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Abstract 

State modeling of whole-brain electroencephalography (EEG) or       

magnetoencephalography (MEG) allows to investigate transient, recurring neurodynamical        

events. Two widely-used techniques are the microstate analysis of EEG signals and hidden             

Markov modeling (HMM) of MEG power envelopes. Both reportedly lead to similar state             

lifetimes on the 100 ms timescale, suggesting a common neural basis. We addressed this issue by                

using simultaneous MEG/EEG recordings at rest and comparing the spatial signature and            

temporal activation dynamics of microstates and power envelope HMM states obtained           

separately from EEG and MEG. Results showed that microstates and power envelope HMM             

states differed both spatially and temporally. Microstates tend to exhibit spatio-temporal locality,            

whereas power envelope HMM states disclose network-level activity with 100–200 ms lifetimes.            

Further, MEG microstates do not correspond to the canonical EEG microstates but are better              

interpreted as split HMM states. On the other hand, both MEG and EEG HMM states involve the                 

(de)activation of similar functional networks. Microstate analysis and power envelope HMM           

thus appear sensitive to neural events occurring over different spatial and temporal scales. As              

such, they represent complementary approaches to explore the fast, sub-second scale bursting            

electrophysiological dynamics in spontaneous human brain activity.  
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1. Introduction 

A fundamental part of human neural dynamics is the spontaneous emergence of brain             

rhythms, i.e., large-scale oscillations of neuroelectric activity (for a review, see, e.g., ​(Hari and              

Salmelin, 1997) ​). These rhythms play a critical role for human brain functions such as sensory,               

motor and cognitive processes ( ​(Klimesch, 2012) ​, for reviews, see ​(Klimesch et al., 2010;             

Pfurtscheller and Lopes da Silva, 1999) ​). They also wax and wane spontaneously at rest (i.e., in                

the absence of any explicit task performance). The resulting fluctuations in their amplitude are              

key to intrinsic functional connectivity ​(Siegel et al., 2012; Sjøgård et al., 2020a)​. When              

measured with electroencephalography (EEG) or magnetoencephalography (MEG), this        

oscillatory dynamics leads to signal power time courses whose correlation structure identifies            

functional brain networks ​(Brookes et al., 2011; Coquelet et al., 2020a; Hipp et al., 2012; Liu et                 

al., 2017; Siems et al., 2016; Wens et al., 2014) ​. Further, spontaneous MEG/EEG power              

fluctuations occur in transient, sub-second long bursts of oscillatory activity ​(van Ede et al.,              

2018) ​. Short-lived power bursts may actually correspond to the fast activation/deactivation of            

functional networks ​(Baker et al., 2014; Britz et al., 2010; Vidaurre et al., 2018) and their                

co-occurrence, to the intrinsic functional connectivity of these networks ​(Seedat et al., 2020) ​.             

They might ultimately relate to the metastable cross-network interactions characteristic of           

functional integration at the supra-second timescale ​(de Pasquale et al., 2016, 2012; Della Penna              

et al., 2019; Wens et al., 2019) ​. Power bursts also presumably hold specific functions, such as the                 

encoding of recently acquired information by coactivation with spontaneous replays ​(Higgins et            

al., 2020) ​. Exploring the spontaneous dynamics of MEG/EEG power bursts thus represents a             
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fundamental step towards a better understanding of the intrinsic functional architecture of the             

human brain. 

With their millisecond-scale temporal resolution, EEG and MEG ​(Hari and Puce, 2017)            

are natural techniques to investigate power bursts, although the role of short-time events has also               

been emphasized with functional magnetic resonance imaging (fMRI) ​(Tagliazucchi et al.,           

2012) ​. Accordingly, the two main data-driven methods used to detect recurring events of high              

electrophysiological power are EEG microstate analysis ( ​(Lehmann et al., 1987) ​; for a review,             

see ​(Michel and Koenig, 2018) ​) and hidden Markov modeling (HMM) of MEG power envelopes              

(Baker et al., 2014; Quinn et al., 2018) ​. Both allow to partition EEG/MEG data into discrete                

brain states that recurrently activate and deactivate one after the other, yet the underlying              

clustering algorithms strongly differ in their assumptions and methods. Microstates are           

determined as time periods of quasi-stable scalp EEG topography that repeatedly occur, up to              

amplitude rescalings and polarity flips. Four canonical microstates have been identified with            

reported mean lifetimes ranging from 60 to 120 ms (for a review, see, e.g. ​(Michel and Koenig,                 

2018) ​) ​. These microstates were associated with different classes of mentation ​(Lehmann et al.,             

1998) and partially correlated with the spontaneous haemodynamics of some fMRI networks            

(Britz et al., 2010; Musso et al., 2010; Yuan et al., 2012) ​. Their temporal properties are also                 

affected by brain disorders such as schizophrenia ​(Koenig et al., 1999; Lehmann et al., 2005) or                

multiple sclerosis ​(Gschwind et al., 2016) ​. By contrast, the HMM relies on the more abstract               

concept of Markov chains to describe brain power dynamics in terms of causal transitions among               

“hidden” states ​(Rabiner, 1989) ​. These states are hidden in the sense that they are not explicitly                

expressed in the data and must be inferred through implicit statistical features such as, e.g., the                
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covariance matrix of a state observation model ​(Rezek and Roberts, 2005) ​. Here, the HMM              

states are determined by transient patterns of MEG power envelope covariance repeating over             

time ​(Baker et al., 2014) ​, but occurring on too short time periods to be measurable directly from                 

the data, e.g., with sliding windows (for a review, see ​(O’Neill et al., 2018) ​). The HMM                

inference applied to MEG power envelope signals has typically been used to identify 6 or 8                

states disclosing a spatial distribution reminiscent of brain functional networks as well as mean              

lifetimes ranging from 50 to 200 ms ​(Baker et al., 2014; Quinn et al., 2018) ​. Temporal properties                 

of HMM states are also altered by physiological processes such as ageing ​(Brookes et al., 2018;                

Coquelet et al., 2020b) as well as brain disorders such as Alzheimer’s disease ​(Puttaert et al.,                

2020; Sitnikova et al., 2018)​ or multiple sclerosis ​(Van Schependom et al., 2019)​. 

Interestingly, despite fundamental methodological differences, EEG microstates and        

MEG power envelope HMM states appear to remain stable over similar timescales. This raises              

the question of whether they describe similar neurodynamics ( ​(Baker et al., 2014) ​; for a review,               

see ​(Khanna et al., 2015) ​). Here, we investigate this key question using simultaneous MEG/EEG              

recordings of resting-state activity. Still, comparing EEG microstates and MEG power envelope            

HMM states entangles two potential issues, i.e., the effect of the state clustering model              

(microstates vs. HMM) and that of the recording modality (EEG vs. MEG). To avoid such               

confound, we sought to adapt the notion of microstates to MEG, and that of HMM states to EEG,                  

before conducting the comparison. To the best of our knowledge, a microstate analysis of MEG               

data has not yet been developed. The HMM approach has been applied to EEG power envelopes                

(Hunyadi et al., 2019; Sitnikova et al., 2020) ​, but the focus was on the relationship with fMRI                 

networks rather than MEG or EEG microstates. Here, we assessed the impact of both the state                
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clustering model and the recording modality on temporal and spatial signatures of transient brain              

states. More specifically, we estimated to what extent two types of states tend to co-activate by                

temporal correlation analysis of their activation dynamics, and to what extent they involve             

similar brain regions or networks by spatial correlation analysis of the associated power             

distributions. Based on the idea that microstates and HMM states are both designed to identify               

discrete recurrent brain states and given the reported similarity of their typical lifetimes ​(Baker et               

al., 2014) ​, we hypothesized that the two state clustering models would reveal a close              

spatio-temporal relationship within each recording modality. This would suggest that microstates           

and power envelope HMM states disclose similar neural events. On the other hand, based on a                

previous comparison of MEG and EEG power envelope signals at rest ​(Coquelet et al., 2020a)​,               

we expected similar spatial signatures but substantially different temporal state dynamics across            

the two recording modalities. 
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2. Methods 

2.1. Participants 

Forty-two young adults (14 females, mean age ± standard deviation (SD): 24.4 ± 3.9              

years, range: 18–35 years) were included in this study, 19 of which were already used in a                 

previous study of our group (Coquelet et al., 2020a). All participants were right-handed             

according to the Edinburgh handedness inventory ​(Oldfield, 1971) ​, did not take any psychotropic             

drug, and had no prior history of neurological or psychiatric disorder. Each of them signed a                

written informed consent before scanning. The CUB – Hôpital Erasme Ethics Committee            

approved this study prior to their inclusion. 

