bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyrlght holder for thls preprlnt

(which was not certified by peer review) is the author/funde

available under aCC-BY- NCND 4.0 |nternat|ona| license.

NiftyTorch: A Deep Learning framework for
Neurolmaging

Adithya Subramanian', Haoyu Lan', Sankareswari Govindarajan', Lavanya Viswanathan', Jeiran
Choupan', and Farshid Sepehrband!

1USC Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California,
Los Angeles CA

Abstract—We present NiftyTorch a Deep Learning
Framework for Neurolmaging. The motivation behind the
development of such a library is that there are scant amount
of centralized tool for deploying 3D deep learning for Neu-
rolmaging. In addition, most of the existing tools require
expert technical knowledge in Deep Learning or program-
ming, creating a barrier for entry. The goal is to provide
a one stop package using which the users can perform
classification tasks, Segmentation tasks and Image Trans-
formation tasks. The intended audience are the members of
Neurolmaging who would like to explore deep learning but
have no background in coding. In this article we explore
the capabilities of the framework, the performance of the
framework and the future work for the framework.

[. INTRODUCTION

Neurolmaging is a sub-field of Neuroscience where the in-
ternal structure of the area interest in an organism is captured.
The Images are captured using techniques such as Magnetic
Resonance Imaging, Positron Emission Tomography and Com-
puted Tomography. The Image captured in the process has
helped the Physicians to diagnose fatal disease such as cancer,
Alzheimer’s disease, stroke and several other neurological
disorders. The diagnosis although now being a possibility
demands expertise from the Physician and is often difficult
even for well-trained Physicians to identify these diseases. It
is seen that use of deep learning has seem to alleviate these
problems for several applications. Deep learning could assist
Physician in diagnosis, feature extraction, disease monitoring,
reporting, future outcome prediction and so on. Hence, we are
building NiftyTorch to accelerate the usage of deep learning in
this field. NiftyTorch is pip installable (pip install niftytorch)
and the online documentation can be accessed via https:
//niftytorch.github.io/doc/.

A. Why NiftyTorch ?

There has been an explosive surge of improvements in the
field of deep learning in areas such Computer Vision, Natural
Language Processing and Speech Recognition whereas a scant
amount of developments can be seen in the application of deep
learning in NeuroIlmaging which can be easily transferred from
the aforementioned fields.

We identified that one of the main reasons behind such
a backlog in the developments across fields is the lack of

programming and deep learning knowledge that acts as barrier
in imbibing the recent advancements in one area of deep
learning to another one. Hence, we want have built NiftyTorch
such that it would less than 10 lines of code to train a deep
learning on your favourite dataset.

B. What can NiftyTorch do?

NiftyTorch is built on top the python library Pytorch [1]
which gives us flexibility to code complex research models
available at ease. NiftyTorch builds on top the code from
Pytorch to develop a custom dataloader that can work .nii
and .nii.gz format while maintaining the performance.

The library also has state of the Neural Networks for
3D data such as AlexNet, VGGNET, ResNet, ShuffleNet,
SqueezeNet and Xnor-Net. Nevertheless the user can develop
their own network using the 3D Convolution Building Blocks
such as Binary Activation, Channel Shuffle, Fire Module. We
also provide Segmentation Networks such U-Net, V-Net and
HyperDenseNet.

Our main contribution towards the accelaration of use of
deep learning the Neurolmaging field would be the use of
Automatic Hyperparameter Tuning. It is our hunch that many
research ideas get dropped during empricial analysis due
to lack of effective ways to improve performance. We feel
that automatic hyperparameter tuning will help neuroscientists
cross this barrier and present novel research using deep
learning.

We go in detail about what NiftyTorch has to offer in the
Framework section.

[I. RELATED WORK

While we offer a solution to the problem of applying deep
networks to the field of Neurolmaging there are other solution
which also offers different features to solve the same problem.
In this section we go about the different such solutions.

Monai framework is a PyTorch-based framework for deep
learning in healthcare imaging. It provides workflows for
using domain optimized networks, loss functions, metrics and
optimizers. Similar to NiftyTorch Monai also supports image
loader for loading nifty files and distributed training. It is also
optimized for CUDA support.

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(WhICh was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MedicalTorch is a python based library was one the early
libraries in this area it provides datasets, data loader, metrics,
models and loss functions.

In this section we describe the features of the package.
Fig. 1 is the diagrammatic representation of NiftyTorch ar-
chitecture. The complete architecture includes 6 modules:
NiftyTorchPrep, Datal.oader, Transformation, Model, Trainer
and Predicotr. We will describe each module’s details in the
following text.

FEATURES

A. NiftyTorchPrep

NiftyTorchPrep is the dataset structure transformation com-
mand to check if BIDS (Brain Imaging Data Structure) [2]
format of user’s dataset is correct and transform it into the
format that is coherent with data structure used in NiftyTorch.
Fig. 2 shows the dataset format transformation after using
below niftytorchprep command:

niftytorchprep bids-totraining [BIDS data path] [
output data path] --test 0.2 --val 0.2

T NS

B. Datal.oader

Data loader is the data loading module of the library and
supports three different tasks: classification, segmentation and |,
image transformation tasks. The data loader is built on top of
the Pytorch as a result it supports multiple workers, batch data
loading and applying transformations.

