
1

AIM-CICs: automatic identification method for Cell-in-cell1

structures based on convolutional neural network2

Running title: Automatic identification for Cell-in-cell structures3

Meng Tang1,2, Yan Su1, Wei Zhao4, Zubiao Niu1, Banzhan Ruan1, Qinqin Li1,2, You Zheng1,4
Chenxi Wang1, Yong Zhou1, Bo Zhang1,3, Fuxiang Zhou5, Hongyan Huang3*, Hanping Shi2*,5
Qiang Sun1*6

7
1 Laboratory of Cell Engineering, Institute of Biotechnology; 20 Dongda Street, Beijing 100071,8
China.9

2 Department of GI Surgery, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI10
Road, Beijing 100038, China.11

3Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road,12
Beijing 10038, China.13

4 School of Mathematical Sciences, Peking University, Beijing 100871, China.14

5 Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological15
Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan16
430071, China.17

These authors contributed equally: Meng Tang, Yan Su, Wei Zhao, Zubiao Niu18
19

Correspondence:20
21

Hongyan Huang22
Email: hhongy1999@126.com23

24
Hanping Shi25
Email: shihp@ccmu.edu.cn26

27
Qiang Sun28
Email: sunq@bmi.ac.cn29

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.432996doi: bioRxiv preprint 

mailto:hhongy1999@126.com
mailto:shihp@vip.163.com
mailto:sunq@bmi.ac.cn
https://doi.org/10.1101/2021.02.26.432996
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

Abstract31

Whereas biochemical markers are available for most types of cell death, current studies on32

non-autonomous cell death by entosis relays strictly on the identification of cell-in-cell structure33

(CICs), a unique morphological readout that can only be quantified manually at present. Moreover,34

the manual CICs quantification is generally over-simplified as CICs counts, which represents a35

major hurdle against profound mechanistic investigations. In this study, we take advantage of36

artificial intelligence (AI) technology to develop an automatic identification method for CICs37

(AIM-CICs), which performs comprehensive CICs analysis in an automated and efficient way.38

The AIM-CICs, developed on the algorithm of convolutional neural network (CNN), can not only39

differentiate between CICs and non-CICs (AUC > 0.99), but also accurately categorize CICs into40

five subclasses based on CICs stages and cell number involved (AUC > 0.97 for all subclasses).41

The application of AIM-CICs would systemically fuel researches on CICs-mediated cell death42

such as high-throughput screening.43

44

Key words: cell-in-cell structure; artificial intelligence; AIM-CICs; cell death; entosis;45
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Introduction48

Cell-in-cell structures (CICs) typically referred to the unusual eukaryotic cells involving the whole49

objects internalized partially or completely inside of others, which had been observed in diverse50

physiological and pathological samples [1, 2]. The presence of CICs was reported to be correlated51

with patient prognosis in a group of human tumors, such as breast cancer [3], head and neck52

squamous carcinoma [4, 5], and pancreatic ductal adenocarcinoma [6]. Functional studies53

implicated CICs in a number of biomedical processes, including embryonic development [7],54

mitotic surveillance [8], tumor evolution [9], and immune homeostasis [10] and the forth. As an55

evolutionarily conserved process, CICs formation was underlain by multiple mechanisms, such as56

entosis [11], cannibalism [12] and emperitosis [13]. Among which, entosis was one of the best57

studied processes that generally ended up with the death of the internalized cells in an acidified58

lysosome-dependent way [11, 14]. The formation of entotic CICs turned out to be a genetically59

controlled process, where cell internalization was driven cell-autonomously by polarized60

actomyosin resulted from the E-cadherin-mediated adherens junctions [15, 16], and coordinated61

by a mechanical ring interfacing in between them [17]. Additionally, an ever-expanding set of62

factors, acting through either actomyosin, or adherent junctions or mechanical ring, were63

identified as important regulators [18, 19, 20, 21].64

Despite great progress made over the past decade, the studies on CICs formation were,65

however, based on the over-simplified readout of CICs counts that was performed manually,66

which is not only labor-intensive and time-consuming, but also sharply incompatible with the67

complex CICs formation per se. First, since CICs formation is a dynamic process preceding68
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through sequential steps including cell-cell contact, penetration and closing [22], therefore, it69

generally gives rise to CICs at different stages displaying morphologies of partial or complete.70

