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31 Abstract

32  Whereas biochemical markers are available for most types of cell death, current studies on

33 non-autonomous cell death by entosis relays strictly on the identification of cell-in-cell structure

34 (CICs), a unique morphological readout that can only be quantified manually at present. Moreover,

35  the manual CICs quantification is generally over-simplified as CICs counts, which represents a

36  major hurdle against profound mechanistic investigations. In this study, we take advantage of

37  artificial intelligence (AI) technology to develop an automatic identification method for CICs

38  (AIM-CICs), which performs comprehensive CICs analysis in an automated and efficient way.

39  The AIM-CICs, developed on the algorithm of convolutional neural network (CNN), can not only

40  differentiate between CICs and non-CICs (AUC > 0.99), but also accurately categorize CICs into

41 five subclasses based on CICs stages and cell number involved (AUC > 0.97 for all subclasses).

42 The application of AIM-CICs would systemically fuel researches on CICs-mediated cell death

43 such as high-throughput screening.

44

45 Key words: cell-in-cell structure; artificial intelligence; AIM-CICs; cell death; entosis;

46 convolutional neural network
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48  Introduction

49  Cell-in-cell structures (CICs) typically referred to the unusual eukaryotic cells involving the whole

50  objects internalized partially or completely inside of others, which had been observed in diverse

51 physiological and pathological samples [1, 2]. The presence of CICs was reported to be correlated

52 with patient prognosis in a group of human tumors, such as breast cancer [3], head and neck

53 squamous carcinoma [4, 5], and pancreatic ductal adenocarcinoma [6]. Functional studies

54  implicated CICs in a number of biomedical processes, including embryonic development [7],

55 mitotic surveillance [8], tumor evolution [9], and immune homeostasis [10] and the forth. As an

56  evolutionarily conserved process, CICs formation was underlain by multiple mechanisms, such as

57 entosis [11], cannibalism [12] and emperitosis [13]. Among which, entosis was one of the best

58  studied processes that generally ended up with the death of the internalized cells in an acidified

59  lysosome-dependent way [11, 14]. The formation of entotic CICs turned out to be a genetically

60  controlled process, where cell internalization was driven cell-autonomously by polarized

61 actomyosin resulted from the E-cadherin-mediated adherens junctions [15, 16], and coordinated

62 by a mechanical ring interfacing in between them [17]. Additionally, an ever-expanding set of

63 factors, acting through either actomyosin, or adherent junctions or mechanical ring, were

64  identified as important regulators [18, 19, 20, 21].

65 Despite great progress made over the past decade, the studies on CICs formation were,

66  however, based on the over-simplified readout of CICs counts that was performed manually,

67  which is not only labor-intensive and time-consuming, but also sharply incompatible with the

68  complex CICs formation per se. First, since CICs formation is a dynamic process preceding
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69  through sequential steps including cell-cell contact, penetration and closing [22], therefore, it

70  generally gives rise to CICs at different stages displaying morphologies of partial or complete.

71 Second, the CICs morphologies were further complicated by the involvement of multiple cells,

72 which frequently resulted in structures of “cell-in-cell-in-cell” or even more. Third, due to

73  personal experiences and preferences, the CICs judgment and inclusion-exclusion criteria for

74  analysis varied from investigators to investigators, making it hard to compare across studies from

75 different labs, or even studies from different investigators in one lab. In addition, manual

76  quantification is rather inefficient in dealing with a large number of samples that may serve the

77  screening purpose. Thus, the traditional CICs quantification reported results of less informative,

78  hardly comparable and low-throughput, which calls for more efficient and informative ways for

79  the quantification of CICs.

80 Recent years had witnessed the rapid development of image-based artificial intelligence (Al)

81 technology in assisting biomedical practices. For example, by using a single convolutional neural

82  networks (CNN) algorithm, Esteva et al demonstrated the classification of skin lesions in

83  performance on par with all tested experts [23]. Lin et a/ developed a ResNeXt WSL model that

84  achieved impressive performance (94.09% accuracy, 92.79% sensitivity, and 98.03% specificity)

85  in making chromosome cluster type identification [24]. Actually, simply based on microscopic

86  images, Al algorithms were quite competent in analyzing most, if not all, biological events such as

87  the early onset of pluripotent stem cell differentiation [25], tumor cell malignancy [26], mitosis

88  staging [27], and the like. The remarkable potentials in accuracy and efficiency make Al-based

89  image analysis an ideal method for comprehensive and reliable CICs quantification.