We have changed the internal working of the loader to
support nifty files i.e. it essentially supports all the files
supported by nipy library. The data loader in NiftyTorch
supports pre-processing such as resize, rotation and identifying
the area of interest.

The NiftyTorch has three types of Data Loaders:

« Classification Datal.oader
o Segmentation DatalLoader
 Paired Datal.oader
o Image transformation Datal.oader
1) Classification Data Loader: Classification Data Loader as
seen in the name is used for classification tasks. The built in
classification networks made available in the NiftyTorch have
also been integrated with the classification data loader. The
Classification Data Loader requires the data to be formatted
in the following:
1) Train
a) subject name 1
o tlw.nii.gz
o t2w.nii.gz
b) subject name 2
e tlw.nii.gz
o flairnii.gz
Similar directory distribution is required for the validation
dataset.

10 demographic =

The labels for each of the dataset is provided in the form
of a csv. The csv file must contain two columns one for the
subject name and the other one is for label.

An example for a the csv file would be as shown in the
Table 1.

Along with the label, the users can also provide demo-
graphic data which is categorical in nature as seen in Table
1. These features are included inside the neural network just
before we use reshape the input tensor to 2D.

The classification data loaders allows to load multiple
modalities of the same patient together so that we can leverage
as much data as possible. The modalities are stack on the
channels on top of the other.

Subject 1 Label | Age
subject name 1 | benign | 22
subject name 2 | malign | 77

A sample snippet of defining a Classification Data loader
can be seen below.

I from niftytorch.loader.dataloader import ImageFolder
> from torchvision import transforms
3 data_transforms =

transforms.Compose ([transforms.

ToTensor ()])
data_folder = "../data/train/"
data_csv = "../data.csv"
filename_label = "Subject"
class_label = "labels"
image_scale = 32
file_type = (‘tlw.nii.gz’,’flair.nii.gz’)

[’ factorl’,’ factor2’]

image_datasets = ImageFolder (loader_type = '
classification’ ,root = data,data_csv = data_csv
,transforms = data_transforms,target_transforms
= data_transforms, filename_label =
filename_label,class_label = class_label, common
= image_scale,file_type = file_type,demographic
= demographic)

Listing 1: Classification loader example

2) Segmentation Data Loader: Segmentation data loader is
used for segmentation tasks. The Segmentation data loader
has been integrated with the segmentation networks U-net, V-
net and HyperDenseNet. The directory distribution of files are
done as follows:

1) Train

a) subject name 1
e tlw.niigz
e seg.nii.gz

b) subject name 2
o tlw.nii.gz
e seg.nii.gz

The segmentation loader supports region of interest extrac-
tion which is very crucial for segmentation tasks since the
output masks are generally sparse in nature. This region of
interest pre-processsing is not needed for validation set as we
want to infer on the entire image. Hence, it can be removed
from the workflows with ease.

Another important factor is the multi-dimensional mask for
prediction as generally there might be different types of labels
for the same tumor in the brain. This is also supported by the
NiftyTorch.

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

3 data_transforms

o

© » =

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Driver code
specifying

source path
of images

NiftyTorchPrep

Transformation of BIDS
format to NiftyTorch format

DatalLoader

Segmentation data loader
Classification data loader
GAN data loader

Transformation

Image normalization
Image resize

Image rotation
Image crop
Noise addition

Tensors

Output images
stored in

destination
path

Predictor

Loading trained models to
do inference on test dataset

Trainer

Training on the training and
validation datasets and
saving trained models

Model

Segmentation model
Classification model
Image synthesis model

Fig. 1: NiftyTorch architecture.

A sample snippet of defining a segmentation Data Loader
can be seen in Fig 2.

from niftytorch.loader.dataloader import ImageFolder
from torchvision import transforms
transforms.Compose ([transforms.

ToTensor ()])
data_folder = "../data/train/"
data_csv = "../data.csv"
filename_label = "Subject”
class_label = "labels"
image_scale = 32
file_type = ('tlw.nii.gz’,’flair.nii.gz’)
demographic = [’ factorl’,’ factor2’]
image_datasets = ImageFolder (loader_type = '
segmentation’ ,root = data,transforms =

data_transforms, target_transforms
data_transforms, common image_scale)

Listing 2: Segmentation Loader example

3) Paired Data Loader: In Neurolmaging we always see that
the Data is a few i.e. of orders 1000 samples. The usual
networks like ResNet and AlexNet will have a hard time
learning from these samples.

Hence, we need metric learning loss functions which will
improve the performance of the deep learning models. Usually
the metric learning loss functions require multiple data points
to act as anchors and negative samples. This is currently
supported by NiftyTorch we believe that this will help neuro-
scientists to work on critical applications with scant amount.