Second, the CICs morphologies were further complicated by the involvement of multiple cells,71

which frequently resulted in structures of “cell-in-cell-in-cell” or even more. Third, due to72

personal experiences and preferences, the CICs judgment and inclusion-exclusion criteria for73

analysis varied from investigators to investigators, making it hard to compare across studies from74

different labs, or even studies from different investigators in one lab. In addition, manual75

quantification is rather inefficient in dealing with a large number of samples that may serve the76

screening purpose. Thus, the traditional CICs quantification reported results of less informative,77

hardly comparable and low-throughput, which calls for more efficient and informative ways for78

the quantification of CICs.79

Recent years had witnessed the rapid development of image-based artificial intelligence (AI)80

technology in assisting biomedical practices. For example, by using a single convolutional neural81

networks (CNN) algorithm, Esteva et al demonstrated the classification of skin lesions in82

performance on par with all tested experts [23]. Lin et al developed a ResNeXt WSL model that83

achieved impressive performance (94.09% accuracy, 92.79% sensitivity, and 98.03% specificity)84

in making chromosome cluster type identification [24]. Actually, simply based on microscopic85

images, AI algorithms were quite competent in analyzing most, if not all, biological events such as86

the early onset of pluripotent stem cell differentiation [25], tumor cell malignancy [26], mitosis87

staging [27], and the like. The remarkable potentials in accuracy and efficiency make AI-based88

image analysis an ideal method for comprehensive and reliable CICs quantification.89

In this study, based on RGB fluorescent microscopic images, we employed the deep CNN90
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algorithms (Faster-RCNN and ResNet) to evaluate a large amount of cell candidates with defined91

subtypes and trained a multiclassfier for the recognition of subdivided CICs, which was named as92

AIM-CICs abbreviated from Automatic Identification Method of Cell-In-Cell structures. The93

AIM-CICs exhibited a high level of sensitivity and specificity, as evidenced by AUC values of >94

0.97 for all tasks, in differentiating CICs from non-CICs, and identifying subtyped CICs from95

multiple cells. The development and application of AIM-CICs hold the promise of speeding up96

CICs-related studies, such as deciphering the molecular controls of CICs formation in a finer97

resolution, and enabling image-based systemic screening by high-content microscopy.98

99

Results100

The deep-learning framework of AIM-CICs101

In this work, we conducted a framework of object detection and classification based on manual102

annotation in the training and validation set, and then performed inspections in the test set (Fig. 1).103

For an RGB-format image, the proposed system performs two consecutive steps. First, a104

Faster-RCNN [28] network with ResNet-50 [29] backbone was formulated to find the cell regions105

and extract the candidate patches. Second, each candidate, representing one cell or CICs, was106

classified by an ResNet-101 network based on the cellular morphology. Subsequently, those107

subdivided candidates of the predicted results were grouped into different folders, and marked out108

on the original locations of the corresponding images.109

Cell region detection and extraction110

Cell region detection is the initial task to investigate microscopic images. According to the basic111

cell components, we acquired the fluorescent microscopic images with red channel for membrane112
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and blue channel for nucleus. Along with the bright field, the merged images could be further113

composited into RGB format with variant cell quantities and brightness values (Fig. S1a). The114

extraction of cell candidate aims to propose regions of interest (ROI) that potentially involved CIC115

structures. This step served to reduce the searching space and improve efficiency of subsequent116

steps in a high-content study. Initially, four pieces of MCF7 images and four pieces of MCF10A117

images, which included 2164 cells in total, were used as the training set for cell region detection.118

Through manually annotating these images using VGG Image Annotator (VIA,119

https://www.robots.ox.ac.uk/~vgg/software/via/) (Fig. 2a), cell region detection was further treated120

as a classic 1-class object detection task through the Faster-RCNN [28] network with ResNet-50121

