAA
160 and finally underwent RNases treatment and DNA precipitation using sodium acetate (3 M,
161 pH 5.2) and ice-cold Ethanol. The final DNA preparation was re-suspended in TE and stored
162 at -80°C until use.

163

164 **FFPE processing and DNA extraction**

165 Please see Online methods in manuscript NBT-RA46164 for details.

166

167 **Illumina WGS Library Preparation**

168 The TruSeq DNA PCR-Free LT Kit (Illumina, FC-121-3001) was used to prepare samples for
169 whole genome sequencing. WGS libraries were prepared at six sites with the TruSeq DNA
170 PCR-Free LT Kit according to the manufacturers' protocol. The input DNA amount for WGS
171 library preparation with fresh DNA for TruSeq-PCR-free libraries was 1 ug unless otherwise
172 specified. All sites used the same fragmentation conditions for WGS by using Covaris with
173 targeted size of 350 bp. All replicated WGS were prepared on a different day.

174

175 The concentration of the TruSeq DNA PCR-Free libraries for WGS was measured by qPCR
176 with the KAPA Library Quantification Complete Kit (Universal) (Roche, KK4824). The
177 concentration of all the other libraries was measured by fluorometry either on the Qubit 1.0
178 fluorometer or on the GloMax Luminometer with the Quant-iT dsDNA HS Assay kit
179 (ThermoFisher Scientific, Q32854). The quality of all libraries was assessed by capillary
180 electrophoresis either on the 2100 Bioanalyzer or TapeStation instrument (Agilent) in
181 combination with the High Sensitivity DNA Kit (Agilent, 5067-4626) or the DNA 1000 Kit
182 (Agilent, 5067-1504) or on the 4200 TapeStation instrument (Agilent) with the D1000 assay
183 (Agilent, 5067-5582 and 5067-5583).

184

185 For the WGS library preparation from cross-site study, the sequencing was performed at six
186 sequencing sites using three different Illumina platforms including HiSeq 4000 instrument at
187 2 x 150 bases read length with HiSeq 3000/4000 SBS chemistry (cat# FC-410-1003), and on a
188 NovaSeq instrument at 2 x 150 bases read length using the S2 configuration (cat#PN
189 20012860), or on a HiSeq X Ten at 2x150bases read length using the X10 SBS chemistry (cat#
190 FC-501-2501). Sequencing was performed following the manufacturer's instructions.

191

192 For the comparison study of WGS library protocol using different input DNA amounts,
193 Illumina TruSeq DNA PCR-free protocol used 250ng input DNA, Illumina TruSeq Nano
194 protocol libraries were prepared with 1ng, 10ng, and 100ng input DNA amounts. Illumina
195 Nextera Flex libraries were prepared with 1ng, 10ng, and 100ng input DNA amounts. These
196 libraries sequenced at two sequencing sites using two different Illumina platforms including
197 HiSeq 4000 instrument (Illumina) at 2 x 150 bases read length with HiSeq 3000/4000 SBS
198 chemistry (Illumina, FC-410-1003) and NovaSeq instrument (Illumina) at 2 x 150 bases read
199 length using the S2 configuration (Illumina, PN 20012860). Sequencing was performed
200 following the manufacturer's instructions.

201

202
203
204 For the tumor purity study, 1µg tumor:normal dilutions were made in the following ratios
205 using Resuspension Buffer (Illumina): 1:0, 3:1, 1:1, 1:4, 1:9, 1:19 and 0:1. Each ratio was
206 diluted in triplicate. DNA was sheared using the Covaris S220 to target a 350 bp fragment
207 size (Peak power 140w, Duty Factor 10%, 200 Cycles/Bursts, 55s, Temp 4 °C). NGS library
208 preparation was performed using the Truseq DNA PCR-free protocol (Illumina) following the
209 manufacturer's recommendations. The sample purity WGS libraries were sequenced on a
210 HiSeq 4000 instrument (Illumina) at 2 x 150 bases read length with HiSeq 3000/4000 SBS
211 chemistry (Illumina, FC-410-1003). Sequencing was performed following the manufacturer's
212 instructions.
213

214 **Whole Exome Library Construction and Sequencing**
215 SureSelect Target Enrichment Reagent kit, PTN (Part No G9605A), SureSelect Human All Exon
216 v6 + UTRs (Part No 5190-8881), Herculase II Fusion DNA Polymerase (Part No 600677) from
217 Agilent Technologies and Ion Xpress Plus Fragment kit (Part No 4471269, Thermo Fischer
218 Scientific Inc) were combined to prepare library according to the manufacturer's guidelines
219 (User guide: SureSelect Target Enrichment System for Sequencing on Ion Proton, Version C0,
220 December 2016, Agilent Technologies). Prior, during and after library preparation the quality
221 and quantity of genomic DNA (gDNA) and/or libraries were evaluated applying QubitTM
222 fluorometer 2.0 with dsDNA HS Assay Kit (Thermo Fischer Scientific Inc) and Agilent
223 Bioanalyzer 2100 with High Sensitivity DNA Kit (Agilent Technologies).
224

225 WES libraries were sequenced at six sequencing sites with two different Illumina platforms,
226 Hiseq4000 instrument (Illumina) at 2x150 bases read length with HiSeq 3000/4000 SBS
227 chemistry (Illumina, FC-410-1003) and Hiseq2500 (Illumina) at 2x100 bases read length with
228 HiSeq2500 chemistry (Illumina, FC-401-4003). Sequencing was performed following the
229 manufacturer's instructions.
230

231 **Whole Genome FFPE Sample Library Preparation and Sequencing**
232 For the FFPE WGS study, NEBNext Ultra II (NEB) libraries were prepared according to the
233 manufacturer's instructions. However, input adjustments were made according to the dCq
234 obtained for each sample using the TruSeq FFPE DNA Library Prep QC Kit (Illumina) to
235 account for differences in sample amplifiability. A total of 33 ng of amplifiable DNA was used
236 as input for each sample.
237

238 FFPE WGS libraries were sequenced on two different sequencing canters on Hiseq4000
239 instrument (Illumina) at 2x150 bases read length with HiSeq 3000/4000 SBS chemistry
240 (Illumina, FC-410-1003). Sequencing was performed following the manufacturer's
241 instructions.
242

243 **Whole Exome FFPE Sample Library Preparation and Sequencing**
244 For the FFPE study, SureSelect (Agilent) WES libraries were prepared according to the
245 manufacturer's instructions for 200 ng of DNA input, including reducing the shearing time to
246 four minutes. Additionally, the adaptor-ligated libraries were split in half prior to
247 amplification. One half was amplified for 10 cycles and the other half for 11 cycles to ensure
248 adequate yields for probe hybridization. Both halves were combined after PCR for the
249 subsequent purification step.
250

251 FFPE WES libraries were sequenced on at two sequencing sites with different Illumina
252 platforms, Hiseq4000 instrument (Illumina) at 2x150 bases read length with HiSeq
3000/4000 SBS chemistry (Illumina, FC-410-1003) and Hiseq2500 (Illumina) at 2x100 bases
253

253 read length with HiSeq2500 chemistry (Illumina, FC-401-4003). Sequencing was performed
254 following the manufacturer's instructions.

255

256

257 **PacBio Library Preparation and Sequencing**

258 15 ug of material was sheared to 40 kbp with Megarupter (Diagenode). Per the Megarupter
259 protocol the samples were diluted to <50 ng/ul. A 1x AMPure XP bead cleanup was
260 performed. Samples were prepared as outlined on the PacBio protocol titled "Preparing >30
261 kbp SMRTbell Libraries Using Megarupter Shearing and Blue Pippin Size-Selection for PacBio
262 RS II and Sequel Systems." After library preparation, the library was run overnight for size
263 selection using the Blue Pippin (Sage). The Blue Pippin was set to select a size range of 15-50
264 kbp. After collection of the desired fraction, a 1x AMPure XP bead cleanup was performed.
265 The samples were loaded on the PacBio Sequel (Pacific Biosciences) following the protocol
266 titled "Protocol for loading the Sequel." The recipe for loading the instrument was generated
267 by the Pacbio SMRTlink software v5.0.0. Libraries were prepared using Sequel chemistry kits
268 v2.1, SMRTbell template kit 1.0 SPV3, magbead v2 kit for magbead loading, sequencing
269 primer v3, and SMRTbell clean-up columns v2. Libraries were loaded at between 4 pM and 8
270 pM. Sequencing was performed following the manufacturer's instructions.

271

272 **10X Genomics Chromium Genome Library Preparation and Sequencing**

273 Sequencing libraries were prepared from 1.25 ng DNA using the Chromium Genome Library
274 preparation v2 kit (10X Genomics, cat #120257/58/61/62) according to the manufacturer's
275 protocol (#CG00043 Chromium Genome Reagent Kit v2 User Guide). The quality of the
276 libraries was evaluated using the TapeStation D1000 Screen Tape (Agilent). The adapter-
277 ligated fragments were quantified by qPCR using the library quantification kit for Illumina
278 (KK4824, KAPA Biosystems) on a CFX384Touch instrument (BioRad) prior to cluster
279 generation and sequencing. Chromium libraries were sequenced on a HiSeq X Ten or a HiSeq
280 4000 instrument at 2 x 150 base pair (bp) read length and using sequencing chemistry v2.5 or
281 HiSeq 3000/4000 SBS chemistry (Illumina, cat# FC-410-1003) across five sequencing sites.
282 Sequencing was performed following the manufacturer's instructions.

