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Abstract

State modeling of whole-brain electroencephalography (EEG) or
magnetoencephalography (MEG) allows to investigate transient, recurring neurodynamical
events. Two widely-used techniques are the microstate analysis of EEG signals and hidden
Markov modeling (HMM) of MEG power envelopes. Both reportedly lead to similar state
lifetimes on the 100 ms timescale, suggesting a common neural basis. We addressed this issue by
using simultanecous MEG/EEG recordings at rest and comparing the spatial signature and
temporal activation dynamics of microstates and power envelope HMM states obtained
separately from EEG and MEG. Results showed that microstates and power envelope HMM
states differed both spatially and temporally. Microstates tend to exhibit spatio-temporal locality,
whereas power envelope HMM states disclose network-level activity with 100-200 ms lifetimes.
Further, MEG microstates do not correspond to the canonical EEG microstates but are better
interpreted as split HMM states. On the other hand, both MEG and EEG HMM states involve the
(de)activation of similar functional networks. Microstate analysis and power envelope HMM
thus appear sensitive to neural events occurring over different spatial and temporal scales. As
such, they represent complementary approaches to explore the fast, sub-second scale bursting

electrophysiological dynamics in spontaneous human brain activity.
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1. Introduction

A fundamental part of human neural dynamics is the spontaneous emergence of brain
rhythms, i.e., large-scale oscillations of neuroelectric activity (for a review, see, e.g., (Hari and
Salmelin, 1997)). These rhythms play a critical role for human brain functions such as sensory,
motor and cognitive processes ((Klimesch, 2012), for reviews, see (Klimesch et al., 2010;
Pfurtscheller and Lopes da Silva, 1999)). They also wax and wane spontaneously at rest (i.e., in
the absence of any explicit task performance). The resulting fluctuations in their amplitude are
key to intrinsic functional connectivity (Siegel et al., 2012; Sjegard et al., 2020a). When
measured with electroencephalography (EEG) or magnetoencephalography (MEG), this
oscillatory dynamics leads to signal power time courses whose correlation structure identifies
functional brain networks (Brookes et al., 2011; Coquelet et al., 2020a; Hipp et al., 2012; Liu et
al., 2017; Siems et al., 2016; Wens et al., 2014). Further, spontancous MEG/EEG power
fluctuations occur in transient, sub-second long bursts of oscillatory activity (van Ede et al.,
2018). Short-lived power bursts may actually correspond to the fast activation/deactivation of
functional networks (Baker et al., 2014; Britz et al., 2010; Vidaurre et al., 2018) and their
co-occurrence, to the intrinsic functional connectivity of these networks (Seedat et al., 2020).
They might ultimately relate to the metastable cross-network interactions characteristic of
functional integration at the supra-second timescale (de Pasquale et al., 2016, 2012; Della Penna
et al., 2019; Wens et al., 2019). Power bursts also presumably hold specific functions, such as the
encoding of recently acquired information by coactivation with spontaneous replays (Higgins et

al., 2020). Exploring the spontaneous dynamics of MEG/EEG power bursts thus represents a
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fundamental step towards a better understanding of the intrinsic functional architecture of the
human brain.

With their millisecond-scale temporal resolution, EEG and MEG (Hari and Puce, 2017)
are natural techniques to investigate power bursts, although the role of short-time events has also
been emphasized with functional magnetic resonance imaging (fMRI) (Tagliazucchi et al.,
2012). Accordingly, the two main data-driven methods used to detect recurring events of high
electrophysiological power are EEG microstate analysis ((Lehmann et al., 1987); for a review,
see (Michel and Koenig, 2018)) and hidden Markov modeling (HMM) of MEG power envelopes
(Baker et al., 2014; Quinn et al., 2018). Both allow to partition EEG/MEG data into discrete
brain states that recurrently activate and deactivate one after the other, yet the underlying
clustering algorithms strongly differ in their assumptions and methods. Microstates are
determined as time periods of quasi-stable scalp EEG topography that repeatedly occur, up to
amplitude rescalings and polarity flips. Four canonical microstates have been identified with
reported mean lifetimes ranging from 60 to 120 ms (for a review, see, e.g. (Michel and Koenig,
2018)). These microstates were associated with different classes of mentation (Lehmann et al.,
1998) and partially correlated with the spontaneous haemodynamics of some fMRI networks
(Britz et al., 2010; Musso et al., 2010; Yuan et al., 2012). Their temporal properties are also
affected by brain disorders such as schizophrenia (Koenig et al., 1999; Lehmann et al., 2005) or
multiple sclerosis (Gschwind et al., 2016). By contrast, the HMM relies on the more abstract
concept of Markov chains to describe brain power dynamics in terms of causal transitions among
“hidden” states (Rabiner, 1989). These states are hidden in the sense that they are not explicitly

expressed in the data and must be inferred through implicit statistical features such as, e.g., the
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covariance matrix of a state observation model (Rezek and Roberts, 2005). Here, the HMM
states are determined by transient patterns of MEG power envelope covariance repeating over
time (Baker et al., 2014), but occurring on too short time periods to be measurable directly from
the data, e.g., with sliding windows (for a review, see (O’Neill et al., 2018)). The HMM
inference applied to MEG power envelope signals has typically been used to identify 6 or 8
states disclosing a spatial distribution reminiscent of brain functional networks as well as mean
lifetimes ranging from 50 to 200 ms (Baker et al., 2014; Quinn et al., 2018). Temporal properties
of HMM states are also altered by physiological processes such as ageing (Brookes et al., 2018;
Coquelet et al., 2020b) as well as brain disorders such as Alzheimer’s disease (Puttaert et al.,
2020; Sitnikova et al., 2018) or multiple sclerosis (Van Schependom et al., 2019).

Interestingly, despite fundamental methodological differences, EEG microstates and
MEG power envelope HMM states appear to remain stable over similar timescales. This raises
the question of whether they describe similar neurodynamics ((Baker et al., 2014); for a review,
see (Khanna et al., 2015)). Here, we investigate this key question using simultaneous MEG/EEG
recordings of resting-state activity. Still, comparing EEG microstates and MEG power envelope
HMM states entangles two potential issues, i.e., the effect of the state clustering model
(microstates vs. HMM) and that of the recording modality (EEG vs. MEG). To avoid such
confound, we sought to adapt the notion of microstates to MEG, and that of HMM states to EEG,
before conducting the comparison. To the best of our knowledge, a microstate analysis of MEG
data has not yet been developed. The HMM approach has been applied to EEG power envelopes
(Hunyadi et al., 2019; Sitnikova et al., 2020), but the focus was on the relationship with fMRI

networks rather than MEG or EEG microstates. Here, we assessed the impact of both the state
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clustering model and the recording modality on temporal and spatial signatures of transient brain
states. More specifically, we estimated to what extent two types of states tend to co-activate by
temporal correlation analysis of their activation dynamics, and to what extent they involve
similar brain regions or networks by spatial correlation analysis of the associated power
distributions. Based on the idea that microstates and HMM states are both designed to identify
discrete recurrent brain states and given the reported similarity of their typical lifetimes (Baker et
al., 2014), we hypothesized that the two state clustering models would reveal a close
spatio-temporal relationship within each recording modality. This would suggest that microstates
and power envelope HMM states disclose similar neural events. On the other hand, based on a
previous comparison of MEG and EEG power envelope signals at rest (Coquelet et al., 2020a),
we expected similar spatial signatures but substantially different temporal state dynamics across

the two recording modalities.
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2. Methods

2.1. Participants

Forty-two young adults (14 females, mean age + standard deviation (SD): 24.4 + 3.9
years, range: 18-35 years) were included in this study, 19 of which were already used in a
previous study of our group (Coquelet et al., 2020a). All participants were right-handed
according to the Edinburgh handedness inventory (Oldfield, 1971), did not take any psychotropic
drug, and had no prior history of neurological or psychiatric disorder. Each of them signed a
written informed consent before scanning. The CUB — Hopital Erasme Ethics Committee

approved this study prior to their inclusion.

