
1

NiftyTorch: A Deep Learning framework for
NeuroImaging

Adithya Subramanian1, Haoyu Lan1, Sankareswari Govindarajan1, Lavanya Viswanathan1, Jeiran

Choupan1, and Farshid Sepehrband1

1USC Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California,

Los Angeles CA

Abstract— We present NiftyTorch a Deep Learning
Framework for NeuroImaging. The motivation behind the
development of such a library is that there are scant amount
of centralized tool for deploying 3D deep learning for Neu-
roImaging. In addition, most of the existing tools require
expert technical knowledge in Deep Learning or program-
ming, creating a barrier for entry. The goal is to provide
a one stop package using which the users can perform
classification tasks, Segmentation tasks and Image Trans-
formation tasks. The intended audience are the members of
NeuroImaging who would like to explore deep learning but
have no background in coding. In this article we explore
the capabilities of the framework, the performance of the
framework and the future work for the framework.

I. INTRODUCTION

NeuroImaging is a sub-field of Neuroscience where the in-

ternal structure of the area interest in an organism is captured.

The Images are captured using techniques such as Magnetic

Resonance Imaging, Positron Emission Tomography and Com-

puted Tomography. The Image captured in the process has

helped the Physicians to diagnose fatal disease such as cancer,

Alzheimer’s disease, stroke and several other neurological

disorders. The diagnosis although now being a possibility

demands expertise from the Physician and is often difficult

even for well-trained Physicians to identify these diseases. It

is seen that use of deep learning has seem to alleviate these

problems for several applications. Deep learning could assist

Physician in diagnosis, feature extraction, disease monitoring,

reporting, future outcome prediction and so on. Hence, we are

building NiftyTorch to accelerate the usage of deep learning in

this field. NiftyTorch is pip installable (pip install niftytorch)

and the online documentation can be accessed via https:

//niftytorch.github.io/doc/.

A. Why NiftyTorch ?

There has been an explosive surge of improvements in the

field of deep learning in areas such Computer Vision, Natural

Language Processing and Speech Recognition whereas a scant

amount of developments can be seen in the application of deep

learning in NeuroImaging which can be easily transferred from

the aforementioned fields.

We identified that one of the main reasons behind such

a backlog in the developments across fields is the lack of

programming and deep learning knowledge that acts as barrier

in imbibing the recent advancements in one area of deep

learning to another one. Hence, we want have built NiftyTorch

such that it would less than 10 lines of code to train a deep

learning on your favourite dataset.

B. What can NiftyTorch do?

NiftyTorch is built on top the python library Pytorch [1]

which gives us flexibility to code complex research models

available at ease. NiftyTorch builds on top the code from

Pytorch to develop a custom dataloader that can work .nii

and .nii.gz format while maintaining the performance.

The library also has state of the Neural Networks for

3D data such as AlexNet, VGGNET, ResNet, ShuffleNet,

SqueezeNet and Xnor-Net. Nevertheless the user can develop

their own network using the 3D Convolution Building Blocks

such as Binary Activation, Channel Shuffle, Fire Module. We

also provide Segmentation Networks such U-Net, V-Net and

HyperDenseNet.

Our main contribution towards the accelaration of use of

deep learning the NeuroImaging field would be the use of

Automatic Hyperparameter Tuning. It is our hunch that many

research ideas get dropped during empricial analysis due

to lack of effective ways to improve performance. We feel

that automatic hyperparameter tuning will help neuroscientists

cross this barrier and present novel research using deep

learning.

We go in detail about what NiftyTorch has to offer in the

Framework section.

II. RELATED WORK

While we offer a solution to the problem of applying deep

networks to the field of NeuroImaging there are other solution

which also offers different features to solve the same problem.

In this section we go about the different such solutions.

Monai framework is a PyTorch-based framework for deep

learning in healthcare imaging. It provides workflows for

using domain optimized networks, loss functions, metrics and

optimizers. Similar to NiftyTorch Monai also supports image

loader for loading nifty files and distributed training. It is also

optimized for CUDA support.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

MedicalTorch is a python based library was one the early

libraries in this area it provides datasets, data loader, metrics,

models and loss functions.

III. FEATURES

In this section we describe the features of the package.

Fig. 1 is the diagrammatic representation of NiftyTorch ar-

chitecture. The complete architecture includes 6 modules:

NiftyTorchPrep, DataLoader, Transformation, Model, Trainer

and Predicotr. We will describe each module’s details in the

following text.

A. NiftyTorchPrep

NiftyTorchPrep is the dataset structure transformation com-

mand to check if BIDS (Brain Imaging Data Structure) [2]

format of user’s dataset is correct and transform it into the

format that is coherent with data structure used in NiftyTorch.