283

284 **AmpliSeq library construction and sequencing**

285 AmpliSeq libraries were prepared in triplicate and prepared as specified in the Illumina
286 protocol (Document # 1000000036408 v04) following the two oligo pools workflow with 10
287 ng of input genomic DNA per pool. The number of amplicons per pool was 1517 and 1506
288 respectively. The libraries were quality-checked using an Agilent Tapestation 4200 with the
289 DNA HS 1000 kit and quantitated using a Qubit 3.0 and DNA high sensitivity assay kit. The
290 libraries were applied to a MiSeq v2.0 flowcell. They were then amplified and sequenced
291 with a MiSeq 300 cycle reagent cartridge with a read length of 2 x 150 bp. The MiSeq run
292 produced 7.3 Gbp (94.5%) at \geq Q30. The total number of reads passing filter was 47,126,128
293 reads.

294

295 **Whole Exome library Ion Platform Sequencing**

296 SureSelect Target Enrichment Reagent kit, PTN (Part No G9605A), SureSelect Human All Exon
297 v6 + UTRs (Part No 5190-8881), Herculase II Fusion DNA Polymerase (Part No 600677) from
298 Agilent Technologies and Ion Xpress Plus Fragment kit (Part No 4471269, Thermo Fisher
299 Scientific Inc) were combined to prepare libraries according to the manufacturer's guidelines
300 (User guide: SureSelect Target Enrichment System for Sequencing on Ion Proton, Version C0,
301 December 2016, Agilent Technologies). Prior, during, and after library preparation the quality
302 and quantity of genomic DNA (gDNA) and/or libraries were evaluated applying QubitTM
303 fluorometer 2.0 with dsDNA HS Assay Kit (Thermo Fisher Scientific Inc) and Agilent
304 Bioanalyzer 2100 with High Sensitivity DNA Kit (Agilent Technologies).

305
306 For sequencing the WES libraries, the Ion S5 XL Sequencing platform with Ion 540-Chef kit
307 (Part No A30011, Thermo Fisher Scientific Inc) and the Ion 540 Chip kit (Part No A27766,
308 Thermo Fisher Scientific Inc) were used. One sample per 540 chip was sequenced, generating
309 up to 60 million reads with average length of 200 bp.
310
311 **10X Genomics Single Cell CNV library construction, sequencing and analysis**
312 HCC1395 and HCC1395 BL were cultured as described above. 500,000 cells of each culture
313 were suspended in 1 mL suspension medium (10% DMSO in cell culture medium). Cells were
314 harvested the next day for single-cell copy number variation (CNV) analysis via the 10X
315 Genomics Chromium Single Cell CNV Solution (Protocol document CG000153) produces
316 Single Cell DNA libraries ready for Illumina sequencing according to manufacturer's
317 recommendations. Libraries were sequenced on a HiSeq 4000 instrument at 2 x 150 base
318 pair (bp) read length and using sequencing chemistry v2.5 or HiSeq 3000/4000 SBS chemistry
319 (Illumina, cat# FC-410-1003). Demultiplex BCL from sequencing run and Copy Number
320 Variation analysis were performed using 10X Genomics Cell Ranger DNA version 1.1
321 software. CNV and heterogeneity visualization analysis was performed via 10X Genomics
322 Loupe scDNA browser.
323
324 **Affymetrix CytoScan HD microarray**
325 DNA concentration was measured spectrophotometrically using a Nanodrop (Life
326 technology), and integrity was evaluated with a TapeStation 4200 (Agilent). Two hundred
327 and fifty nanograms of gDNA were used to proceed with the Affymetrix CytoScan Assay kit
328 (Affymetrix). The workflow consisted of restriction enzyme digestion with Nsp I, ligation,
329 PCR, purification, fragmentation, and end labeling. DNA was then hybridized for 16 hr at
330 50 °C on a CytoScan array (Affymetrix), washed and stained in the Affymetrix Fluidics Station
331 450 (Affymetrix), and then scanned with the Affymetrix GeneChip Scanner 3000 G7
332 (Affymetrix). Data were processed with ChAS software (version 3.3). Array-specific
333 annotation (NetAffx annotation release 36, built with human hg38 annotation) was used in
334 the analysis workflow module of ChAS. Karyoview plot and segments data were generated
335 with default parameters.
336
337 **Reference genome**
338 The reference genome we used was the decoy version of the GRCh38/hg38 human reference
339 genome (<https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files>; GRCh38.d1.dv1.fa), which was utilized by the Genomic Data Commons (GDC).
340 The gene annotation GTF file was downloaded from the 10X website as refdata-cellranger-
341 GRCh38-1.2.0.tar.gz, which corresponds to the GRCh38 genome and Ensembl v84
342 transcriptome.
343
344 All the following bioinformatics data analyses are based on the above reference genome and
345 gene annotation.
346
347 **Preprocessing and Alignment of WGS Illumina Data**
348 For each of the paired-end read files (i.e., FASTQ 1 and 2 files) generated by Illumina
349 sequencers (HiSeq, NovaSeq, X Ten platforms), we first trimmed low-quality bases and
350 adapter sequences using Trimmomatic². The trimmed reads were mapped to the human
351 reference genome GRCh38 (see the read alignment section) using BWA MEM (v0.7.17)³ in
352 paired-end mode and bwa-mem was run with the –M flag for downstream Picard⁵
353 compatibility.
354
355

356 Post alignment QC was performed based both FASTQ on BWA alignment BAM files, the read
357 quality and adapter content were reported by FASTQC⁴ software. The genome mapped
358 percentages and mapped reads duplication rates calculated by BamTools (v2.2.3) and Picard
359 (v1.84)⁵. The genome coverage and exome target region coverages as well as mapped reads
360 insert sizes, and G/C contents were profiled using Qualimap(v2.2)⁶ and custom scripts.
361 Preprocessing QC reports were generated during each step of the process. MultiQC(v1.9)⁷
362 was run to generate an aggregated report in html format. A standard QC metrics report was
363 generated from a custom script. The preprocessing and alignment QC analysis pipeline is
364 described in **Suppl. Figure 1a**.
365

366 **Preprocessing and Alignment of WES Illumina Data**
367 For each of the paired-end read files generated by Illumina sequencers (HiSeq2500,
368 HiSeq4000 platforms), we first trimmed low-quality bases and adapter sequences using
369 Trimmomatic². The trimmed reads were mapped to the human reference genome GRCm38
370 (see the read alignment section) using BWA MEM (v0.7.17)³ in paired-end mode. We
371 calculated on-target rate based on the percentage of mapped reads that were overlap the
372 target capture bait region file (target.bed). The post alignment QC methods are same as WGS
373 Illumina data pre-processing.
374

375 **DNA Damage Estimate for WGS, WES and FFPE Samples**
376 The DNA Damage Estimator(v3)⁸ was used to calculate the GIV score based on an imbalance
377 between R1 and R2 variant frequency of the sequencing reads to estimate the level of DNA
378 damage that was introduced in the sample/library preparation processes. GIV score above
379 1.5 is defined as damaged. At this GIV score, there are 1.5 times more variants on R1 than on
380 R2. Undamaged DNA samples have a GIV score of 1.
381

382 **Preprocessing and Alignment of PacBio Data**
383 PacBio raw data were merged bam files using SMRTlink tool v6.0.1. which used minimap²⁹
384 as default aligner. Duplicate reads were mark and removed from PBSV alignment bases on
385 the reads coming from the same ZMW, the base pair tolerance was set to 100bp to remove
386 the duplicated reads. The preprocessing and alignment QC analysis pipeline for PacBio data
387 is described in **Suppl. Figure 1b**.
388

389 **Genome coverage profiling**
390 We used indexcov¹⁰ to estimate coverage from the Illumina whole genome sequencing
391 library cross-site comparison data set. The bam file for each library used as input to
392 indexcov¹⁰ to generate a linear index for each chromosome indicating the file (and virtual)
393 offset for every 16,384 bases in that chromosome. This gives the scaled value for each
394 16,384-base chunk (16KB resolution) and provides a high-quality coverage estimate per
395 genome. The output is scaled to around 1. A long stretch with values of 1.5 would be a
396 heterozygous duplication; a long stretch with values of 0.5 would be a heterozygous
397 deletion.
398

399 **Preprocessing and Alignment of 10X Genomics WGS Data**
400 The 10X Genomics Chromium fastq files were mapped and reads were phased using
401 LongRanger to the hg38/GRCh38 reference genome using the LongRanger v2.2.2 pipeline
402 [<https://genome.cshlp.org/content/29/4/635.full>]. The linked-reads were aligned using the
403 Lariat aligner¹¹, which uses BWA MEM³ [Li H. et al. 2010] to generate alignment candidates,
404 and duplicate reads are marked after alignment. Linked-Read data quality was assessed
405 using the 10X Genome browser Loupe. MultiQC(v1.9)⁷ was run to generate an aggregated
406 report in html format. A standard QC metrics report was generated from a custom script.
407 The preprocessing and alignment QC analysis pipeline is described in **Suppl. Figure 1a**.
408

408

409 **Preprocessing and Alignment of Ion Torrent Data**

410 Raw reads were first filtered for low-quality reads and trimmed to remove adapter
411 sequences and low-quality bases. This step was performed using the BaseCaller module of
412 the Torrent SuitTM software package v5.8.0 (Thermo Fischer Scientific Inc). Low-quality
413 reads were retained from further analysis in the raw signal processing stage. Low-quality
414 bases were trimmed from the 5' end if the average quality score of the 16-base window fell
415 below 16 (Phred scale), cleaving 8 bases at once. Processed reads were mapped to the
416 GRCh38 reference genome by TMAP module of the Torrent Suite software package using the
417 default map4 algorithm with recommended settings. Picard (v1.84)⁵ was then used to mark
418 PCR and optical duplicates on the BAM files.