2.2. Data acquisition

Participants underwent a resting-state recording session (eyes open, fixation cross, 5
minutes) with simultaneous MEG and high-density EEG. Neuromagnetic activity was recorded
with a 306-channel whole-scalp MEG system (band-pass: 0.1-330 Hz, sampling frequency: 1
kHz) installed in a light-weight magnetically shielded room (Maxshield™, MEGIN, Cronton
Healthcare, Helsinki, Finland; see (De Ti¢ge et al., 2008) for detailed characteristics). Four coils
continuously tracked subjects’ head position inside the MEG helmet. The first 15 participants
were scanned with a Neuromag Vectorview™ MEG (Elekta Oy, Helsinki, Finland) and the other
27 with a Neuromag Triux™ MEG (MEGIN, Helsinki, Finland) due to a system upgrade. These
neuromagnetometers have identical sensor layout (i.e., 102 magnetometers and 102 pairs of

orthogonal planar gradiometers) and only differ in sensor dynamic range and background
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magnetic environment, neither of which substantially affect data quality after preprocessing. In
particular, previous research mixing resting-state recordings from these two systems did not
disclose any significant difference (Coquelet et al., 2020b, 2020a; Naeije et al., 2020; Sjogérd et
al., 2020a, 2020b). Therefore, we did not take the MEG system type into account in later
analyses.

Neuroelectric activity was measured with a MEG-compatible, 256-channel scalp EEG
system (low-pass: 450 Hz; sampling frequency: 1 kHz) based on low profile, silver
chloride-plated carbon-fiber electrode pellets (MicroCel Geodesic Sensor Net with Net Amp
GES 400, Electrical Geodesics Inc., Magstim EGI, Eugene, Oregon, USA). The reference
electrode was placed at Cz and all impedances were kept below 50 kQ. A 100-ms long
square-pulse trigger signal was generated by the MEG system electronics every second and fed
to the EEG amplifier in order to enable clock synchronization of both systems. The location of
the head position indicator coils, scalp EEG electrodes, and approximately 200 scalp points were
determined with respect to anatomical fiducials using an electromagnetic tracker (Fastrack,
Polhemus, Colchester, Vermont, USA).

Participant’s high-resolution 3D T1-weighted cerebral magnetic resonance images
(MRIs) were acquired on a 1.5 T MRI scanner (Intera, Philips, The Netherlands) after the

MEG/EEG recordings.

2.3. Data preprocessing

The MEG data were preprocessed using signal space separation (Taulu et al., 2005) to

subtract environmental magnetic noise and correct for head movements (Maxfilter v2.1, Elekta
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Oy, Helsinki, Finland). No bad channels were detected in the process. For EEG data, we started
by eliminating 84 electrodes placed on cheeks and neck as they often suffered from excessive
muscle artefacts or poor skin contact, leaving 172 scalp-matched electrodes. Remnant bad
channels were then automatically detected and removed using artifact subspace reconstruction
(Kothe and Makeig, 2013) as implemented in EEGLAB ((Delorme and Makeig, 2004);

EEGLAB v2019.0, https://scen.ucsd.edu/eeglab/index.php) (number of bad channels: 10.6 + 4.1

out of 172, range: 4-21). Cardiac, ocular and remaining system artifacts were further eliminated
from MEG and EEG data separately, using an independent component analysis of band-passed

(1-40 Hz) signals ((Vigario et al., 2000); FastICA v2.5, http://www.cis.hut.fi/projects/ica/fastica,

with dimension reduction to 30 components, symmetric approach, and cubic nonlinearity
contrast). Artefactual components were identified by visual inspection and regressed out of the
full-rank data (number of components removed for MEG: 3.6 + 1.1, range: 2-7; for EEG: 13.9 +
3.3, range: 9-21). Bad EEG electrodes were subsequently reconstructed using spherical spline
interpolation (Perrin et al., 1989) and EEG scalp topographies were spatially filtered (Michel and
Brunet, 2019) to remove any last local outlier. The resulting EEG data were then re-referenced to
the average across the 172 scalp electrodes. Finally, the synchronization of MEG and EEG
signals was ensured by temporal realignment based on the trigger signal.

Separate forward models for MEG and EEG were computed based on the participants’
MRI, segmented beforehand using the FreeSurfer software (FreeSurfer v6.0; Martinos Center for
Biomedical Imaging, Massachusetts, USA; https://surfer.nmr.mgh.harvard.edu,
freesurfer-x86_64-linux-gnu-stable6-20170118). The coordinate systems of MEG and EEG were

co-registered to the MRI coordinate system using the three anatomical fiducials for initial
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estimation and the head-surface points to manually refine the surface co-registration (MRIlab,
MEGIN Data Analysis Package 3.4.4, MEGIN, Helsinki, Finland). The source space was built
by placing three orthogonal current dipoles at each point of a grid derived from a regular 5-mm
grid cropped within the Montreal Neurological Institute (MNI) template MRI volume and
non-linearly deformed onto each participant’s MRI with the Statistical Parametric Mapping
software (SPM12, Wellcome Centre for Neuroimaging, London, UK;

https://www.fil.ion.ucl.ac.uk/spm). The forward models were then computed on this source space

using the one-layer boundary element method (BEM) for MEG and the three-layer BEM with
default conductivity values for EEG (as used and discussed in (Coquelet et al., 2020a))
implemented in the MNE-C suite (MNE-C v2.7.3, Martinos Center for Biomedical Imaging,

Massachusetts, USA; https://mne.tools/stable/index.html). The EEG forward models were also

re-referenced to their average across the 172 scalp electrodes. This source space grid and forward

models were necessary for the construction of state brain maps described below.

2.4.  Microstate clustering

Microstate inference from EEG data followed standard steps (for reviews, see, e.g.,
(Khanna et al., 2015; Michel et al., 2009; Michel and Koenig, 2018)) and was performed using
the EEGLAB plugin for microstate analysis (vl.1,
http://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab) that we also adapted to
MEG. Microstates were built from wideband filtered (4-30 Hz) EEG/MEG sensor signals. In the
case of MEG, we focused on planar gradiometers as they disclose the highest signal-to-noise

ratio (Hari and Puce, 2017) and combined each pair of orthogonal sensors using their Euclidean
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norm. For comparability with the power envelope signals inputted to the HMM (see below),
sensor signals were here downsampled at 10 Hz using a moving-window average with 75%
overlap, leading to an effective downsampling rate of 40 Hz. That said, since the microstate
literature commonly uses higher sampling rates instead (Khanna et al., 2015; Michel et al., 2009;
Michel and Koenig, 2018), we also applied the analysis to signals downsampled at 200 Hz
(supplementary material S1).

The first step of the microstate analysis consists in a two-level clustering of time-varying
sensor topographies in order to define the spatial signature of each microstate.
Atomize-agglomerate hierarchical clustering (AAHC; (Tibshirani and Walther, 2005)) was used
to partition each individual dataset into a number K of prototypal topographical maps determined
so as to maximize spatial variance, a.k.a. global field power (GFP). Briefly, AAHC starts from
instantaneous sensor maps and iteratively builds clusters by breaking one cluster into its
constituent maps (atomization) and reassigning each of them to the cluster whose topography
best fits theirs in terms of absolute spatial correlation (agglomeration). In this algorithm, the
topography associated to a cluster is defined as the principal component of its constituent maps,
and the cluster to atomize at each iteration is chosen deterministically as the one with least GFP.
This procedure ensures that microstates are explicitly geared towards the detection of recurring
patterns of highest GFP. The number K = 4 of clusters was fixed in accordance with the literature
((Koenig et al., 1999); for a review, see (Michel and Koenig, 2018)). The resulting set of
individual-level topographies were then subjected to a full permutation procedure (Koenig et al.,

1999) in order to obtain the final four group-level microstate topographies.
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It is noteworthy that this two-level clustering approach is common in the microstate
literature but differs from the group HMM approach (see below), so for better comparability we
also considered a “group AAHC” applied to instantaneous spatial maps across all subjects at
once (supplementary material S2). Also noteworthy is the fact that AAHC is restricted to time
points corresponding to local maxima of the GFP time series in order to reduce computational
complexity (Khanna et al., 2015). Since by design the HMM does not involve such subselection
of time points, we applied microstate clustering to the unrestricted, continuous signals as well
(supplementary material S3).