[29] backbone. Specifically, during training, we have performed random flip, random rotation and122

random scale for data augmentation, which greatly expanded the data’s diversity. Following the123

training process (Fig. 2b), we ensured the applicability of this step with average of 0.88 precision124

and 0.96 recall (IoU 0.1) by randomly testing on 10 pieces of MCF7 and MCF10A images, which125

covered 2398 cells (Fig. 2c).126

It is believed that factors, such as cell morphology, sample density, as well as image brightness, do127

impact the accuracy of target detection and recognition. In the data collected this study, MCF10A128

samples generally displayed a larger cell size and much more complicated pattern of CICs as129

compared with MCF7 samples (Fig. S1a). Based on the precisely manual labeling, we could130

minimize the effect of target varieties among MCF7 and MCF10A samples (Fig. S1b), except for131

the over-exposed fluorescent images that should be excluded in the processing of the primary132

images. Eventually, we exported the patches of detected cell regions of the entire RGB-format133

images for the following analysis.134
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Definition of the structural subtypes of CICs135

To classify the cell-in-cell structures, we first divided the traditional CICs into five structural136

subtypes, including (a) partial, with more than 30% of the internalizing cells were enclosed, but137

not fully, by the outer cells; (b) one-in-one, with only one cell fully internalized, (c) two-in-one,138

with two cells were fully internalized; (d) in turn, a nested CICs with multiple cells sequentially139

internalized into neighboring cells; (e) complicated, a complex CICs generated by four or more140

cells (Fig. 3a). Considering the potential complexity, two kinds of breast cell lines including141

MCF7 and MCF10A were investigated, in which the total rate of CICs and its subtypes showed142

great discrepancy according to the manually labeling (Fig. 3b). In total, 17 pieces of MCF7 images143

and 85 pieces of MCF10A images were enrolled in this study, the cell number of each image144

ranged from 100 to 600, and from 30 to 200, respectively (Fig. 3c). The overall CICs rate of each145

image counted from 1% to 85% (Fig. 3d).146

Multi-Subtype classification achieved by the AIM-CICs147

The obtained cell candidates were used to train ResNet101 model for the purpose of CICs148

recognition (Fig. S2a). Practically, we used 13 pieces of MCF7 images and 32 pieces of MCF10A149

images as the training set, which had 4026 MCF7 cells with a CICs rate of 11% and 3912150

MCF10A cells with a CICs rate of 32% (Fig. S2b). Based on the morphological features of cell151

candidates, five subtypes of CICs were manually labeled for each cell candidate in the training and152

validation set. The distribution of each subtype of CICs showed remarkable discrepancy, as well153

as in the test set (Fig. 4a-b). To improve the practicality of the model, we defined a F-category154

from the non-CIC candidates. The F-category contains ambiguous structures that were hard to tell155

their identities by both experienced experts and AI algorithm, therefore, were generally removed156
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from the sample counting (Fig S2c-d).157

As shown in Fig. 4c, data training progressively increased the prediction accuracy to a158

considerable level for each subtype. In both training and validation sets, the comprehensive159

accuracy of integrated CICs (involving a, b, c, d, e types) and non-CIC type (including F category)160

revealed approving performance (Fig. 4d). Moreover, the AIM-CICs also exhibited impressive161

performance as indicated by the AUC of more than 0.97 for each CICs subtype (partial 0.9761,162

one-in-one 0.9807, two-in-one 0.9872, in turn 0.9709, complicated 0.9984) (Fig. 4e-f) in the test163

set. Additionally, for the low-quality images in the test set that displayed unclear cell regions and164

were eventually removed for further analysis, their recognition also reached an ideal AUC of 0.99165

(Fig. S2e). Together, the AIM-CICs performed accurate recognition of CICs on independent166

datasets of MCF10A and MCF7 cells, suggesting the generalizability of this model.167

Visualization of morphological features and output168

To better understand what the model learnt from the annotated data, we extract features from the169

output of network’s global average pooling layer and applied t-SNE to reduce dimension to 2D for170

visualization. For the training set, each group of cell samples represented independent clusters,171

except for cell candidates in the circled region (Fig. 5a). Backtracking the training data identified172

that these were candidates categorized into two subtypes due to erroneous manual annotation.173

Thus, the t-SNE-based clustering would be a visualized way for error-correction in recognizing174

CICs. For the test set (Fig. 5b), subtypes of CICs were clustered into close, but clearly distinct,175

regions, whereas F-category was neighboring to the area of non-CIC as expected. Moreover,176

following the comprehensive recognition under a specified confidence threshold, we were able to177

accurately locate each structure with a predicted value on the original images (Fig. 5c).178
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Application of AIM-CICs in an experimental setup179