419

420 **Preprocessing and alignment for AmpliSeq**

421 Low-quality bases and adapter sequences were trimmed with Trimmomatic². The trimmed
422 reads were mapped to the human reference genome GRCh38 (see the read alignment
423 section) using BWA MEM (v0.7.17)³ in paired-end mode. We calculated on-target rate based
424 on the percentage of mapped reads that were overlap the target capture bait region file
425 (target.bed). We counted the number of variant-supporting reads and total reads for each
426 variant position with MQ \geq 40 and BQ \geq 30 cutoffs. The preprocessing and alignment QC
427 analysis pipeline is described in **Suppl. Figure 1a**.

428

429 **Somatic Variant Analysis**

430 Four somatic variant callers, MuTect2 (GATK 3.8-0)¹², SomaticSniper (1.0.5.0)¹³, Lancet
431 (1.0.7), and Strelka2 (2.8.4)¹⁴, which are readily available on the NIH Biowulf cluster, were
432 run using the default parameters or parameters recommended by the user's manual.
433 Specifically, for MuTect2, we included flags for “-nct 1 -rf DuplicateRead -rf
434 FailsVendorQualityCheck -rf NotPrimaryAlignment -rf BadMate -rf
435 MappingQualityUnavailable -rf UnmappedRead -rf BadCigar”, to avoid the running exception
436 for “Somehow the requested coordinate is not covered by the read”. For MuTect2, we used
437 COSMIC v82 as required inputs. For SomaticSniper, we added a flag for “-Q 40 -G -L -F”, as
438 suggested by its original author, to ensure quality scores and reduce likely false positives. For
439 TNscope (201711.03), we used the version implemented in Seven Bridges's CGC with the
440 following command, “sentieon driver -i \$tumor_bam -i \$normal_bam -r \$ref --algo TNscope -
441 -tumor_sample \$tumor_sample_name --normal_sample \$normal_sample_name -d \$dbsnp
442 \$output_vcf”. For Lancet, we ran with 24 threads on the following parameters “--num-
443 threads 24 --cov-thr 10 --cov-ratio 0.005 --max-indel-len 50 -e 0.005”. Strelka2 was run with
444 24 threads with the default configuration. The rest of the software analyzed was run as a
445 single thread on each computer node. All mutation calling on WES data was performed with
446 the specified genome region in a BED file for exome-capture target sequences.

447

448 The high confidence outputs or SNVs flagged as “PASS” in the resulting VCF files were
449 applied to our comparison analysis. Results from each caller used for comparison were all
450 mutation candidates that users would otherwise consider as “real” mutations detected by
451 this caller.

452

453 **GATK indel realignment and quality score recalibration**

454 The GATK (3.8-0)-IndelRealigner was used to perform indel adjustment with reference indels
455 defined in the 1000Genome project
456 (https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjlkcfB5-nbAhVOhq0KHXUWCKUQFgg7MAM&url=ftp%3A%2F%2Fftp.1000genomes.ebi.ac.uk%2Fvol1%2Fftp%2Ftechnical%2Freference%2FGRCh38_reference_genome%2Fother_mapping_resou

460 rces%2FALL.wgs.1000G_phase3.GRCh38.ncbi_remapper.20150424.shapeit2_indels.vcf.gz&u
461 sg=AOvVaw0pLCj6zDgJg0A6zbFeMfQI). The resulting BAM files were then recalibrated for
462 quality with “BaseRecalibrator” and dbSNP build 146 as the SNP reference.
463 Finally, “PrintReads” was used to generate recalibrated BAM files.
464
465
466

467 **Tumor Ploidy and clonality analysis from whole genome and exome data**

468 To estimate the HCC1395 cell line ploidy, we used PURPLE¹⁷ to determine the purity and copy
469 number profile. To determine the clonality of HCC1395 and HCC1395 BL, we performed
470 somatic SNV and CAN analysis using superFreq¹⁶ on capture WES datasets. Mapped and
471 markDuplicate bam files of a pair of HCC1395 and HCC1395BL were used as input and bam
472 files of the remaining replicates of the HCC1395BL library were used to filter background.
473 Analysis was run using the superFreq default parameters. The clonality of each somatic SNV
474 was calculated based on the VAF, accounting for local copy number. The SNVs and CNAs
475 undergo hierarchical clustering based on the clonality and uncertainty across replicates for
476 the tumor sample.

477 **Assessment of reproducibility and O_Score calculation**

478 We created and used “tornado” plots to visualize the consistency of mutation calls derived
479 from aligners, callers, or repeated NGS runs. The height of the “tornado” represents the
480 number of overlapping calls in the VCF files in descending order. The top of each plot portrays
481 SNVs called in every VCF file. The bottom of the plots contains SNVs present in only one VCF
482 file. The width of the “tornado” represents the number of accumulated SNVs in that
483 overlapping category, which is scaled by the total number of SNVs in the corresponding sub-
484 group. In addition, we established following formula to measure reproducibility based on the
485 overlapping SNVs:

$$O_{score} = \frac{\sum_{i=1}^{i=n} \left(\left(\frac{i}{n} \right) \times O_i \right)}{\sum_{i=1}^{i=n} O_i}$$

490
491
492 where n is the total number of VCF results in the pool set, i is the number of overlaps, O_i is the
493 number of accumulated SNVs in the set with i number of overlapping.

494 **Data Records**

495 All raw data (FASTQ files) are available on NCBI’s SRA database (SRP162370). The truth set
496 for somatic mutations in HCC1395, VCF files derived from individual WES and WGS runs, and
497 source codes are available on NCBI’s ftp site (ftp://ftp-trace.ncbi.nlm.nih.gov/seqc/ftp/release/Somatic_Mutation_WG/). Alignment files (BAM) are
500 also available on Seven Bridges’ s Cancer Genomics Cloud (CGC) platform.
501

502 **Technical Validation**

503 **Assessment of whole genome and exome sequencing data quality**

504 For whole genome sequencing, fresh DNA samples were prepared using standard TruSeq
505 PCR-free libraries prepared from 1000 ng input DNA. A total of 24 data sets were generated
506 from six sequencing centers. There were three different Illumina sequencing platforms in the
507 cross-platform comparison including HiSeq4000, HiSeq X Ten, and NovaSeq 6000. The quality

510 assessment was based on the NGS preprocess pipeline produced quality metrics including
511 Percentage of Q30 bases, sequencing yields, percentage of adapter sequences, percentage
512 of mapped reads to reference genome, percentage of non-duplicate reads, GC content, DNA
513 fragment insert sizes, genome coverage, etc (**Suppl. Figure 1**).

514 All sequencing centers and platforms produced high quality data as base call Phred quality
515 scores above Q30, and greater than 99% of reads mapped to the reference genome (**Figure**
516 **2a**). The variation was observed in read coverage which was driven by sequencing platform
517 yield differences as well as sequencing library pooling variations. Most sequencing sites
518 produced genome coverage 50X (1,250 millions pair-end reads) per library, one sequencing
519 site targeted about 100X (2,500 millions pair-end reads) per genome sequencing depth
520 (**Figure 2b, Suppl. Figure 2a**). For whole exome sequencing, SureSelect Target Enrichment
521 Reagent kit, PTN (Part No G9605A), SureSelect Human All Exon v6 and SureSelect Human All
522 Exon v6 +UTRs were used, and sequencing was generated from 6 sequencing centers.
523 Illumina Hiseq4000, Illumina Hiseq3000/4000, and Illumina Hiseq2500 were used.
524 Sequencing quality from all sequences are high with greater than 99.1% of reads mapped to
525 reference genome across sites. The variation was also observed in read coverage, most
526 sequencing sites produced exome region on-target coverage 100X per library, and two
527 sequencing sites targeted about 300X and 550X per genome sequencing depth (**Figure 2c**).
528 When comparing WGS to WES libraries for the percentages of non-duplicated reads, all WGS
529 libraries have consistently high percentages of non-duplicate reads, which indicates higher
530 library complexity of WGS libraries than the targeted captures. In addition, there are much
531 high variations in targeted exome capture libraries.

532 To determine if the quality of sequencing data was substantially different between different
533 protocols, we also compared fresh DNA vs. FFPE DNA, different library protocols and input
534 DNA amount, as well as mixture tumor DNA and normal DNA for profiling the tumor purity
535 effect. Among the WGS libraries prepared using fresh cells, insert size distribution and G/C
536 content were uniform (40 – 43% G/C). WES libraries have higher GC content (47.2% for fresh
537 cells libraries, 51.1% for FFPE libraries) as well as higher variation (**Figure 2e**). All of the WGS
538 libraries had very low adapter contamination (<0.5%) (**Suppl. Figure 2b**), while WES libraries
539 have higher adapter content due to smaller DNA fragment insert sizes (**Figure 2f**). WES
540 library sizes are between 150bps -280bps for fresh cells. FFPE WGS libraries all have much
541 shorter libraries sizes (225 - 300bps) than fresh DNA prepared WGS libraries (360 – 480bps).
542 The libraries with higher adapter contamination also had much higher G/C content
543 compared with the rest of the WES libraries (**Figure 2e**). When comparing library preparation
544 kits across different DNA inputs across TruSeq PCR-free (1000ng), TruSeq-Nano, and Nextera
545 Flex libraries prepared with 250, 100, 10, or 1 ng of DNA input, the percentage of non-
546 redundant reads was very low (<20%) for TruSeq-Nano with 1 ng input, due to PCR
547 amplification of a low input amount of DNA; higher input amount libraries have better
548 performance; for the same input amount, Nextera Flex libraries have less variation and
549 higher percentages of non-duplicated reads (**Suppl. Figure 2c**). We conclude the Nextera Flex
550 library protocol might be a better option for low input DNA library preparation.