 

2.2. Data acquisition 

Participants underwent a resting-state recording session (eyes open, fixation cross, 5           

minutes) with simultaneous MEG and high-density EEG. Neuromagnetic activity was recorded           

with a 306-channel whole-scalp MEG system (band-pass: 0.1–330 Hz, sampling frequency: 1            

kHz) installed in a light-weight magnetically shielded room (Maxshield™, MEGIN, Cronton           

Healthcare, Helsinki, Finland; see ​(De Tiège et al., 2008) for detailed characteristics). Four coils              

continuously tracked subjects’ head position inside the MEG helmet. The first 15 participants             

were scanned with a Neuromag Vectorview™ MEG (Elekta Oy, Helsinki, Finland) and the other              

27 with a Neuromag Triux™ MEG (MEGIN, Helsinki, Finland) due to a system upgrade. These               

neuromagnetometers have identical sensor layout (i.e., 102 magnetometers and 102 pairs of            

orthogonal planar gradiometers) and only differ in sensor dynamic range and background            
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magnetic environment, neither of which substantially affect data quality after preprocessing. In            

particular, previous research mixing resting-state recordings from these two systems did not            

disclose any significant difference ​(Coquelet et al., 2020b, 2020a; Naeije et al., 2020; Sjøgård et               

al., 2020a, 2020b) ​. Therefore, we did not take the MEG system type into account in later                

analyses.  

Neuroelectric activity was measured with a MEG-compatible, 256-channel scalp EEG          

system (low-pass: 450 Hz; sampling frequency: 1 kHz) based on low profile, silver             

chloride-plated carbon-fiber electrode pellets (MicroCel Geodesic Sensor Net with Net Amp           

GES 400, Electrical Geodesics Inc., Magstim EGI, Eugene, Oregon, USA). The reference            

electrode was placed at Cz and all impedances were kept below 50 kΩ. A 100-ms long                

square-pulse trigger signal was generated by the MEG system electronics every second and fed              

to the EEG amplifier in order to enable clock synchronization of both systems. The location of                

the head position indicator coils, scalp EEG electrodes, and approximately 200 scalp points were              

determined with respect to anatomical fiducials using an electromagnetic tracker (Fastrack,           

Polhemus, Colchester, Vermont, USA).  

Participant’s high-resolution 3D T1-weighted cerebral magnetic resonance images        

(MRIs) were acquired on a 1.5 T MRI scanner (Intera, Philips, The Netherlands) after the               

MEG/EEG recordings. 

 

2.3. Data preprocessing 

The MEG data were preprocessed using signal space separation ​(Taulu et al., 2005) to              

subtract environmental magnetic noise and correct for head movements (Maxfilter v2.1, Elekta            
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Oy, Helsinki, Finland). No bad channels were detected in the process. For EEG data, we started                

by eliminating 84 electrodes placed on cheeks and neck as they often suffered from excessive               

muscle artefacts or poor skin contact, leaving 172 scalp-matched electrodes. Remnant bad            

channels were then automatically detected and removed using artifact subspace reconstruction           

(Kothe and Makeig, 2013) as implemented in EEGLAB ( ​(Delorme and Makeig, 2004) ​;            

EEGLAB v2019.0, ​https://sccn.ucsd.edu/eeglab/index.php​) (number of bad channels: 10.6 ± 4.1          

out of 172, range: 4–21). Cardiac, ocular and remaining system artifacts were further eliminated              

from MEG and EEG data separately, using an independent component analysis of band-passed             

(1–40 Hz) signals ( ​(Vigário et al., 2000) ​; FastICA v2.5, ​http://www.cis.hut.fi/projects/ica/fastica​,          

with dimension reduction to 30 components, symmetric ​approach, and cubic nonlinearity           

contrast). Artefactual components were identified by visual inspection and regressed out of the             

full-rank data (number of components removed for MEG: 3.6 ± 1.1, range: 2–7; for EEG: 13.9 ±                 

3.3, range: 9–21). Bad EEG electrodes were subsequently reconstructed using spherical spline            

interpolation ​(Perrin et al., 1989) and EEG scalp topographies were spatially filtered ​(Michel and              

Brunet, 2019) to remove any last local outlier. The resulting EEG data were then re-referenced to                

the average across the 172 scalp electrodes. Finally, the synchronization of MEG and EEG              

signals was ensured by temporal realignment based on the trigger signal. 

Separate forward models for MEG and EEG were computed based on the participants’             

MRI, segmented beforehand using the FreeSurfer software (FreeSurfer v6.0; Martinos Center for            

Biomedical Imaging, Massachusetts, USA; ​https://surfer.nmr.mgh.harvard.edu​,     

freesurfer-x86_64-linux-gnu-stable6-20170118). The coordinate systems of MEG and EEG were         

co-registered to the MRI coordinate system using the three anatomical fiducials for initial             
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estimation and the head-surface points to manually refine the surface co-registration (MRIlab,            

MEGIN Data Analysis Package 3.4.4, MEGIN, Helsinki, Finland). The source space was built             

by placing three orthogonal current dipoles at each point of a grid derived from a regular 5-mm                 

grid cropped within the Montreal Neurological Institute (MNI) template MRI volume and            

non-linearly deformed onto each participant’s MRI with the Statistical Parametric Mapping           

software (SPM12, Wellcome Centre for Neuroimaging, London, UK;        

https://www.fil.ion.ucl.ac.uk/spm​). The forward models were then computed on this source space           

using the one-layer boundary element method (BEM) for MEG and the three-layer BEM with              

default conductivity values for EEG (as used and discussed in ​(Coquelet et al., 2020a)​)              

implemented in the MNE-C suite (MNE-C v2.7.3, Martinos Center for Biomedical Imaging,            

Massachusetts, USA; ​https://mne.tools/stable/index.html​). The EEG forward models were also         

re-referenced to their average across the 172 scalp electrodes. This source space grid and forward               

models were necessary for the construction of state brain maps described below. 

 

2.4. Microstate clustering 

Microstate inference from EEG data followed standard steps (for reviews, see, e.g.,            

(Khanna et al., 2015; Michel et al., 2009; Michel and Koenig, 2018)) and was performed using                

the EEGLAB plugin for microstate analysis (v1.1,       

http://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab​) that we also adapted to      

MEG. Microstates were built from wideband filtered (4–30 Hz) EEG/MEG sensor signals. In the              

case of MEG, we focused on planar gradiometers as they disclose the highest signal-to-noise              

ratio ​(Hari and Puce, 2017) and combined each pair of orthogonal sensors using their Euclidean               
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norm. For comparability with the power envelope signals inputted to the HMM (see below),              

sensor signals were here downsampled at 10 Hz using a moving-window average with 75%              

overlap, leading to an effective downsampling rate of 40 Hz. That said, since the microstate               

literature commonly uses higher sampling rates instead (Khanna et al., 2015; Michel et al., 2009;               

Michel and Koenig, 2018), we also applied the analysis to signals downsampled at 200 Hz               

(supplementary material S1). 

The first step of the microstate analysis consists in a two-level clustering of time-varying              

sensor topographies in order to define the spatial signature of each microstate.            

Atomize-agglomerate hierarchical clustering (AAHC; ​(Tibshirani and Walther, 2005) ​) was used          

to partition each individual ​dataset into a number ​K of prototypal topographical maps determined              

so as to maximize spatial variance, a.k.a. global field power (GFP). Briefly, AAHC starts from               

instantaneous sensor maps and iteratively builds clusters by breaking one cluster into its             

constituent maps (atomization) and reassigning each of them to the cluster whose topography             

best fits theirs in terms of absolute spatial correlation (agglomeration). In this algorithm, the              

topography associated to a cluster is defined as the principal component of its constituent maps,               

and the cluster to atomize at each iteration is chosen deterministically as the one with least GFP.                 

This procedure ensures that microstates are explicitly geared towards the detection of recurring             

patterns of highest GFP. The number ​K = 4 of clusters was fixed in accordance with the literature                  

( ​(Koenig et al., 1999) ​; for a review, see ​(Michel and Koenig, 2018) ​). The resulting set of                

individual-level topographies were then subjected to a full permutation procedure ​(Koenig et al.,             

1999) ​ in order to obtain the final four group-level microstate topographies.  
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It is noteworthy that this two-level clustering approach is common in the microstate             

literature but differs from the group HMM approach (see below), so for better comparability we               

also considered a “group AAHC” applied to instantaneous spatial maps across all subjects at              

once (supplementary material S2). Also noteworthy is the fact that AAHC is restricted to time               

points corresponding to local maxima of the GFP time series in order to reduce computational               

complexity ​(Khanna et al., 2015) ​. Since by design the HMM does not involve such subselection               

of time points, we applied microstate clustering to the unrestricted, continuous signals as well              

(supplementary material S3). 