The second step consists in obtaining a binary time series of microstate
activation/inactivation. We defined here these time series using the criterion that the microstate
active at any given time point be the one whose topography best fits (again in terms of absolute
spatial correlation) the instantaneous sensor topography at this time point (Brunet et al., 2011).
Microstate activation is thus exclusive, i.e., two microstates cannot be simultaneously active, and
complete, i.e., a microstate is active at any time. Importantly, this basic criterion is fairly close in
spirit to the Viterbi algorithm used in the HMM (as explained below), but it is frequently altered
in the microstate literature by using a temporally smoothed version of these binary time series
(da Cruz et al., 2020; D’Croz-Baron et al., 2019; Krylova et al., 2020; Pascual-Marqui et al.,
1995; Sikka et al., 2020). The Viterbi algorithm does not involve such ad-hoc temporal
smoothing, so we primarily analyzed the raw microstate time series for better comparability with
the HMM. Nevertheless, we assessed the effect of such smoothing on microstate temporal

properties (see below) using the popular approach whereby microstate activation is determined
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as described above but at GFP peaks only and is then extended between these peaks by

nearest-neighbor interpolation (Krylova et al., 2020; Sikka et al., 2020).

2.5. Hidden Markov modeling of power envelopes

The HMM was inferred from MEG/EEG power time courses estimated as the Hilbert
envelope of wideband filtered (4-30 Hz) sensor signals. It was performed using the GLEAN
toolbox (GLEANO.3, https://github.com/OHBA-analysis/GLEAN) and adapting the pipeline
described in (Baker et al., 2014), originally applied to MEG source power, for both MEG
gradiometer and EEG sensor power. The focus on continuous power envelopes makes the HMM
analysis geared towards the detection of power bursts (van Ede et al., 2018). Importantly, the
HMM inference was done here at the sensor level for better comparability with the microstate
analysis (see supplementary material S4 for the correspondence with a source-level HMM).
Individual datasets of envelope signals were downsampled at 10 Hz using a moving-window
average with 75% overlap (effective downsampling rate: 40 Hz), demeaned and normalized by
the global variance across sensors, concatenated temporally across subjects to design a
group-level analysis, and finally projected onto their N first principal components for
dimensionality reduction prior to HMM inference (Baker et al., 2014). The dimension N was
chosen so as to explain a comparable fraction of variance across the two modalities. Specifically,
N =10 components were retained for EEG and N =41 for MEG, which corresponded to 81% of
explained variance in both cases. This approach takes into account the intrinsic difference in

spatial smoothness of MEG and EEG. (See however supplementary material S5 for a version of
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the EEG power envelope HMM with N = 41 instead, which retains more than 99% of EEG
power envelope variance.)

A HMM with K = 6 states (Quinn et al., 2018) was then inferred from the N principal
component time courses using variational Bayesian optimization, under several assumptions
such as the normality of the observation model or the prior that hidden model parameters follow
conjugate distributions (making a parametric optimization possible; for further details, see
((Rabiner, 1989; Rezek and Roberts, 2005)). Of note, the low dimensionality for EEG (N = 10,
presumably due to high spatial smoothness of EEG; see, e.g., (Coquelet et al., 2020a)) was still
sufficient to infer K = 6 states. The HMM optimization algorithm was run ten times, each with
different initial conditions, and the model with lowest free energy was retained (Baker et al.,
2014). Binary time series of most probable, temporally exclusive, and complete state activation
were then derived using the Viterbi algorithm (Rezek and Roberts, 2005).

Importantly, the mere difference in number of states for the HMM and microstate
analyses may trivially induce discrepancies between them. We controlled for this possibility by

repeating the HMM with K = 4 (see supplementary material S6).

2.6. State temporal properties and power maps

State activation time series allowed to compute several summary statistics of the temporal
behavior of microstates or HMM states, such as their mean lifetime (mean duration of state
activation events) and their fractional occupancy (fraction of the total recording time during

which the state is active). The global effects of recording modality and state clustering algorithm
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on these statistics were assessed using two-sided paired Student’s ¢ tests at p < 0.05 applied to
their average across the K states.

Activation time series also allowed to produce spatial maps locating where in the brain
power increases or decreases occur upon state activation. The first step in this construction was
to estimate the power envelope of source activity. Minimum norm estimation (Dale and Sereno,
1993) was employed as regularized inverse for projecting the wideband filtered (4-30 Hz) MEG
(gradiometers only, see (Garcés et al., 2017)) and EEG signals onto the 5 mm, dipolar source
grid associated to the forward models. The noise covariance matrix was estimated individually
on the basis of 5 minutes of empty-room data for MEG (with signal space separation and 4-30
Hz wideband filtering), and as the identity projected in the sensor subspace corresponding to the
average reference for EEG. The regularization parameter was estimated from the consistency
condition derived in (Wens et al., 2015). Each three-dimensional dipole time series was projected
onto the direction of maximum variance, and the Hilbert envelope of the resulting source signal
was then extracted and downsampled as described above for the sensor signals.

Brain power maps were then obtained by computing the partial correlation between each
state activation time series and these source power envelope signals concatenated across subjects
(Baker et al., 2014). Corresponding maps could also be derived at the individual level by mere
restriction of these partial correlations within each subject. In the HMM case, this procedure was
also performed at the level of sensor power envelope signals used for state inference. All these

maps were thresholded statistically using two-tailed parametric correlation tests at p <0.05

against the null hypothesis that Fisher-transformed correlations follow a Gaussian with mean

zero and SD % , where v=N, dor ~ (K= 1). The number N,,,, of temporal degrees of freedom
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was estimated as one-quarter of the total number of time samples in group-concatenated
envelope signals at 40 Hz sampling frequency, to take into account the 75% overlap in the
envelope downsampling. The subtraction of K — 1 degrees of freedom is due to the regression
inherent to the partial correlation. The critical p-value was Bonferroni corrected with the number
of independent states (i.e., K — 1) multiplied by the number of spatial degrees of freedom
estimated from the rank of the forward model (Wens et al., 2015), i.e., 58 for MEG and 32 for
EEG. Statistical thresholding on state power maps was thus slightly tighter for MEG than EEG,
which is merely a reflection of the higher spatial smoothness in EEG data (Coquelet et al.,

2020a).

2.7. State correlation analyses

The spatial and temporal profiles of each pair of states were compared quantitatively
using correlation analyses, in order to assess the effect of the recording modality (MEG vs. EEG)
and of the state clustering model (microstates vs. HMM). The spatial similarity of two states was
assessed using Pearson correlation of their source-level brain power maps, and their tendency to
co-activate using Spearman correlation of their binary activation time series, both computed
within each subject. Statistical significance was then established using one-sided one-sample
parametric t-tests against the null hypothesis that the group-averaged sample correlation vanishes
(reflecting the absence of topographical resemblance or of temporal co-activation between two
states) and with the alternative hypothesis that this average is positive (reflecting significant
topographical overlap or temporal co-activation). The significance level was set to p <0.05

Bonferroni corrected for the number of possible state pairs included in the comparison at stake.
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2.8. Data and code availability statement

The MEG/EEG data and analysis code used in this study will be made available upon

reasonable request to the corresponding author.
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3. Results