The one of the functionalities supported by the Data Loader

is the number of negative samples to be sampled by the Data
Loader which is needed for implementation such as Angular
Loss, Circle Loss etc,.

The Directory structure of Paired Data Loader is same as
that of the Classification Data Loader.

A sample snippet of defining a Paired Data Loader can be
seen in Fig 3.

I from niftytorch.loader.dataloader import ImageFolder

2> from torchvision import transforms
3 data_transforms transforms.Compose ([transforms.

ToTensor ()])
4+ data_folder = "../data/train/"
5 data_csv = "../data.csv"
¢ filename_label = "Subject"
7 class_label = "labels"

s image_scale 32

9 file_type = (‘tlw.nii.gz’,’flair.nii.gz’)

10 demographic = [’/ factorl’,’ factor2’]

11 image_datasets = ImageFolder (loader_type = ’'paired’,
root = data,data_csv = data_csv,transforms =

data_transforms, target_transforms
data_transforms, filename_label
class_label class_label, common
file_type file_type,demographic
negative_examples 4)

filename_label,
image_scale,
demographic,

Listing 3: Paired loader example

4) Image transformation Data Loader: Image transformation
is a useful technique validated by deep learning methods
for recent years. It includes medical image reconstruction
from k-space, image super-resolution, noise reduction and

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

3 data_transforms =

6

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(WhICh was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

participants.tsv
| sub-01
|__anat
t sub — 01 — inplaneT2.nii.gz
sub — 01 — Tlw.nit.gz
func
tsub — 01 — task — deterministicclassi fication — run — 01 — bold.nii.gz
sub — 01 — task — deterministicclassification — run — 01 — events.tsv
L sub-02
| sub-03
| _sub-04
| sub-05
| sub-06

participants.tsv
| train
sub-02
sub — 02 — inplaneT2.nii.gz
sub — 02 — Tlw.nii.gz
sub — 02 — task — deterministicclassi fication — run — 01 — bold.nit.gz
sub — 02 — task — deterministicclassi fication — run — 01 — events.tsu
sub-04
sub-05
sub-06
| val
|_sub-01
—sub— 01 — inplaneT2.nii.gz
sub— 01 — T'lw.niz.gz
sub — 01 — task — deterministicclassification — run — 01 — bold.nii.gz
sub — 01 — task — deterministicclassification — run — 01 — events.tsv
L test
| sub-03
sub — 03 — inplaneT2.nii.gz
sub— 03 — Tlw.nii.gz
sub — 03 — task — deterministicclassification — run — 01 — bold.nii.gz
sub — 03 — task — deterministicclassification — run — 01 — events.tsu

Fig. 2: Format transformation from BIDS format to NiftyTorch
format.

image synthesis. NiftyTorch supports image transformation

tasks by GAN (Generative Adversarial Network) [3] and

specified GAN training dataloader. the directory structure of

image transformation Datal.oader is the same as that of the

classification Datal.oader.

from niftytorch.loader.GAN_Dataloader import
GAN_DataLoader

from torchvision import transforms
transforms.Compose ([transforms.

ToTensor () 1)
train_folder = ./data/train/"
5 val_folder = ./data/val/"
modalities = [’tlw.nii.gz’, 't2w.nii.gz’, ’'flair.nii
.gz’"]

8

batch_size = 4
train_dataset =
modalities|[

GAN_DatalLoader (train_folder,
:—1], modalities[-1], shuffle=True,

batch_size, transforms=data_transforms, name=’
training set’)
val_dataset = GAN_Dataloader (val_folder, modalities

[:-1], modalities[-1], shuffle=False,
, transforms=data_transforms,
set’)

batch_size
name='validation

Listing 4: GAN DatalLoader example

C. Transformation

Transformation module is used to do the image process-
ing and data augmentation before the training stage. Data

IS

Augmentation is made available for the users to increase the
data as it is usually less in compared to traditional deep
learning problems. The different types of preprocessing and
data augmentations available in NiftyTorch are as follows.
1) Normalization: Min-max normalization and Z score nor-
malization are supported by NiftyTorch.
2) Rotate: This operation allows the user to rotate the tensor
90 degree, 180 degree and 270 degrees along different axis.
3) Noise Addition: This operation allows the user to add to
input tensor which can help us to improve next performance
in low data scenario and as well as when the data is sparse.
import torch
input = torch.ones(64,512,32,32,32)
from niftytorch.Transformations.Transformations
import Add_Noise
output = Add_Noise (input,mean =
shape),std =

torch.zeros (input.
torch.eye (input.shape))

Listing 5: Noise Addition example

4) Random Segmentation Crop: This operation allows the
user to randomly crop areas of the input image around ground
truth segmentation masks.

generate two random images

import torch

input = torch.ones(64,512,32,32,32)

mask = torch.zeros(64,512,32,32,32)

context = 32

use niftytorch random segmentation crop

from niftytorch.Transformations.Transformations
import Random_Segmentation_Crop

input,mask = Random_Segmentation_Crop (input,mask,
context)

Listing 6: Random Segmentation Crop example

5) Resize: The Resize operation resizes the input tensor
and mask tensor if it present to the provided size using
interpolation.

generate two random images
import torch

3 input = torch.ones(64,512,32,32,32)
mask = torch.zeros(64,512,32,32,32)
context = 32

use niftytorch resize

from niftytorch.Transformations.Transformations
import Resize

input,mask = Resize (input,mask, context)

Listing 7: Resize example

D. Models

The NiftyTorch has a collections of models which can be
used directly with less than 3 lines of code. In the section
below we brief about the changes we have made to adopt
the models for 3D data, the tunable hyper-parameters of the
model and the ones which are considered for the automatic
hyper-parameter tuning. All the models have support for
demographic data.