To explore the potential implication of AI-based recognition of CICs in a biological context, we180

included a functional experiment as an example of subtype profiling. In this analysis, the181

confidence threshold was set to 0.2 for more informative identification (Fig. 6a). As the results182

showed, though all of the three truncations of ARHGAP36, a molecule identified to be a regulator183

of CICs formation in a screening study [20], resulted in impaired formation of CICs, the184

alterations of CICs subtypes were rather different (Fig. 6b-c). While the truncated GAP36 (1-194)185

had little impact on the formation of partial CICs (Fig. 6b-d), the majority of CICs were in186

completed form (including all CICs subtypes except for the partial) in cells expressing the187

truncated GAP (118-194) or GAP (195-395) (Fig. 6b-c), suggesting that the N-terminal region188

(1-117) of ARHGAP36 might function to slow down the process of cell internalization.189

Meanwhile, the C-terminal region of ARHGAP36 was likely to be responsible for the closing step190

of CICs formation as evidenced by comparable formation of completed CICs between control and191

GAP (195-395)-expressing cells (Fig. 6b and 6e-h). Moreover, the GAP (118-194) seemed to be192

the major region that drives cell internalization as it promoted the formation of completed CICs at193

a rate comparable to the GAP (1-194) region. Furthermore, though the N-terminal region might194

negatively regulate the speed of CICs formation, it did function positively to promote cell195

internalization as its truncation significantly reduced the formation of both partial and total CICs196

(Fig. 6b-d). Thus, the AIM-CICs algorithm allows us, for the first time, to accurately dissect the197

impacts of different domains or molecules on CICs formation in a heretofore underappreciated198

resolution.199

Discussion200
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Fluorescent microscope images recorded the cellular structures such as CICs, but inevitably201

provided a great number of morphological variations. To provide recognition with sufficient202

accuracy and potentially featured insights, we, for the first time, explored the application of203

Convolution Neural Network (CNN) in the profiling of subtyped CICs formed during entosis, a204

non-apoptotic cell death process occurred via cell-in-cell invasion [11]. Based on the tons of205

images accumulated from previous studies, we developed the AI-based identification algorithm206

AIM-CICs, which was trained with distinct illumination, textures, and density, in order to deliver207

an optimal performance in cell region detection and multiple subtypes classification, despite of the208

unseen perturbations.209

In the proposed system, we set up two tasks, of which, a classic 1-class object detection model210

was formulated to find cell regions as the first task, followed by multi-class object recognition as211

the second task. Comparing with the traditional end-to-end manner, i.e., to train a multi-class212

detection model with different kinds of cells marked simultaneously, our model of separated213

detection will achieve the flexibility for the raw samples to be recategorized and repurposed. In214

AIM-CICs developed in this study, the second task included a well-trained 7-category classifier (5215

CICs subtypes plus one non-CICs and one F-category) to define the multiple subtypes of CIC216

structures, which is compatible with the cell candidates from the first step. This two-step217

algorithm is also advantageous in debugging the possible mechanisms leading to inferior final218

prediction outcomes, as each step could be optimized separately. Meanwhile, this two-step219

algorithm may fall short of efficiency (speed) as compared to the end-to-end multi-class detection220

model which could utilize a shared feature extraction backbone.221

Among all the defined cell death programs, CICs-mediated death is unique in that it can only be222
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accomplished with the involvement of at least two cells, but not one cell in other programs like223

apoptosis, necrosis and the forth [30]. Therefore, mechanistic study is a challenging task for the224

field of CICs-mediated death, which was further complicated by the fact of lacking a reliable225

biochemical marker. Current studies on CICs relayed on the morphology-based binary226

quantification, that is, CICs or non-CICs. Here, CICs were usually defined as structures with more227

than 1/2, or 2/3 in some studies, of the inner cell body being internalized/enclosed by the outer cell.228

This oversimplified quantification of CICs, did move the field forward over the past decade,229

however, provided rather coarse information over a more complicated process [22, 31]. CICs230

formation is a stepwise process that could be empirically subdivided into three major stages: 1) the231

early initiation stage from cell-cell contact to about 1/3 of the inner cell body being internalized,232

this stage was primarily driven by cell-cell adhesion and assisted by cytoskeleton remodeling; 2)233

the middle internalization stage covering the whole process of cell internalization that was234

primarily driven by active actomyosin contraction within the inner cells, and coordinately assisted235

by the outer cells; 3) the final closing stage that may involve in tail cutting and membrane fusion,236

this a process rarely being investigated largely because it is technically challenging. Furthermore,237