3.1. Microstates

Figure 1 shows the spatial signature of the four microstates derived from EEG and MEG
resting-state data (AAHC with K = 4 applied to 40 Hz-downsampled sensor maps at time points

of local GFP maxima).
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Figure 1: Spatial signature of EEG (left) and MEG (right) microstates. The scalp topography of EEG
microstates (four-cluster AAHC of the 40 Hz-downsampled sensor maps at time points of local GFP
maxima) is shown on the far left and the corresponding brain maps on the middle left. The gradiometer
topography of MEG microstates is shown on the far right and the corresponding brain maps on the middle
right. The scales for sensor topographies correspond to standardized z scores. Positive (negative) values in
the brain maps indicate increasing (decreasing) power upon microstate activation. These maps are

thresholded statistically and the lower/upper scales are adapted to the minimum/maximum values.
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The EEG microstate analysis allowed to reproduce canonical scalp topographies (Fig. 1,
left) well established in the literature (Michel and Koenig, 2018). Each microstate displayed a
scalp potential distribution reminiscent of one current dipole (notwithstanding the difficulty of
interpreting scalp EEG in this way; see, e.g., (Hari and Puce, 2017)) approximately located
centrally and oriented along the left frontal to right posterior line (microstate Agy;), the frontal to
posterior midline (microstates By, and Cg.,, with somewhat more anterior location or more
inferior frontal orientation for the latter), or predominantly vertically (microstate Dgg;). The
corresponding brain maps shown in Fig. 1 (left) identify the sources exhibiting significant power
increase (positive values) or decrease (negative values) upon microstate activation. Microstates
Agrgs Cipg, and Dy were dominated by a power modulation peaking at a midline frontal source,
confirming the prominently dipolar nature of their scalp topography. Specifically, microstate
Agp; was characterized by a power decrease at this source location. Microstate Cp., exhibited a
similar (although slightly more anterior) power decrease but also power increases at the
precuneus and fronto-temporal areas. Microstate D, involved an opposite pattern, i.e., power
increase at the midline frontal source and power decrease at the precuneus. On the other hand,
microstate By, was characterized by power decreases at bilateral inferior frontal sources and a
power increase at the precuneus. It is noteworthy that its scalp topography is indeed compatible
with two bilateral temporal current dipoles. All four brain power maps also disclosed deep
cerebellar patterns that may be related to EEG source reconstruction errors.

Although the spatial signature of these microstates matches the literature, their temporal
statistics differed substantially, with mean lifetimes shorter than expected (mean + SD: 37 + 2

ms, range: 35-38 ms; see Table 1, left). These lifetimes were even shorter (mean = SD: 14 + 1
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ms, range: 13—15 ms) when clustering EEG topographies at a higher sampling rate (200 Hz; see
also supplementary material S1). This discrepancy was merely imputable to the absence of
temporal smoothing on the microstate activation time series, as the interpolation approach
allowed to recover typical lifetimes (mean = SD: 126 + 8 ms, range: 121-138 ms). Fractional
occupancies ranged from 19% to 27% (Table 1, left) and were not substantially affected by
temporal smoothing (23-28%).

A similar analysis applied to MEG gradiometer signals revealed microstates that were
also dominated by dipolar sensor topographies (Fig. 1, right). Microstates A, and B,,.; were
characterized by gradiometers peaking respectively above the right and the left parietal sensors,
which was explained by unilateral power increases at the sensorimotor cortices. These two
microstates also involved an occipital power decrease. Microstates C,;z; and D, disclosed
respectively right and left parieto-occipital gradiometer activity corresponding to unilateral
occipital power increases. The brain map for microstate D,,.; also showed right sensorimotor
power decrease. The neural generators behind MEG microstates thus appeared qualitatively
different from those of EEG microstates. On the other hand, their mean lifetimes (mean + SD: 37
+ 7 ms, range: 32-47 ms; Table I, right) were similar (#,, = 1.8, p = 0.08). Fractional
occupancies appeared less homogenous for MEG (14—41%; Table 1, right) than for EEG, with
microstate C,,.; showing the highest fractional occupancy. Analogously to the EEG case,
temporal smoothing lengthened MEG microstates lifetimes (mean = SD: 114 + 21 ms, range:
94-141 ms) but did not affect fractional occupancies (17-38%), and increasing the signal
sampling rate at 200 Hz further shortened lifetimes (mean + SD: 11 + 3 ms, range: 8—16 ms; see

also supplementary material S1).
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EEG microstates MEG microstates
Mean Fractional Mean Fractional
lifetimes (ms) | occupancies lifetimes (ms) | occupancies
(%) (%)
PA. 38+3 26.9+44 Ayrg 32+1 147+1.8
B 35+£2 19.5+3.9 Byirg 37+£2 25.1+£3.7
Cerg 37+3 25.8+4.8 Cuira 47+ 2 41.1+29
Dirg 38+2 27.6+43 | DS 34+2 19.1+2.3

Table 1: Mean lifetimes and fractional occupancies (mean = SD) associated with each microstate
inferred from EEG or MEG topographies at 40 Hz sampling rate and without temporal smoothing on

microstate activation time series.

Several variations of the microstate clustering approach are explored in supplementary
materials. These analyses show that the above features of microstates are robust against
methodological changes such as increasing the signal sampling rate (except for the effect on
lifetimes, see supplementary material S1), using group clustering (supplementary material S2) or

lifting the restriction to GFP local maxima (supplementary material S3).

3.2. Hidden Markov model states

Figure 2 depicts the spatial signature of the six HMM states inferred from resting-state
MEG and EEG sensor-level power envelopes. States were sorted and labeled in order to pair
EEG states (Fig. 2, left) and MEG states (Fig. 2, right) with the best apparent spatial

correspondence. An important difference with Fig. 1 is that sensor maps in Fig. 2 locate power
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increases or decreases upon state activation, analogously to the brain maps. As a matter of fact,
both sensor and brain maps are directly comparable for MEG because planar gradiometers are
sensitive to source activity just beneath them (Hari and Puce, 2017). This comparison is less

straightforward for EEG. For this reason, we mostly focus on a description of their brain maps.
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Figure 2: Spatial signature of EEG (left) and MEG (right) sensor-level power envelope HMM states.
Both sensor and brain maps locate power increases (positive values) and decreases (negative values) upon
state activation. These maps are thresholded statistically and the lower/upper scales are adapted to the

minimum/maximum values. States were paired based on the visual correspondence of the brain maps.
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We start with the MEG states (Fig. 2, right) as this is the most conventional application of
the power envelope HMM. In accordance with previous studies (Baker et al., 2014; Brookes et
al., 2018; Coquelet et al., 2020b), these states identified power modulations within well-known
intrinsic functional networks, here the sensorimotor network (SMN), the visual occipital network
(VoN), the posterior part of the default-mode network (pDMN; encompassing the precuneus),
and a presumed auditory network (AN). More specifically, state 1,,., involved SMN power
activation along with pDMN power deactivation, while state 2,,., displayed an opposite pattern
of SMN deactivation and VoN activation. These two states are thus reminiscent of a dynamic
competition between the SMN and pDMN/VoN (Wens et al., 2019). States 3, and 4,5
identified pDMN activation and deactivation, respectively. Of note, similar states involving
precuneus activity were also identified in previous works (Coquelet et al., 2020b; Puttaert et al.,
2020) and not in others (e.g., (Baker et al., 2014; Brookes et al., 2018)) due to different choices
of source projection (for details, see (Sjogard et al., 2019)). State 5,,.; corresponded to the
activation of the SMN in isolation (rather than in competition with the pPDMN/VoN, as in states
lyrg and 2,,). Finally, state 6,,.; involved AN activation alongside power deactivation at the
precuneus, which is once again reminiscent of a dynamic cross-network competition (Wens et
al., 2019). Mean lifetimes were significantly longer than for the non-smoothed MEG microstates
(mean + SD: 151 £ 31 ms; range: 128-211 ms; #,, =31.6, p = 0), and fractional occupancies
ranged between 7% and 23% (Table 2, right).