90 In this study, based on RGB fluorescent microscopic images, we employed the deep CNN
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91 algorithms (Faster-RCNN and ResNet) to evaluate a large amount of cell candidates with defined

92  subtypes and trained a multiclassfier for the recognition of subdivided CICs, which was named as

93 AIM-CICs abbreviated from Automatic Identification Method of Cell-In-Cell structures. The

94  AIM-CICs exhibited a high level of sensitivity and specificity, as evidenced by AUC values of >

95  0.97 for all tasks, in differentiating CICs from non-CICs, and identifying subtyped CICs from

96  multiple cells. The development and application of AIM-CICs hold the promise of speeding up

97  ClICs-related studies, such as deciphering the molecular controls of CICs formation in a finer

98  resolution, and enabling image-based systemic screening by high-content microscopy.

99

100 Results

101 The deep-learning framework of AIM-CICs

102  In this work, we conducted a framework of object detection and classification based on manual

103 annotation in the training and validation set, and then performed inspections in the test set (Fig. 1).

104  For an RGB-format image, the proposed system performs two consecutive steps. First, a

105 Faster-RCNN [28] network with ResNet-50 [29] backbone was formulated to find the cell regions

106  and extract the candidate patches. Second, each candidate, representing one cell or CICs, was

107  classified by an ResNet-101 network based on the cellular morphology. Subsequently, those

108  subdivided candidates of the predicted results were grouped into different folders, and marked out

109  on the original locations of the corresponding images.

110 Cell region detection and extraction

111 Cell region detection is the initial task to investigate microscopic images. According to the basic

112 cell components, we acquired the fluorescent microscopic images with red channel for membrane
5
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113 and blue channel for nucleus. Along with the bright field, the merged images could be further

114 composited into RGB format with variant cell quantities and brightness values (Fig. Sla). The

115  extraction of cell candidate aims to propose regions of interest (ROI) that potentially involved CIC

116  structures. This step served to reduce the searching space and improve efficiency of subsequent

117  steps in a high-content study. Initially, four pieces of MCF7 images and four pieces of MCF10A

118  images, which included 2164 cells in total, were used as the training set for cell region detection.

119  Through manually annotating these images using VGG Image Annotator (VIA,

120 https://www.robots.ox.ac.uk/~vgg/software/via/) (Fig. 2a), cell region detection was further treated

121 as a classic 1-class object detection task through the Faster-RCNN [28] network with ResNet-50

122 [29] backbone. Specifically, during training, we have performed random flip, random rotation and

123 random scale for data augmentation, which greatly expanded the data’s diversity. Following the

124 training process (Fig. 2b), we ensured the applicability of this step with average of 0.88 precision

125  and 0.96 recall (IoU 0.1) by randomly testing on 10 pieces of MCF7 and MCF10A images, which

126 covered 2398 cells (Fig. 2¢).

127 It is believed that factors, such as cell morphology, sample density, as well as image brightness, do

128  impact the accuracy of target detection and recognition. In the data collected this study, MCF10A

129  samples generally displayed a larger cell size and much more complicated pattern of CICs as

130 compared with MCF7 samples (Fig. Sla). Based on the precisely manual labeling, we could

131 minimize the effect of target varieties among MCF7 and MCF10A samples (Fig. S1b), except for

132 the over-exposed fluorescent images that should be excluded in the processing of the primary

133 images. Eventually, we exported the patches of detected cell regions of the entire RGB-format

134 images for the following analysis.
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135 Definition of the structural subtypes of CICs

136  To classify the cell-in-cell structures, we first divided the traditional CICs into five structural

137  subtypes, including (a) partial, with more than 30% of the internalizing cells were enclosed, but

138  not fully, by the outer cells; (b) one-in-one, with only one cell fully internalized, (c) two-in-one,

139  with two cells were fully internalized; (d) in turn, a nested CICs with multiple cells sequentially

140  internalized into neighboring cells; (¢) complicated, a complex CICs generated by four or more

141 cells (Fig. 3a). Considering the potential complexity, two kinds of breast cell lines including

142 MCF7 and MCF10A were investigated, in which the total rate of CICs and its subtypes showed

143 great discrepancy according to the manually labeling (Fig. 3b). In total, 17 pieces of MCF7 images

144  and 85 pieces of MCF10A images were enrolled in this study, the cell number of each image

145  ranged from 100 to 600, and from 30 to 200, respectively (Fig. 3c). The overall CICs rate of each

146  image counted from 1% to 85% (Fig. 3d).