Fig. 2 shows the dataset format transformation after using

below niftytorchprep command:

1 niftytorchprep bids-totraining [BIDS data path] [

output data path] --test 0.2 --val 0.2

B. DataLoader

Data loader is the data loading module of the library and

supports three different tasks: classification, segmentation and

image transformation tasks. The data loader is built on top of

the Pytorch as a result it supports multiple workers, batch data

loading and applying transformations.

We have changed the internal working of the loader to

support nifty files i.e. it essentially supports all the files

supported by nipy library. The data loader in NiftyTorch

supports pre-processing such as resize, rotation and identifying

the area of interest.

The NiftyTorch has three types of Data Loaders:

• Classification DataLoader

• Segmentation DataLoader

• Paired DataLoader

• Image transformation DataLoader

1) Classification Data Loader: Classification Data Loader as

seen in the name is used for classification tasks. The built in

classification networks made available in the NiftyTorch have

also been integrated with the classification data loader. The

Classification Data Loader requires the data to be formatted

in the following:

1) Train

a) subject name 1

• t1w.nii.gz

• t2w.nii.gz

b) subject name 2

• t1w.nii.gz

• flair.nii.gz

Similar directory distribution is required for the validation

dataset.

The labels for each of the dataset is provided in the form

of a csv. The csv file must contain two columns one for the

subject name and the other one is for label.

An example for a the csv file would be as shown in the

Table 1.

Along with the label, the users can also provide demo-

graphic data which is categorical in nature as seen in Table

1. These features are included inside the neural network just

before we use reshape the input tensor to 2D.

The classification data loaders allows to load multiple

modalities of the same patient together so that we can leverage

as much data as possible. The modalities are stack on the

channels on top of the other.

Subject 1 Label Age

subject name 1 benign 22

subject name 2 malign 77

A sample snippet of defining a Classification Data loader

can be seen below.

1 from niftytorch.loader.dataloader import ImageFolder

2 from torchvision import transforms

3 data_transforms = transforms.Compose([transforms.

ToTensor()])

4 data_folder = "../data/train/"

5 data_csv = "../data.csv"

6 filename_label = "Subject"

7 class_label = "labels"

8 image_scale = 32

9 file_type = (’t1w.nii.gz’,’flair.nii.gz’)

10 demographic = [’factor1’,’factor2’]

11 image_datasets = ImageFolder(loader_type = ’

classification’ ,root = data,data_csv = data_csv

,transforms = data_transforms,target_transforms

= data_transforms,filename_label =

filename_label,class_label = class_label,common

= image_scale,file_type = file_type,demographic

= demographic)

Listing 1: Classification loader example

2) Segmentation Data Loader: Segmentation data loader is

used for segmentation tasks. The Segmentation data loader

has been integrated with the segmentation networks U-net, V-

net and HyperDenseNet. The directory distribution of files are

done as follows:

1) Train

a) subject name 1

• t1w.nii.gz

• seg.nii.gz

b) subject name 2

• t1w.nii.gz

• seg.nii.gz

The segmentation loader supports region of interest extrac-

tion which is very crucial for segmentation tasks since the

output masks are generally sparse in nature. This region of

interest pre-processsing is not needed for validation set as we

want to infer on the entire image. Hence, it can be removed

from the workflows with ease.

Another important factor is the multi-dimensional mask for

prediction as generally there might be different types of labels

for the same tumor in the brain. This is also supported by the

NiftyTorch.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

Fig. 1: NiftyTorch architecture.

A sample snippet of defining a segmentation Data Loader

can be seen in Fig 2.

1 from niftytorch.loader.dataloader import ImageFolder

2 from torchvision import transforms

3 data_transforms = transforms.Compose([transforms.

ToTensor()])

4 data_folder = "../data/train/"

5 data_csv = "../data.csv"

6 filename_label = "Subject"

7 class_label = "labels"

8 image_scale = 32

9 file_type = (’t1w.nii.gz’,’flair.nii.gz’)

10 demographic = [’factor1’,’factor2’]

11 image_datasets = ImageFolder(loader_type = ’

segmentation’ ,root = data,transforms =

data_transforms,target_transforms =

data_transforms,common = image_scale)

Listing 2: Segmentation Loader example

3) Paired Data Loader: In NeuroImaging we always see that

the Data is a few i.e. of orders 1000 samples. The usual

networks like ResNet and AlexNet will have a hard time

learning from these samples.

Hence, we need metric learning loss functions which will

improve the performance of the deep learning models. Usually

the metric learning loss functions require multiple data points

to act as anchors and negative samples. This is currently

supported by NiftyTorch we believe that this will help neuro-

scientists to work on critical applications with scant amount.

The one of the functionalities supported by the Data Loader

is the number of negative samples to be sampled by the Data

Loader which is needed for implementation such as Angular

Loss, Circle Loss etc,.

