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Abstract 

A thorough understanding of sex-independent and sex-specific neurobiological features 

that underlie cognitive abilities in healthy individuals is essential for the study of 

neurological illnesses in which males and females differentially experience and exhibit 

cognitive impairment.  Here, we evaluate sex-independent and sex-specific relationships 

between functional connectivity and individual cognitive abilities in 392 healthy young 

adults (196 males) from the Human Connectome Project. First, we establish that sex-

independent models comparably predict crystallised abilities in males and females, but 

more accurately predict fluid abilities in males. Second, we demonstrate sex-specific 

models comparably predict crystallised abilities within and between sexes, and generally 

fail to predict fluid abilities in either sex. Third, we reveal that largely overlapping 

connections between visual, dorsal attention, ventral attention, and temporal parietal 

networks are associated with better performance on crystallised and fluid cognitive tests 

in males and females, while connections within visual, somatomotor, and temporal 

parietal networks are associated with poorer performance. Together, our findings suggest 

that shared neurobiological features of the functional connectome underlie crystallised 

and fluid abilities across the sexes.  
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Introduction 

Sex differences in brain-behaviour relationships are widely studied and controversial in 

neuroscience. Studies often report contradictory findings, and many are not replicated. 

While some studies have found evidence for sex differences in healthy cognitive 

functioning (Camarata & Woodcock, 2006; Irwing & Lynn, 2005; Lynn & Irwing, 2004), 

others have reported a lack of differences (Hyde, 2005; Jäncke, 2018). Similarly, while 

some studies have found evidence for sex differences in healthy brain function and 

structure (Cummings et al., 2020; De Bellis et al., 2001; Ruben C Gur et al., 1999; 

Ingalhalikar et al., 2014; Kogler et al., 2016; Ritchie et al., 2018; Rodriguez, Warkentin, 

Risberg, & Rosadini, 1988; Scheinost et al., 2015; Weis, Hodgetts, & Hausmann, 2019; 

Weis, Patil, et al., 2019), others have observed the opposite (Bishop & Wahlsten, 1997; 

Eliot, Ahmed, Khan, & Patel, 2021; Sommer, Aleman, Somers, Boks, & Kahn, 2008). 

Finally, while some studies have demonstrated sex differences in the relationship 

between neural function/structure and cognitive functioning in healthy individuals (R. C. 

Gur & Gur, 2017; Kimura, 2004; Satterthwaite et al., 2015), others have shown otherwise 

(Eliot, 2011; Sommer et al., 2008). It has also been suggested that sex differences in 

neural circuitry and/or neurochemistry may reflect compensation for genetic and/or 

hormonal differences to ensure that male and female behaviours are more similar than 

different , and many of the contradictory findings may be attributable to differences in 

sample sizes, methodology, and publication bias (Eliot et al., 2021). Hence, it remains to 

be determined whether males and females have shared or distinct brain-behaviour 

relationships.  
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In recent years, sex differences in cognitive manifestations of various neurological, 

neurodevelopmental, and neuropsychiatric illnesses have become increasingly evident 

(Han et al., 2012; Irvine, Laws, Gale, & Kondel, 2012; Laws, Irvine, & Gale, 2016; 

Subramaniapillai, Almey, Rajah, & Einstein, 2020). Insight into sex-independent and sex-

specific brain-behaviour relationships in healthy young adults can enable better 

understanding of the neurobiological underpinnings of cognitive deficits within and across 

sexes, paving the way for the development and implementation of personalised treatment 

strategies. In this study, we aim to disentangle sex-specific and sex-independent brain-

behaviour relationships between resting-state functional connectivity and cognitive 

abilities in healthy young adults.  