1) AlexNet: In NiftyTorch for AlexNet [4] we only fix the
architecture of the model and rest of the hyperparameters are
tunable. The output dimension of the matrix dimension is the
tunable by the user and the input size of the network is not
fixed.

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

o

10

11

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

from niftytorch.models.alexnet import alexnet
import torch

3 initial_ feature_map = 128
num_classes = 2
5 in_channels = 1
s demographic = [’ factorl’,’ factor2’]
strides = [1,2,1,1,1]
channels = [1,2,2,2,1]
kernel_size = [3,5,3,3,1]
padding = [0,1,1,1,1]
model = alexnet (initial_feature_map,num_classes =

num_classes, in_channels in_channels, strides
strides, channels channels, kernel_size
kernel_size,padding = padding,demographic

demographic)

Listing 8: Alexnet example

2) Vgg Net: In NiftyTorch, Vgg Net [5] we have added
support for the different versions of VGG Network, this
include A,B,D and E. The VGG also has Batch-Normalization
included in it to boost the performance of the network.

The users can also change the structure of the network to
have a custom version.

from niftytorch.Models.vggnet import vggnet

image_scale = 128
3 demographic = [’ factorl’,’ factor2’]
cfgs = {'A":[32,32,32,"'M",64,64,64]}
5 version = "A’
s in_channels = 1
num_classes = 2
init_weights = True

model VGG (image_scale, cfgs cfgs,version =
version, features featurs, num_classes
num_classes, init_weights init_weights,

demographic demographic)

Listing 9: VGG Net example

3) ResNet: ResNet [6] being one of the most powerful
networks we also provide support for it. In Resnet we include
two type of internal structure one is the bottleneck and basic

3 num_classes

4) SqueezeNet: Considering that the data size is large and
occupies a lot of memory we believe that it is important to
have support networks which do not occupy as much memory
as other models. Hence, we need squeezenet [7] which helps
us attain high accuracy as g as Alexnet with fewer parameters.

In NiftyTorch we support SqueezeNet version 1.0 and 2.0.
In terms of Automatic Hyper-parameter we currently do not
support Hyper-parameter tuning.
from niftytorch.models.squeezenet import squeezenet
version r1_ 1
= 2
in_channels = 1

model squeezenet (version
2,1n_channels 1)

version,num_classes

Listing 11: SqueezeNet example

5) ShuffleNet: Again considering the memory efficiency
issues in the Neuroscience, NiftyTorch supports ShuffleNet
[8].

from niftytorch.models.shufflenet import shufflenet

stage_repeats = [3,7,3]
3 groups = 5
num_classes = 2
demographic = [’ factorl’,’ factor2’]

block. Unlike the other networks in NiftyTorch Resnet also 3

allows tuning of the number of layers in the network. Although
a hyper-parameter this is not included in automatic hyper-
parameter tuning as this causes a lot of parameter in the
framework.

from niftytorch.models.resnet import resnet

import torch.nn as nn
from niftytorch.layers.layers import bottleneck

block = bottleneck

5 demographic = [’/ factorl’,’factor2’]
layers = [1,2,1,1,2]
stride = [1,1,1,1,1]

> norm_layer
3 in_channels

num_classes = 2
zero_init_residual
groups = 1
replace_stride_with_dilation
nn.Batchnorm3d
=1

ResNet (block block, layers layers, stride
stride, in_channels 1,num_classes
num_classes, zero_init_residual
zero_init_residual, groups groups,
replace_stride_with_dilation
replace_stride_with_dilation,norm_layer
norm_layer, demographic demographic)

True

[2,2,2,2,2]

model = = =

Listing 10: ResNet example

)

10
11

» in_channels

=1

model shufflenet (stage_repeats stage_repeats,
groups groups, in_channels = 1,num_classes
num_classes)

Listing 12: Shufflenet example

6) Xnor Net: Considering the huge tensor size, the memory
and speed both become an issue we have implemented Xnor
Net [9] in NiftyTorch to counter these aspects.