The Directory structure of Paired Data Loader is same as

that of the Classification Data Loader.

A sample snippet of defining a Paired Data Loader can be

seen in Fig 3.

1 from niftytorch.loader.dataloader import ImageFolder

2 from torchvision import transforms

3 data_transforms = transforms.Compose([transforms.

ToTensor()])

4 data_folder = "../data/train/"

5 data_csv = "../data.csv"

6 filename_label = "Subject"

7 class_label = "labels"

8 image_scale = 32

9 file_type = (’t1w.nii.gz’,’flair.nii.gz’)

10 demographic = [’factor1’,’factor2’]

11 image_datasets = ImageFolder(loader_type = ’paired’,

root = data,data_csv = data_csv,transforms =

data_transforms,target_transforms =

data_transforms,filename_label = filename_label,

class_label = class_label,common = image_scale,

file_type = file_type,demographic = demographic,

negative_examples = 4)

Listing 3: Paired loader example

4) Image transformation Data Loader: Image transformation

is a useful technique validated by deep learning methods

for recent years. It includes medical image reconstruction

from k-space, image super-resolution, noise reduction and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

Fig. 2: Format transformation from BIDS format to NiftyTorch

format.

image synthesis. NiftyTorch supports image transformation

tasks by GAN (Generative Adversarial Network) [3] and

specified GAN training dataloader. the directory structure of

image transformation DataLoader is the same as that of the

classification DataLoader.

1 from niftytorch.loader.GAN_DataLoader import

GAN_DataLoader

2 from torchvision import transforms

3 data_transforms = transforms.Compose([transforms.

ToTensor()])

4 train_folder = "../data/train/"

5 val_folder = "../data/val/"

6 modalities = [’t1w.nii.gz’, ’t2w.nii.gz’, ’flair.nii

.gz’]

7 batch_size = 4

8 train_dataset = GAN_DataLoader(train_folder,

modalities[:-1], modalities[-1], shuffle=True,

batch_size, transforms=data_transforms, name=’

training set’)

9 val_dataset = GAN_DataLoader(val_folder, modalities

[:-1], modalities[-1], shuffle=False, batch_size

, transforms=data_transforms, name=’validation

set’)

Listing 4: GAN DataLoader example

C. Transformation

Transformation module is used to do the image process-

ing and data augmentation before the training stage. Data

Augmentation is made available for the users to increase the

data as it is usually less in compared to traditional deep

learning problems. The different types of preprocessing and

data augmentations available in NiftyTorch are as follows.

1) Normalization: Min-max normalization and Z score nor-

malization are supported by NiftyTorch.

2) Rotate: This operation allows the user to rotate the tensor

90 degree, 180 degree and 270 degrees along different axis.

3) Noise Addition: This operation allows the user to add to

input tensor which can help us to improve next performance

in low data scenario and as well as when the data is sparse.

1 import torch

2 input = torch.ones(64,512,32,32,32)

3 from niftytorch.Transformations.Transformations

import Add_Noise

4 output = Add_Noise(input,mean = torch.zeros(input.

shape),std = torch.eye(input.shape))

Listing 5: Noise Addition example

4) Random Segmentation Crop: This operation allows the

user to randomly crop areas of the input image around ground

truth segmentation masks.

1 # generate two random images

2 import torch

3 input = torch.ones(64,512,32,32,32)

4 mask = torch.zeros(64,512,32,32,32)

5 context = 32

6 # use niftytorch random segmentation crop

7 from niftytorch.Transformations.Transformations

import Random_Segmentation_Crop

8 input,mask = Random_Segmentation_Crop(input,mask,

context)

Listing 6: Random Segmentation Crop example

5) Resize: The Resize operation resizes the input tensor

and mask tensor if it present to the provided size using

interpolation.

1 # generate two random images

2 import torch

3 input = torch.ones(64,512,32,32,32)

4 mask = torch.zeros(64,512,32,32,32)

5 context = 32

6 # use niftytorch resize

7 from niftytorch.Transformations.Transformations

import Resize

8 input,mask = Resize(input,mask,context)

Listing 7: Resize example

D. Models

The NiftyTorch has a collections of models which can be

used directly with less than 3 lines of code. In the section

below we brief about the changes we have made to adopt

the models for 3D data, the tunable hyper-parameters of the

model and the ones which are considered for the automatic

hyper-parameter tuning. All the models have support for

demographic data.