551

552 **Assessment of reference sample sequencing coverage and genome heterogeneity**

553 We chose 26 replicates of HCC1395 and HCC1395BL data sets, which were libraries prepared
554 using the Illumina TruSeq DNA PCR free (1000ng) protocol and sequenced on Illumina HiSeq
555 and NovaSeq. Each library was ranged from 50X to 100X genome coverage (**Figure 3a**). The
556 percentage of genome coverage with less than 5X is 0.9 – 7.7% (**Suppl. Figure 4a**). For 10X
557 Chromium libraries, each library has 45X - 120X genome coverage (**Figure 3b**), 6.4 – 7.3% of
558 genome regions have read coverage less than 5X (**Suppl. Figure 4b**). 10X Chromium linked

559 read technology produced input DNA molecule length in the range between 54 – 77kb. The
560 site-to-site variation was due to sequencing depth differences. For WES samples, the target
561 region has nearly 100% coverage by sequencing reads, however, we observed high variation
562 in the sequencing coverage within each replicate as well as among replicates (**Suppl. Figure**
563 **3c**).

564 In addition, we generated two PacBio libraries with 40X of genome coverage from subreads.
565 Long reads improve the map ability in repetitive genome regions where short-reads might
566 fail to map correctly. PacBio long-read sequencing may cover the genomic regions where
567 short reads cannot be mapped especially in the high GC/AT or low complexity genomic
568 regions (**Figure 3c**). However, its higher sequencing error rate than short-read sequencing
569 affects the accuracy for the low-frequency somatic mutation discovery. The variation in
570 genome coverage might be due to differences in sequencing technologies (**Figure 3d**). From
571 the study, short reads WGS has better uniform coverage compared to long reads. However,
572 there is better coverage for certain genomic regions in long-read technologies; most
573 noticeable are the highly repetitive regions, extreme GC regions, or around the centromere
574 regions.

575 The Indexcov¹⁰ scaled read depth on reference genome for HCC1395 (**Suppl. Figure 4a**) and
576 HCC1395BL (**Suppl. Figure 4b**) showed HCC1395 harboring many Copy Number Variation
577 (gain or loss) events on every chromosome; HCC1395BL genome largely remains diploid
578 except for chr6 and chr16 and chrX. It showed loss of a chrX and a net loss of one copy of the
579 short-arm of chr6 and loss of one copy of the long-arm of chr16. Cytogenetic analysis with
580 Affymetrix Cytoscan HD microarray confirms the Cytogenetic view of HCC1395 which harbors
581 many copy numbers gains or losses; Cytogenetic view of HCC1395BL confirms the losses of
582 chr6p, chr16q, and chrX (NBT-RA46164).

583 For HCC1395 cell line, the tumor purity and ploidy estimated from Illumina WGS data set
584 (**Suppl. Figure 5a**) using PURPL¹⁷ software showed the tumor purity is 99% and the ploidy is
585 around 2.85. Cell ploidy histogram from 10X Chromium single cell CNV data set (**Suppl.**
586 **Figure 5b**) displayed the vast majority of cells form a peak around ploidy 2.8. The analysis of
587 1270 cells for HCC1395 from 10X Single Cell CNV data set also revealed numerous
588 chromosome gains and losses events (**Suppl. Figure 5c**) consistently in sub-populations of
589 cells, which confirmed HCC1395 is a heterogeneous cell line.

590

591 **Assessment DNA Damage Artifacts**

592 A previous study has revealed that DNA damage accounts for the majority of the false calls
593 for the so-called low-frequency (1-5%) genetic variants in large public databases⁸. The DNA
594 damage directly confounds the determination of somatic variants in those data sets. The
595 Global Imbalance Value (GIV) score is commonly used to measure DNA damage based on an
596 imbalance between paired-end sequencing R1 and R2 variant frequency⁸. GIV scores to
597 capture the DNA damage due to the artifacts introduced during genomic library preparation,
598 the combination of heat, shearing, and contaminates can result in the 8-oxoguanine base
599 pairing with either cytosine or adenine, ultimately leading to G>T transversion mutations
600 during PCR amplification¹⁸. In addition, Formaldehyde also causes the deamination of
601 guanine. FFPE is known to cause G>T/C>A artifacts¹⁹.

602 We calculated GIV score to monitor DNA damage in Illumina WGS and WES runs for both
603 fresh DNA libraries as well as FFPE libraries. We found lower GIV scores for the G>T/C>A
604 mutation pairs in fresh DNA WGS libraries (**Figure 4a**) than FFPE WGS libraries (**Figure 4b**). In
605 addition, both fresh cell DNA WES (**Figure 4c**) and FFPE WES Libraries (**Figure 4d**) all showed
606 increased GIV scores for the G>T/C>A mutation pairs relative to WGS libraries. The GIV for
607 G>T/C>A scores was inversely correlated with insert fragment sizes, and it is positively

608 correlated to DNA shearing time (**Suppl. Figure 5a/b/c**); WES libraries have consistently
609 shorter library insert sizes than all WGS library sizes (**Figure 2f**). Thus, the GIV of G>T/C>A is a
610 good indicator of DNA damage introduced during genomic library preparation. We observe
611 the libraries have high G>T/C>A GIV scores also have a higher percentage of C/A mutation
612 called in WES from private mutation calls which are not shared among replicates as displayed
613 in **Suppl. Figure 5d**. Therefore, in order to improve cancer genomic variant call accuracy,
614 effective mitigation strategies to improve library preparation methods, or software tools to
615 detect and remove the DNA damage mutation calls are essential.

616

617

618 **Assessment reproducibility of somatic mutation calling from WES and WGS data sets**

619 To assess the concordance and reproducibility of the somatic variant detection with both
620 WES and WGS, we compared 12 replicates of WGS and WES for the matched tumor and
621 normal cell lines carried out at six sequencing centers. Using three mutation callers
622 (MuTect2¹², Strelka2¹³, and SomaticSniper¹⁴) on alignments from three aligners (Bowtie2¹⁵,
623 BWA MEM³, and NovoAlign), we generated a total of 108 variant call files separately. We
624 were able to assess inter- and intra-centers reproducibility of the WES and WGS using the 12
625 repeat runs. The Venn diagram is widely used to display concordance of mutation calling
626 results from a small number of repeated analyses; however, this type of diagram is not
627 suitable for large data sets. To address this challenge, we applied the “tornado” plot to
628 visualize the consistency of mutation calls. The number of SNVs unique to one single VCF file
629 are represented by the width of the tornado at the bottom, and the number of SNVs called
630 in all VCF files are represented by the width at the top. Thus, like the actual meteorological
631 event, a tornado that is touching down is “bad” (many called variants are likely false
632 positives), and a tornado with the majority of the data at the top is “better” (many common
633 variants called across all conditions). As shown at the top of each plot (**Figure 5a**), we
634 observed relatively more library-specific variants at the bottom of the WES tornado plots
635 (bottom of tornado). In contrast, majority of called mutations (top of tornado) were shared
636 across all 12 WGS (**Figure 5b**). Therefore, calling results from WES tended to have more
637 inconsistent SNV calls (bottom of tornado) than those from WGS, indicating that WES results
638 were less consistent than WGS results (**Figure 5a/b**). Here we also introduced the O_Score, a
639 metric to measure reproducibility of repeated analyses (see Methods). O_Scores for WES
640 runs were not only significantly lower than WGS runs, but also more variable (**Suppl. Figure**
641 **7a**). In addition, we measured reproducibility between replicates of WGS runs from both
642 NovaSeq and HiSeq platforms to assess cross-platform variation. Both platforms were
643 remarkably similar in terms of reproducibility, indicating that results from HiSeq and
644 NovaSeq are comparable (**Suppl. Figure 7b**). Overall, we observed the cross-center and
645 cross-platform variations for WGS were very small, indicating that all individual NGS runs,
646 regardless of sequencing centers or NGS platforms, detected most “true” mutations
647 consistently for WGS runs.

648

649 We also computed SNVs/indels calling concordance between WES and WGS from twelve
650 repeated runs. For direct comparison, SNVs/indels from WGS runs were limited to genomic
651 regions defined by an exome capturing protocol (SureSelect V6+UTR). WGS has a smaller
652 number of private calls for each sample than WES (**Figure 5c**). We observed the overlap
653 between the WES and WGS improved as sequencing depth increased. Moreover, the
654 correlation of MAF in overlapping WGS and WES SNVs/indels from repeated runs are
655 positively correlated with higher sequencing depth (**Figure 5d**). This indicates the benefit of
656 high read coverage not only improves the detection sensitivity of mutations with low MAF,
657 but also increases reproducibility of the calling sets. Overall, our results indicate the inter-
658 center variations for WES were larger than inter-center variations for WGS, whereas the
659 difference between intra-center variation between WES and WGS was not significant. As a

660 result, WGS had much less inter-center variation and thus provided better reproducibility
661 than WES for cancer genomic variants detection.