The HMM states inferred from EEG involved power modulations within intrinsic
networks similar to the MEG states, although not with the same degree of bilaterality (Fig. 2,

left). State 1., was characterized by the activation of the right part of the SMN alongside a
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power decrease in the left precuneus, and as such may be viewed as a unilateral version of MEG
state 1. This state was the only EEG state exhibiting both power increases and decreases. The
VoN activation state 2., was comparable to state 2,,., but lacked SMN deactivation, and the
pDMN states 3., and 4. closely matched states 3,,.; and 4,,.;. State 5., was characterized by
a power increase in the left part of the SMN, so it appeared as a unilateral version of state 5.
Finally, state 6., consisted in a right-hemispheric posterior parietal power decrease, which was
thus qualitatively different from the AN/precuneus state 6,,,;. The mean lifetime of these states
(mean + SD: 165 + 40 ms, range: 136-204 ms; see Table 2, left) was significantly longer than
the non-smoothed EEG microstates (#,, =31.46, p = 0) and the MEG HMM states (
ty, =483, p = 1.9x 107). Fractional occupancies were between 8% and 24%, which is also

similar to those observed using MEG (Table 2).

EEG HMM MEG HMM
Mean Fractional Mean Fractional
lifetimes (ms) | occupancies lifetimes (ms) | occupancies
(%) (%)
State 1. 136 + 19 17+3.7 State 1,6 138 + 34 22.24+10.9
State 2., 145 + 39 13.3+4.5 State 2,6 144 £ 41 16.4+8.2
State 34 204 + 70 84+14 State 3,z 153+ 52 75+3.2
State 4. 226 + 109 224 +9 State 4, 211 +98 23.1+10.6
State Sgrq 137+ 20 14.6+4.7 State 5,z 128 £ 40 125+7.7
State 6. 141 £23 243+6.2 State 6, 130+ 54 183+154

Table 2: Mean lifetimes and fractional occupancies (mean = SD) associated with each of the six HMM

states inferred from EEG or MEG power envelope signals.
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Interestingly, the brain maps shown in Fig. 2 and reconstructed from sensor-level HMM
states were qualitatively similar to those obtained from HMM states directly inferred from source
power envelopes (supplementary material S4). For EEG, increasing the dimensionality of the
data inputted to the HMM algorithm to the same dimension used in MEG, also led to
qualitatively similar states, although with a higher degree of bilaterality for some states
(supplementary material S5). Finally, reducing the number of states to four led to HMM states
closely related to states 2,4 for MEG and to states 1., 3pec—Seg for EEG

(supplementary material S6).

3.3. State correlations

Figure 3 details the group-level spatial (Fig. 3, top) and temporal (Fig. 3, bottom)
correlations among states, the former to quantify the spatial correspondence discussed
qualitatively above and the latter, their tendency to co-activate. The two left columns assess the
effect of recording modality (MEG vs. EEG) on microstates (Fig. 3, first column) and HMM
states (Fig. 3, second column) and the two right columns, the effect of state clustering algorithm
(microstate vs. HMM) for both EEG (Fig. 3, third column) and MEG (Fig. 3, fourth column). Of
note, these temporal correlations were obtained using non-smoothed microstate activation time

series, as no temporal smoothing is explicitly applied to HMM state activation time series.
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Figure 3: Spatial (top) and temporal (bottom) state correlations. Each matrix shows the group-level
correlation values comparing: EEG microstates vs. MEG microstates (first column; corresponding to
four-cluster AAHC of the 40 Hz-downsampled sensor maps at time points of local GFP maxima), EEG
HMM states vs. MEG HMM states (second column; six-state HMM of sensor-level power envelopes),
EEG HMM states vs. EEG microstates (third column), and MEG HMM states vs. MEG microstates
(fourth column). Temporal correlations were obtained from the raw (non-smoothed) microstate
activation time series. The same correlation scale is used across the four comparisons. Stars denote
significant correlations after Bonferroni correction for the number of state pairs involved in each

comparison.

The comparison of EEG vs. MEG microstates confirmed the absence of a clear
relationship. Some cross-modal pairs did disclose significant spatial correlations (Fig. 3, top of
left column; significant R >0.09, 7,, >3.21, p <0.021 Bonferroni corrected for 16
comparisons). They could be explained by a gross overlap of their power maps presumably due
to their intrinsic blurriness, 1.e., EEG microstates A, and Cy. tended to exhibit posterior power
increases and antero-central power decreases as did the MEG microstates C,,;; and Dy, and

reversely for microstates Dygs, Aygg, and By (Fig. 1). More importantly, the corresponding
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temporal correlations were not significant with very small effect sizes (Fig. 3, bottom of left
column; R <0.002, z,, <1.14, p > 0.13 uncorrected), indicating that EEG and MEG
microstates scarcely co-activated at all.

On the other hand, Fig. 3 (second column) revealed a number of significant correlations
between MEG and EEG HMM states, both spatially (significant
R>0.15, t,, > 3.85, p<7.2 % 10~ Bonferroni corrected for 36 comparisons) and temporally
(significant R > 0.025, #,, >4.02, p <4.2x 107 corrected), and with higher effect sizes and
smaller p values than microstates. The qualitative pairing of MEG and EEG states based on their
maps (Fig. 2) was reflected in significance along the diagonal of the correlation matrix (Fig. 3,
top of second column), with particularly high effect size and low p value for the pDMN
deactivation state 4,;;/4ppq (1, =32.73, p=0). The two exceptions were states 1./l
(where the correlation did not reach significance presumably due to the sign reversal above the
left sensorimotor cortex) and states 6y, and 6..;. Analogously to the case of microstates,
off-diagonal significance may be a reflection of spatial blurriness. Temporal correlations
followed a similar pattern (Fig. 3, bottom of second column), with the pDMN states 3,:o/3¢rg
and 4,,;;/4:; standing out regarding their effect size and p value (¢,, > 14.11, p = 0). Globally,
the HMM inference on power envelopes was thus able to identify common states across the two
recording modalities.

We turn now to the comparison of microstates and HMM states within each modality.
Spatial correlations appeared significant in a number of microstate/HMM state pairs (EEG: Fig.
3, top of third column, significant R >0.16, ¢,, > 3.2, p <0.031 Bonferroni corrected for 24

comparisons; MEG: Fig. 3, top of fourth column, significant
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R>0.15, t,, >4.02, p<2.29 % 107 corrected). For EEG, these correlations appeared to
mainly reflect spatial blurriness since microstate and HMM states power maps peaked at distinct
locations, except for similar power increases at the visual cortices (microstates B, Cppg and
HMM state 2., see Figs. 1 and 2, left). Spatial similarities among MEG states exhibited higher
effect sizes and lower p value. Accordingly, Figs. 1 and 2 (right) indicated some degree of
co-localization in microstate and HMM state power modulation within the SMN (activation for
microstates Ay, Byrg and HMM states 1,5, Syrgs deactivation for microstate D, and HMM
state 2,,;5) and VoN (activation for microstates C,;zg, Dype and HMM states 2y, 3yvpo)-
Temporal correlations followed once again a somewhat similar pattern of significance (EEG:
Fig. 3, bottom of third column, significant R > 0.01, #,, > 3.19, p <0.034 corrected; MEG: Fig.
3, bottom of fourth column, significant R >0.007, ¢,, > 3.52, p <0.013 corrected). However,
the raw value of these significant correlations remained low (EEG: R <0.09, MEG: R < 0.04),

so temporal co-activations were marginal.
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4. Discussion

This study used simultaneous MEG/EEG recordings at rest to compare two notions of
discrete metastable brain states, i.e., microstates and power envelope HMM states. We found that
microstates were not reproducible across the two recording modalities, i.e., microstates inferred
from MEG signals did not correspond to the canonical EEG microstates. On the other hand,
MEG and EEG HMM states identified transient activations of the same intrinsic functional
networks, although with a limited temporal correspondence. We also found no evidence that
EEG microstates and HMM states share common neural dynamics. In fact, contrary to our
expectation based on the literature (Baker et al., 2014; Michel and Koenig, 2018), all microstates
were substantially less stable in time than the HMM states. That said, the MEG version of
microstates involved power activity within the same networks as HMM states, but was restricted

to isolated nodes of these networks, and with a poor temporal correspondence.