Resting-state functional connectivity is defined as the temporal dependence of the blood-

oxygen-level dependent (BOLD) response in anatomically separate brain regions at rest 

(Aertsen, Gerstein, Habib, & Palm, 1989; Friston, Frith, Liddle, & Frackowiak, 1993; 

Martijn P Van Den Heuvel & Pol, 2010). Many studies have linked functional connectivity 

to cognitive functioning (Casey, Galvan, & Hare, 2005; Casey, Giedd, & Thomas, 2000; 

Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Moeller, Willmes, & Klein, 2015; Park 

& Friston, 2013; Seeley et al., 2007; Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 

2010; M. P. van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) and predicted individual 

cognitive abilities from functional connectivity (Chen et al., 2020; Dhamala, Jamison, 

Jaywant, Dennis, & Kuceyeski, 2021; He et al., 2020; J. W. Li et al., 2019; Zimmermann, 

Griffiths, & McIntosh, 2018). Recent work in this area has shown global signal regression, 

or removal of trends in the fMRI signal, improves prediction accuracy (J. W. Li et al., 

2019), machine and deep learning models perform comparably (He et al., 2020), and 
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shared network features predict scores from distinct cognitive domains (Chen et al., 2020; 

Dhamala et al., 2021). These studies aim to capture brain-behaviour relationships that 

exist between functional connectivity and cognitive abilities, but it remains unclear 

whether these relationships are consistent across the sexes.  

Sex differences in functional connectivity have been observed across distinct populations, 

including North American children and adolescents with and without psychiatric illnesses, 

as well as North American and German healthy adults (Cummings et al., 2020; Gong, He, 

& Evans, 2011; R. C. Gur & Gur, 2017; Kogler et al., 2016; Satterthwaite et al., 2015; 

Scheinost et al., 2015; Weis, Hodgetts, et al., 2019; Zhang, Dougherty, Baum, White, & 

Michael, 2018). Previous work in a developmental cohort has shown males exhibit 

stronger inter-network connectivity, while females exhibit stronger intra-network 

connectivity (Satterthwaite et al., 2015). Extant literature also suggests hormonal 

modulation of functional connectivity (Dubol et al., 2020; Fitzgerald, Pritschet, Santander, 

Grafton, & Jacobs, 2020; Hjelmervik, Hausmann, Osnes, Westerhausen, & Specht, 2014; 

Pritschet et al., 2020; Weis, Hodgetts, et al., 2019). In terms of functional connectivity 

features that discriminate sex, two studies identified that connections within and between 

frontoparietal and default mode networks strongly contribute to the predictions (Weis, 

Patil, et al., 2019; Zhang et al., 2018). Together, these studies suggest sex differences 

exist in functional organisation of the brain, but do not address whether these differences 

translate into sex differences in connectivity-cognition relationships.  

A recent study similar to this one investigated differences between males and females in 

predictability of individual intelligence quotient (IQ) and sub-domain cognitive scores 

using whole-brain functional connectivity (Jiang, Calhoun, Fan, et al., 2020). Their 
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individualized prediction integrated feature selection and regression with a leave-one-out 

cross validation strategy, resulting in distinct functional connectivity features being 

selected for each interaction. They reported IQ and other cognitive scores are generally 

more predictable in females than they are in males, and the sex-specific models rely on 

distinct functional connections to make predictions. A second study from the same group 

used a similar approach to predict IQ in males and females using functional connectivity, 

cortical thickness, or both (Jiang, Calhoun, Cui, et al., 2020). The reported no differences 

in prediction accuracy between males and females but found that sex-specific models 

relied on distinct neurobiological correlates. While these findings suggest the presence of 

distinct brain-behaviour relationships across the sexes, their leave-one-out prediction 

approach, resulting in distinct features for every iteration, limits the extent to which we 

can compare and generalise these results because the features used are dependent on 

which subject is left out in the cross validation. In this current study, we aim to address 

this concern and expand upon this work.   

Here, we study sex-independent and sex-specific brain-behaviour relationships between 

functional connectivity and individual cognitive abilities in 392 healthy young adults (196 

male-female pairs matched for cognitive composite scores) from the Human Connectome 

Project (Van Essen et al., 2013). First, we quantify whether sex-independent models differ 

in how accurately they can predict distinct cognitive abilities from functional connectivity 

in males and females. Second, we quantify whether sex-specific models better predict 

individual cognitive abilities from functional connectivity within or between sexes. Third, 

we evaluate whether shared or sex-specific functional connectivity features map to 

cognitive abilities.    
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Methods 

The methods used here build upon our prior work (Dhamala et al., 2021) but the analyses 

presented are novel and aim to identify shared and sex-specific features that predict 

cognitive abilities. Our experimental workflow is shown in Figure 1. The data that support 

the findings of this study are openly available as part of the Human Connectome Project 

at https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-

data-release (Van Essen et al., 2013). Code used to generate the results presented here 

are available on GitHub (https://github.com/elvisha/SexSpecificCognitivePredictions). 