In NiftyTorch we’ve implement XNOR Net with an Alexnet
base.

from niftytorch.Models.xnornet import alexnet

image_scale = 128

num_classes = 2

in_channels = 1

demographic = [’ factorl’,’ factor2’]
s channels = [8,16,24,32,32,32]

kernel_size = [11, 5, 3, 3, 3]

strides = [4, 1, 1, 1, 1]

padding = [0, 2, 1, 1, 1]

groups = [1, 1, 1, 1, 1]

alexNet (image_scale image_scale,num_classes
num_classes, in_channels in_channels, channels
channels, kernel_size kernel_size, strides
strides, padding padding, groups groups,
demographic demographic)

Listing 13: Xnor net Example

7) U-Net: The image segmentation models UNet [10] ,VNet
[11] and HyperDenseNet [12] allow the users to train model,
store and make use of an already trained model, segment
unseen images. The model supports multiple modality in-
puts and can generate both single and multiple channel out-
puts. Users can tune the model as per their requirement.
In terms of compute, parameters like cuda’, 'num_workers’,
’device_ids’ can help train the model with minimal consump-
tion of resources. In terms of results accuracy(model perfor-
mance), 'stride’,’padding’, kernel_size’,’downsample’ parame-
ters can be made use of.

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(WhICh was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Based on the test results, we derived inferences on the
behavior of the three models. Apart from the close differences
in the architecture, U-Net seems to be perform well in pre-
dicting more accurately when compared to V-Net. Whereas,
HyperDenseNet is best suitable for image samples of very low
dimensionality.

Unlike the other models U-Net is built for the purpose of
segmentation, this U-Net supports multi-class segmentation. A
resulting segmentation and comparison can be seen below.

For an image of voxel dimension 138*170*137 the param-
eters are as seen in the snippet below:

import torch.nn as nn

> init_features 64
3 in_channels = 3
out_channels = 4
5 stride = [2, 2, 2, 2, 2, 2, 2, 2]
v padding = [1,1]
groups = 1
kernel_size = [3,3,5,5,5,5,4,4,5,4,1]
bias = [False, False, False, False, False]

11

> UNet (in_channels=in_channels,

norm_layer = nn.BatchNorm3d

from niftytorch.Models.Unet import UNet
out_channels=
out_channels, stride=stride, init_features=
init_features, bias = bias, kernel_size =
kernel_size, padding = padding, groups=groups,
norm_layer=norm_layer)

Listing 14: U net Example

8) V-Net: Similar to U-Net NiftyTorch also supports to V-
Net.

9) HyperDense-Net: Similar to U-Net NiftyTorch also sup-
ports to HyperDense-Net. HyperDense-Net was based on
DenseNets and extended a better performance for multi-modal
segmentation.

10) Pix2pix: NiftyTorch also supports neuroimage synthesis
tasks. Pix2Pix [13] is a well developed image transformation
algorithm and we extended 2D Pix2Pix model to 3D to handle
neuroimage modalities synthesis.

11) SC-GAN: In order to fully support neuroimage synthe-

sis tasks, NiftyTorch incorporates multi-modality neuroimag- °

ing synthesis algorithm SC-GAN [14].
Pix2pix and SC-GAN share the same defination code, here
we only show one snippet about how to define SC-GAN.

from niftytorch.Models.GAN import SC-GAN

> image_scale = 128

3 in_channels = 1
out_channels = 1

5 model = SC-GAN ()

7 model.discriminator (size=image_scale,

model.generator (size=image_scale,
in_channels,

input_dim=
output_dim=out_channels)
input_dim=
in_channels+out_channels, output_dim=
out_channels)

Listing 15: GAN Example

E. Trainer and predictor

NiftyTorch supports modularized training and predicting
procedure. In order to simplify the training and predicting

3 convolution_block =

processes for the user friendly purpose, NiftyTorch enables -

two modules called trainer and predictor. Users only need to
specify generic training parameters like batch size, training

epochs, learning rate etc and pass the predefined models to
trainer. The trainer will finish the training process on training
and validation dataset automatically and save the trained model
in the user defined model-saving path. Predictor fetches trained
model and do the inference on test dataset and save output
images in the user defined image-saving path.

IV. MODEL CUSTOMIZATION

We are not constrained with the models presented in the
above section. We’re able to extend building networks beyond
the conventional network as we make the inner building blocks
available which we will be described in section 3.3.

We have also made a demo available on how to use a custom
network with Datal.oader mentioned in Section 3.1. It also
supports adding attention mechanism and demographic data.

A. Convolutional Building Blocks

The Convolutional Building Blocks are the smallest unit
used in the neural network which act as backbone of the build-
ing block. We can mix and match each of the Convolutional
building block to form our custom models.