662
663

664 **Code Availability**

665
666
667
668
669
670

All code used in processing the whole genome and exome-seq data are available on GitHub
at the following link:

https://github.com/abcsFrederick/NGS_Preprocessing_Pipeline

671 **Acknowledgements**

672

The authors would like to thank Drs David Goldstein and Mariam Malik of the Office of
Technology and Science at National Cancer Institute (NCI), National Institutes of Health
(NIH), for the sponsorship and the usage of the NIH Biowulf cluster and support for this
study; Dr. Jack Collins of the Advanced Biomedical and Computational Sciences, and Dr. Eric
Stahlberg of Biomedical Informatics and Data Science Directorate at Frederick National
Laboratory for Cancer Research for reviewing manuscript and providing suggestions; Seven
Bridges Genomics for providing storage and computational support on the Cancer Genomic
Cloud (CGC); this work also used the computational resources of Frederick Research
Computing Environment (FRCE) at Frederick National Laboratory for Cancer Research. The
authors sincerely thank members at NCI Sequencing Facility at Frederick National Laboratory
for Cancer Research for their sequencing support for this study. This project has been funded
in part with Federal funds from the National Cancer Institute, National Institutes of Health,
under Contract No. HHSN261201800001I. The genomic work carried out at the Loma Linda
University (LLU) Center for Genomics was funded in part by the NIH grant (S10OD019960),
the Ardmore Institute of Health (AIH) grant (2150141), the American Heart Association (AHA)
grant ((18IPA34170301), and Dr. Charles A. Sims' gift to LLU Center for Genomics. Drs. L. Shi
and Y. Zheng were supported by the National Natural Science Foundation of China
(31720103909), the National Key R&D Project of China (2018YFE0201600), and Shanghai
Municipal Science and Technology Major Project (2017SHZDZX01). The work carried out at
Uppsala University was supported by grants from the Swedish Research Council (2017-
00630, 2019-01976) and the Knut and Alice Wallenberg Foundation. Ene Reimann was
supported by the European Union through the European Regional Development Fund
(Project No. 2014-2020.4.01.15-0012).

696

697 **Disclaimer**

698

This is a research study, not intended to guide clinical applications. The views presented in this
article do not necessarily reflect current or future opinion or policy of the US Food and Drug
Administration. The content of this publication does not necessarily reflect the views or
policies of the Department of Health and Human Services. Any mention of commercial
products is for clarification and not intended as endorsement.

703

704

Author contributions

705

706

WX and YZ conceived and designed the study. YZ and WX drafted the manuscript. YZ, WX,
LTF, CW, JN, UL and DM edited the manuscript. BT, JS, YK, CW, EJ, CL, KI, YTZ, LS, VP, MS, TH,
EP, JD, PV, RM, DG, SK, ER, AS, JN, UL, ZC, and WC performed library construction and

709 sequencing. YZ, XW, LTF, BZ, ZS, SC, KT and XFC performed bioinformatics data analyses. YZ
710 and WX managed the project. All authors reviewed the manuscript. YZ finalized and
711 submitted the manuscript.
712

713 Competing interests

714 Li Tai Fang is employee of Roche Sequencing Solutions Inc. Erich Jaeger is employee of Illumina
715 Inc. Virginie Petitjean and Marc Sultan are employees of Novartis Institutes for Biomedical
716 Research. Tiffany Hung and Eric Peters are employees of Genentech (a member of the Roche
717 group). All other authors claim no conflicts of interest.

718 Figures

719
720 **Figure 1.** Study design for the experiment.
721 **Figure 2.** Overall data quality for WGS and WES data sets from Illumina platform
722 **Figure 3.** Genome coverage from WGS data from three technologies including Illumina,
723 PacBio, and 10X Genomics.
724 **Figure 4.** Evaluation of DNA damage for WGS and WES libraries
725 **Figure 5.** Reproducibility of somatic mutation calling from WES and WGS data sets

726 727 728 Figure Legends

729
730 **Figure 1.** Study design for the experiment. DNA was extracted from either fresh cells or FFPE
731 processed cells. Both fresh DNA and FFPE DNA were profiled on WGS and WES platforms for
732 intra-center, inter-center and cross-platform reproducibility benchmarking. For fresh DNA,
733 six centers performed WGS and WES in parallel following manufacture recommended
734 protocols with limited deviation. Three library preparation protocols (TruSeq-Nano, Nextera
735 Flex, and TruSeq PCR-free,) were used with four different quantities of DNA inputs (1, 10,
736 100, and 250 ng). DNA from HCC1395 and HCC1395BL was pooled at various ratios to create
737 mixtures of 75%, 50%, 20%, 10%, and 5%. For FFPE samples, each fixation time point (1hm
738 2h, 6h, 24h) had six blocks that were sequenced at two different centers. All libraries from
739 these experiments were sequenced on the HiSeq series. In addition, nine libraries using the
740 TruSeq PCR-free preparation were run on a NovaSeq for WGS analysis.
741

742 **Figure 2.** Overall data quality for WGS and WES data sets from Illumina platform. **(a)**
743 Percentage of total reads mapped to reference genome (hg38) for WGS (Green) and WES
744 (Red) across 6 sequencing sites. **(b)** Mean coverage depth for WGS libraries across 6
745 sequencing sites. **(c)** Mean coverage depth in target capture regions for WES libraries across
746 6 sequencing sites. **(d)** Percentage of non-duplicated reads mapped to reference genome
747 across 6 sequencing sites. WGS (Green) and WES (Red). **(e)** Percent GC content from
748 different library prep protocols. WGS (Green) and WES (Red). **(f)** Mean insert size distribution
749 from different library prep protocols. WGS (Green) and WES (Red).
750

751 **Figure 3.** Genome coverage from WGS data from three technologies including Illumina,
752 PacBio, and 10X Genomics. Outer rainbow color track: chromosomes, red track: HCC1395,
753 green track: HCC1395BL. **(a)** Genome coverage from WGS data by reads from Illumina
754 platform. **(b)** Genome coverage from WGS data by reads from 10X Chromium linked-read
755 technology **(c)** Genome coverage from WGS data by reads from PacBio platform. **(d)** Genome
756 coverage from WGS data by reads from 3 platforms together. Inner track: PacBio. Middle
757 track: 10X Genomics. Outer track: Illumina.

758

759 **Figure 4.** Evaluation of DNA damage for WGS and WES libraries. using GIV scores to capture
760 the DNA damage due to the artifacts introduced during genomic library preparation. The
761 estimation of damage is a global estimation based in an imbalance between R1 and R2
762 variant frequency. GIV score above 1.5 is defined as damaged. Undamaged DNA samples
763 have a GIV score of 1. **(a)** DNA damage estimated for fresh cell prepared DNA for WGS
764 Illumina libraries across different sites. **(b)** DNA damage estimated for FFPE WGS Illumina
765 libraries. **(c)** DNA damage estimated for fresh cells prepared DNA for WES Illumina libraries
766 across different sites **(d)** DNA damage estimated for FFPE WES Illumina libraries.

767

768 **Figure 5.** Reproducibility of somatic mutation calling from WES and WGS. The reproducibility
769 “Tornado” plots for 12 repeated WES **(a)** and WGS runs **(b)**. The number in each plot
770 represents the O_Score reproducibility measurement. **(c)** SNVs/indels calling concordance
771 between WES and WGS from twelve repeated runs. For direct comparison, SNVs/indels from
772 WGS runs were limited to genomic regions defined by an exome capturing kit (SureSelect
773 V6+UTR). WES is shown on the left in the Venn diagram and WGS is on the right. Shown
774 coverage depths for WES and WGS were effective mean sequence coverage on exome
775 region, i.e. coverage by total number of mapped reads after trimming. **(d)** Correlation of
776 MAF in overlapping WGS and WES SNVs/indels from repeated runs.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **Tables**

811 **Table 1:** Summary of all experiment data including WGS, WES discovery and validation data
812 sets used in the study.

813

Study Design	Technology	Platform	Sequecing	Number of Reads (coverage)	
				HCC1395	HCC1395BL
Discovery	WGS (Fresh DNA)	HiSeq	6 centers (24 libraries)	21 billion (750X)	21 billion (750X)
		NovaSeq	1 center (18 libraries)	13 billion (400X)	13 billion (400X)
	WES (Fresh DNA)	HiSeq	6 centers (24 libraries)	3 billion (2,500X)	3 billion (2,500X)
Validation	WGS Protocols	HiSeq	2 center (14 libraries)	9 billion (315X)	9 billion (315X)
	WGS Tumor Content	HiSeq	1 center (21 libraries)	64 billion (Mixture of samples, total 2300X)	
	WGS FFPE	HiSeq	2 center (26 libraries)	30 billion (980X)	27 billion (900X)
	WGS 10x Linked-Read	10X Genomics	5 centers (22 libraries)	20 billion (880X)	20 billion (880X)
	WGS PacBio	PacBio	1 center (2 libraries)	19 million (40X)	22 million (44X)
	WES FFPE	HiSeq	2 centers (17 libraries)	3 billion (2600X)	4 billion (3600X)
	Targeted Amplicon	Ion Torrent	1 centers (2 libraries)	67 million (34X)	82 million (47X)
	AmpliSeq	MiSeq	1 center (2 libraries)	25 million (2900x)	22 million (3300x)
	Microarray	AffyChip CytoScan HD	1 center (2 libraries)	2.1 million probes	
	Single Cell CNV	HiSeq	1 center (2 libraries)	1.5 billion (1465 cells)	1.3 billion (983 cells)

814

815

816 For the QC statistics for each data set, please reference the online-only supplementary
817 Table1 -10 for details.

818

819

820

821

822

823

824

825

826 **References**

827

828 1. Morash M, Mitchell H, Beltran H, Elemento O, Pathak J. The Role of Next-Generation
829 Sequencing in Precision Medicine: A Review of Outcomes in Oncology. *J Pers Med.*
830 2018;8(3):30. Published 2018 Sep 17. doi:10.3390/jpm8030030

831 2. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
832 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

833 3. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
834 arXiv:1303.3997 [q-bio] (2013).