CICs formation is a dynamic process that may have multiple cells, either sequentially or238

simultaneously, form a complicated structure that may contain more than one cell inside (Fig. 3a).239

The regulation of this feature is completely unknown for the field yet, but might be conceptually240

feasible as it was reported in phagocytosis that the number of corpses engulfed by a phagocyte241

was genetically controlled [32]. Taking these two factors (stage and cell number) into account will242

produce an even higher dimensional complexity, which, however, was missed from the traditional243

analysis by the binary quantification. The implantation of AIM-CICs enables us to make a more244

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.432996doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.432996
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

sophisticated description of CICs phenotypes, which would help identify finer molecular control.245

For example, though expression of the GAP (195-395) domain did not influence the frequency of246

simple CICs, where only one cell was enclosed (one-in-one in Fig. 6e), it did result in significantly247

reduced formation of complex CICs, where more cells were enclosed by one outer cell248

(two-in-one and in-turn in Fig. 6f-g). These results suggested that the truncated N-terminal domain249

may facilitate the internalization of multiple cells to form complex CICs, which warrants further250

functional validation.251

In addition to mechanistic investigation, AIM-CICs is also promising in enabling high-content252

based screening for therapeutic compounds that target CICs formation considering their pivotal253

roles in multiple biomedical processes such as cancer [1]. While high throughput screening254

generally relies critically on a reliable biochemical marker that is currently unavailable to CICs255

formation, the related systemic screening, which would be labor-intensive and time-consuming if256

worked out by manual annotation, had yet been reported. Empowered with AIM-CICs and257

high-content microscopy, the systemic screening would be feasible in the near future.258
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Materials and methods278

Image processing and softwares279

An entire dataset involving 17 pieces of MCF7 images and 85 pieces of MCF10A images were280

obtained from Sun’s lab. As detailed protocol described [33], the fluorescently labeled cells were281

necessary to be stained with discrepant colors for each cell components, such as, red for282

cytomembrane (E-Cadherin, 1:200, BD Biosciences, 610181) with secondary antibodies Alexa283

Fluor 568 anti-rabbit (1:500; Invitrogen; A11036), and blue for cytoblast (DAPI, Sigma D8417).284

Random fields were taken under corresponding channels of laser lights through fluorescent285
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microscopy (Nikon Ti-E microscope, Nikon NIS-Elements AR 4.5 software), along with bright286

color for the background. For algorithm performing, each sample with three single-channel images287

was transformed into an RGB format with value rescaled to 0 - 255. Softwares used and288

algorithms developed in this study include: Python (http://www.python.org./); PyTorch289

(https://pytorch.org/); VIA Annotation Tools (https://www.robots.ox.ac.uk/~vgg/software/via/);290

Detectron2 (https://github.com/facebookresearch/detectron2).291

292

Cell region labeling and candidates extraction293

After acquiring the processed images, we manually annotated the cell regions through VGG Image294

Annotator (https://www.robots.ox.ac.uk/~vgg/software/via/). Based on the annotated images, a295

classic 1-class object detection task was carried out for cellular morphological learning. The296

model we used is a Faster-RCNN [28] network with ResNet-50 [29] backbone. Since the original297

resolution of microscopic image is 2160 x 2560 which is too large for Faster-RCNN training, we298

first split each image into 4x4 grids, then follow the common practice to train the model. For data299

augmentation, we use random flip, random rotation, and random scale to expand diversity of data.300

As for other hyper-parameters, we set batch-size to 24 and iterate 50000 steps using SGD301

optimizer with momentum 0.9. As the output of the Faster-RCNN network, the patches of detected302

cell regions were exported as candidate sequences for further steps.303

304

Manual classifications of cell-in-cell structures305

The manual definition of cell-in-cell structural classification primarily included bipartite-class,306