147  Multi-Subtype classification achieved by the AIM-CICs

148  The obtained cell candidates were used to train ResNetl0l model for the purpose of CICs

149  recognition (Fig. S2a). Practically, we used 13 pieces of MCF7 images and 32 pieces of MCF10A

150  images as the training set, which had 4026 MCF7 cells with a CICs rate of 11% and 3912

151 MCF10A cells with a CICs rate of 32% (Fig. S2b). Based on the morphological features of cell

152  candidates, five subtypes of CICs were manually labeled for each cell candidate in the training and

153  validation set. The distribution of each subtype of CICs showed remarkable discrepancy, as well

154  as in the test set (Fig. 4a-b). To improve the practicality of the model, we defined a F-category

155  from the non-CIC candidates. The F-category contains ambiguous structures that were hard to tell

156  their identities by both experienced experts and Al algorithm, therefore, were generally removed

7
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157  from the sample counting (Fig S2c-d).

158  As shown in Fig. 4c, data training progressively increased the prediction accuracy to a

159  considerable level for each subtype. In both training and validation sets, the comprehensive

160  accuracy of integrated CICs (involving a, b, c, d, e types) and non-CIC type (including F category)

161 revealed approving performance (Fig. 4d). Moreover, the AIM-CICs also exhibited impressive

162  performance as indicated by the AUC of more than 0.97 for each CICs subtype (partial 0.9761,

163  one-in-one 0.9807, two-in-one 0.9872, in turn 0.9709, complicated 0.9984) (Fig. 4e-f) in the test

164  set. Additionally, for the low-quality images in the test set that displayed unclear cell regions and

165  were eventually removed for further analysis, their recognition also reached an ideal AUC of 0.99

166  (Fig. S2e). Together, the AIM-CICs performed accurate recognition of CICs on independent

167  datasets of MCF10A and MCF7 cells, suggesting the generalizability of this model.

168 Visualization of morphological features and output

169 To better understand what the model learnt from the annotated data, we extract features from the

170  output of network’s global average pooling layer and applied t-SNE to reduce dimension to 2D for

171 visualization. For the training set, each group of cell samples represented independent clusters,

172 except for cell candidates in the circled region (Fig. 5a). Backtracking the training data identified

173 that these were candidates categorized into two subtypes due to erroneous manual annotation.

174 Thus, the t-SNE-based clustering would be a visualized way for error-correction in recognizing

175  CICs. For the test set (Fig. 5b), subtypes of CICs were clustered into close, but clearly distinct,

176  regions, whereas F-category was neighboring to the area of non-CIC as expected. Moreover,

177  following the comprehensive recognition under a specified confidence threshold, we were able to

178  accurately locate each structure with a predicted value on the original images (Fig. 5c).

8
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179  Application of AIM-CICs in an experimental setup

180  To explore the potential implication of Al-based recognition of CICs in a biological context, we

181 included a functional experiment as an example of subtype profiling. In this analysis, the

182  confidence threshold was set to 0.2 for more informative identification (Fig. 6a). As the results

183 showed, though all of the three truncations of ARHGAP36, a molecule identified to be a regulator

184  of CICs formation in a screening study [20], resulted in impaired formation of CICs, the

185  alterations of CICs subtypes were rather different (Fig. 6b-c). While the truncated GAP36 (1-194)

186  had little impact on the formation of partial CICs (Fig. 6b-d), the majority of CICs were in

187  completed form (including all CICs subtypes except for the partial) in cells expressing the

188  truncated GAP (118-194) or GAP (195-395) (Fig. 6b-c), suggesting that the N-terminal region

189  (1-117) of ARHGAP36 might function to slow down the process of cell internalization.