1) BottleNeck Unit: BottleNeck is the building block of the
residual neural network which is used in highly deep network.

from niftytorch.layers.layers import basicblock

> in_planes = 512

3 convolution_block = basicblock (in_planes = in_planes
yplanes = 256,out_planes = 32,stride = 1,groups
= 1,bias = False)

Listing 16: BottleNeck unit example

2) Shuffle Unit: ShuffieNet unit specially designed for small
networks with similar basis to residual building block. Channel
shuffle operation makes it possible to build more power-
ful structures with multiple group convolutional layers. The
convolution is a combination of depth-wise convolution and
pointwise convolution.

from niftytorch.layers.layers import shuffleunit

in_planes = 512

planes = 256

convolution_block = shuffleunit (inplanes = in_planes
, planes = planes, groups=5, grouped_conv=True,
combine = ’concat’,compression_ratio = 4)

Listing 17: Shuffle unit example

3) Fire Module: A Fire module is comprised of: a squeeze
convolution layer (which has only 1x1 filters), feeding into an
expand layer that has a mix of 1x1 and 3x3 convolution filters.
It is the foundation of SqueezeNet.

from niftytorch.layers.layers import fire
in_planes = 20

fire(inplanes =
squeeze_planes = 3, expandlxl_planes =
expand3x3_planes = 12)

in_planes,
12,

Listing 18: Fire Module example

4) Binary Activation: The Binary Activation is a module
which speeds up the computation of activation through bi-
narization the feature map.

from niftytorch.layers.layers import binactive
activation = binactive ()

Listing 19: Binary Activation example

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 7

5) Binary Convolution: The Binary Convolution is Binarized
formulation of the convolution operator which as a results
reduces the computation time and the storage space.

from niftytorch.layers.layers import binconv3d

in_channels = 512
3 activation = binconv3d(input_channels = in_channels,
output_channels = 256,kernel_size = 3,stride =
2,padding = 1,groups = 1,dropout = 0.5,Linear =
False)

10

Listing 20: Binary Convolution example

B. Loss Functions

The Loss Functions are made such that it is easily integrat-

able with custom models as well as the current models.

1) Cross Entropy: In NiftyTorch models the default loss*
function is CrossEntropy with equal weights. The different,
weights are supported but it needs to be passed explicity. >
The snippet below shows below on how to use explicity use "

weighted cross entropy.

import torch

from niftytorch.models.alexnet import train_alexnet
from torchvision import transforms

import torch.nn as nn

5 weights = [0.7,0.3]
weights = torch.FloatTensor (weights) .to(’cuda:4")
loss = nn.CrossEntropy (weight = weights)
data_transforms = transforms.Compose ([transforms.
ToTensor () 1)
data_folder = ".."
data_csv = "data.csv"
train = train_alexnet ()
file_type = (‘tlw.nii.gz’,’flair.nii.gz’)

train.set_params (
num_classes =
in_channels =
data_folder =

2’
len(file_type),
data_folder,

data_csv = data_csv,

channels = [1,2,4,2,1],
kernel_size = [3,5,5,3,1],
strides = [1,2,2,2,1],

padding = [1,1,1,1,1],
data_transforms = data_transforms,
filename_label = ’Subject’,
class_label = ’'status’,
learning_rate = le-2,

step_size = 10,

gamma = 0.2,

cuda = ’'cuda:4’,

optimizer = torch.optim.RMSprop,
file_type = file_type,
batch_size = 64,

image_scale = 128,

loss = loss)
train.train ()

Listing 21: Cross Entropy Loss example

are 0.5 weights for each and exponent is 2. Unlike Pytorch’s
implementation of the CrossEntropy Loss both the weights
and exponent can be simple list and float respectively.

import torch
from niftytorch.models.alexnet import train_alexnet
from niftytorch.Loss.losses import focalloss

from torchvision import transforms

import torch.nn as nn
weights = [0.7,0.3]

loss focalloss (alpha =

= weights,gamma = 2.5)

8

10

11

34

data_transforms =
ToTensor ()])

data_folder = ".."

data_csv = "data.csv"

train train_alexnet ()

file type = (‘tlw.nii.gz’,’flair.nii.gz’)

transforms.Compose ([transforms.

3 train.set_params (

num_classes = 2,
in_channels len(file_type),
data_folder data_folder,
data_csv = data_csv,

channels = [1,2,4,2,1],
kernel_size = [3,5,5,3,1],
strides = [1,2,2,2,1],
padding = [1,1,1,1,1],

data_transforms data_transforms,

filename_label = ’Subject’,
class_label = ’status’,
learning_rate = le-2,

step_size = 10,

gamma = 0.2,

cuda = ’'cuda:4’,

optimizer = torch.optim.RMSprop,
file_type = file_type,
batch_size = 64,

image_scale = 128,

loss = loss)
train.train ()

Listing 22: Focal Loss example

3) Focal Dice Loss: Focal Dice Loss can be used imitate
Dice Loss by setting beta = 1.
from niftytorch.models.Unet import train_unet

from niftytorch.Loss.losses import focaldiceloss
from torchvision import transforms

weights = [0.7,0.3]

loss = focaldiceloss (alpha = weights, gamma = 1)

data_transforms = transforms.Compose ([transforms.
ToTensor ()])

train_folder = "data/train"

val_folder = "data/val"

test_folder = "data/folder"

train = train_unet ()

train.set_params (train_data = train_folder, val_data
= val_folder, test_data = test_folder,

batch_size = 2, in_channels = 1, out_channels =
3,filename = ('tlw.nii.gz’,),cuda = 'cuda:2’,

loss loss)