The second step consists in obtaining a binary time series of microstate            

activation/inactivation. We defined here these time series using the criterion that the microstate             

active at any given time point be the one whose topography best fits (again in terms of absolute                  

spatial correlation) the instantaneous sensor topography at this time point ​(Brunet et al., 2011) ​.              

Microstate activation is thus ​exclusive ​, i.e., two microstates cannot be simultaneously active, and             

complete​, i.e., a microstate is active at any time. Importantly, this basic criterion is fairly close in                 

spirit to the Viterbi algorithm used in the HMM (as explained below), but it is frequently altered                 

in the microstate literature by using a temporally smoothed version of these binary time series               

(da Cruz et al., 2020; D’Croz-Baron et al., 2019; Krylova et al., 2020; Pascual-Marqui et al.,                

1995; Sikka et al., 2020) ​. The Viterbi algorithm does not involve such ​ad-hoc temporal              

smoothing, so we primarily analyzed the raw microstate time series for better comparability with              

the HMM. Nevertheless, we assessed the effect of such smoothing on microstate temporal             

properties (see below) using the popular approach whereby microstate activation is determined            
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as described above but at GFP peaks only and is then extended between these peaks by                

nearest-neighbor interpolation ​(Krylova et al., 2020; Sikka et al., 2020)​. 

 

2.5. Hidden Markov modeling of power envelopes 

The HMM was inferred from MEG/EEG power time courses estimated as the Hilbert             

envelope of wideband filtered (4–30 Hz) sensor signals. It was performed using the GLEAN              

toolbox (GLEAN0.3, ​https://github.com/OHBA-analysis/GLEAN​) and adapting the pipeline       

described in ​(Baker et al., 2014) ​, originally applied to MEG source power, for both MEG               

gradiometer and EEG sensor power. The focus on continuous power envelopes makes the HMM              

analysis geared towards the detection of power bursts ​(van Ede et al., 2018) ​. Importantly, the               

HMM inference was done here at the sensor level for better comparability with the microstate               

analysis (see supplementary material S4 for the correspondence with a source-level HMM).            

Individual datasets of envelope signals were downsampled at 10 Hz using a moving-window             

average with 75% overlap (effective downsampling rate: 40 Hz), demeaned and normalized by             

the global variance across sensors, concatenated temporally across subjects to design a            

group-level analysis, and finally projected onto their ​N first principal components for            

dimensionality reduction prior to HMM inference ​(Baker et al., 2014) ​. The dimension ​N was              

chosen so as to explain a comparable fraction of variance across the two modalities. Specifically,               

N = 10 components were retained for EEG and ​N = 41 for MEG, which corresponded to 81% of                   

explained variance in both cases. This approach takes into account the intrinsic difference in              

spatial smoothness of MEG and EEG. (See however supplementary material S5 for a version of               
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the EEG power envelope HMM with ​N = 41 instead, which retains more than 99% of EEG                 

power envelope variance.)  

A HMM with ​K = 6 states ​(Quinn et al., 2018) was then inferred from the ​N principal                  

component time courses using variational Bayesian optimization, under several assumptions          

such as the normality of the observation model or the prior that hidden model parameters follow                

conjugate distributions (making a parametric optimization possible; for further details, see           

( ​(Rabiner, 1989; Rezek and Roberts, 2005) ​). Of note, the low dimensionality for EEG ( ​N = 10,                

presumably due to high spatial smoothness of EEG; see, e.g., ​(Coquelet et al., 2020a)​) was still                

sufficient to infer ​K = 6 states. The HMM optimization algorithm was run ten times, each with                 

different initial conditions, and the model with lowest free energy was retained ​(Baker et al.,               

2014) ​. Binary time series of most probable, temporally exclusive, and complete state activation             

were then derived using the Viterbi algorithm ​(Rezek and Roberts, 2005)​.  

Importantly, the mere difference in number of states for the HMM and microstate             

analyses may trivially induce discrepancies between them. We controlled for this possibility by             

repeating the HMM with ​K​ = 4 (see supplementary material S6). 

 

2.6. State temporal properties and power maps 

State activation time series allowed to compute several summary statistics of the temporal             

behavior of microstates or HMM states, such as their mean lifetime (mean duration of state               

activation events) and their fractional occupancy (fraction of the total recording time during             

which the state is active). The global effects of recording modality and state clustering algorithm               
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on these statistics were assessed using two-sided paired Student’s ​t tests at applied to            .05p < 0    

their average across the ​K​ states. 

Activation time series also allowed to produce spatial maps locating where in the brain              

power increases or decreases occur upon state activation. The first step in this construction was               

to estimate the power envelope of source activity. Minimum norm estimation ​(Dale and Sereno,              

1993) was employed as regularized inverse for projecting the wideband filtered (4–30 Hz) MEG              

(gradiometers only, see ​(Garcés et al., 2017) ​) and EEG signals onto the 5 mm, dipolar source                

grid associated to the forward models. The noise covariance matrix was estimated individually             

on the basis of 5 minutes of empty-room data for MEG (with signal space separation and 4–30                 

Hz wideband filtering), and as the identity projected in the sensor subspace corresponding to the               

average reference for EEG. The regularization parameter was estimated from the consistency            

condition derived in ​(Wens et al., 2015) ​. Each three-dimensional dipole time series was projected              

onto the direction of maximum variance, and the Hilbert envelope of the resulting source signal               

was then extracted and downsampled as described above for the sensor signals. 

Brain power maps were then obtained by computing the partial correlation between each              

state activation time series and these source power envelope signals concatenated across subjects             

(Baker et al., 2014) ​. Corresponding maps could also be derived at the individual level by mere                

restriction of these partial correlations within each subject. In the HMM case, this procedure was               

also performed at the level of sensor power envelope signals used for state inference. All these                

maps were thresholded statistically using two-tailed parametric correlation tests at          .05p < 0  

against the null hypothesis that Fisher-transformed correlations follow a Gaussian with mean            

zero and SD , where . The number ​N​tdof of temporal degrees of freedom   1
√ν−3

  K )ν = N tdof − ( − 1          
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was estimated as one-quarter of the total number of time samples in group-concatenated             

envelope signals at 40 Hz sampling frequency, to take into account the 75% overlap in the                

envelope downsampling. The subtraction of ​K ​– 1 degrees of freedom is due to the regression                

inherent to the partial correlation. The critical ​p​-value was Bonferroni corrected with the number              

of independent states (i.e., ​K ​– 1) multiplied by the number of spatial degrees of freedom                

estimated from the rank of the forward model (Wens et al., 2015), i.e., 58 for MEG and 32 for                   

EEG. Statistical thresholding on state power maps was thus slightly tighter for MEG than EEG,               

which is merely a reflection of the higher spatial smoothness in EEG data ​(Coquelet et al.,                

2020a)​.  

 

2.7. State correlation analyses 

The spatial and temporal profiles of each pair of states were compared quantitatively             

using correlation analyses, in order to assess the effect of the recording modality (MEG vs. EEG)                

and of the state clustering model (microstates vs. HMM). The spatial similarity of two states was                

assessed using Pearson correlation of their source-level brain power maps, and their tendency to              

co-activate using Spearman correlation of their binary activation time series, both computed            

within each subject. Statistical significance was then established using one-sided one-sample           

parametric ​t ​-tests against the null hypothesis that the group-averaged sample correlation vanishes            

(reflecting the absence of topographical resemblance or of temporal co-activation between two            

states) and with the alternative hypothesis that this average is positive (reflecting significant             

topographical overlap or temporal co-activation). The significance level was set to           .05p < 0  

Bonferroni corrected for the number of possible state pairs included in the comparison at stake.  
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2.8. Data and code availability statement 

The MEG/EEG data and analysis code used in this study will be made available upon               

reasonable request to the corresponding author.  
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3. Results 

3.1. Microstates 

Figure 1 shows the spatial signature of the four microstates derived from EEG and MEG               

resting-state data (AAHC with ​K = 4 applied to 40 Hz-downsampled sensor maps at time points                

of local GFP maxima). 