CICs and non-CICs. CICs category were further subdivided into 5 subtypes, including (a) partial,307
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with more than 30% of the internalizing cells were enclosed, but not fully, by the outer cells; (b)308

one-in-one, with only one cell fully internalized, (c) two-in-one, with two cells were fully309

internalized; (d) in turn, a nested CICs with multiple cells sequentially internalized into310

neighboring cells; (e) complicated, a complex CICs generated by four or more cells. To refine the311

output results, we added a F-category among non-CICs, which was defined as unclear or not sure312

for the cell recognition and needs to be removed for the quantitative analysis. The cell candidates313

involved in the training set were verified together by an expert group consisted of 6 members in314

the lab.315

316

Multiple classification model317

We used the ResNet101 model as our classifier and the input size was set to 224. Since this model318

could take the detection model’s output as input, we cropped cell samples using detection model319

and manually labeled them with corresponding cell types. During training, each sample was first320

padded to square and then resize to 224 x 224. Both horizontal and vertical random flip were321

performed. We trained our model for 250 epochs with batch size of 32, using SGD optimizer with322

learning rate of 0.001 and momentum of 0.9. To alleviate overfitting, a dropout layer with p = 0.25323

was set right before feature went into the final fully connected layers. To choose hyper-params, we324

kept 20% samples as validation set. Eventually, the prediction results could be visualized on the325

original image with detected cell region and a predictive score of CICs, as well as in the output326

folders of each cell type.327

Importantly, when applying our model for inference, the test samples should be pad and resize in328

the same way as training. Our model is a 7 classes classifier, and it outputs a 7 elements vector329
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representing the probability for the test sample to belong to each type. Traditionally, the predicted330

type should be the type with maximum probabilities. In practice, to increase precision, we predict331

cells that have predicted probability lower than 0.2 as non-CIC, even if the non-CIC probability is332

not the maximum for it. For example, if the predicted output is [0.1,0.18,0.12,0.15,0.15,0.13,0.17]333

(for a, b, c, d, e, f, non-CIC), we will use non-CIC as model’s prediction. Ultimately, we could334

output the classifications into specific folders of each cell type, and obtain the visualized results335

that marked with individual colors on the original image.336

337

Performance analysis of detection model338

In deep learning community, the most common metric used for quantitatively comparing detection339

models’ performance is mean average precision (mAP), as proposed in [34] and [35]. However,340

since our work mainly focused on multi-type CICs classification instead of general object341

detection technique, we reported our detection result in a more practical recall/precision manner.342

In detail, we kept detection model’s output instances with confidence > 0.1 as model’s prediction343

and calculate metrics at two different Intersection over Union (IoU) thresholds 0.5 / 0.1. Under344

IoU threshold 0.5, the model must output an accurate prediction box to get a match, while 0.1345

requires only loosely overlapping.346

347

Features visualization348

To better understand what the classification model learns from labeled samples, we extracted349

features from each cell sample and visualize them in a 2D space. The feature we used is the output350

of network’s global average pooling layer, which is right before the final classification layer. This351
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2048D feature is the deepest and the most semantic so it can represent the information extracted352

by the network from a corresponding input image. To visualize these 2048D features, we uses the353

t-SNE method for dimensionality reduction to transform each feature to 2D [36]. t-SNE is a354

popular method for visualizing high-dimension data since it can keep most of the original data355

structure during dimensionality reduction.356

357

Evaluation criteria for classification models358

The output of classification model was evaluated by the universal criteria, such as, sensitivity (Se359

or recall), specificity (Sp), precision, the receiver operating characteristic (ROC) curve, and the360

area under ROC curve (AUC). The equations were listed as follows:361

(1) Se (recall) = TP / (TP+FN)362

(2) Sp = TN / (TN+FP)363

(3) Precision = TP / (TP+FP)364

True positive (TP) stands for the accounts of positive CICs which are correctly recognized as365

positive CICs. False positive (FP) stands for the number of negative CICs that are incorrectly366

recognized as positive CICs. False negative (FN) stands for the accounts of positive CICs which367

are incorrectly recognized as negative CICs. True negative (TN) stands for the number of negative368

CICs correctly recognized as negative CICs.369

370

Statistical analysis371
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Categorical data are expressed as frequencies (%) and were tested by a two-tailed Student’s t-test.372

P values were calculated by Excel or GraphPad Prism software. The level of significance was set373

at p < 0.05.374

375

376

377
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Figure legends466

Fig. 1 The workflow for the development of AIM-CICs.467

468

Fig. 2 Cell regions detection and extraction. a Using VGG Image Annotator to annotate cell regions469

in the training set. Each box represents an individual cell region with numeric order on it. b Detection470