Dataset: We used publicly-available high resolution, preprocessed MRI data from the 

Human Connectome Project (HCP) – Young Adult S1200 release (Van Essen et al., 

2013). MRI data were acquired on a Siemens Skyra 3T scanner at Washington University 

in St. Louis. Acquisitions included T1-weighted and T2-weighted anatomical images 

(0.7mm isotropic), and functional MRI (2.0mm isotropic, TR/TE = 720/33.1ms, 8x 

multiband acceleration). Functional MRI were collected with both left-right and right-left 

phase encoding. We examined resting-state functional MRI (rfMRI) time series from 196 

male-female pairs (n=392) of unrelated healthy young adults with four complete rfMRI 

runs. Male-female pairs were matched for their Crystallised, Fluid, and Total composite 

scores to ensure there were no significant differences in cognitive function (p>0.05) 

between the two sexes. Although the term gender is used in the HCP Data Dictionary, we 

use the term sex in this article because the database collected self-reported biological 

sex information as opposed to gender identification. We did not verify the self-reported 

biological sex using genetic information.  
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Parcellation: We used a subject-specific CoCo439 parcellation that was developed in-

house by combining parts of several atlases. This parcellation includes 358 (of 360) 

functionally derived cortical regions from HCP multi-modal parcellation (MMP) (Matthew 

F Glasser et al., 2016) (two hippocampal regions were excluded as they were included in 

other subcortical ROIs); 12 anatomically defined subcortical regions derived from 

FreeSurfer’s aseg.mgz, adjusted by FSL’s FIRST tool (Patenaude, Smith, Kennedy, & 

Jenkinson, 2011); 12 anatomically defined subcortical nuclei from AAL3v1 (Rolls, Huang, 

Lin, Feng, & Joliot, 2020); 30 anatomically defined subcortical nuclei from FreeSurfer 7 

(Iglesias et al., 2018) (50 nuclei were merged down to 30 to remove the smallest nuclei, 

as with AAL3v1); and 27 anatomically defined cerebellar regions from the SUIT atlas 

(Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009). Additional details and 

corresponding files for this parcellation are available on GitHub 

(https://github.com/kjamison/nemo#parcellations).  

Functional Connectivity Extraction: Each subject underwent four gradient-echo EPI 

resting-state fMRI (rsfMRI) runs of ~15 min each over two sessions. There are 1200 

volumes per scan for a total of 4800 volumes for each subject over the four runs. The 

minimal preprocessing pipeline performed by the HCP consortium included motion and 

distortion correction, registration to subject anatomy and standard MNI space, and 

automated removal of noise artefacts by independent components analysis (M. F. 

Glasser et al., 2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). We regressed 

the global signal and its temporal derivative from each rsfMRI time series and 

concatenated the four scans. We then computed the zero lag Pearson correlation 

between the concatenated time series from each pair of regions to derive the functional 
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connectivity matrix, which we then Fisher’s z-transformed. We used the vectorised upper 

triangular of this functional connectivity matrix to predict cognition.   

Cognition: The NIH Toolbox Cognition Battery is an extensively validated battery of 

neuropsychological tasks (Carlozzi et al., 2017; Gershon et al., 2013; Heaton et al., 2014; 

Mungas et al., 2014; Tulsky et al., 2017; Weintraub et al., 2013; Weintraub et al., 2014; 

Zelazo et al., 2014) that assesses five cognitive domains: language, executive function, 

episodic memory, processing speed, and working memory through seven individual test 

instruments (Heaton et al., 2014). The specific tasks include Dimensional Change Card 

Sort Test, Flanker Inhibitory Control and Attention Test, Picture Sequence Memory Test, 

Picture Vocabulary Test, Oral Reading Recognition Test, List Sorting Working Memory 

Test, and Pattern Comparison Processing Speed (Heaton et al., 2014). Three composite 

scores are derived from participants’ scores on the NIH Toolbox Cognitive Battery tasks: 