4.1.  Microstates and power envelope HMM states probe different aspects of electrophysiological

power bursts

The primary result of this paper is that microstates and power envelope HMM states
differ substantially, both in the localization of the brain areas they (de)activate and in their
temporal stability. These two state clustering algorithms share the common goal of identifying
patterns of high-power electrophysiological activity that repeat at rest, so this raises the questions
of what methodological features lead to this discrepancy, and what aspect of brain functional

dynamics they are preferentially sensitive to. The fundamental distinction discussed here is that
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(1) microstates focus on high-power activity by biasing the topographical clustering to time
points of locally maximum GFP (Michel and Koenig, 2018), whereas (ii) the power envelope
HMM encodes states based on the spatial patterns of continuous-time oscillatory power (Baker et
al., 2014).

The GFP maximization for microstate topographies is fully built-in in the AAHC
algorithm (Murray et al., 2008). In fact, the convergence of the AAHC with and without explicit
restriction to GFP peaks indicates that microstates are mostly specific to time points of locally
maximal GFP. This concurs with the reportedly high levels of EEG topographical dissimilarities
in between GFP peaks (Skrandies, 1990) and with the difficulty of discrete microstates to model
continuous EEG recordings (Mishra et al., 2020). Accordingly, in our data, the duration of
microstate activation appeared very short, and was actually only slightly above the minimum
timescale allowed by signal processing (at least in the absence of temporal smoothing). A mean
lifetime of 37 ms is only 150% the 25 ms timestep of our signals sampled at 40 Hz, and the fact
that it decreased by merely increasing the sampling rate indicates that microstates are actually
even shorter lived. Classical lifetimes of 120 ms appear to require an ad-hoc temporal
interpolation procedure that does not reflect the raw GFP peak events underlying microstate
clustering nor the high topographical dissimilarities in between these events (Skrandies, 1990).
Extrapolating the observation that raw microstate lifetimes are 150% the timestep would have
led us to expect a mean lifetime of about 7 ms at 200 Hz sampling rate (corresponding to a 5 ms
timestep), but our data proved it twice longer. This is presumably a sign that microstates do
reflect neural events, since neurophysiological activity as recorded by MEG/EEG should

typically not occur over timescales shorter than the 10 ms duration of postsynaptic potentials
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(Baillet, 2017; Buzséki et al., 2012), whereas pure noise events can be as short as the timestep.
Microstates thus appear to probe quasi-instantaneous electrophysiological events.

Further understanding what these microstate events represent requires careful
consideration of the notion of GFP. Instantaneous GFP (spatial variance of time-dependent
sensor topographies) is not trivially synonymous with instantaneous global power (magnitude
squared signal summed over all sensors). For EEG, the two concepts coincide only when using
the average reference (where the potential summed over all electrodes is constrained to vanish),
which approaches the idealized reference to infinity because asymptotically vanishing electric
potentials generated by current dipoles inside the brain integrate to zero over the scalp (Bertrand
et al., 1985), at least to some approximation (Yao, 2017). From a physical perspective, GFP
maximization of EEG microstates is thus theoretically equivalent to global power maximization.
In practice though, the GFP formulation is preferred because it is strictly independent of the
choice of reference (Murray et al., 2008; Skrandies, 1990). No such subtlety arises with MEG,
where GFP and global power coincide because neuromagnetic field patterns generated by dipolar
brain sources also sum up approximately to zero over whole-head-covering sensor arrays
(meaning in a sense that the “average reference” holds automatically for MEG). Thus, the
quasi-instantaneous microstate events correspond to moments of high global power. Given that
spontaneous electrophysiological activity exhibits power bursts (Hari and Salmelin, 1997; van
Ede et al., 2018), microstates may be expected to probe short-time events of maximum power
within power bursts. More specifically, since the EEG/MEG spectrum is dominated by the alpha
band (Hari and Puce, 2017), microstates are bound to be driven by, and phase-locked to,

moments of high-amplitude alpha rhythms within alpha bursts (von Wegner et al., 2021).
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In any case, by focusing on quasi-instantaneous and temporally discrete
electrophysiological events of high power, microstates provide at best a partial characterization
of power bursts. Their full exploration requires instead to focus on the transitioning between low
and high power. By running over the whole power envelope signal, the HMM is more sensitive
to such transitions and may thus be better suited to fully capture bursting activity (van Ede et al.,
2018). The Markovian character of the HMM (i.e., the probability of state activation at the next
time step depends on what state is currently active; see, e.g., (Rabiner, 1989)) also enforces a
degree of deterministic causality that further helps detecting transient periods of sustained power
burst, rather than quasi-instantaneous events of high power. Accordingly, bursts generated by
brain rhythms typically last for a few hundreds of milliseconds (Hari and Salmelin, 1997), which
is consistent with the typical power envelope HMM mean lifetime of 100-200 ms. The fact that
these lifetimes are well above the minimum timestep allowed in our power envelope signals (in
our case, 25 ms) further shows that they provide a reliable estimate of the duration of the

underlying power bursts.

4.2.  Microstates identify local neural events whereas power envelope HMM states encompass

network-level activity

Besides temporal stability, microstates and power envelope HMM states also differed in
their spatial distribution, with microstates exhibiting isolated power modulations and HMM
states, distributed (de)activations at the network level. The first methodological reason to
consider is that microstate clustering relies on topographical similarity (Michel and Koenig,

2018) whereas the HMM encodes the whole covariance structure (Baker et al., 2014; Woolrich et
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al., 2013). In theory, HMM states are thus driven by a mixture of power topography and intrinsic
functional connectivity. This being said, the contribution of functional connectivity (more
specifically, the cross-covariance feature in the HMM) may not dominate HMM state inference
in practice (Vidaurre et al., 2018). In fact, functional networks can also be identified successfully
using classification schemes that do not encode explicitly for envelope cross-covariance, such as
the independent component analysis of power envelopes (which is, however, generally applied at
slower timescales around 1 s; see, e.g., (Brookes et al., 2011; Wens et al., 2014)).

The involvement of functional networks in HMM states and the lack thereof in
microstates might alternatively be rooted in their difference in temporal stability discussed at
length above. The physiological process of binding distant neural populations into a functional
network entails a hierarchy of timescales, from hundreds of milliseconds accessible to the HMM
for certain networks (i.e., SMN, DMN and visual network) to several seconds for others (e.g., the
fronto-parietal network) (Baker et al., 2014; Vidaurre et al., 2018). With lifetimes below these
timescales and associated with quasi-instantaneous MEG/EEG events, microstates may thus be
mostly sensitive to highly transient neural activity taking place locally without enough time to
establish network-level coordination. A somewhat related hypothesis was put forth when
comparing EEG microstates to fMRI networks (Britz et al., 2010; Musso et al., 2010; Yuan et al.,
2012). This is also in line with our observation that MEG microstates appeared as unilateral
versions of some HMM states. For example, correlation results suggested that HMM state 1,
may be viewed as a combination of microstates A, and By

Closely related to this timescale argument, the spatial locality of microstates may also be

viewed in light of their being phase locked to alpha rhythms (von Wegner et al., 2021). A
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putative “network-level” microstate involving distinct brain regions would then imply the
existence of a zero-phase lag synchronization among them, and as such it would presumably not
reflect neurophysiological activity. This is because zero-lag synchronization among separated
brain areas evidences instantaneous interactions, which are generally thought to be
non-physiological (Schoffelen and Gross, 2009; Wens, 2015) (see, however, (Sjogard et al.,
2019), for a spontaneous, nearly zero-lag correlation within the default-mode network). One way
to further investigate the relationship between microstates and synchronization would be to
compare them to another implementation of the HMM (Vidaurre et al., 2018) that is not applied
on MEG/EEG power envelopes but on the MEG/EEG signals with time-delay embedding (Kantz
and Schreiber, 2003; Takens, 1981), which gives access to classification features closely related
to phase synchrony (Stam and van Dijk, 2002). Compared to the power envelope HMM, this
time-embedded HMM exhibits shorter lifetimes (50-100 ms), richer spectral details, and
network-level phase locking (Vidaurre et al., 2018). Given that these lifetimes are still well
above the smallest accessible timestep (4 ms at the 250 Hz sampling rate used in (Vidaurre et al.,
2018)) and thus cannot be deemed quasi-instantaneous, and that this network synchrony occurred
at non-zero phase lag, we surmise that the time-embedded HMM provides yet another state
description, more stable than microstates but more transient than power envelope HMM states.
Still, it would be useful to perform such comparisons explicitly in the future.