1) AlexNet: In NiftyTorch for AlexNet [4] we only fix the

architecture of the model and rest of the hyperparameters are

tunable. The output dimension of the matrix dimension is the

tunable by the user and the input size of the network is not

fixed.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

1 from niftytorch.models.alexnet import alexnet

2 import torch

3 initial_feature_map = 128

4 num_classes = 2

5 in_channels = 1

6 demographic = [’factor1’,’factor2’]

7 strides = [1,2,1,1,1]

8 channels = [1,2,2,2,1]

9 kernel_size = [3,5,3,3,1]

10 padding = [0,1,1,1,1]

11 model = alexnet(initial_feature_map,num_classes =

num_classes,in_channels = in_channels,strides =

strides,channels = channels,kernel_size =

kernel_size,padding = padding,demographic =

demographic)

Listing 8: Alexnet example

2) Vgg Net: In NiftyTorch, Vgg Net [5] we have added

support for the different versions of VGG Network, this

include A,B,D and E. The VGG also has Batch-Normalization

included in it to boost the performance of the network.

The users can also change the structure of the network to

have a custom version.

1 from niftytorch.Models.vggnet import vggnet

2 image_scale = 128

3 demographic = [’factor1’,’factor2’]

4 cfgs = {’A’:[32,32,32,’M’,64,64,64]}

5 version = ’A’

6 in_channels = 1

7 num_classes = 2

8 init_weights = True

9 model = VGG(image_scale,cfgs = cfgs,version =

version,features = featurs,num_classes =

num_classes,init_weights = init_weights,

demographic = demographic)

Listing 9: VGG Net example

3) ResNet: ResNet [6] being one of the most powerful

networks we also provide support for it. In Resnet we include

two type of internal structure one is the bottleneck and basic

block. Unlike the other networks in NiftyTorch Resnet also

allows tuning of the number of layers in the network. Although

a hyper-parameter this is not included in automatic hyper-

parameter tuning as this causes a lot of parameter in the

framework.

1 from niftytorch.models.resnet import resnet

2 import torch.nn as nn

3 from niftytorch.layers.layers import bottleneck

4 block = bottleneck

5 demographic = [’factor1’,’factor2’]

6 layers = [1,2,1,1,2]

7 stride = [1,1,1,1,1]

8 num_classes = 2

9 zero_init_residual = True

10 groups = 1

11 replace_stride_with_dilation = [2,2,2,2,2]

12 norm_layer = nn.Batchnorm3d

13 in_channels = 1

14 model = ResNet(block = block,layers = layers,stride

= stride,in_channels = 1,num_classes =

num_classes,zero_init_residual =

zero_init_residual,groups = groups,

replace_stride_with_dilation =

replace_stride_with_dilation,norm_layer =

norm_layer,demographic = demographic)

Listing 10: ResNet example

4) SqueezeNet: Considering that the data size is large and

occupies a lot of memory we believe that it is important to

have support networks which do not occupy as much memory

as other models. Hence, we need squeezenet [7] which helps

us attain high accuracy as g as Alexnet with fewer parameters.

In NiftyTorch we support SqueezeNet version 1.0 and 2.0.

In terms of Automatic Hyper-parameter we currently do not

support Hyper-parameter tuning.

1 from niftytorch.models.squeezenet import squeezenet

2 version = ’1_1’

3 num_classes = 2

4 in_channels = 1

5 model = squeezenet(version = version,num_classes =

2,in_channels = 1)

Listing 11: SqueezeNet example

5) ShuffleNet: Again considering the memory efficiency

issues in the Neuroscience, NiftyTorch supports ShuffleNet

[8].

1 from niftytorch.models.shufflenet import shufflenet

2 stage_repeats = [3,7,3]

3 groups = 5

4 num_classes = 2

5 demographic = [’factor1’,’factor2’]

6 in_channels = 1

7 model = shufflenet(stage_repeats = stage_repeats,

groups = groups,in_channels = 1,num_classes =

num_classes)

Listing 12: Shufflenet example

6) Xnor Net: Considering the huge tensor size, the memory

and speed both become an issue we have implemented Xnor

Net [9] in NiftyTorch to counter these aspects.

In NiftyTorch we’ve implement XNOR Net with an Alexnet

base.

1 from niftytorch.Models.xnornet import alexnet

2 image_scale = 128

3 num_classes = 2

4 in_channels = 1

5 demographic = [’factor1’,’factor2’]

6 channels = [8,16,24,32,32,32]

7 kernel_size = [11, 5, 3, 3, 3]

8 strides = [4, 1, 1, 1, 1]

9 padding = [0, 2, 1, 1, 1]

10 groups = [1, 1, 1, 1, 1]

11 alexNet(image_scale = image_scale,num_classes =

num_classes,in_channels = in_channels,channels =

channels,kernel_size = kernel_size,strides =

strides,padding = padding,groups = groups,

demographic = demographic)

Listing 13: Xnor net Example

7) U-Net: The image segmentation models UNet [10] ,VNet

[11] and HyperDenseNet [12] allow the users to train model,

store and make use of an already trained model, segment

unseen images. The model supports multiple modality in-

puts and can generate both single and multiple channel out-

puts. Users can tune the model as per their requirement.