Crystallised Cognition Composite, Fluid Cognition Composite, and Total Cognition 

Composite (Heaton et al., 2014). Crystallised cognition primarily represents language 

(vocabulary and reading decoding) abilities, while fluid cognition represents a wider range 

of higher-order cognitive processes including executive function (cognitive flexibility and 

inhibitory control and attention), episodic memory, working memory, and processing 

speed. These composite scores are based on initial factor analysis of the NIH Toolbox 

Cognition Battery. Specifically, the Crystallised Cognition Composite comprises the 

Picture Vocabulary and Oral Reading Recognition tests and assesses language and 

verbal skills. The Fluid Cognition Composite comprises scores on the Dimensional 

Change Card Sort, Flanker Inhibitory Control and Attention, Picture Sequence Memory, 

List Sorting Working Memory, and Pattern Comparison Processing Speed tests to broadly 
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assess processing speed, memory, and executive functioning. The Total Cognition 

Composite combines the Crystallised and Fluid Cognition Composites. Composite scores 

tend to be more reliable/stable but do not capture variability in individual tasks (Heaton et 

al., 2014). In this study, we investigated the Crystallised, Fluid, and Total Cognition 

Composites, along with the individual scores from the seven tasks comprising them. 

Prediction of Cognitive Performance: We used functional connectivity to predict ten 

distinct outputs (three composite scores and seven task scores). For each prediction, we 

trained three distinct models: one sex-independent (trained on both male and female 

subjects), and two sex-specific (one trained on males, and one trained on females). For 

each model, we randomly shuffled and split the male and female subjects into train (80%) 

and test (20%) splits. We concatenated the male and female training sets for the sex-

independent models, and kept them separate for the sex-specific models. We fit a linear 

ridge regression model on Scikit-learn (Pedregosa et al., 2011) using the training subset 

and tuned the regularisation parameter with five shuffled iterations of nested cross 

validation with three-fold inner and outer loops. We optimised the regularisation 

parameter in the inner loop and validated it in the outer loop. We took the median 

optimised hyperparameters from the five iterations to generate a single final model. We 

trained this model on the entire (sex-independent or sex-specific) training set, extracted 

feature weights, and evaluated the model’s prediction accuracy and explained variance 

on two distinct hold-out test sets: one test set comprised of male subjects and the other 

comprised of female subjects. Male and female train and test sets consisted of equal 

numbers of subjects. We quantify prediction accuracy as the Pearson correlation between 
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the true and predicted values (J. W. Li et al., 2019). We repeated this using 100 unique 

train/test splits to generate a distribution of performance metrics.  

 

Model Significance: For each predictive model, we generated a corresponding null 

distribution to assess model significance as previously described (Dhamala et al., 2021; 

Parkes et al., 2021). We permuted the predicted variables (cognitive score) 25,000 times 

and then randomly split the data into train and test sets. For each of these 25,000 

permutations, we trained and tested the model on the permuted data to obtain a null 

distribution of model performance. We assessed whether the original model’s 

performance was significantly non-zero by comparing the prediction accuracy from each 

of the original model’s 100 train/test splits to the median prediction accuracy from the null 

distribution. Specifically, the p-value for the model’s significance is the proportion of 100 

original models that had prediction accuracies less than or equal to the median 

performance of the null model. We then corrected the p-values for multiple comparisons 

over all models (trained on both sexes, trained on males only, and trained on females 

only to predict ten distinct cognitive scores) and both test subsets (males only and females 

only) using the Benjamini-Hochberg False Discovery Rate (q=0.05) procedure (Benjamini 

& Hochberg, 1995).  

Model Comparisons: For each cognitive score, our workflow generated two distributions 

of 100 performance values: the first representing model performance when evaluated on 

only male individuals, and the second representing model performance when evaluated 

on only female individuals. For each cognitive score, we compared prediction 
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performance across the male and female test sets using an exact test of differences 

(MacKinnon, 2009).  