190  Meanwhile, the C-terminal region of ARHGAP36 was likely to be responsible for the closing step

191 of CICs formation as evidenced by comparable formation of completed CICs between control and

192 GAP (195-395)-expressing cells (Fig. 6b and 6e-h). Moreover, the GAP (118-194) seemed to be

193  the major region that drives cell internalization as it promoted the formation of completed CICs at

194  a rate comparable to the GAP (1-194) region. Furthermore, though the N-terminal region might

195  negatively regulate the speed of CICs formation, it did function positively to promote cell

196  internalization as its truncation significantly reduced the formation of both partial and total CICs

197  (Fig. 6b-d). Thus, the AIM-CICs algorithm allows us, for the first time, to accurately dissect the

198  impacts of different domains or molecules on CICs formation in a heretofore underappreciated

199 resolution.

200  Discussion
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201 Fluorescent microscope images recorded the cellular structures such as CICs, but inevitably

202  provided a great number of morphological variations. To provide recognition with sufficient

203 accuracy and potentially featured insights, we, for the first time, explored the application of

204  Convolution Neural Network (CNN) in the profiling of subtyped CICs formed during entosis, a

205  non-apoptotic cell death process occurred via cell-in-cell invasion [11]. Based on the tons of

206  images accumulated from previous studies, we developed the Al-based identification algorithm

207 AIM-CICs, which was trained with distinct illumination, textures, and density, in order to deliver

208  an optimal performance in cell region detection and multiple subtypes classification, despite of the

209  unseen perturbations.

210 In the proposed system, we set up two tasks, of which, a classic 1-class object detection model

211 was formulated to find cell regions as the first task, followed by multi-class object recognition as

212 the second task. Comparing with the traditional end-to-end manner, i.e., to train a multi-class

213 detection model with different kinds of cells marked simultaneously, our model of separated

214 detection will achieve the flexibility for the raw samples to be recategorized and repurposed. In

215  AIM-CICs developed in this study, the second task included a well-trained 7-category classifier (5

216  CICs subtypes plus one non-CICs and one F-category) to define the multiple subtypes of CIC

217  structures, which is compatible with the cell candidates from the first step. This two-step

218  algorithm is also advantageous in debugging the possible mechanisms leading to inferior final

219  prediction outcomes, as each step could be optimized separately. Meanwhile, this two-step

220  algorithm may fall short of efficiency (speed) as compared to the end-to-end multi-class detection

221 model which could utilize a shared feature extraction backbone.

222 Among all the defined cell death programs, CICs-mediated death is unique in that it can only be

10
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223 accomplished with the involvement of at least two cells, but not one cell in other programs like

224 apoptosis, necrosis and the forth [30]. Therefore, mechanistic study is a challenging task for the

225  field of CICs-mediated death, which was further complicated by the fact of lacking a reliable

226  biochemical marker. Current studies on CICs relayed on the morphology-based binary

227 quantification, that is, CICs or non-CICs. Here, CICs were usually defined as structures with more

228  than 1/2, or 2/3 in some studies, of the inner cell body being internalized/enclosed by the outer cell.

229  This oversimplified quantification of CICs, did move the field forward over the past decade,

230  however, provided rather coarse information over a more complicated process [22, 31]. CICs

231 formation is a stepwise process that could be empirically subdivided into three major stages: 1) the

232 early initiation stage from cell-cell contact to about 1/3 of the inner cell body being internalized,

233 this stage was primarily driven by cell-cell adhesion and assisted by cytoskeleton remodeling; 2)

234  the middle internalization stage covering the whole process of cell internalization that was

235  primarily driven by active actomyosin contraction within the inner cells, and coordinately assisted

236 by the outer cells; 3) the final closing stage that may involve in tail cutting and membrane fusion,

237  this a process rarely being investigated largely because it is technically challenging. Furthermore,

238  CICs formation is a dynamic process that may have multiple cells, either sequentially or

239  simultaneously, form a complicated structure that may contain more than one cell inside (Fig. 3a).