In terms of compute, parameters like ’cuda’, ’num workers’,

’device ids’ can help train the model with minimal consump-

tion of resources. In terms of results accuracy(model perfor-

mance), ’stride’,’padding’,’kernel size’,’downsample’ parame-

ters can be made use of.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

Based on the test results, we derived inferences on the

behavior of the three models. Apart from the close differences

in the architecture, U-Net seems to be perform well in pre-

dicting more accurately when compared to V-Net. Whereas,

HyperDenseNet is best suitable for image samples of very low

dimensionality.

Unlike the other models U-Net is built for the purpose of

segmentation, this U-Net supports multi-class segmentation. A

resulting segmentation and comparison can be seen below.

For an image of voxel dimension 138*170*137 the param-

eters are as seen in the snippet below:

1 import torch.nn as nn

2 init_features = 64

3 in_channels = 3

4 out_channels = 4

5 stride = [2, 2, 2, 2, 2, 2, 2, 2]

6 padding = [1,1]

7 groups = 1

8 kernel_size = [3,3,5,5,5,5,4,4,5,4,1]

9 bias = [False, False, False, False, False]

10 norm_layer = nn.BatchNorm3d

11 from niftytorch.Models.Unet import UNet

12 UNet(in_channels=in_channels, out_channels=

out_channels, stride=stride, init_features=

init_features, bias = bias, kernel_size =

kernel_size, padding = padding, groups=groups,

norm_layer=norm_layer)

Listing 14: U net Example

8) V-Net: Similar to U-Net NiftyTorch also supports to V-

Net.

9) HyperDense-Net: Similar to U-Net NiftyTorch also sup-

ports to HyperDense-Net. HyperDense-Net was based on

DenseNets and extended a better performance for multi-modal

segmentation.

10) Pix2pix: NiftyTorch also supports neuroimage synthesis

tasks. Pix2Pix [13] is a well developed image transformation

algorithm and we extended 2D Pix2Pix model to 3D to handle

neuroimage modalities synthesis.

11) SC-GAN: In order to fully support neuroimage synthe-

sis tasks, NiftyTorch incorporates multi-modality neuroimag-

ing synthesis algorithm SC-GAN [14].

Pix2pix and SC-GAN share the same defination code, here

we only show one snippet about how to define SC-GAN.

1 from niftytorch.Models.GAN import SC-GAN

2 image_scale = 128

3 in_channels = 1

4 out_channels = 1

5 model = SC-GAN()

6 model.generator(size=image_scale, input_dim=

in_channels, output_dim=out_channels)

7 model.discriminator(size=image_scale, input_dim=

in_channels+out_channels, output_dim=

out_channels)

Listing 15: GAN Example

E. Trainer and predictor

NiftyTorch supports modularized training and predicting

procedure. In order to simplify the training and predicting

processes for the user friendly purpose, NiftyTorch enables

two modules called trainer and predictor. Users only need to

specify generic training parameters like batch size, training

epochs, learning rate etc and pass the predefined models to

trainer. The trainer will finish the training process on training

and validation dataset automatically and save the trained model

in the user defined model-saving path. Predictor fetches trained

model and do the inference on test dataset and save output

images in the user defined image-saving path.

IV. MODEL CUSTOMIZATION

We are not constrained with the models presented in the

above section. We’re able to extend building networks beyond

the conventional network as we make the inner building blocks

available which we will be described in section 3.3.

We have also made a demo available on how to use a custom

network with DataLoader mentioned in Section 3.1. It also

supports adding attention mechanism and demographic data.

A. Convolutional Building Blocks

The Convolutional Building Blocks are the smallest unit

used in the neural network which act as backbone of the build-

ing block. We can mix and match each of the Convolutional

building block to form our custom models.
1) BottleNeck Unit: BottleNeck is the building block of the

residual neural network which is used in highly deep network.

1 from niftytorch.layers.layers import basicblock

2 in_planes = 512

3 convolution_block = basicblock(in_planes = in_planes

,planes = 256,out_planes = 32,stride = 1,groups

= 1,bias = False)

Listing 16: BottleNeck unit example

2) Shuffle Unit: ShuffleNet unit specially designed for small

networks with similar basis to residual building block. Channel

shuffle operation makes it possible to build more power-

ful structures with multiple group convolutional layers. The

convolution is a combination of depth-wise convolution and

pointwise convolution.

1 from niftytorch.layers.layers import shuffleunit

2 in_planes = 512

3 planes = 256

4 convolution_block = shuffleunit(inplanes = in_planes

, planes = planes, groups=5, grouped_conv=True,

combine = ’concat’,compression_ratio = 4)

Listing 17: Shuffle unit example

3) Fire Module: A Fire module is comprised of: a squeeze

convolution layer (which has only 1x1 filters), feeding into an

expand layer that has a mix of 1x1 and 3x3 convolution filters.