 

 

Figure 1 ​: Spatial signature of EEG (​left ​) and MEG (​right ​) microstates. The scalp topography of EEG                

microstates (four-cluster AAHC of the 40 Hz-downsampled sensor maps at time points of local GFP               

maxima) is shown on the far left and the corresponding brain maps on the middle left. The gradiometer                  

topography of MEG microstates is shown on the far right and the corresponding brain maps on the middle                  

right. The scales for sensor topographies correspond to standardized ​z scores. Positive (negative) values in               

the brain maps indicate increasing (decreasing) power upon microstate activation. These maps are             

thresholded statistically and the lower/upper scales are adapted to the minimum/maximum values. 
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The EEG microstate analysis allowed to reproduce canonical scalp topographies (Fig. 1,            

left) well established in the literature ​(Michel and Koenig, 2018) ​. Each microstate displayed a              

scalp potential distribution reminiscent of one current dipole (notwithstanding the difficulty of            

interpreting scalp EEG in this way; see, e.g., ​(Hari and Puce, 2017) ​) approximately located              

centrally and oriented along the left frontal to right posterior line (microstate A ​EEG​), the frontal to                

posterior midline (microstates B​EEG and C​EEG​, with somewhat more anterior location or more             

inferior frontal orientation for the latter), or predominantly vertically (microstate D ​EEG​). The            

corresponding brain maps shown in Fig. 1 (left) identify the sources exhibiting significant power              

increase (positive values) or decrease (negative values) upon microstate activation. Microstates           

A ​EEG​, C​EEG​, and D ​EEG were dominated by a power modulation peaking at a midline frontal source,                

confirming the prominently dipolar nature of their scalp topography. Specifically, microstate           

A ​EEG was characterized by a power decrease at this source location. Microstate C​EEG exhibited a               

similar (although slightly more anterior) power decrease but also power increases at the             

precuneus and fronto-temporal areas. Microstate D ​EEG involved an opposite pattern, i.e., power            

increase at the midline frontal source and power decrease at the precuneus. On the other hand,                

microstate B​EEG was characterized by power decreases at bilateral inferior frontal sources and a              

power increase at the precuneus. It is noteworthy that its scalp topography is indeed compatible               

with two bilateral temporal current dipoles. All four brain power maps also disclosed deep              

cerebellar patterns that may be related to EEG source reconstruction errors.  

Although the spatial signature of these microstates matches the literature, their temporal            

statistics differed substantially, with mean lifetimes shorter than expected (mean ± SD: 37 ± 2               

ms, range: 35–38 ms; see Table 1, left). These lifetimes were even shorter (mean ± SD: 14 ± 1                   
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ms, range: 13–15 ms) when clustering EEG topographies at a higher sampling rate (200 Hz; see                

also supplementary material S1). This discrepancy was merely imputable to the absence of             

temporal smoothing on the microstate activation time series, as the interpolation approach            

allowed to recover typical lifetimes (mean ± SD: 126 ± 8 ms, range: 121–138 ms). Fractional                

occupancies ranged from 19% to 27% (Table 1, left) and were not substantially affected by               

temporal smoothing (23–28%).  

A similar analysis applied to MEG gradiometer signals revealed microstates that were            

also dominated by dipolar sensor topographies (Fig. 1, right). Microstates A ​MEG and B​MEG were              

characterized by gradiometers peaking respectively above the right and the left parietal sensors,             

which was explained by unilateral power increases at the sensorimotor cortices. These two             

microstates also involved an occipital power decrease. Microstates C​MEG and D ​MEG disclosed            

respectively right and left parieto-occipital gradiometer activity corresponding to unilateral          

occipital power increases. The brain map for microstate D ​MEG also showed right sensorimotor             

power decrease. The neural generators behind MEG microstates thus appeared qualitatively           

different from those of EEG microstates. On the other hand, their mean lifetimes (mean ± SD: 37                 

± 7 ms, range: 32–47 ms; Table 1, right) were similar ( ). Fractional           .8, p 0.08t41 = 1  =    

occupancies appeared less homogenous for MEG (14–41%; Table 1, right) than for EEG, with              

microstate C​MEG showing the highest fractional occupancy. Analogously to the EEG case,            

temporal smoothing lengthened MEG microstates lifetimes (mean ± SD: 114 ± 21 ms, range:              

94–141 ms) but did not affect fractional occupancies (17–38%), and increasing the signal             

sampling rate at 200 Hz further shortened lifetimes (mean ± SD: 11 ± 3 ms, range: 8–16 ms; see                   

also supplementary material S1). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.432128
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Table 1 ​: Mean lifetimes and fractional occupancies (mean ± SD) associated with each microstate              

inferred from EEG or MEG topographies at 40 Hz sampling rate and without temporal smoothing on                

microstate activation time series.  

 

Several variations of the microstate clustering approach are explored in supplementary           

materials. These analyses show that the above features of microstates are robust against             

methodological changes such as increasing the signal sampling rate (except for the effect on              

lifetimes, see supplementary material S1), using group clustering (supplementary material S2) or            

lifting the restriction to GFP local maxima (supplementary material S3). 

 

3.2. Hidden Markov model states 

Figure 2 depicts the spatial signature of the six HMM states inferred from resting-state             

MEG and EEG sensor-level power envelopes. States were sorted and labeled in order to pair               

EEG states (Fig. 2, left) and MEG states (Fig. 2, right) with the best apparent spatial                

correspondence. An important difference with Fig. 1 is that sensor maps in Fig. 2 locate power                

EEG microstates MEG microstates 

 Mean 
lifetimes (ms) 

Fractional 
occupancies 

(%) 

 Mean 
lifetimes (ms) 

Fractional 
occupancies 

(%) 

A ​EEG 38 ± 3 26.9 ± 4.4 A ​MEG 32 ± 1 14.7 ± 1.8 

B​EEG 35 ± 2 19.5 ± 3.9 B​MEG 37 ± 2 25.1 ± 3.7 

C​EEG 37 ± 3 25.8 ± 4.8 C​MEG 47 ± 2 41.1 ± 2.9 

D ​EEG 38 ± 2 27.6 ± 4.3 D ​MEG 34 ± 2 19.1 ± 2.3 
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increases or decreases upon state activation, analogously to the brain maps. As a matter of fact,                

both sensor and brain maps are directly comparable for MEG because planar gradiometers are              

sensitive to source activity just beneath them ​(Hari and Puce, 2017) ​. This comparison is less               

straightforward for EEG. For this reason, we mostly focus on a description of their brain maps.  

 

 

Figure 2 ​: Spatial signature of EEG (​left ​) and MEG (​right ​) sensor-level power envelope HMM states.               

Both sensor and brain maps locate power increases (positive values) and decreases (negative values) upon               

state activation. These maps are thresholded statistically and the lower/upper scales are adapted to the               

minimum/maximum values. States were paired based on the visual correspondence of the brain maps. 
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We start with the MEG states (Fig. 2, right) as this is the most conventional application of                 

the power envelope HMM. In accordance with previous studies ​(Baker et al., 2014; Brookes et               

al., 2018; Coquelet et al., 2020b) ​, these states identified power modulations within well-known             

intrinsic functional networks, here the sensorimotor network (SMN), the visual occipital network            

(VoN), the posterior part of the default-mode network (pDMN; encompassing the precuneus),            

and a presumed auditory network (AN). More specifically, state 1​MEG involved SMN power             

activation along with pDMN power deactivation, while state 2​MEG displayed an opposite pattern             

of SMN deactivation and VoN activation. These two states are thus reminiscent of a dynamic               

competition between the SMN and pDMN/VoN ​(Wens et al., 2019) ​. States 3​MEG and 4​MEG              

identified pDMN activation and deactivation, respectively. Of note, similar states involving           

precuneus activity were also identified in previous works ​(Coquelet et al., 2020b; Puttaert et al.,               

2020) and not in others (e.g., ​(Baker et al., 2014; Brookes et al., 2018) ​) due to different choices                  

of source projection (for details, see ​(Sjøgård et al., 2019) ​). State 5​MEG corresponded to the               

activation of the SMN in isolation (rather than in competition with the pDMN/VoN, as in states                

1​MEG and 2​MEG​). Finally, state 6​MEG involved AN activation alongside power deactivation at the              

precuneus, which is once again reminiscent of a dynamic cross-network competition ​(Wens et             

al., 2019) ​. Mean lifetimes were significantly longer than for the non-smoothed MEG microstates             

(mean ± SD: 151 ± 31 ms; range: 128–211 ms; ), and fractional occupancies          1.6, p 0t41 = 3  =      

ranged between 7% and 23% (Table 2, right).  

The HMM states inferred from EEG involved power modulations within intrinsic           

networks similar to the MEG states, although not with the same degree of bilaterality (Fig. 2,                

left). State 1​EEG was characterized by the activation of the right part of the SMN alongside a                 
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power decrease in the left precuneus, and as such may be viewed as a unilateral version of MEG                  

state 1​MEG​. This state was the only EEG state exhibiting both power increases and decreases. The                

VoN activation state 2​EEG was comparable to state 2​MEG but lacked SMN deactivation, and the               

pDMN states 3​EEG and 4​EEG closely matched states 3​MEG and 4​MEG​. State 5​EEG was characterized by                

a power increase in the left part of the SMN, so it appeared as a unilateral version of state 5​MEG​.                    