835 4. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence
836 Data. Available at: <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. (Accessed:
837 4th September 2018)

838 5. Picard Tools - By Broad Institute. Available at: <http://broadinstitute.github.io/picard/>.
839 (Accessed: 23rd December 2017)

840 6. Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample
841 quality control for high-throughput sequencing data. *Bioinformatics* **32**, 292–294 (2016).

842 7. Ewels, P. MultiQC: Aggregate results from bioinformatics analysis across
843 many samples into a single report. *Bioinformatics* **32(19)**, 3047–8 (2016).

844 8. Chen, L., Liu, P., Evans, T. C. & Ettwiller, L. M. DNA damage is a pervasive cause of
845 sequencing errors, directly confounding variant identification. *Science* **355**, 752–756 (2017).

846 9. Heng Li, Minimap2: pairwise alignment for nucleotide sequences, *Bioinformatics*,
847 Volume 34, 18, 15 September 2018, Pages 3094-
848 3100, <https://doi.org/10.1093/bioinformatics/bty191>

849 10. Pedersen, B. et al. Indexcov: fast coverage quality control for whole-genome
850 sequencing, *GigaScience*, 6, 2017, 1-6 doi: 10.1093/gigascience/gix090

851 11. Bishara, A., Liu, Y., Weng, Z., Kashef-Haghghi, D., Newburger, D. E., West, R., Sidow,
852 A., & Batzoglou, S. (2015). Read clouds uncover variation in complex regions of the human
853 genome. *Genome research*, 25(10), 1570–1580. <https://doi.org/10.1101/gr.191189.115>

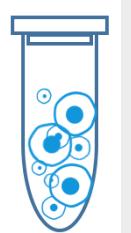
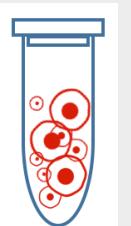
854 12. Cibulskis, K., Lawrence, M., Carter, S. et al. Sensitive detection of somatic point
855 mutations in impure and heterogeneous cancer samples. *Nat Biotechnol* **31**, 213–219 (2013).
856 <https://doi.org/10.1038/nbt.2514>

857 13. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced
858 tumor–normal sample pairs. *Bioinformatics* **28**, 1811–1817 (2012).

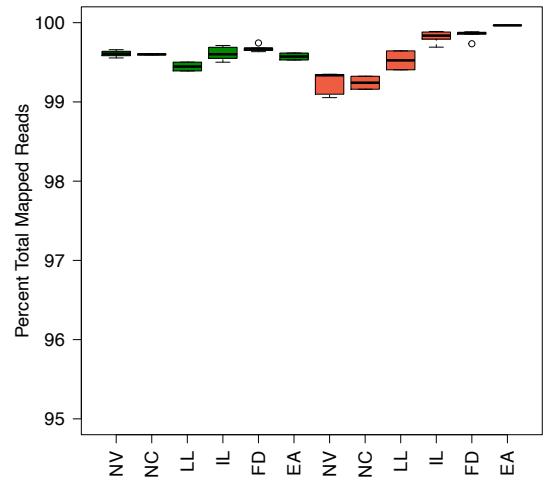
859 14. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in
860 whole genome sequencing data. *Bioinformatics* **28**, 311–317 (2012).

861 15. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-
862 efficient alignment of short DNA sequences to the human genome. *Genome Biol.* **10**,
863 R25 (2009).

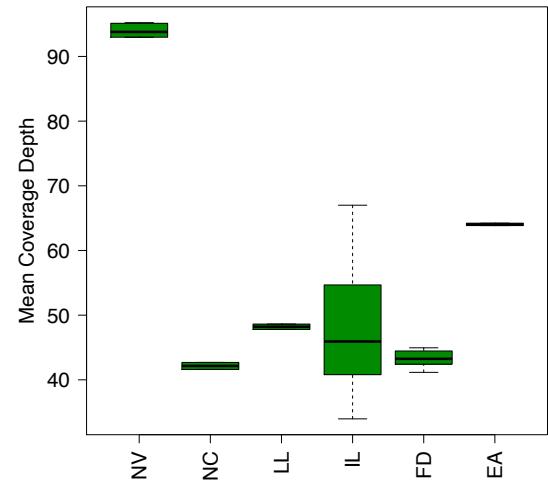
864 16. Flensburg, C, Sargeant, T, Oshlack, A, Majewski, IJ (2020) SuperFreq:
865 Integrated mutation detection and clonal tracking in cancer. *PLOS Computational
866 Biology* 16(2): e1007603. <https://doi.org/10.1371/journal.pcbi.1007603>



867 17. Cameron,D., Baber, J., Shale, C., Papenfuss, A., Valle-Inclan, J., Besselink,
868 M., Priestley, C. GRIDSS, PURPLE, LINX: Unscrambling the tumor genome via
869 integrated analysis of structural variation and copy number,
870 bioRxiv 781013; doi: <https://doi.org/10.1101/781013>

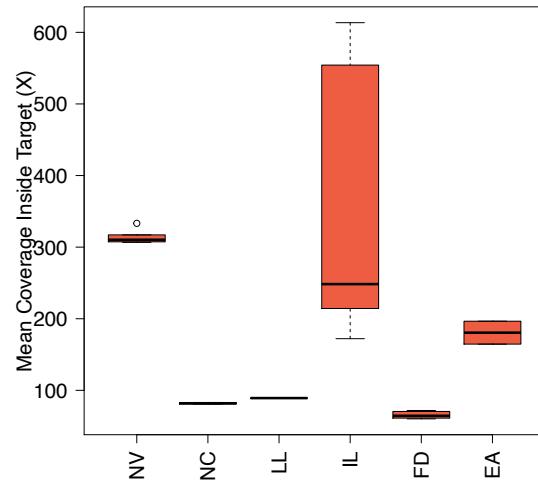
871 18. Costello, M. et al. Discovery and characterization of artifactual mutations in deep
872 coverage targeted capture sequencing data due to oxidative DNA damage during sample
873 preparation. *Nucleic Acids Res* **41**, e67 (2013).

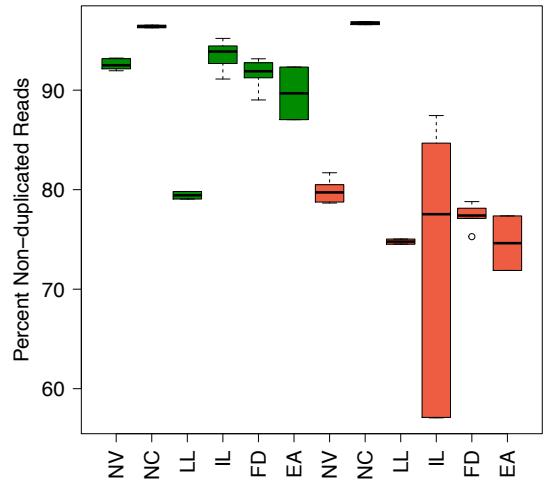

874 19. Do, H. & Dobrovic, A. Sequence Artifacts in DNA from Formalin-Fixed Tissues: Causes
875 and Strategies for Minimization. *Clinical Chemistry* **61 (1)**, 64–71 (2015).