It is the foundation of SqueezeNet.

1 from niftytorch.layers.layers import fire

2 in_planes = 20

3 convolution_block = fire(inplanes = in_planes,

squeeze_planes = 3, expand1x1_planes = 12,

expand3x3_planes = 12)

Listing 18: Fire Module example

4) Binary Activation: The Binary Activation is a module

which speeds up the computation of activation through bi-

narization the feature map.

1 from niftytorch.layers.layers import binactive

2 activation = binactive()

Listing 19: Binary Activation example

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

5) Binary Convolution: The Binary Convolution is Binarized

formulation of the convolution operator which as a results

reduces the computation time and the storage space.

1 from niftytorch.layers.layers import binconv3d

2 in_channels = 512

3 activation = binconv3d(input_channels = in_channels,

output_channels = 256,kernel_size = 3,stride =

2,padding = 1,groups = 1,dropout = 0.5,Linear =

False)

Listing 20: Binary Convolution example

B. Loss Functions

The Loss Functions are made such that it is easily integrat-

able with custom models as well as the current models.

1) Cross Entropy: In NiftyTorch models the default loss

function is CrossEntropy with equal weights. The different

weights are supported but it needs to be passed explicity.

The snippet below shows below on how to use explicity use

weighted cross entropy.

1 import torch

2 from niftytorch.models.alexnet import train_alexnet

3 from torchvision import transforms

4 import torch.nn as nn

5 weights = [0.7,0.3]

6 weights = torch.FloatTensor(weights).to(’cuda:4’)

7 loss = nn.CrossEntropy(weight = weights)

8 data_transforms = transforms.Compose([transforms.

ToTensor()])

9 data_folder = ".."

10 data_csv = "data.csv"

11 train = train_alexnet()

12 file_type = (’t1w.nii.gz’,’flair.nii.gz’)

13 train.set_params(

14 num_classes = 2,

15 in_channels = len(file_type),

16 data_folder = data_folder,

17 data_csv = data_csv,

18 channels = [1,2,4,2,1],

19 kernel_size = [3,5,5,3,1],

20 strides = [1,2,2,2,1],

21 padding = [1,1,1,1,1],

22 data_transforms = data_transforms,

23 filename_label = ’Subject’,

24 class_label = ’status’,

25 learning_rate = 1e-2,

26 step_size = 10,

27 gamma = 0.2,

28 cuda = ’cuda:4’,

29 optimizer = torch.optim.RMSprop,

30 file_type = file_type,

31 batch_size = 64,

32 image_scale = 128,

33 loss = loss)

34 train.train()

Listing 21: Cross Entropy Loss example

2) Focal Loss: The default parameters to the Focal Loss [15]

are 0.5 weights for each and exponent is 2. Unlike Pytorch’s

implementation of the CrossEntropy Loss both the weights

and exponent can be simple list and float respectively.

1 import torch

2 from niftytorch.models.alexnet import train_alexnet

3 from niftytorch.Loss.losses import focalloss

4 from torchvision import transforms

5 import torch.nn as nn

6 weights = [0.7,0.3]

7 loss = focalloss(alpha = weights,gamma = 2.5)

8 data_transforms = transforms.Compose([transforms.

ToTensor()])

9 data_folder = ".."

10 data_csv = "data.csv"

11 train = train_alexnet()

12 file_type = (’t1w.nii.gz’,’flair.nii.gz’)

13 train.set_params(

14 num_classes = 2,

15 in_channels = len(file_type),

16 data_folder = data_folder,

17 data_csv = data_csv,

18 channels = [1,2,4,2,1],

19 kernel_size = [3,5,5,3,1],

20 strides = [1,2,2,2,1],

21 padding = [1,1,1,1,1],

22 data_transforms = data_transforms,

23 filename_label = ’Subject’,

24 class_label = ’status’,

25 learning_rate = 1e-2,

26 step_size = 10,

27 gamma = 0.2,

28 cuda = ’cuda:4’,

29 optimizer = torch.optim.RMSprop,

30 file_type = file_type,

31 batch_size = 64,

32 image_scale = 128,

33 loss = loss)

34 train.train()

Listing 22: Focal Loss example

3) Focal Dice Loss: Focal Dice Loss can be used imitate

Dice Loss by setting beta = 1.

1 from niftytorch.models.Unet import train_unet

2 from niftytorch.Loss.losses import focaldiceloss

3 from torchvision import transforms

4 weights = [0.7,0.3]

5 loss = focaldiceloss(alpha = weights, gamma = 1)

6 data_transforms = transforms.Compose([transforms.