Finally, state 6​EEG consisted in a right-hemispheric posterior parietal power decrease, which was             

thus qualitatively different from the AN/precuneus state 6​MEG​. The mean lifetime of these states              

(mean ± SD: 165 ± 40 ms, range: 136–204 ms; see Table 2, left) was significantly longer than                  

the non-smoothed EEG microstates ( ) and the MEG HMM states (    1.46, p 0t41 = 3  =        

). Fractional occupancies were between 8% and 24%, which is also.83, p 1.9t41 = 4  =  × 10−5            

similar to those observed using MEG (Table 2). 

 

 

Table 2 ​: Mean lifetimes and fractional occupancies (mean ± SD) associated with each of the six HMM                 

states inferred from EEG or MEG power envelope signals.  

EEG HMM MEG HMM 

 Mean 
lifetimes (ms) 

Fractional 
occupancies 

(%) 

 Mean 
lifetimes (ms) 

Fractional 
occupancies 

(%) 

State 1​EEG 136 ± 19 17 ± 3.7 State 1​MEG 138 ± 34 22.2 ± 10.9 

State 2​EEG 145 ± 39 13.3 ± 4.5 State 2​MEG 144 ± 41 16.4 ± 8.2 

State 3​EEG 204 ± 70 8.4 ± 1.4 State 3​MEG 153 ± 52 7.5 ± 3.2 

State 4​EEG 226 ± 109 22.4 ± 9 State 4​MEG 211 ± 98 23.1 ± 10.6 

State 5​EEG 137 ± 20 14.6 ± 4.7 State 5​MEG 128 ± 40 12.5 ± 7.7 

State 6​EEG 141 ± 23 24.3 ± 6.2 State 6​MEG 130 ± 54 18.3 ± 15.4 
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Interestingly, the brain maps shown in Fig. 2 and reconstructed from sensor-level HMM             

states were qualitatively similar to those obtained from HMM states directly inferred from source              

power envelopes (supplementary material S4). For EEG, increasing the dimensionality of the            

data inputted to the HMM algorithm to the same dimension used in MEG, also led to                

qualitatively similar states, although with a higher degree of bilaterality for some states             

(supplementary material S5). Finally, reducing the number of states to four led to HMM states               

closely related to states 2​MEG​–4​MEG for MEG and to states 1​EEG​, 3​EEG​–5​EEG for EEG              

(supplementary material S6).  

 

3.3. State correlations 

Figure 3 details the group-level spatial (Fig. 3, top) and temporal (Fig. 3, bottom)              

correlations among states, the former to quantify the spatial correspondence discussed           

qualitatively above and the latter, their tendency to co-activate. The two left columns assess the               

effect of recording modality (MEG vs. EEG) on microstates (Fig. 3, first column) and HMM               

states (Fig. 3, second column) and the two right columns, the effect of state clustering algorithm                

(microstate vs. HMM) for both EEG (Fig. 3, third column) and MEG (Fig. 3, fourth column). Of                 

note, these temporal correlations were obtained using non-smoothed microstate activation time           

series, as no temporal smoothing is explicitly applied to HMM state activation time series.  
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Figure 3 ​: Spatial (​top ​) and temporal (​bottom ​) state correlations. Each matrix shows the group-level              

correlation values comparing: EEG microstates vs. MEG microstates (​first column ​; corresponding to            

four-cluster AAHC of the 40 Hz-downsampled sensor maps at time points of local GFP maxima), EEG                

HMM states vs. MEG HMM states (​second column​; six-state HMM of sensor-level power envelopes),              

EEG HMM states vs. EEG microstates (​third column ​), and MEG HMM states vs. MEG microstates               

(​fourth column​). Temporal correlations were obtained from the raw (non-smoothed) microstate           

activation time series. The same correlation scale is used across the four comparisons. Stars denote               

significant correlations after Bonferroni correction for the number of state pairs involved in each              

comparison. 

 

The comparison of EEG vs. MEG microstates confirmed the absence of a clear             

relationship. Some cross-modal pairs did disclose significant spatial correlations (Fig. 3, top of             

left column; significant Bonferroni corrected for 16   .09, t .21, p .021 R > 0  41 > 3  < 0     

comparisons). They could be explained by a gross overlap of their power maps presumably due               

to their intrinsic blurriness, i.e., EEG microstates A ​EEG and C​EEG tended to exhibit posterior power               

increases and antero-central power decreases as did the MEG microstates C​MEG and D ​MEG​, and              

reversely for microstates D ​EEG​, A ​MEG​, and B​MEG (Fig. 1). More importantly, the corresponding             
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temporal correlations were not significant with very small effect sizes (Fig. 3, bottom of left               

column; uncorrected), indicating that EEG and MEG .002, t .14, p .13 R < 0  41 < 1  > 0       

microstates scarcely co-activated at all. 

On the other hand, Fig. 3 (second column) revealed a number of significant correlations              

between MEG and EEG HMM states, both spatially (significant         

Bonferroni corrected for 36 comparisons) and temporally.15, t .85, p .2  R > 0  41 > 3  < 7 × 10−3        

(significant corrected), and with higher effect sizes and .025, t .02, p .2  R > 0  41 > 4  < 4 × 10−3        

smaller ​p values than microstates. The qualitative pairing of MEG and EEG states based on their                

maps (Fig. 2) was reflected in significance along the diagonal of the correlation matrix (Fig. 3,                

top of second column), with particularly high effect size and low ​p value for the pDMN                

deactivation state 4​MEG​/4​EEG ( ). The two exceptions were states 1​MEG​/1​EEG   2.73, pt41 = 3  = 0        

(where the correlation did not reach significance presumably due to the sign reversal above the               

left sensorimotor cortex) and states 6​MEG and 6​EEG​. Analogously to the case of microstates,              

off-diagonal significance may be a reflection of spatial blurriness. Temporal correlations           

followed a similar pattern (Fig. 3, bottom of second column), with the pDMN states 3​MEG​/3​EEG               

and 4​MEG​/4​EEG standing out regarding their effect size and ​p value ( ). Globally,           4.11, pt41 > 1  = 0   

the HMM inference on power envelopes was thus able to identify common states across the two                

recording modalities. 

We turn now to the comparison of microstates and HMM states within each modality.              

Spatial correlations appeared significant in a number of microstate/HMM state pairs (EEG: Fig.             

3, top of third column, significant Bonferroni corrected for 24      .16, t .2, p .031 R > 0  41 > 3  < 0     

comparisons; MEG: Fig. 3, top of fourth column, significant         
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corrected). For EEG, these correlations appeared to.15, t .02, p .29  R > 0  41 > 4  < 2 × 10−3        

mainly reflect spatial blurriness since microstate and HMM states power maps peaked at distinct              

locations, except for similar power increases at the visual cortices (microstates B​EEG​, C​EEG and              

HMM state 2​EEG​, see Figs. 1 and 2, left). Spatial similarities among MEG states exhibited higher                

effect sizes and lower ​p value. Accordingly, Figs. 1 and 2 (right) indicated some degree of                

co-localization in microstate and HMM state power modulation within the SMN (activation for             

microstates A ​MEG​, B​MEG and HMM states 1 ​MEG​, 5​MEG​; deactivation for microstate D ​MEG and HMM              

state 2​MEG​) and VoN (activation for microstates C​MEG​, D ​MEG and HMM states 2​MEG​, 3​MEG​).              

Temporal correlations followed once again a somewhat similar pattern of significance (EEG:            

Fig. 3, bottom of third column, significant corrected; MEG: Fig.       .01, t .19, p .034 R > 0  41 > 3  < 0    

3, bottom of fourth column, significant corrected). However,      .007, t .52, p .013 R > 0  41 > 3  < 0   

the raw value of these significant correlations remained low (EEG: , MEG: ),          .09R < 0   .04R < 0  

so temporal co-activations were marginal. 
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4. Discussion 

This study used simultaneous MEG/EEG recordings at rest to compare two notions of             

discrete metastable brain states, i.e., microstates and power envelope HMM states. We found that              

microstates were not reproducible across the two recording modalities, i.e., microstates inferred            

from MEG signals did not correspond to the canonical EEG microstates. On the other hand,               

MEG and EEG HMM states identified transient activations of the same intrinsic functional             

networks, although with a limited temporal correspondence. We also found no evidence that             

EEG microstates and HMM states share common neural dynamics. In fact, contrary to our              

expectation based on the literature ​(Baker et al., 2014; Michel and Koenig, 2018) ​, all microstates               

were substantially less stable in time than the HMM states. That said, the MEG version of                

microstates involved power activity within the same networks as HMM states, but was restricted              

to isolated nodes of these networks, and with a poor temporal correspondence. 