240  The regulation of this feature is completely unknown for the field yet, but might be conceptually

241 feasible as it was reported in phagocytosis that the number of corpses engulfed by a phagocyte

242  was genetically controlled [32]. Taking these two factors (stage and cell number) into account will

243 produce an even higher dimensional complexity, which, however, was missed from the traditional

244  analysis by the binary quantification. The implantation of AIM-CICs enables us to make a more

11
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245  sophisticated description of CICs phenotypes, which would help identify finer molecular control.
246  For example, though expression of the GAP (195-395) domain did not influence the frequency of
247  simple CICs, where only one cell was enclosed (one-in-one in Fig. 6e), it did result in significantly
248  reduced formation of complex CICs, where more cells were enclosed by one outer cell
249  (two-in-one and in-turn in Fig. 6f-g). These results suggested that the truncated N-terminal domain
250  may facilitate the internalization of multiple cells to form complex CICs, which warrants further
251 functional validation.

252 In addition to mechanistic investigation, AIM-CICs is also promising in enabling high-content
253  based screening for therapeutic compounds that target CICs formation considering their pivotal
254  roles in multiple biomedical processes such as cancer [1]. While high throughput screening
255  generally relies critically on a reliable biochemical marker that is currently unavailable to CICs
256  formation, the related systemic screening, which would be labor-intensive and time-consuming if
257  worked out by manual annotation, had yet been reported. Empowered with AIM-CICs and

258  high-content microscopy, the systemic screening would be feasible in the near future.
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Materials and methods

Image processing and softwares

An entire dataset involving 17 pieces of MCF7 images and 85 pieces of MCF10A images were

obtained from Sun’s lab. As detailed protocol described [33], the fluorescently labeled cells were

necessary to be stained with discrepant colors for each cell components, such as, red for

cytomembrane (E-Cadherin, 1:200, BD Biosciences, 610181) with secondary antibodies Alexa

Fluor 568 anti-rabbit (1:500; Invitrogen; A11036), and blue for cytoblast (DAPI, Sigma D8417).

Random fields were taken under corresponding channels of laser lights through fluorescent

13
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286  microscopy (Nikon Ti-E microscope, Nikon NIS-Elements AR 4.5 software), along with bright

287  color for the background. For algorithm performing, each sample with three single-channel images

288 was transformed into an RGB format with value rescaled to 0 - 255. Softwares used and

289  algorithms developed in this study include: Python (http://www.python.org./); PyTorch

290 (https://pytorch.org/); VIA Annotation Tools (https://www.robots.ox.ac.uk/~vgg/software/via/);

291 Detectron2 (https://github.com/facebookresearch/detectron?).

292

293 Cell region labeling and candidates extraction

294  After acquiring the processed images, we manually annotated the cell regions through VGG Image

295  Annotator (https://www.robots.ox.ac.uk/~vgg/software/via/). Based on the annotated images, a

296  classic 1-class object detection task was carried out for cellular morphological learning. The

297  model we used is a Faster-RCNN [28] network with ResNet-50 [29] backbone. Since the original

298  resolution of microscopic image is 2160 x 2560 which is too large for Faster-RCNN training, we

299  first split each image into 4x4 grids, then follow the common practice to train the model. For data

300  augmentation, we use random flip, random rotation, and random scale to expand diversity of data.

301 As for other hyper-parameters, we set batch-size to 24 and iterate 50000 steps using SGD

302  optimizer with momentum 0.9. As the output of the Faster-RCNN network, the patches of detected

303  cell regions were exported as candidate sequences for further steps.

304

305 Manual classifications of cell-in-cell structures

306  The manual definition of cell-in-cell structural classification primarily included bipartite-class,

307  CICs and non-CICs. CICs category were further subdivided into 5 subtypes, including (a) partial,
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308  with more than 30% of the internalizing cells were enclosed, but not fully, by the outer cells; (b)

309  one-in-one, with only one cell fully internalized, (c¢) two-in-one, with two cells were fully

310  internalized; (d) in turn, a nested CICs with multiple cells sequentially internalized into

311 neighboring cells; (e) complicated, a complex CICs generated by four or more cells. To refine the

312 output results, we added a F-category among non-CICs, which was defined as unclear or not sure

313 for the cell recognition and needs to be removed for the quantitative analysis. The cell candidates

314  involved in the training set were verified together by an expert group consisted of 6 members in

315 the lab.