> train.train ()

6 train_folder =

2) Focal Loss: The default parameters to the Focal Loss [15] _

Listing 23: Focal Dice Loss example

4) Lovasz Softmax: Lovasz softmax [16] loss is used for
handling unbalance-class segmentation problem.
from

from
from

niftytorch.Models.UNet import train_unet

niftytorch.loss.losses import lovaszsoftmaxloss

torchvision import transforms

loss lovaszsoftmaxloss ()

data_transforms transforms.Compose ([transforms.
ToTensor()])

"data/train"

val_folder = "data/val"

test_folder = "data/folder"

train train_unet ()

train.set_params (train_data = train_folder,
= val_folder, test_data = test_folder,
batch_size = 2, in_channels = 1, out_channels
3,filename = ('tlw.nii.gz’,),cuda = ’'cuda:2’,
loss loss)

train.train()

val_data

Listing 24: Lovasz Softmax example

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

SN

® a o

1

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(WhICh was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

5) Adversarial loss: Adversarial loss is used for GAN
(generative adversarial nets) [3] training process. NiftyTorch
supports GAN related algorithm Pix2Pix and SC-GAN.

6) Soft N Cut Loss: Soft N Cut Loss is used for unsuper-
vised image segmentation.

from niftytorch.Models.UNet import train_unet
from niftytorch.loss.losses import softncutloss
from torchvision import transforms
loss = softncutloss(k = 3,input_size = 128)
data_transforms = transforms.Compose ([transforms.
ToTensor ()])

» train_folder = "data/train"
val_folder = "data/val"
test_folder = "data/folder"
train = train_unet ()

train.set_params (train_data = train_folder, val_data

= val_folder, test_data = test_folder,
batch_size = 2, in_channels = 1, out_channels =
3,filename = ('tlw.nii.gz’,),cuda = 'cuda:2’,
loss = loss)

train.train ()

Listing 25: Soft N Cut Loss example

C. Attention Mechanism

Attention Mechanism is of high interest in the area of
Neurolmaging where the demographic data and other forms
image data is of equal importance to the MRI data. Hence,
we support two types of Attention Mechanism.

1) Positional Attention: Positional Attention [17] attends on
the positional features i.e the (X,y) across the channels. It is
particularly effective in the cases where the input feature map
distribution has low spatial variance.

from niftytorch.attention.attention import pam

PAM = pam(in_shape = 512, reduction = 8,
query_conv_kernel = 3,key_conv_kernel = 3,
value_conv_kernel = 3)

3 £ = torch.rand(64,512,32,32)

e

out,attention = PAM(t)

Listing 26: Positional Attention example

2) Channel Attention: Channel Attention [17] attends on the
channels features across the (x,y) positions. It is particularly
effective in the cases where the input channel distribution has
low variance.
from niftytorch.attention.attention import cam
PAM = cam(512)

torch.rand(64,512,32,32)

out,attention = CAM(t)

Listing 27: Channel Attention example

D. Training

In NiftyTorch we support several different types of training
mechanism to put the user at ease irrespective of the type of
Task.

1) Data level Parallelization: The Data Parallelization mech-
anism allows the user to shift the data across multiple GPUs
and place the model on GPU for training. From a performance
stand point we suggest the user to use this when the data is
too large and cannot be used with single GPUs.

Sagittal Axial Coronal

a)

Flair

Tiw

b)

Anotated
segmentation

Predicted
segmentation

Fig. 3: multi-modal multi-class Tumor segmentation example,
using BRATS dataset.

2) Multi Scale Training: In several segmentation tasks and
some classification task the scale of the input matters espe-
cially when input data is sparse in such cases we suggest
using Multi-Scale Training made available in NiftyTorch. The
Multi-scale Training changes the input image scale using
interpolation across each batch to make the model robust to
the sparsity. It can be enabled and disabled for validation as
per users interest.

3) Automatic Hyperparameter Tuning: One other important
features of NiftyTorch is that it can do automatic hyper-
parameter which can help researcher to optimize the models
such that it optimizes the validation accuracy. This has been
seen to save time of the researcher in writing laborious loops
for doing hyperparameter tuning.

V. DEMOS

In this section, We present the demo results of multi-class
tumor segmentation and T2w modality synthesis tasks using
NiftyTorch to show the effectiveness of NityTorch.

A. Multi-class tumor segmentation

Fusing information from multiple modalities and in order
to visualize the results more clearly the library provides multi
class image segmentation functionality. The labelled input
image under which the test was conducted was imbalanced and
hence a weighted loss function was used to train the model.
Here we show one demo, for which model was trained on
BRATS dataset [18].

Fig. 3 shows multi-class tumor segmentation result on the
test data. Fig. 3.a) shows the Flair modality and T1w modality.

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a) Axial

Sagittal

T1w

T2w

Coronal

b) 140

o

25 50 75 100

Epoches

125 150

c) 1.00

0.95
0.90

= 0.85

@

@ 0.80
0.75

0.70

0.65

0 25 50 75 100

Epoches

125 150

Fig. 4: An example output demonstrating T2w synthesis from T1w, using Human Connectome Project 0.7 mm? (without

downsampling input data).