ToTensor()])

7 train_folder = "data/train"

8 val_folder = "data/val"

9 test_folder = "data/folder"

10 train = train_unet()

11 train.set_params(train_data = train_folder, val_data

= val_folder, test_data = test_folder,

batch_size = 2, in_channels = 1, out_channels =

3,filename = (’t1w.nii.gz’,),cuda = ’cuda:2’,

loss = loss)

12 train.train()

Listing 23: Focal Dice Loss example

4) Lovasz Softmax: Lovasz softmax [16] loss is used for

handling unbalance-class segmentation problem.

1 from niftytorch.Models.UNet import train_unet

2 from niftytorch.loss.losses import lovaszsoftmaxloss

3 from torchvision import transforms

4 loss = lovaszsoftmaxloss()

5 data_transforms = transforms.Compose([transforms.

ToTensor()])

6 train_folder = "data/train"

7 val_folder = "data/val"

8 test_folder = "data/folder"

9 train = train_unet()

10 train.set_params(train_data = train_folder, val_data

= val_folder, test_data = test_folder,

batch_size = 2, in_channels = 1, out_channels =

3,filename = (’t1w.nii.gz’,),cuda = ’cuda:2’,

loss = loss)

11 train.train()

Listing 24: Lovasz Softmax example

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

5) Adversarial loss: Adversarial loss is used for GAN

(generative adversarial nets) [3] training process. NiftyTorch

supports GAN related algorithm Pix2Pix and SC-GAN.

6) Soft N Cut Loss: Soft N Cut Loss is used for unsuper-

vised image segmentation.

1 from niftytorch.Models.UNet import train_unet

2 from niftytorch.loss.losses import softncutloss

3 from torchvision import transforms

4 loss = softncutloss(k = 3,input_size = 128)

5 data_transforms = transforms.Compose([transforms.

ToTensor()])

6 train_folder = "data/train"

7 val_folder = "data/val"

8 test_folder = "data/folder"

9 train = train_unet()

10 train.set_params(train_data = train_folder, val_data

= val_folder, test_data = test_folder,

batch_size = 2, in_channels = 1, out_channels =

3,filename = (’t1w.nii.gz’,),cuda = ’cuda:2’,

loss = loss)

11 train.train()

Listing 25: Soft N Cut Loss example

C. Attention Mechanism

Attention Mechanism is of high interest in the area of

NeuroImaging where the demographic data and other forms

image data is of equal importance to the MRI data. Hence,

we support two types of Attention Mechanism.

1) Positional Attention: Positional Attention [17] attends on

the positional features i.e the (x,y) across the channels. It is

particularly effective in the cases where the input feature map

distribution has low spatial variance.

1 from niftytorch.attention.attention import pam

2 PAM = pam(in_shape = 512,reduction = 8,

query_conv_kernel = 3,key_conv_kernel = 3,

value_conv_kernel = 3)

3 t = torch.rand(64,512,32,32)

4 out,attention = PAM(t)

Listing 26: Positional Attention example

2) Channel Attention: Channel Attention [17] attends on the

channels features across the (x,y) positions. It is particularly

effective in the cases where the input channel distribution has

low variance.

1 from niftytorch.attention.attention import cam

2 PAM = cam(512)

3 t = torch.rand(64,512,32,32)

4 out,attention = CAM(t)

Listing 27: Channel Attention example

D. Training

In NiftyTorch we support several different types of training

mechanism to put the user at ease irrespective of the type of

Task.

1) Data level Parallelization: The Data Parallelization mech-

anism allows the user to shift the data across multiple GPUs

and place the model on GPU for training. From a performance

stand point we suggest the user to use this when the data is

too large and cannot be used with single GPUs.

Fig. 3: multi-modal multi-class Tumor segmentation example,

using BRATS dataset.

2) Multi Scale Training: In several segmentation tasks and

some classification task the scale of the input matters espe-

cially when input data is sparse in such cases we suggest

using Multi-Scale Training made available in NiftyTorch. The

Multi-scale Training changes the input image scale using

interpolation across each batch to make the model robust to

the sparsity. It can be enabled and disabled for validation as

per users interest.

3) Automatic Hyperparameter Tuning: One other important

features of NiftyTorch is that it can do automatic hyper-

parameter which can help researcher to optimize the models

such that it optimizes the validation accuracy. This has been

seen to save time of the researcher in writing laborious loops

for doing hyperparameter tuning.

V. DEMOS

In this section, We present the demo results of multi-class

tumor segmentation and T2w modality synthesis tasks using

NiftyTorch to show the effectiveness of NityTorch.

A. Multi-class tumor segmentation

Fusing information from multiple modalities and in order

to visualize the results more clearly the library provides multi

class image segmentation functionality. The labelled input

image under which the test was conducted was imbalanced and

hence a weighted loss function was used to train the model.

Here we show one demo, for which model was trained on

BRATS dataset [18].