In sum, the above considerations suggest that microstates and HMM states are sensitive
to neural events occurring at different temporal and spatial scales, highly transient and isolated

for the former, more stable and distributed over intrinsic networks for the latter.
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4.3. Cross-modal comparisons reveal poor correspondence of state activations

The conclusion that microstate classification depends on highly transient events is also
key to understanding the lack of qualitative correspondence between EEG and MEG microstates.
This discordance contrasted with the HMM, which disclosed good spatial similarity across the
two recording modalities. The pDMN state pairs 3,.4/35rg and 4ypo/4:g €xhibited a substantial
overlap of their activation periods, but the others lacked such strong temporal correspondence.
The pDMN states were also the most stable (Coquelet et al., 2020b; Puttaert et al., 2020),
suggesting that state co-occurrence rate increases with state stability. The difficulty of short-lived
states to co-activate explains in particular the poor cross-modal temporal correlation for the
quasi-instantaneous microstates. This observation is also in line with a previous comparison of
MEG and EEG intrinsic functional connectomes, which were spatially similar but with rather
discordant temporal dynamics (Coquelet et al., 2020a). The hypothesis raised to explain this
result was that MEG and EEG are sensitive to different components of transient functional
integration processes, but that these differences smooth out after minute-scale time averaging.
Our results suggest that this smoothing effect extends to the finer timescales accessible to
MEG/EEG state analyses. In fact, it fits well with the observation discussed above that some
relatively stable, network-level HMM states break into highly transient, spatially local MEG
microstates.

The spatial discordance between EEG and MEG microstates can then be understood on
this basis. A sensitivity of EEG and MEG to different transient neural events (as hypothesized
above) would lead to different GFP maxima and thus, to microstates inferred from totally

different time points. More generally, the concept of GFP maxima turns out to be modality
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specific since it depends on the type of sensors used (here, EEG electrodes vs. MEG
gradiometers). We focused in this paper on MEG microstates derived from gradiometers, but it is
noteworthy that microstates based on magnetometers also poorly correlate with gradiometric
microstates (data not shown). We conclude that microstates obtained with different
electrophysiological modalities probe neural events occurring at different times and are thus not
directly comparable. As emphasized above, HMM state inference does not depend on a
modality-specific selection of time periods, which explains their better cross-modal concordance.

Other potential sources of differences are the distinct sensitivity profiles of EEG and
MEQG, especially to purely radial dipolar sources (Hari and Puce, 2017), and the higher regional
variability of sensor-brain distance with MEG arrays than with scalp EEG (Coquelet et al.,
2020a). The latter impacts substantially MEG functional connectivity estimation in frontal
regions from which MEG sensors are farthest (Coquelet et al., 2020a), but interestingly no such
issue was clearly observable in brain maps of sub-second HMM states. Still, these differences

might partially account for their poor temporal correspondence.

4.4. Power envelope HMM states can be inferred directly from sensor-level signals

One side result noteworthy of mention is that the HMM of sensor power signals leads to
network-level states similar to the HMM of reconstructed source power considered in the
seminal paper of (Baker et al., 2014) and subsequent MEG studies (Brookes et al., 2018;
Coquelet et al., 2020b; Puttaert et al., 2020; Quinn et al., 2018; Sitnikova et al., 2018; Van
Schependom et al., 2019; Vidaurre et al., 2018). The HMM of electrophysiological signals can

thus be performed in a computationally less cumbersome way than previously done, for similar
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results. This might widen the perspectives of applications of the HMM-based analyses of
MEG/EEG data, particularly when studying infants or patients where MRI acquisition might not
be possible. Methodologically, this also frees the HMM state inference per se from ambiguities
related to the choice of forward model (for further discussion of this aspect, see, e.g., (Coquelet
et al., 2020a)) and source reconstruction algorithm. Only the imaging of state brain maps would
depend on these choices. This is particularly interesting with regard to the contribution of
precuneus activity to HMM state dynamics, as it was identified from MEG source power HMMs
when using minimum norm estimation (Coquelet et al., 2020b; Puttaert et al., 2020) but not
when using a beamformer (Baker et al., 2014; Brookes et al., 2018; Vidaurre et al., 2018) due to
a suppression effect (Sjogard et al., 2019). The states 1,6, 3ype/3eeg and 4yp/4erg Obtained in
this study show that sensor-level HMM is sensitive to precuneus activity, independently of
source reconstruction biases. This being said, it would be interesting in the future to extend our
comparative study to other implementations of the power envelope HMM, e.g., restricted to
parcellated source reconstruction and with multivariate signal leakage correction (Brookes et al.,
2018; Colclough et al., 2015; Sitnikova et al., 2018), and examine whether such processing steps
improve the robustness of HMM state inference.

One last aspect to emphasize in the case of EEG is that, strictly speaking, the power
envelope HMM is ill-defined because it relies on the concept of EEG signal power, which
depends on the choice of reference. As discussed above, we focused here on the average
reference, which approximates the physically ideal reference at infinity and thus presumably
mitigates this issue in practice. This is in line with our observation that source-projected brain

maps of sensor-level HMM states correspond to maps of source-level HMM states, the latter
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being based on current dipole estimates that are independent of the reference (of course, the
choice of recording reference does matter, as it impacts measurement quality (Hari and Puce,
2017)). Still, sensor-level HMM state inference may be improved by using, e.g., the reference
electrode standardization technique that aims at simulating a virtual reference at infinity (Yao,

2001).

4.5. Conclusion

This study revealed that microstates and HMM states reflect neural dynamical events
probing power bursts at different timescales. The spatio-temporally local character of microstates
explains their specificity to the electrophysiological recording modality at hand. For EEG,
microstate analysis and the power envelope HMM appear to bring complementary information
about transient neural dynamics, so we suggest that the two approaches should be considered
together. On the other hand, the added value of MEG microstates may be more limited as they
merely identify a short-time splitting of network-level HMM states. Both approaches allow to
model fast, spontaneous bursts of electrophysiological activity occurring at sub-second
timescales. As such, they represent important tools to further explore the dynamical functional

architecture of the human brain.
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Microstates and power envelope hidden
Markov modeling probe bursting brain

activity at different timescales

Supplementary material

Coquelet N, De Tiege X, Roshchupkina L, Peigneux P, Goldman S, Woolrich M & Wens, V

S1. Effect of increased sampling rate on microstates

The EEG microstate literature commonly relies on sampling rates higher than 40 Hz, on
which we focused in the main text for consistency with the standard HMM analysis. We repeat
here the main microstate analysis (K = 4 AAHC at GFP peak time points) but now using
EEG/MEG signals effectively sampled at 200 Hz (i.e., downsampling of 100 Hz by
moving-window averaging with 50% overlap).

Figure S1 shows the spatial topographies of EEG and MEG microstates derived at the
two sampling rates. We observe a high spatial correspondence among microstate pairs, and in

fact the lowest spatial correlation was R = 0.83 . Therefore, increasing the sampling rate from 40

Hz to 200 Hz has no effect on the spatial signature of microstates.
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EEG MEG

Figure S1: Effect of the sampling rate (40 Hz vs. 200 Hz) on the spatial signature of EEG (left) and MEG
(right) microstates (four-cluster AAHC at GFP peaks). Microstates were paired based on their

unambiguous spatial correspondence.