Feature Importance: We adjusted feature weights to increase their interpretability as 

described in (Haufe et al., 2014). Briefly, for each iteration of a model, we used the feature 

weights, W, the covariance of the input variable (functional connectivity) in the training 

set, Σ𝑥, and the covariance of the output variable (cognitive score) in the training set, Σ𝑦 , 

to extract the adjusted feature weights, A, as follows:  

𝐴 =  Σ𝑥𝑊Σ𝑦
−1 

We then averaged the adjusted feature weights over the 100 iterations of each model to 

obtain feature importance matrices. Pairwise regional feature importances were mapped 

to the network level (Figure S1) by assigning each cortical region from the CoCo439 atlas 

to one of 17 networks from the Yeo 17-network parcellation (Yeo et al., 2011). Subcortical 

regions in the CoCo439 atlas were assigned to a subcortical network, and cerebellar 

regions to a cerebellar network. The average of the positive and negative feature 

importances of region pairs within and between the 17 networks were calculated 

separately; the result is a set of positive and negative importance of connections between 

and within the 17 networks. We evaluated the Pearson correlation between different 

models’ pairwise network-level feature importances, where positive and negative 

importances were considered together by concatenating them into a single vector. We 

also computed sex differences in positive and negative importance of connections 

between and within the 17 networks using an exact test of differences (MacKinnon, 2009).  
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Figure 1: Experimental workflow. a) First, we generated individual functional connectivity 

using Pearson correlation of regional global signal regressed resting-state functional MRI 

time series. b) Second, we compiled cognitive scores for all subjects. The NIH Toolbox 

Cognition Battery assesses five cognitive domains using seven tests. The Crystallised 

Cognition Composite (blue) reflects language (vocabulary, reading decoding). The Fluid 

Cognition Composite (green) reflects executive function (cognitive flexibility, inhibitory 

control and attention), episodic memory, working memory, and processing speed. The 

Total Cognition Composite (dotted) combines the Crystallised and Fluid Composite 

scores. c) Third, we predicted each cognitive score from functional connectivity using sex-

independent and sex-specific linear ridge regression models. We randomly shuffled and 

split the male and female subjects into train (80%) and test (20%) groups. Male and 

female training subsets were concatenated for the sex-independent models and kept 

separate for the sex-specific models. We performed five shuffled iterations of nested 

cross validation with three-fold inner and outer loops. The model hyperparameter was 

optimised in the inner loop and validated in the outer loop. The median optimised 

hyperparameter from five iterations of nested cross validation was used to train the final 

model on the entire (sex-independent or sex-specific) training set and evaluated on the 

(sex-independent or sex-specific) test hold-out set. This was repeated for 100 unique 

train/test splits.  

 

[Insert Figure 1 here] 
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Results 

An overview of our experimental workflow is shown in Figure 1. Please refer to the 

Methods section for details.  

Sex-Independent Models: Sex-independent models significantly predict Total and 

Crystallised Composite scores for both sexes, and Fluid Composite scores in males only, 

(corrected p<0.05). Within the crystallised domain, we significantly predict Picture 

Vocabulary scores in both sexes (corrected p<0.05), but only significantly predict Reading 

scores in females (corrected p<0.05). Within the fluid domain, we significantly predict 

Dimensional Change Card Sort, Picture Sequence Memory, and Processing Speed 

scores in males (corrected p<0.05), while we fail to significantly predict Flanker and List 

Sorting scores in males or females. Prediction accuracy for sex-independent models is 

shown in Figure 2 and Table 1. Explained variance for sex-independent models is shown 

in Figure S2 and Table S1.  
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Table 1: Prediction accuracy (correlation between true and predicted cognitive scores) 

for sex-independent models predicting cognitive composite scores and individual task 

scores. Median prediction accuracy (interquartile range) is shown. Bolded prediction 

accuracy values denote that the model performed better than chance after corrections for 

multiple comparisons. * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001. 