 

4.1. Microstates and power envelope HMM states probe different aspects of electrophysiological           

power bursts 

The primary result of this paper is that microstates and power envelope HMM states              

differ substantially, both in the localization of the brain areas they (de)activate and in their               

temporal stability. These two state clustering algorithms share the common goal of identifying             

patterns of high-power electrophysiological activity that repeat at rest, so this raises the questions              

of what methodological features lead to this discrepancy, and what aspect of brain functional              

dynamics they are preferentially sensitive to. The fundamental distinction discussed here is that             
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(i) microstates focus on high-power activity by biasing the topographical clustering to time             

points of locally maximum GFP ​(Michel and Koenig, 2018) ​, whereas (ii) the power envelope              

HMM encodes states based on the spatial patterns of continuous-time oscillatory power ​(Baker et              

al., 2014)​.  

The GFP maximization for microstate topographies is fully built-in in the AAHC            

algorithm ​(Murray et al., 2008) ​. In fact, the convergence of the AAHC with and without explicit                

restriction to GFP peaks indicates that microstates are mostly specific to time points of locally               

maximal GFP. This concurs with the reportedly high levels of EEG topographical dissimilarities             

in between GFP peaks ​(Skrandies, 1990) and with the difficulty of discrete microstates to model               

continuous EEG recordings ​(Mishra et al., 2020) ​. Accordingly, in our data, the duration of              

microstate activation appeared very short, and was actually only slightly above the minimum             

timescale allowed by signal processing (at least in the absence of temporal smoothing). A mean               

lifetime of 37 ms is only 150% the 25 ms timestep of our signals sampled at 40 Hz, and the fact                     

that it decreased by merely increasing the sampling rate indicates that microstates are actually              

even shorter lived. Classical lifetimes of 120 ms appear to require an ​ad-hoc temporal              

interpolation procedure that does not reflect the raw GFP peak events underlying microstate             

clustering nor the high topographical dissimilarities in between these events ​(Skrandies, 1990) ​.            

Extrapolating the observation that raw microstate lifetimes are 150% the timestep would have             

led us to expect a mean lifetime of about 7 ms at 200 Hz sampling rate (corresponding to a 5 ms                     

timestep), but our data proved it twice longer. This is presumably a sign that microstates do                

reflect neural events, since neurophysiological activity as recorded by MEG/EEG should           

typically not occur over timescales shorter than the 10 ms duration of postsynaptic potentials              
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(Baillet, 2017; Buzsáki et al., 2012) ​, whereas pure noise events can be as short as the timestep.                 

Microstates thus appear to probe quasi-instantaneous electrophysiological events. 

Further understanding what these microstate events represent requires careful         

consideration of the notion of GFP. Instantaneous GFP (spatial variance of time-dependent            

sensor topographies) is not trivially synonymous with instantaneous global power (magnitude           

squared signal summed over all sensors). For EEG, the two concepts coincide only when using               

the average reference (where the potential summed over all electrodes is constrained to vanish),              

which approaches the idealized reference to infinity because asymptotically vanishing electric           

potentials generated by current dipoles inside the brain integrate to zero over the scalp ​(Bertrand               

et al., 1985) ​, at least to some approximation ​(Yao, 2017) ​. From a physical perspective, GFP               

maximization of EEG microstates is thus theoretically equivalent to global power maximization.            

In practice though, the GFP formulation is preferred because it is strictly independent of the               

choice of reference ​(Murray et al., 2008; Skrandies, 1990) ​. No such subtlety arises with MEG,               

where GFP and global power coincide because neuromagnetic field patterns generated by dipolar             

brain sources also sum up approximately to zero over whole-head-covering sensor arrays            

(meaning in a sense that the “average reference” holds automatically for MEG). Thus, the              

quasi-instantaneous microstate events correspond to moments of high global power. Given that            

spontaneous electrophysiological activity exhibits power bursts ​(Hari and Salmelin, 1997; ​van           

Ede et al., 2018 ​) ​, microstates may be expected to probe short-time events of maximum power               

within power bursts. More specifically, since the EEG/MEG spectrum is dominated by the alpha              

band ​(Hari and Puce, 2017) ​, microstates are bound to be driven by, and phase-locked to,               

moments of high-amplitude alpha rhythms within alpha bursts ​(von Wegner et al., 2021)​. 
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In any case, by focusing on quasi-instantaneous and temporally discrete          

electrophysiological events of high power, microstates provide at best a partial characterization            

of power bursts. Their full exploration requires instead to focus on the transitioning between low               

and high power. By running over the whole power envelope signal, the HMM is more sensitive                

to such transitions and may thus be better suited to fully capture bursting activity ​(van Ede et al.,                  

2018) ​. The Markovian character of the HMM (i.e., the probability of state activation at the next                

time step depends on what state is currently active; see, e.g., ​(Rabiner, 1989) ​) also enforces a                

degree of deterministic causality that further helps detecting transient periods of sustained power             

burst, rather than quasi-instantaneous events of high power. Accordingly, bursts generated by            

brain rhythms typically last for a few hundreds of milliseconds ​(Hari and Salmelin, 1997) ​, which               

is consistent with the typical power envelope HMM mean lifetime of 100–200 ms. The fact that                

these lifetimes are well above the minimum timestep allowed in our power envelope signals (in               

our case, 25 ms) further shows that they provide a reliable estimate of the duration of the                 

underlying power bursts. 

 

4.2. Microstates identify local neural events whereas power envelope HMM states encompass           

network-level activity 

Besides temporal stability, microstates and power envelope HMM states also differed in            

their spatial distribution, with microstates exhibiting isolated power modulations and HMM           

states, distributed (de)activations at the network level. The first methodological reason to            

consider is that microstate clustering relies on topographical similarity (Michel and Koenig,            

2018) whereas the HMM encodes the whole covariance structure ​(Baker et al., 2014; Woolrich et               
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al., 2013) ​. In theory, HMM states are thus driven by a mixture of power topography and intrinsic                 

functional connectivity. This being said, the contribution of functional connectivity (more           

specifically, the cross-covariance feature in the HMM) may not dominate HMM state inference             

in practice ​(Vidaurre et al., 2018) ​. In fact, functional networks can also be identified successfully               

using classification schemes that do not encode explicitly for envelope cross-covariance, such as             

the independent component analysis of power envelopes ​(which is, however, generally applied at             

slower timescales around 1 s; see, e.g., (Brookes et al., 2011; ​Wens et al., 2014​) ​).  

The involvement of functional networks in HMM states and the lack thereof in             

microstates might alternatively be rooted in their difference in temporal stability discussed at             

length above. The physiological process of binding distant neural populations into a functional             

network entails a hierarchy of timescales, from hundreds of milliseconds accessible to the HMM              

for certain networks (i.e., SMN, DMN and visual network) to several seconds for others (e.g., the                

fronto-parietal network) ​(Baker et al., 2014; Vidaurre et al., 2018) ​. With lifetimes below these              

timescales and associated with quasi-instantaneous MEG/EEG events, microstates may thus be           

mostly sensitive to highly transient neural activity taking place locally without enough time to              

establish network-level coordination. A somewhat related hypothesis was put forth when           

comparing EEG microstates to fMRI networks ​(Britz et al., 2010; Musso et al., 2010; Yuan et al.,                 

2012) ​. This is also in line with our observation that MEG microstates appeared as unilateral               

versions of some HMM states. For example, correlation results suggested that HMM state 1​MEG              

may be viewed as a combination of microstates A​MEG​ and B​MEG​.  

Closely related to this timescale argument, the spatial locality of microstates may also be              

viewed in light of their being phase locked to alpha rhythms ​(von Wegner et al., 2021) ​. A                 
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putative “network-level” microstate involving distinct brain regions would then imply the           

existence of a zero-phase lag synchronization among them, and as such it would presumably not               

reflect neurophysiological activity. This is because zero-lag synchronization among separated          

brain areas evidences instantaneous interactions, which are generally thought to be           

non-physiological ​(Schoffelen and Gross, 2009; Wens, 2015) (see, however, ​(Sjøgård et al.,            

2019) ​, for a spontaneous, nearly zero-lag correlation within the default-mode network). One way             

to further investigate the relationship between microstates and synchronization would be to            

compare them to another implementation of the HMM ​(Vidaurre et al., 2018) that is not applied                

on MEG/EEG power envelopes but on the MEG/EEG signals with time-delay embedding (Kantz             

and Schreiber, 2003; Takens, 1981), which gives access to classification features closely related             

to phase synchrony (Stam and van Dijk, 2002). Compared to the power envelope HMM, this               

time-embedded HMM exhibits shorter lifetimes (50–100 ms), richer spectral details, and           

network-level phase locking ​(Vidaurre et al., 2018) ​. Given that these lifetimes are still well              

above the smallest accessible timestep (4 ms at the 250 Hz sampling rate used in ​(Vidaurre et al.,                  

2018) ​) and thus cannot be deemed quasi-instantaneous, and that this network synchrony occurred             

at non-zero phase lag, we surmise that the time-embedded HMM provides yet another state              

description, more stable than microstates but more transient than power envelope HMM states.             