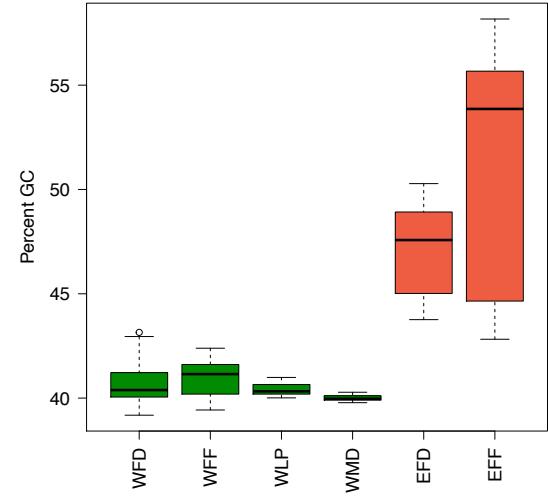
876

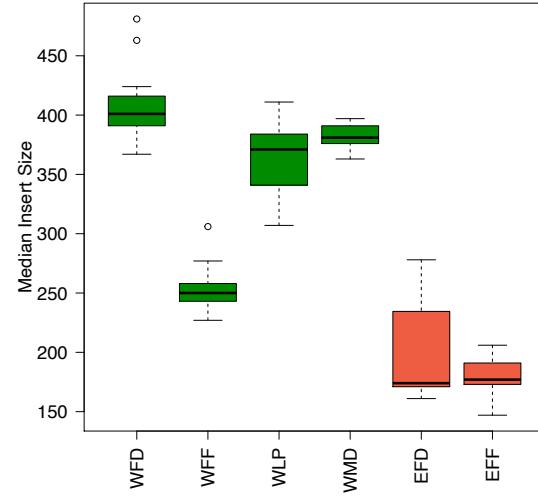

877
878
879
880
881

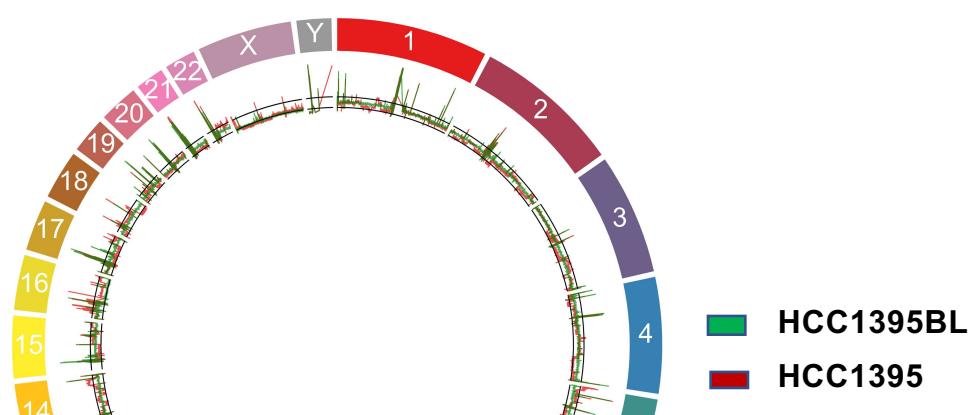
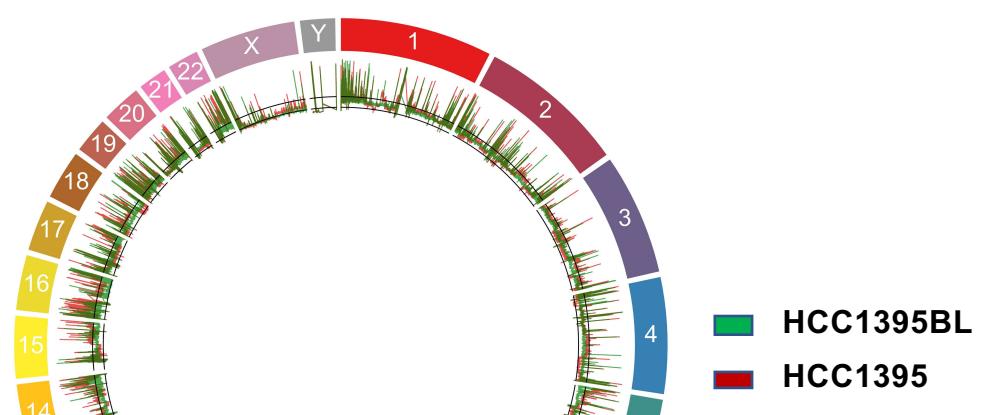
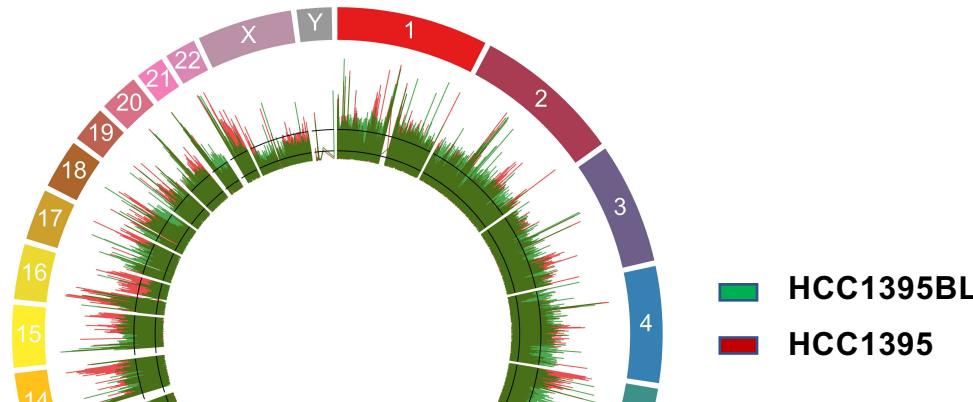
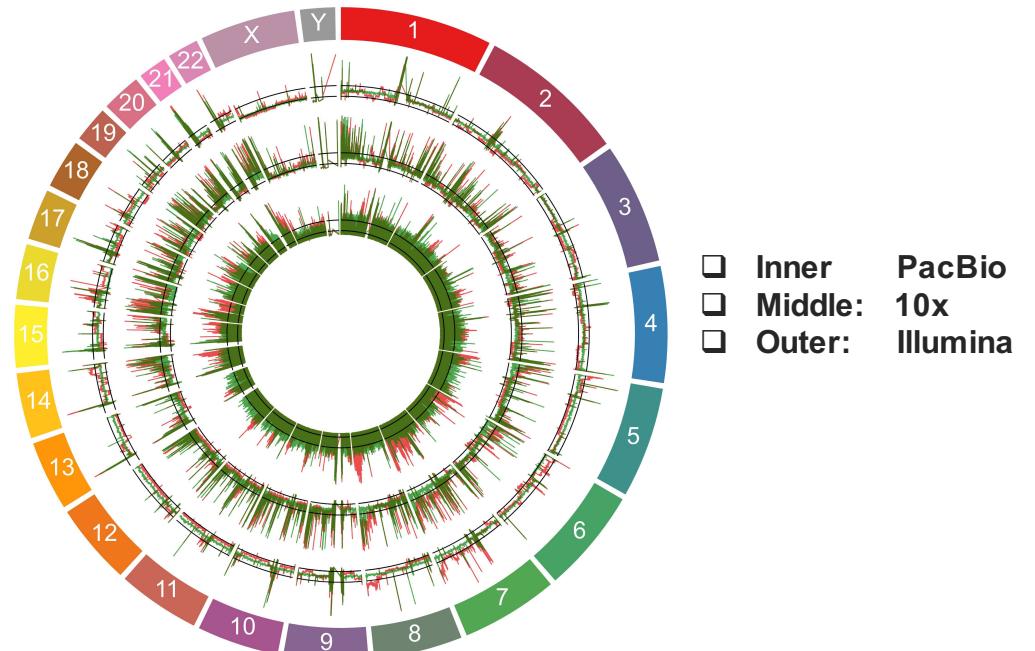
Reference sample	Sample types	NGS platform	Experiments
 Normal cell line HCC1395BL	Fresh DNA	WGS <ul style="list-style-type: none"> • Hi Seq • NovaSeq • PacBio • 10X Genomics WES <ul style="list-style-type: none"> • HiSeq • Ion Torrent AmpliSeq <ul style="list-style-type: none"> • MiSeq Microarray <ul style="list-style-type: none"> • AffyChip CytoScan HD 	Reproducibility: <ul style="list-style-type: none"> • Intra-center • Inter-center • Cross-platform Library preparation: <ul style="list-style-type: none"> • Library kit • DNA input amount Validation <ul style="list-style-type: none"> • Confirmation • Specificity • Sensitivity
 Tumor cell line HCC1395	FFPE DNA Mixture DNA	WGS <ul style="list-style-type: none"> • HiSeq WES <ul style="list-style-type: none"> • HiSeq 	FFPE process: <ul style="list-style-type: none"> • Fixing time: 1h, 2h, 6h, 24h • DNA damage Tumor purity: <ul style="list-style-type: none"> • 75%, 50%, 20%, 10%, 5%
	Fresh cells	scCNV <ul style="list-style-type: none"> • 10X Genomics 	Number of cells: <ul style="list-style-type: none"> • HCC1395BL: 983 • HCC1395: 1465