Fig. 3 shows multi-class tumor segmentation result on the

test data. Fig. 3.a) shows the Flair modality and T1w modality.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

Fig. 4: An example output demonstrating T2w synthesis from T1w, using Human Connectome Project 0.7 mm
3 (without

downsampling input data).

First row of Fig. 3.b) is the annotated tumor segmentation

masks by technician and the second row is the tumor seg-

mentation masks generated by trained segmentation algorithm

built-in NiftyTorch.

B. Modality synthesis

For the neuroimage modality synthesis task, we chose T2w

modality synthesis using T1w as input modality, which is also

the modality transformation from T1w to T2w. Data used

for this demo were HCP dataset [19]. NiftyTorch support

generative adversarial nets like Pix2Pix and multi-modality

neuroimage synthesis algorithm SC-GAN.

Fig. 4 shows the inference results on the test dataset using

trained GAN model. The first row of Fig. 4.a) is the input

modality T1w, the second row is the target modality T2w

and the third row is the synthetic T2w modality generated

by trained GAN model built-in NiftyTorch. Fig. 4.b) is the

learning curve on the validation data and Fig. 4.c) is the

structural similarity index (SSIM) evaluation on the validation

data.

VI. INSTALLATION INSTRUCTIONS

A. Prerequisites

NiftyTorch is mainly based on PyTorch, and most of its

prerequisites are similar with PyTorch. It has been generally

tested over Linux, macOS, and Windows. For Linux users,

NiftyTorch requires users to have glibc 2.17 or greater. For

macOS users, NiftyTorch requires Yosemite or greater. For

Windows users, NiftyTorch requires Windows 7 or greater. To

obtain the latest GPU acceleration features, users also need to

ensure their CUDA devices are greater than Kepler architecture

(i.e. compute capability must be greater than 3.5), and CUDA

toolkit is installed properly.

B. Create a conda environment (recommended for

beginners)

1 conda create -n nifty python -y

2 conda activate nifty

C. Install NiftyTorch

NiftyTorch can be installed using:

1 pip install niftytorch

Niftytorch requires the following Python dependencies: torch

(greater than 1.4.0) optuna (greater than 1.4.0), torchvision

(corresponding to torch), nibabel, numpy (greater than 1.16.4),

pandas, nipy, colorlog, alembic, cliff, tqdm, matplotlib, scikit-

image. All the requirements will be automatically installed

with NiftyTorch.

D. Visualizing Results

NiftyTorch predict functions would output segmentation or

classification results in NIFTI format. Users can utilize any

nifti viewer (e.g. FSLeyes) to visualize the output.

VII. DISCUSSION

We present a deep learning package titled NiftyTorch han-

dling neuroimaging analysis tasks. NiftyTorch has various

builtin algorithms and supports customized neural networks by

using different builtin building blocks, loss functions, attention

modules and user friendly training and predicting pipeline.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

ACKNOWLEDGMENTS

This work was supported by the National Institute of

Biomedical Imaging and Bioengineering (P41EB015922 and

U54 EB020406). We would like to thank Dominik Krzemiński,

Sara Morsy and Kaori Lily Ito for developing niftytorchprep

plug in (as part of OHBM Hackathon 2020).

REFERENCES

[1] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[2] K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das, E. P.
Duff, G. Flandin, S. S. Ghosh, T. Glatard, Y. O. Halchenko, et al., “The
brain imaging data structure, a format for organizing and describing
outputs of neuroimaging experiments,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-

tion processing systems, vol. 25, pp. 1097–1105, 2012.
[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015.
[7] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,

and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” 2017.

[9] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
2016.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” 2015.

[11] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” 2016.

[12] J. Dolz, K. Gopinath, J. Yuan, H. Lombaert, C. Desrosiers, and I. B.
Ayed, “Hyperdense-net: A hyper-densely connected cnn for multi-modal
image segmentation,” 2019.

[13] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” 2018.

[14] H. Lan, A. W. Toga, F. Sepehrband, A. D. N. Initiative, et al., “Sc-
gan: 3d self-attention conditional gan with spectral normalization for
multi-modal neuroimaging synthesis,” bioRxiv, 2020.

[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” 2018.

[16] M. Berman, A. R. Triki, and M. B. Blaschko, “The lovász-softmax loss:
A tractable surrogate for the optimization of the intersection-over-union
measure in neural networks,” 2018.

[17] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 3146–
3154, 2019.

[18] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The
multimodal brain tumor image segmentation benchmark (brats),” IEEE

transactions on medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.
[19] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub,

K. Ugurbil, W.-M. H. Consortium, et al., “The wu-minn human con-
nectome project: an overview,” Neuroimage, vol. 80, pp. 62–79, 2013.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433116doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433116
http://creativecommons.org/licenses/by-nc-nd/4.0/