Still, it would be useful to perform such comparisons explicitly in the future. 

In sum, the above considerations suggest that microstates and HMM states are sensitive             

to neural events occurring at different temporal and spatial scales, highly transient and isolated              

for the former, more stable and distributed over intrinsic networks for the latter. 
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4.3. Cross-modal comparisons reveal poor correspondence of state activations 

The conclusion that microstate classification depends on highly transient events is also            

key to understanding the lack of qualitative correspondence between EEG and MEG microstates.             

This discordance contrasted with the HMM, which disclosed good spatial similarity across the             

two recording modalities. The pDMN state pairs 3​MEG​/3​EEG and 4​MEG​/4​EEG exhibited a substantial             

overlap of their activation periods, but the others lacked such strong temporal correspondence.             

The pDMN states were also the most stable ​(Coquelet et al., 2020b; Puttaert et al., 2020) ​,                

suggesting that state co-occurrence rate increases with state stability. The difficulty of short-lived             

states to co-activate explains in particular the poor cross-modal temporal correlation for the             

quasi-instantaneous microstates. This observation is also in line with a previous comparison of             

MEG and EEG intrinsic functional connectomes, which were spatially similar but with rather             

discordant temporal dynamics ​(Coquelet et al., 2020a)​. The hypothesis raised to explain this             

result was that MEG and EEG are sensitive to different components of transient functional              

integration processes, but that these differences smooth out after minute-scale time averaging.            

Our results suggest that this smoothing effect extends to the finer timescales accessible to              

MEG/EEG state analyses. In fact, it fits well with the observation discussed above that some               

relatively stable, network-level HMM states break into highly transient, spatially local MEG            

microstates.  

The spatial discordance between EEG and MEG microstates can then be understood on             

this basis. A sensitivity of EEG and MEG to different transient neural events (as hypothesized               

above) would lead to different GFP maxima and thus, to microstates inferred from totally              

different time points. More generally, the concept of GFP maxima turns out to be modality               
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specific since it depends on the type of sensors used (here, EEG electrodes vs. MEG               

gradiometers). We focused in this paper on MEG microstates derived from gradiometers, but it is               

noteworthy that microstates based on magnetometers also poorly correlate with gradiometric           

microstates (data not shown). We conclude that microstates obtained with different           

electrophysiological modalities probe neural events occurring at different times and are thus not             

directly comparable. As emphasized above, HMM state inference does not depend on a             

modality-specific selection of time periods, which explains their better cross-modal concordance. 

Other potential sources of differences are the distinct sensitivity profiles of EEG and             

MEG, especially to purely radial dipolar sources ​(Hari and Puce, 2017) ​, and the higher regional               

variability of sensor-brain distance with MEG arrays than with scalp EEG ​(Coquelet et al.,              

2020a)​. The latter impacts substantially MEG functional connectivity estimation in frontal           

regions from which MEG sensors are farthest ​(Coquelet et al., 2020a)​, but interestingly no such               

issue was clearly observable in brain maps of sub-second HMM states. Still, these differences              

might partially account for their poor temporal correspondence. 

 

4.4. Power envelope HMM states can be inferred directly from sensor-level signals 

One side result noteworthy of mention is that the HMM of sensor power signals leads to                

network-level states similar to the HMM of reconstructed source power considered in the             

seminal paper of ​(Baker et al., 2014) and subsequent MEG studies ​(Brookes et al., 2018;               

Coquelet et al., 2020b; Puttaert et al., 2020; Quinn et al., 2018; Sitnikova et al., 2018; Van                 

Schependom et al., 2019; Vidaurre et al., 2018) ​. The HMM of electrophysiological signals can              

thus be performed in a computationally less cumbersome way than previously done, for similar              

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2021. ; https://doi.org/10.1101/2021.02.20.432128doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?F03qwt
https://www.zotero.org/google-docs/?gFwg2k
https://www.zotero.org/google-docs/?gFwg2k
https://www.zotero.org/google-docs/?tZIojN
https://www.zotero.org/google-docs/?d0yko0
https://www.zotero.org/google-docs/?ABQ3MJ
https://www.zotero.org/google-docs/?ABQ3MJ
https://www.zotero.org/google-docs/?ABQ3MJ
https://doi.org/10.1101/2021.02.20.432128
http://creativecommons.org/licenses/by-nc-nd/4.0/


results. This might widen the perspectives of applications of the HMM-based analyses of             

MEG/EEG data, particularly when studying infants or patients where MRI acquisition might not             

be possible. Methodologically, this also frees the HMM state inference ​per se from ambiguities              

related to the choice of forward model (for further discussion of this aspect, see, e.g., ​(Coquelet                

et al., 2020a)​) and source reconstruction algorithm. Only the imaging of state brain maps would               

depend on these choices. This is particularly interesting with regard to the contribution of              

precuneus activity to HMM state dynamics, as it was identified from MEG source power HMMs               

when using minimum norm estimation ​(Coquelet et al., 2020b; Puttaert et al., 2020) but not               

when using a beamformer ​(Baker et al., 2014; Brookes et al., 2018; Vidaurre et al., 2018) due to                  

a suppression effect ​(Sjøgård et al., 2019) ​. The states 1​MEG​, 3​MEG​/3​EEG and 4​MEG​/4​EEG obtained in               

this study show that sensor-level HMM is sensitive to precuneus activity, independently of             

source reconstruction biases. This being said, it would be interesting in the future to extend our                

comparative study to other implementations of the power envelope HMM, e.g., restricted to             

parcellated source reconstruction and with multivariate signal leakage correction (Brookes et al.,            

2018; Colclough et al., 2015; Sitnikova et al., 2018), and examine whether such processing steps               

improve the robustness of HMM state inference. 

One last aspect to emphasize in the case of EEG is that, strictly speaking, the power                

envelope HMM is ill-defined because it relies on the concept of EEG signal power, which               

depends on the choice of reference. As discussed above, we focused here on the average               

reference, which approximates the physically ideal reference at infinity and thus presumably            

mitigates this issue in practice. This is in line with our observation that source-projected brain               

maps of sensor-level HMM states correspond to maps of source-level HMM states, the latter              
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being based on current dipole estimates that are independent of the reference (of course, the               

choice of recording reference does matter, as it impacts measurement quality ​(Hari and Puce,              

2017) ​). Still, sensor-level HMM state inference may be improved by using, e.g., the reference              

electrode standardization technique that aims at simulating a virtual reference at infinity (Yao,             

2001). 

  

4.5. Conclusion 

This study revealed that microstates and HMM states reflect neural dynamical events            

probing power bursts at different timescales. The spatio-temporally local character of microstates            

explains their specificity to the electrophysiological recording modality at hand. For EEG,            

microstate analysis and the power envelope HMM appear to bring complementary information            

about transient neural dynamics, so we suggest that the two approaches should be considered              

together. On the other hand, the added value of MEG microstates may be more limited as they                 

merely identify a short-time splitting of network-level HMM states. Both approaches allow to             

model fast, spontaneous bursts of electrophysiological activity occurring at sub-second          

timescales. As such, they represent important tools to further explore the dynamical functional             

architecture of the human brain. 
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S1. Effect of increased sampling rate on microstates  

 

The EEG microstate literature commonly relies on sampling rates higher than 40 Hz, on              

which we focused in the main text for consistency with the standard HMM analysis. We repeat                

here the main microstate analysis ( ​K = 4 AAHC at GFP peak time points) but now using                 

EEG/MEG signals effectively sampled at 200 Hz (i.e., downsampling of 100 Hz by             

moving-window averaging with 50% overlap).  

Figure S1 shows the spatial topographies of EEG and MEG microstates derived at the              

two sampling rates. We observe a high spatial correspondence among microstate pairs, and in              

fact the lowest spatial correlation was . Therefore, increasing the sampling rate from 40      .83R = 0         

Hz to 200 Hz has no effect on the spatial signature of microstates. 
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Figure S1 ​: Effect of the sampling rate (40 Hz vs. 200 Hz) on the spatial signature of EEG (​left ​) and MEG                     

(​right ​) microstates (four-cluster AAHC at GFP peaks). Microstates were paired based on their             

unambiguous spatial correspondence.  