Percent Total Mapped Reads

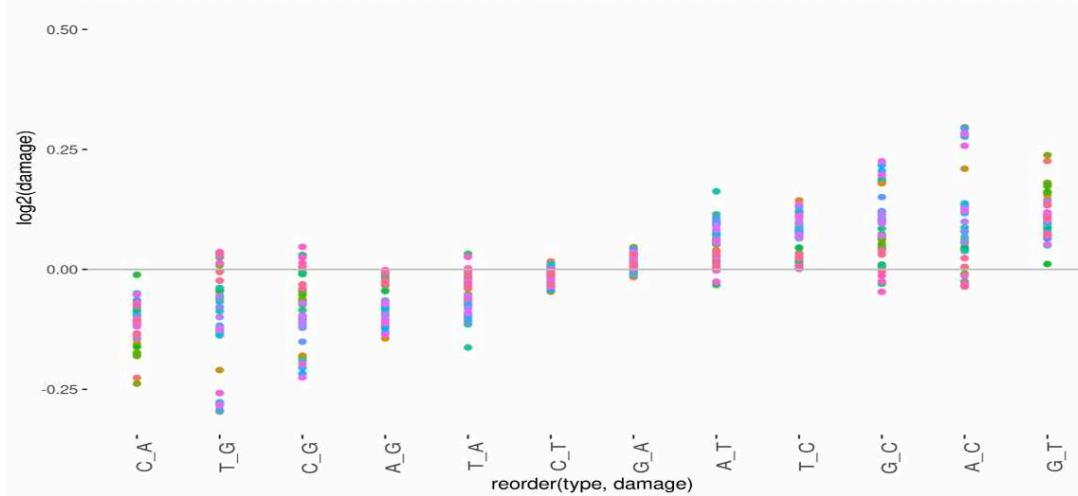

Mean Coverage Depth

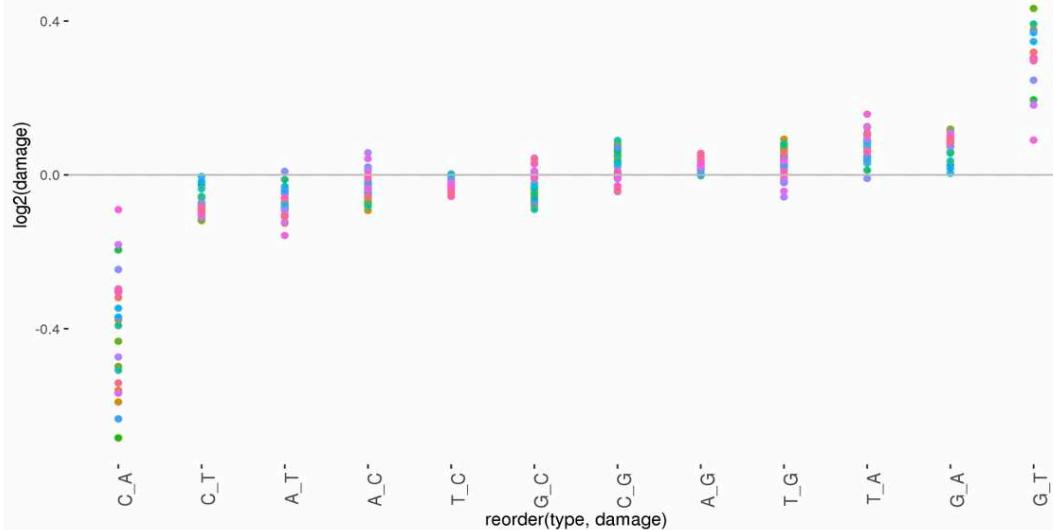

Mean Coverage Inside Target (X)


Percent Non-duplicated Reads

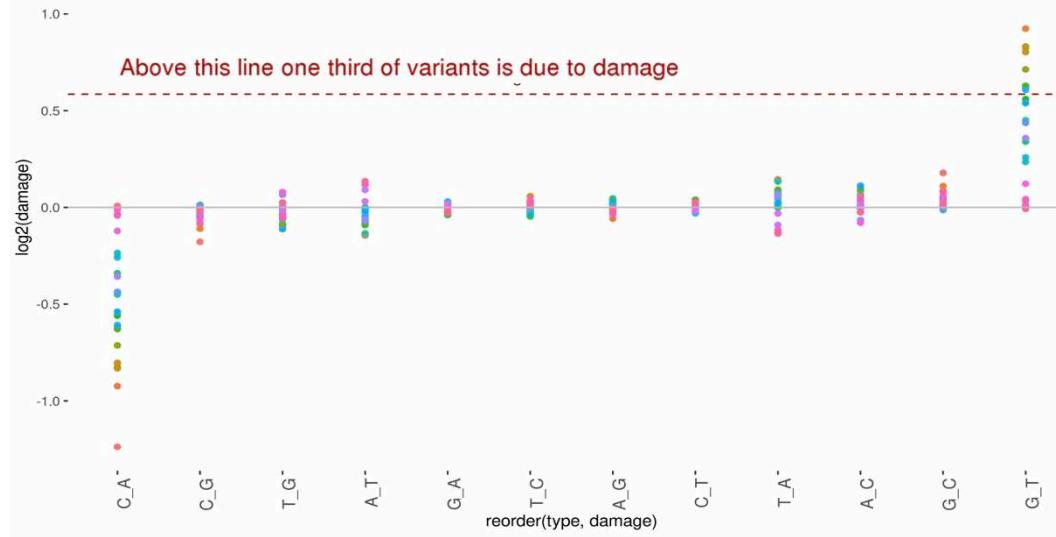





Percent GC


Median Insert Size

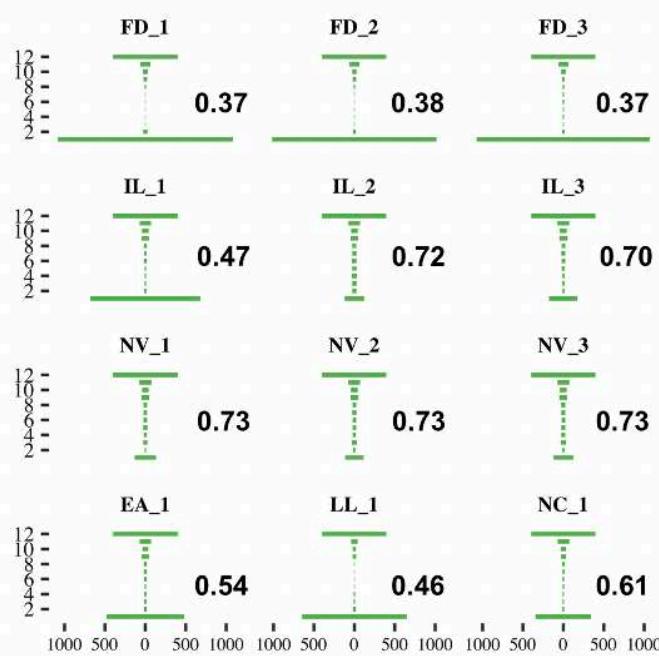
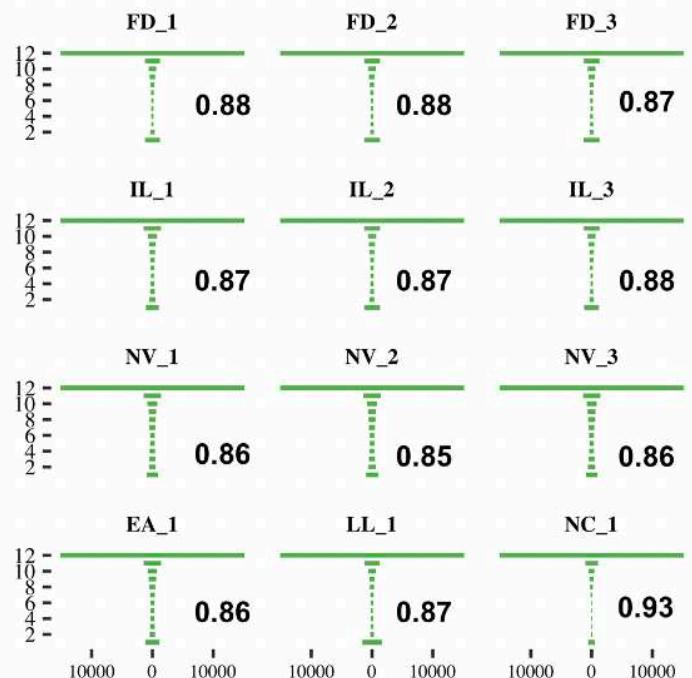
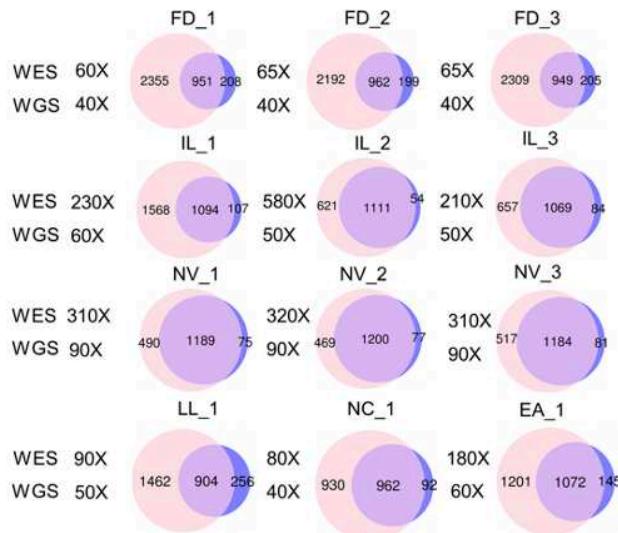
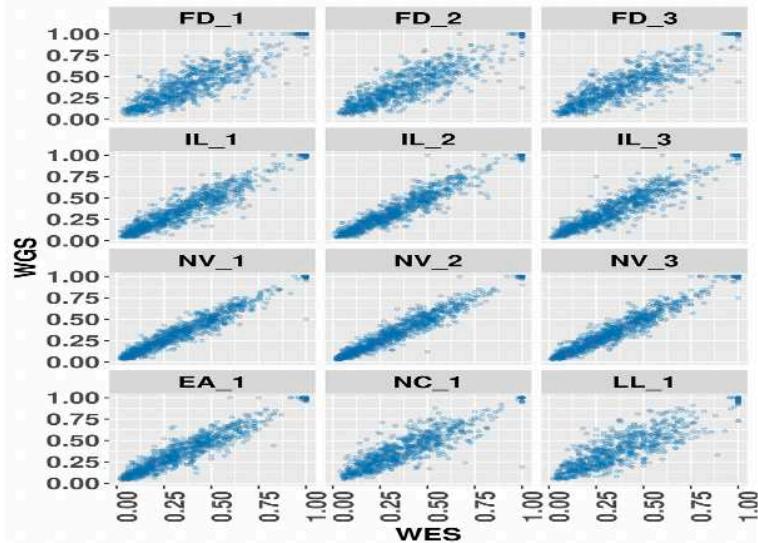

a**b****c****d**

a


Above this line one third of variants is due to damage

b

Above this line one third of variants is due to damage





c

Above this line one third of variants is due to damage

d

Above this line one third of variants is due to damage

a**b****c****d**