On the other hand, increasing the sampling rate from 40 Hz to 200 Hz significantly
decreased the mean lifetime of microstates estimated from their (non-smoothed) activation time

series (#,, = 131.5, p = 0; compare Table S1 to Table I in the main text).

EEG microstates MEG microstates
Mean Fractional Mean Fractional
lifetimes (ms) | occupancies lifetimes (ms) | occupancies
(%) (%)
Microstate A 14+2 253+43 Microstate a 15+1 45.1+£3.2
Microstate B 14+2 23.6+43 Microstate 3 11+1 222+34
Microstate C 14+2 24.1+4.7 Microstate y 8x1 89+0.9
Microstate D 15£2 27+4.5 Microstate o 11+1 23.8+3.8
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Table S1: Mean lifetimes and fractional occupancies (mean = SD) associated with each microstate
inferred from EEG or MEG topographies at 200 Hz sampling rate (without temporal smoothing on

microstate activation time series).

S2. Comparison of “two-level” and “group-level” microstate clustering

We repeat here the main microstate analysis (K =4 AAHC of sensor maps downsampled
at 40 Hz and restricted to time points of locally maximal GFP), with the only difference that the
clustering is directly performed at the group level (i.e., after concatenation of EEG/MEG signals
across all subjects), which is more comparable to the group HMM analysis than the two-step
microstate clustering presented in the main text.

Figure S2 displays pairs of microstates obtained in both cases and shows that this
methodological detail does not impact microstate topographies (spatial correlation among pairs:
R >0.71). Mean lifetimes and fractional occupancies were not significantly affected either (

ty, < 1.8, p > 0.08 for mean lifetime; #,, <1.14, p > 0.26 for mean fractional occupancy).
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EEG MEG

«Group-level» «Two-level» «Two-level» «Group-level»

Figure S2: Effect of clustering type (‘“group-level” vs. “two-level”) on the spatial signature of EEG (left)
and MEG (right) microstates (four-cluster AAHC at GFP peaks, 40 Hz sampling rate). Microstates were

paired based on their unambiguous spatial correspondence.

S3. Microstate clustering without temporal restriction

In the main text, microstate topographies were inferred from local GFP maxima, whereas
the HMM ran over the continuous signals. We repeat here the main microstate analysis (K = 4
AAHC of sensor maps at 40 Hz sampling rate) but without restriction to isolated time points.

Figure S3 shows that microstate topography is qualitatively unaffected by this
methodological difference. As discussed in the main text, this is because the AAHC algorithm
explicitly biases microstates towards maximal GFP, suggesting that microstates are mostly
sensitive to neural activity around GFP peak times. In line with this suggestion, we observed an

excellent one-to-one temporal correspondence between each pair of microstates (Fig. S3).
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Figure S3: Effect of the temporal restriction to GFP local maxima on EEG (top) and MEG (bottom)
microstates (four-cluster AAHC, 40 Hz sampling rate). Microstates were paired modality based on their
unambiguous spatial correspondence. Temporal correlations of microstate activation time series (without

temporal smoothing) are shown on the far right.

S4. Hidden Markov modeling of sensor- versus source-level power envelopes

We focused in the main text on HMM states inferred from sensor power envelopes, but
the HMM analysis was developed with, and is commonly applied to, source-level MEG signals.
So, we repeated the exact same HMM analysis after source reconstruction. In a nutshell, we
applied HMM inference directly on the source power envelope signals used in the main text for
the construction of state brain maps. Individual datasets of source envelope signals were
demeaned and normalized by the global variance across all sources, and then temporally

concatenated across subjects. The resulting dataset was pre-whitened and dimensionally reduced
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with principal component analysis to retain about 55% of explained variance (leading to N =10
components for EEG and N = 53 for MEG). The HMM optimization algorithm was run ten times
on these N-dimensional time series, each with different initial conditions, and the model with
lowest free energy was retained. Brain maps of power increases/decreases upon state activation
were computed from the partial correlation between binary state time series (obtained with the
Viterbi algorithm) and the group-concatenated source power envelopes.

Figure S4 illustrates the resulting brain maps and shows good spatial agreement between
power envelope HMM states inferred from sensor signals and those obtained from reconstructed
source activity. Only one state failed to provide a good correspondence with state 1.../1\
described in the main text (see top row in Fig. S4). It is also noteworthy that source-level HMM
states tended to exhibit more dynamic competition (i.e., including both power increases and

decreases).

Brain maps (source) Brain maps (sensor) Brain maps (sensor) Brain maps (source)

DEC 90 Q0 9@
U0» S0L QLe 989
QOl® 00 b3 0
€0 @06 «06 €00
08 Q00 QO R0@
0@ 20 cOS 906

-0.01 n—— min
0.01  n— max

EEG HMM states
sa1e1s NIAIH O3 IN


https://doi.org/10.1101/2021.02.20.432128
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.20.432128; this version posted February 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S4: Comparison of HMM states inferred from sensor- and source-level EEG (left) and MEG
(right) power envelopes. Brain maps are thresholded statistically and the lower/upper scales are adapted

to the minimum/maximum values. States were ordered based on the visual correspondence.

SS. Hidden Markov modeling of EEG power envelopes at higher dimensionality

In our main HMM analyses, we fixed the data dimensionality (i.e., the number N of
principal components fed to the HMM classification algorithm) so the fraction of explained
variance is identical for MEG and EEG power envelope signals. This approach naturally takes
into account the inherently distinct spatial smoothness of the two recording modalities. However,
this difference might impact HMM state classification in EEG and underlie some discrepancies
with MEG HMM states. Here, we consider the HMM analysis of EEG power envelopes with N =
41, as for MEG.

Figure S5 shows side-by-side the spatial signature of EEG power envelope HMM states
at low (N = 10; see Fig. 2, left) and higher (N = 41; see Fig. 2, right) dimensions. Sensor-level
maps show that HMM states are qualitatively similar, although some brain maps exhibited a
higher degree of bilaterality (see, e.g., state 1) and more dynamical competition (state 2) when N
= 41. State 5 was the only state qualitatively different as it involved a frontal activation at when
N =41 instead of a left sensorimotor activation at when N = 10.

Figure S6 shows the spatial (Fig. S6, top) and temporal (Fig. S6, bottom) correlation
analyses between EEG HMM states inferred at N = 41 and MEG HMM states at the same
dimensionality (Fig. S6, left) or EEG microstates (Fig. S6, right). Despite some qualitative

topographical differences, increasing the dimensionality of EEG power envelope data did not
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affect substantially the spatial or temporal correspondence across state clustering methods or
recording modality (compare to Fig. 3). The observations and conclusions discussed in the main

text thus stand.
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Figure S5: Spatial signature of EEG sensor-level power envelope HMM states obtained with N = 10 (left;
see Fig. 2, left in the main text) and N =41 (right) components retained prior to HMM inference.
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Figure S6: Spatial (top) and temporal (bottom) correlations when the HMM of EEG power envelopes is

inferred from N =41 components. Compare with Fig. 3 in the main text.

S6. Power envelope hidden Markov model with four states

Finally, we repeated the sensor-level power envelope HMM analysis by lowering the
number of states to classify from K = 6 (used in the main text) to K = 4, for better comparability
with the four-microstate clustering.

Figures S7 and S8 present the main results of this analysis. The four-state HMMs merely
disclosed a subset of the six-state HMM, specifically states 2,,.;—Surc for MEG and to states
lipgs 3ea—rrg for EEG (compare Fig. S7 to Fig. 2 in the main text). The spatio-temporal

correlation analysis comparing microstates vs. HMM states and EEG vs. MEG then naturally led
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to similar observations than in the case of six-state HMM. The observations and conclusions

discussed in the main text thus stand.
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Figure S7: Spatial signature of EEG (left) and MEG (right) sensor-level power envelope HMM states

obtained with K = 4. Compare with Fig. 2 in the main text.
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Figure S8: Spatial (top) and temporal (bottom) correlations in the case of a four-state power envelope

HMM. Compare with Fig. 3 in the main text.
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