First row of Fig. 3.b) is the annotated tumor segmentation
masks by technician and the second row is the tumor seg-
mentation masks generated by trained segmentation algorithm
built-in NiftyTorch.

B. Modality synthesis

For the neuroimage modality synthesis task, we chose T2w

modality synthesis using T1w as input modality, which is also
the modality transformation from Tlw to T2w. Data used
for this demo were HCP dataset [19]. NiftyTorch support
generative adversarial nets like Pix2Pix and multi-modality
neuroimage synthesis algorithm SC-GAN.

Fig. 4 shows the inference results on the test dataset using
trained GAN model. The first row of Fig. 4.a) is the input
modality Tlw, the second row is the target modality T2w
and the third row is the synthetic T2w modality generated
by trained GAN model built-in NiftyTorch. Fig. 4.b) is the
learning curve on the validation data and Fig. 4.c) is the
structural similarity index (SSIM) evaluation on the validation
data.

VI. INSTALLATION INSTRUCTIONS
A. Prerequisites

NiftyTorch is mainly based on PyTorch, and most of its
prerequisites are similar with PyTorch. It has been generally
tested over Linux, macOS, and Windows. For Linux users,
NiftyTorch requires users to have glibc 2.17 or greater. For
macOS users, NiftyTorch requires Yosemite or greater. For
Windows users, NiftyTorch requires Windows 7 or greater. To
obtain the latest GPU acceleration features, users also need to
ensure their CUDA devices are greater than Kepler architecture

(i.e. compute capability must be greater than 3.5), and CUDA
toolkit is installed properly.

B. Create a conda environment (recommended for
beginners)

conda create -n nifty python -y
conda activate nifty

C. Install NiftyTorch
NiftyTorch can be installed using:

pip install niftytorch

Niftytorch requires the following Python dependencies: torch
(greater than 1.4.0) optuna (greater than 1.4.0), torchvision
(corresponding to torch), nibabel, numpy (greater than 1.16.4),
pandas, nipy, colorlog, alembic, cliff, tqdm, matplotlib, scikit-
image. All the requirements will be automatically installed
with NiftyTorch.

D. Visualizing Results

NiftyTorch predict functions would output segmentation or
classification results in NIFTI format. Users can utilize any
nifti viewer (e.g. FSLeyes) to visualize the output.

VII. DISCUSSION

We present a deep learning package titled NiftyTorch han-
dling neuroimaging analysis tasks. NiftyTorch has various
builtin algorithms and supports customized neural networks by
using different builtin building blocks, loss functions, attention
modules and user friendly training and predicting pipeline.

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433116; this version posted February 27, 2021. The copyright holder for this preprint
(WhICh was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ACKNOWLEDGMENTS

This work was supported by the National Institute of
Biomedical Imaging and Bioengineering (P41EB015922 and
US54 EB020406). We would like to thank Dominik Krzeminski,
Sara Morsy and Kaori Lily Ito for developing niftytorchprep
plug in (as part of OHBM Hackathon 2020).

REFERENCES

[11 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[2] K.J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das, E. P.
Duff, G. Flandin, S. S. Ghosh, T. Glatard, Y. O. Halchenko, et al., “The
brain imaging data structure, a format for organizing and describing
outputs of neuroimaging experiments,” Scientific data, vol. 3, no. 1,
pp. 1-9, 2016.

[3] I J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097-1105, 2012.

[5] K. Simonyan and A. Zisserman, ‘“Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[71 F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters andj 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” 2017.

[91 M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘“Xnor-net:
Imagenet classification using binary convolutional neural networks,”
2016.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” 2015.

[11] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” 2016.

[12] J. Dolz, K. Gopinath, J. Yuan, H. Lombaert, C. Desrosiers, and 1. B.
Ayed, “Hyperdense-net: A hyper-densely connected cnn for multi-modal
image segmentation,” 2019.

[13] P.Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” 2018.

[14] H. Lan, A. W. Toga, F. Sepehrband, A. D. N. Initiative, et al., “Sc-
gan: 3d self-attention conditional gan with spectral normalization for
multi-modal neuroimaging synthesis,” bioRxiv, 2020.

[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr, “Focal loss for
dense object detection,” 2018.

[16] M. Berman, A. R. Triki, and M. B. Blaschko, “The lovdsz-softmax loss:
A tractable surrogate for the optimization of the intersection-over-union
measure in neural networks,” 2018.

[17] J. Fu,J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3146—
3154, 2019.

[18] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The
multimodal brain tumor image segmentation benchmark (brats),” IEEE
transactions on medical imaging, vol. 34, no. 10, pp. 1993-2024, 2014.

[19] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub,
K. Ugurbil, W.-M. H. Consortium, et al., “The wu-minn human con-
nectome project: an overview,” Neuroimage, vol. 80, pp. 62-79, 2013.

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