316

317  Multiple classification model

318  We used the ResNet101 model as our classifier and the input size was set to 224. Since this model

319  could take the detection model’s output as input, we cropped cell samples using detection model

320  and manually labeled them with corresponding cell types. During training, each sample was first

321 padded to square and then resize to 224 x 224. Both horizontal and vertical random flip were

322 performed. We trained our model for 250 epochs with batch size of 32, using SGD optimizer with

323 learning rate of 0.001 and momentum of 0.9. To alleviate overfitting, a dropout layer with p = 0.25

324 was set right before feature went into the final fully connected layers. To choose hyper-params, we

325  kept 20% samples as validation set. Eventually, the prediction results could be visualized on the

326  original image with detected cell region and a predictive score of CICs, as well as in the output

327  folders of each cell type.

328  Importantly, when applying our model for inference, the test samples should be pad and resize in

329  the same way as training. Our model is a 7 classes classifier, and it outputs a 7 elements vector
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330  representing the probability for the test sample to belong to each type. Traditionally, the predicted

331 type should be the type with maximum probabilities. In practice, to increase precision, we predict

332 cells that have predicted probability lower than 0.2 as non-CIC, even if the non-CIC probability is

333 not the maximum for it. For example, if the predicted output is [0.1,0.18,0.12,0.15,0.15,0.13,0.17]

334 (for a, b, ¢, d, e, f, non-CIC), we will use non-CIC as model’s prediction. Ultimately, we could

335  output the classifications into specific folders of each cell type, and obtain the visualized results

336  that marked with individual colors on the original image.

337

338  Performance analysis of detection model

339  In deep learning community, the most common metric used for quantitatively comparing detection

340  models’ performance is mean average precision (mAP), as proposed in [34] and [35]. However,

341 since our work mainly focused on multi-type CICs classification instead of general object

342 detection technique, we reported our detection result in a more practical recall/precision manner.

343 In detail, we kept detection model’s output instances with confidence > 0.1 as model’s prediction

344  and calculate metrics at two different Intersection over Union (IoU) thresholds 0.5 / 0.1. Under

345  IoU threshold 0.5, the model must output an accurate prediction box to get a match, while 0.1

346  requires only loosely overlapping.

347

348 Features visualization

349  To better understand what the classification model learns from labeled samples, we extracted

350  features from each cell sample and visualize them in a 2D space. The feature we used is the output

351 of network’s global average pooling layer, which is right before the final classification layer. This
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352 2048D feature is the deepest and the most semantic so it can represent the information extracted

353 by the network from a corresponding input image. To visualize these 2048D features, we uses the

354  t-SNE method for dimensionality reduction to transform each feature to 2D [36]. t-SNE is a

355  popular method for visualizing high-dimension data since it can keep most of the original data

356  structure during dimensionality reduction.

357

358 Evaluation criteria for classification models

359  The output of classification model was evaluated by the universal criteria, such as, sensitivity (Se

360  or recall), specificity (Sp), precision, the receiver operating characteristic (ROC) curve, and the

361 area under ROC curve (AUC). The equations were listed as follows:

362 (1) Se (recall)=TP/(TP+FN)

363 (2) Sp=TN/(TN+FP)

364  (3) Precision =TP/ (TP+FP)

365  True positive (TP) stands for the accounts of positive CICs which are correctly recognized as

366  positive CICs. False positive (FP) stands for the number of negative CICs that are incorrectly

367  recognized as positive CICs. False negative (FN) stands for the accounts of positive CICs which

368  are incorrectly recognized as negative CICs. True negative (TN) stands for the number of negative

369  CICs correctly recognized as negative CICs.

370

371  Statistical analysis
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372 Categorical data are expressed as frequencies (%) and were tested by a two-tailed Student’s t-test.

373 P values were calculated by Excel or GraphPad Prism software. The level of significance was set

374 at p <0.05.

375

376

377
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466  Figure legends

467 Fig. 1 The workflow for the development of AIM-CICs.

468

469 Fig. 2 Cell regions detection and extraction. a Using VGG Image Annotator to annotate cell regions
470 in the training set. Each box represents an individual cell region with numeric order on it. b Detection
471 Model-based prediction of the cell region in the validation set. Each cell region was indicated by a box
472 with a predicted confidence score. ¢ Performance of cell region detection model. The MCF7 and
473 MCF10A images in the validation set belong to the same batch of training set images, and test set is
474  composed of MCF7 and MCF10A images from independent experiments. N GT: number of ground
475  truth cells. N_prediction: cell number of model’s prediction (confidence threshold set to 0.1). ToU:
476  Intersection over Union.