Model-based prediction of the cell region in the validation set. Each cell region was indicated by a box471

with a predicted confidence score. c Performance of cell region detection model. The MCF7 and472

MCF10A images in the validation set belong to the same batch of training set images, and test set is473

composed of MCF7 and MCF10A images from independent experiments. N_GT: number of ground474

truth cells. N_prediction: cell number of model’s prediction (confidence threshold set to 0.1). IoU:475

Intersection over Union.476

477

Fig. 3 Image processing and cell candidate regions. a Representative images of five CICs subtypes.478

Cell membrane: E-cadherin in red, nucleus: DAPI in blue, and background is green. Original images479

are listed in supplementary Fig. S1a. b Percentage of different CICs subtypes for MCF7 and MCF10A480

cells. c The number of cell candidates extracted from each MCF7 and MCF10A image. Samples481

contained 17 pieces of MCF7 images and 85 pieces of MCF10A images. The columns in orange482

and purple represent for samples used in the training set. d The count and frequency of CICs for483

individual MCF7 or MCF10A image.484

485

Fig. 4 Training and testing process of the multiple classification. a,b The percentages of CICs486

subtypes in the training set (a) and test set (b). The CICs counts of MCF7 were 437 (a) and 340 (b),487
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respectively. In the MCF10A samples, the CIC counts were 1269 (a) and 1948 (b), respectively.488

Supplementary figures associated: Supplementary Fig. S2. c The prediction accuracy of AIM-CICS for489

each subtype in a 250 epochs of learning process. d The integrated accuracy of AIM-CICS for CICs490

and non-CIC type in the training and validation set in a 250 epochs of learning process. CICs included491

the partial, one-in-one, two-in-one, in turn, and complicated type. Non-CIC referred to F-category and492

non-CIC. e Representative images of each CICs subtype predicted in the training set. f The ROC curves493

for each CICs subtype in the test set.494

495

Fig. 5 Visualization of sample features and output. a,b The two-dimension visualization of CICs496

subtypes in the training set (a) and the test set (b). The samples circled out were those predicted by the497

AIM-CICs to be miscategorized manually. c A representative image showing the recognition result of498

AIM-CICs. Colored Frames indicate structures in different categories, the predicated confidence scores499

were marked on the up-left corner of each structure. The structures in the right were cropped from the500

image in the left.501

502

Fig. 6 Analysis of CICs subtypes in an experimental setup by AIM-CICs. a The visualized503

recognition results of AIM-CICs in an experiment, where MCF10A cells expressed the empty vector504

(control) and three truncated mutants of ARHGAP36 (1-194, 118-194, 195-395), respectively. b,c505

Graphs show the absolute frequency (b) or relative frequency (c) of subtyped CICs in MCF10A cells506

expressing different ARHGAP36 mutants. (n = 934 cells for control, 1060 cells for 1-194, 1392 cells507

for 118-194, 852 cells for 195-395). d-h The frequencies of subtyped CICs in MCF10A cells508

expressing different ARHGAP36 mutants. Data were shown as box-plots with means and individual509
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data points. * for p < 0.05, ** for p < 0.01, *** for p < 0.001 (two-tailed Student’s t test).510

511

Fig. S1 Format transformation and cell region detection. a Representative images of different512

brightness in RGB format for MCF7 and MCF10A cells, respectively. Cell membrane: E-cadherin in513

red, nucleus: DAPI in blue, and background is green. The intensity value was rescaled to 0 - 255. b,c514

Representative images of MCF7 (b) and MCF10A (c) samples predicted by the cell region detection515

model. Each cell region was indicated by a box with a predicted confidence score.516

517

Fig. S2 Binary subtyping by the AIM-CICs. a Representative images for CICs and non-CICs. b The518

quantification of CICs for MCF7 and MCF10A cells in the training set. c Percentage analysis of519

F-category relative to the non-CIC category in training set and test set. d Representative images of520

F-category, images belonging to this category were unclear and hard to be classified into other521

categories. e The ROC curves for the F-category in the entire dataset, MCF7 group, and MCF10A522

group of test set, respectively.523

524

525
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