 

On the other hand, increasing the sampling rate from 40 Hz to 200 Hz significantly               

decreased the mean lifetime of microstates estimated from their (non-smoothed) activation time            

series ( ; compare Table S1 to Table 1 in the main text).31.5, p 0t41 = 1  =    

 

EEG microstates MEG microstates 

 Mean 
lifetimes (ms) 

Fractional 
occupancies 

(%) 

 Mean 
lifetimes (ms) 

Fractional 
occupancies 

(%) 

Microstate A 14 ± 2 25.3 ± 4.3 Microstate ɑ  15 ± 1 45.1 ± 3.2 

Microstate B 14 ± 2 23.6 ± 4.3 Microstate β 11 ± 1 22.2 ± 3.4 

Microstate C 14 ± 2 24.1 ± 4.7 Microstate 𝛾 8 ± 1 8.9 ± 0.9 

Microstate D 15 ± 2 27 ± 4.5 Microstate δ 11 ± 1 23.8 ± 3.8 
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Table S1​: Mean lifetimes and fractional occupancies (mean ± SD) associated with each microstate              

inferred from EEG or MEG topographies at 200 Hz sampling rate (without temporal smoothing on               

microstate activation time series).  

 

 

S2. Comparison of “two-level” and “group-level” microstate clustering 

 

We repeat here the main microstate analysis ( ​K = 4 AAHC of sensor maps downsampled               

at 40 Hz and restricted to time points of locally maximal GFP), with the only difference that the                  

clustering is directly performed at the group level (i.e., after concatenation of EEG/MEG signals              

across all subjects), which is more comparable to the group HMM analysis than the two-step               

microstate clustering presented in the main text. 

Figure S2 displays pairs of microstates obtained in both cases and shows that this              

methodological detail does not impact microstate topographies (spatial correlation among pairs:           

). Mean lifetimes and fractional occupancies were not significantly affected either (.71R > 0            

 for mean lifetime;  for mean fractional occupancy)..8, p 0.08t41 < 1  >  .14, p 0.26t41 < 1  >   
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Figure S2 ​: Effect of clustering type (“group-level” vs. “two-level”) on the spatial signature of EEG (​left ​)                

and MEG (​right ​) microstates (four-cluster AAHC at GFP peaks, 40 Hz sampling rate). Microstates were               

paired based on their unambiguous spatial correspondence.  

 

 

S3. Microstate clustering without temporal restriction  

 

In the main text, microstate topographies were inferred from local GFP maxima, whereas             

the HMM ran over the continuous signals. We repeat here the main microstate analysis ( ​K = 4                 

AAHC of sensor maps at 40 Hz sampling rate) but without restriction to isolated time points.  

Figure S3 shows that microstate topography is qualitatively unaffected by this           

methodological difference. As discussed in the main text, this is because the AAHC algorithm              

explicitly biases microstates towards maximal GFP, suggesting that microstates are mostly           

sensitive to neural activity around GFP peak times. In line with this suggestion, we observed an                

excellent one-to-one temporal correspondence between each pair of microstates (Fig. S3). 
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Figure S3 ​: Effect of the temporal restriction to GFP local maxima on EEG (​top ​) and MEG (​bottom​)                 

microstates (four-cluster AAHC, 40 Hz sampling rate). Microstates were paired modality based on their              

unambiguous spatial correspondence. Temporal correlations of microstate activation time series (without           

temporal smoothing) are shown on the far right.  

 

 

S4. Hidden Markov modeling of sensor- versus source-level power envelopes  

 

We focused in the main text on HMM states inferred from sensor power envelopes, but               

the HMM analysis was developed with, and is commonly applied to, source-level MEG signals.              

So, we repeated the exact same HMM analysis after source reconstruction. In a nutshell, we               

applied HMM inference directly on the source power envelope signals used in the main text for                

the construction of state brain maps. Individual datasets of source envelope signals were             

demeaned and normalized by the global variance across all sources, and then temporally             

concatenated across subjects. The resulting dataset was pre-whitened and dimensionally reduced           
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with principal component analysis to retain about 55% of explained variance (leading to ​N = 10                

components for EEG and ​N = 53 for MEG). The HMM optimization algorithm was run ten times                 

on these ​N ​-dimensional time series, each with different initial conditions, and the model with              

lowest free energy was retained. Brain maps of power increases/decreases upon state activation             

were computed from the partial correlation between binary state time series (obtained with the              

Viterbi algorithm) and the group-concatenated source power envelopes.  

Figure S4 illustrates the resulting brain maps and shows good spatial agreement between             

power envelope HMM states inferred from sensor signals and those obtained from reconstructed             

source activity. Only one state failed to provide a good correspondence with state 1​EEG​/1​MEG              

described in the main text (see top row in Fig. S4). It is also noteworthy that source-level HMM                  

states tended to exhibit more dynamic competition (i.e., including both power increases and             

decreases).  
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Figure S4 ​: Comparison of HMM states inferred from sensor- and source-level EEG (​left ​) and MEG               

(​right ​) power envelopes. Brain maps are thresholded statistically and the lower/upper scales are adapted              

to the minimum/maximum values. States were ordered based on the visual correspondence. 

 

 

S5. Hidden Markov modeling of EEG power envelopes at higher dimensionality 

 

In our main HMM analyses, we fixed the data dimensionality (i.e., the number ​N ​of               

principal components fed to the HMM classification algorithm) so the fraction of explained             

variance is identical for MEG and EEG power envelope signals. This approach naturally takes              

into account the inherently distinct spatial smoothness of the two recording modalities. However,             

this difference might impact HMM state classification in EEG and underlie some discrepancies             

with MEG HMM states. Here, we consider the HMM analysis of EEG power envelopes with ​N ​=                 

41, as for MEG.  

Figure S5 shows side-by-side the spatial signature of EEG power envelope HMM states             

at low ( ​N = 10; see Fig. 2, left) and higher ( ​N = 41; see Fig. 2, right) dimensions. Sensor-level                    

maps show that HMM states are qualitatively similar, although some brain maps exhibited a              

higher degree of bilaterality (see, e.g., state 1) and more dynamical competition (state 2) when ​N                

= 41. State 5 was the only state qualitatively different as it involved a frontal activation at when                  

N ​ = 41 instead of a left sensorimotor activation at when ​N​ = 10. 

Figure S6 shows the spatial (Fig. S6, top) and temporal (Fig. S6, bottom) correlation              

analyses between EEG HMM states inferred at ​N = 41 and MEG HMM states at the same                 

dimensionality (Fig. S6, left) or EEG microstates (Fig. S6, right). Despite some qualitative             

topographical differences, increasing the dimensionality of EEG power envelope data did not            
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affect substantially the spatial or temporal correspondence across state clustering methods or            

recording modality (compare to Fig. 3). The observations and conclusions discussed in the main              

text thus stand. 

 

 

Figure S5 ​: Spatial signature of EEG sensor-level power envelope HMM states obtained with ​N = 10 (​left;                 

see Fig. 2, left in the main text) and ​N ​ = 41 (​right ​) components retained prior to HMM inference.  
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Figure S6 ​: Spatial (​top ​) and temporal (​bottom ​) correlations when the HMM of EEG power envelopes is                

inferred from ​N ​ = 41 components. Compare with Fig. 3 in the main text.  

 

 

S6. Power envelope hidden Markov model with four states 

 

Finally, we repeated the sensor-level power envelope HMM analysis by lowering the            

number of states to classify from ​K ​= 6 (used in the main text) to ​K ​= 4, for better comparability                     

with the four-microstate clustering.  

Figures S7 and S8 present the main results of this analysis. The four-state HMMs merely               

disclosed a subset of the six-state HMM, specifically states 2​MEG​–5​MEG for MEG and to states               

1​EEG​, 3​EEG​–5​EEG for EEG (compare Fig. S7 to Fig. 2 in the main text). The spatio-temporal                

correlation analysis comparing microstates vs. HMM states and EEG vs. MEG then naturally led              
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to similar observations than in the case of six-state HMM. The observations and conclusions              

discussed in the main text thus stand.  

 

 

Figure S7 ​: Spatial signature of EEG (​left ​) and MEG (​right ​) sensor-level power envelope HMM states               

obtained with ​K ​ = 4. Compare with Fig. 2 in the main text​.  

 

Figure S8 ​: Spatial (​top ​) and temporal (​bottom ​) correlations in the case of a four-state power envelope                

HMM. Compare with Fig. 3 in the main text. 
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