477

478 Fig. 3 Image processing and cell candidate regions. a Representative images of five CICs subtypes.
479  Cell membrane: E-cadherin in red, nucleus: DAPI in blue, and background is green. Original images
480 are listed in supplementary Fig. Sla. b Percentage of different CICs subtypes for MCF7 and MCF10A
481 cells. ¢ The number of cell candidates extracted from each MCF7 and MCF10A image. Samples
482  contained 17 pieces of MCF7 images and 85 pieces of MCF10A images. The columns in orange
483 and purple represent for samples used in the training set. d The count and frequency of CICs for
484  individual MCF7 or MCF10A image.

485

486 Fig. 4 Training and testing process of the multiple classification. a,b The percentages of CICs

487 subtypes in the training set (a) and test set (b). The CICs counts of MCF7 were 437 (a) and 340 (b),
21
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488 respectively. In the MCF10A samples, the CIC counts were 1269 (a) and 1948 (b), respectively.

489 Supplementary figures associated: Supplementary Fig. S2. ¢ The prediction accuracy of AIM-CICS for

490 each subtype in a 250 epochs of learning process. d The integrated accuracy of AIM-CICS for CICs

491 and non-CIC type in the training and validation set in a 250 epochs of learning process. CICs included

492 the partial, one-in-one, two-in-one, in turn, and complicated type. Non-CIC referred to F-category and

493 non-CIC. e Representative images of each CICs subtype predicted in the training set. f The ROC curves

494 for each CICs subtype in the test set.

495

496 Fig. 5 Visualization of sample features and output. a,b The two-dimension visualization of CICs

497 subtypes in the training set (a) and the test set (b). The samples circled out were those predicted by the

498 AIM-CICs to be miscategorized manually. ¢ A representative image showing the recognition result of

499 AIM-CICs. Colored Frames indicate structures in different categories, the predicated confidence scores

500  were marked on the up-left corner of each structure. The structures in the right were cropped from the

501 image in the left.

502

503 Fig. 6 Analysis of CICs subtypes in an experimental setup by AIM-CICs. a The visualized

504  recognition results of AIM-CICs in an experiment, where MCF10A cells expressed the empty vector

505 (control) and three truncated mutants of ARHGAP36 (1-194, 118-194, 195-395), respectively. b,¢

506 Graphs show the absolute frequency (b) or relative frequency (c) of subtyped CICs in MCF10A cells

507 expressing different ARHGAP36 mutants. (n = 934 cells for control, 1060 cells for 1-194, 1392 cells

508 for 118-194, 852 cells for 195-395). d-h The frequencies of subtyped CICs in MCF10A cells

509 expressing different ARHGAP36 mutants. Data were shown as box-plots with means and individual
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510 data points. * for p < 0.05, ** for p <0.01, *** for p <0.001 (two-tailed Student’s t test).

511

512 Fig. S1 Format transformation and cell region detection. a Representative images of different

513 brightness in RGB format for MCF7 and MCF10A cells, respectively. Cell membrane: E-cadherin in

514 red, nucleus: DAPI in blue, and background is green. The intensity value was rescaled to 0 - 255. b,c

515 Representative images of MCF7 (b) and MCF10A (c) samples predicted by the cell region detection

516 model. Each cell region was indicated by a box with a predicted confidence score.

517

518 Fig. S2 Binary subtyping by the AIM-CICs. a Representative images for CICs and non-CICs. b The

519 quantification of CICs for MCF7 and MCF10A cells in the training set. ¢ Percentage analysis of

520 F-category relative to the non-CIC category in training set and test set. d Representative images of

521 F-category, images belonging to this category were unclear and hard to be classified into other

522 categories. e The ROC curves for the F-category in the entire dataset, MCF7 group, and MCF10A

523 group of test set, respectively.

524
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Figure 2

d

lou 0.1 loU 0.5
N_GT  N_prediction
Group N_RECALL RECALL PRECISION N_RECALL RECALL PRECISION
validation MCF7 1783 1782 1691 0.947 0.947 1650 0.923 0.923
validation_MCF10A 347 367 336 0.968 0.904 323 0.960 0.897

testing 268 331 258 0.962 0.781 238 0.893 0.725
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Figure S1
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Figure S2
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