 Male-Tested Female-Tested 

Total Composite 0.53 (0.15) *** 0.38 (0.15) *** 

Crystallised Composite 0.42 (0.13) *** 0.45 (0.16) *** 

Picture Vocabulary 0.44 (0.12) *** 0.43 (0.15) *** 

Reading 0.30 (0.15) 0.35 (0.15) * 

Fluid Composite 0.41 (0.19) * 0.25 (0.17) 

Flanker 0.10 (0.17) 0.08 (0.16) 

Dimensional Change Card Sort 0.32 (0.21) *** 0.17 (0.18) 

Picture Sequence Memory 0.25 (0.18) * 0.14 (0.20) 

List Sorting 0.14 (0.19) 0.05 (0.20) 

Processing Speed 0.28 (0.15) * 0.13 (0.17) 
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Figure 2: Violin plots of prediction accuracy (correlation between true and predicted 
cognitive scores) for sex-independent models predicting cognitive composite scores and 
individual task scores. Blue violins represent accuracy of models tested on male 
subjects and red represents of models tested on female subjects.  The shape of the 
violin plots indicates the entire distribution of values, dashed lines indicate the median, 
and dotted lines indicate the interquartile range. Solid colour violin plots represent 
models that performed above chance levels based on permutation tests. Vertical dotted 
lines separate individual tests according to cognitive domain: general, crystallised, and 
fluid.  
 

[Insert Figure 2 here] 
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Sex-Specific Models: Sex-specific male-trained and female-trained models significantly 

predict Total Composite scores in both sexes (corrected p<0.05). Using female-trained 

models, we significantly predict Crystallised Composite scores in both sexes (corrected 

p<0.05), but fail to significantly predict Fluid Composite scores in either sex. Using male-

trained models, we significantly predict Crystallised Composite scores in females and 

Fluid Composite scores in males (corrected p<0.05). Within the crystallised domain, we 

significantly predict Picture Vocabulary scores in both sexes using both sex-specific 

models (corrected p<0.05), but only significantly predict Reading scores in the opposite 

sex (corrected p<0.05). Within the fluid domain, we significantly predict Dimensional 

Change Card Sort in males using male-trained models (corrected p<0.05), but fail to 

significantly predict all Flanker, Picture Sequence Memory, List Sorting, and Processing 

Speed scores in either sex using either sex-specific model. Prediction accuracy for sex-

specific models is shown in Figure 3 and Table 2. Explained variance for sex-specific 

models is shown in Figure S3 and Table S2. 
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Table 2: Prediction accuracy (correlation between true and predicted cognitive scores) 

for sex-specific models predicting cognitive composite scores and individual task scores. 

Median prediction accuracy (interquartile range) is shown. Bolded prediction accuracy 

values denote that the model performed better than chance after corrections for multiple 

comparisons. * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001. 

 

Male-Trained Female-Trained 

Male- 
Tested 

Female- 
Tested 

Male- 
Tested 

Female- 
Tested 

Total Composite 0.48 (0.12) ***  0.36 (0.14) * 0.46 (0.19) *** 0.24 (0.17) * 

Crystallised 
Composite 

0.29 (0.18)  0.39 (0.14) * 0.38 (0.16) *** 0.32 (0.16) * 

Picture Vocabulary 0.35 (0.15) * 0.38 (0.16) *** 0.39 (0.11) *** 0.36 (0.13) * 

Reading 0.17 (0.16) 0.28 (0.13) * 0.30 (0.18) * 0.21 (0.18) 

Fluid Composite 0.37 (0.17) *  0.24 (0.16) 0.30 (0.18) 0.13 (0.19) 

Flanker -0.02 (0.22) 0.17 (0.17) 0.13 (0.17) -0.10 (0.17) 

Dimensional 
Change Card Sort 

0.30 (0.22) *** 0.19 (0.18) 0.25 (0.22) 0.04 (0.19) 

Picture Sequence 
Memory 

0.25 (0.18) 0.07 (0.19) 0.05 (0.19) 0.15 (0.17) 

List Sorting 0.09 (0.17)  0.15 (0.21) 0.15 (0.19) -0.10 (0.16) 

Processing Speed 0.24 (0.16) 0.19 (0.17) 0.26 (0.19) 0.01 (0.18) 
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Figure 3: Violin plots of prediction accuracy (correlation between true and predicted 

cognitive scores) for sex-specific models predicting cognitive composite scores and 

individual task scores. Purple indicates results from models trained and tested on males; 

blue indicates results from models trained on males and tested on females; green 

indicates results from models trained on females and tested on males; and orange 

indicates results from models trained and tested on females. The shape of the violin plots 

indicates the entire distribution of values, dashed lines indicate the median, and dotted 

lines indicate the interquartile range. Solid colour violin plots indicate those models that 

performed above chance levels based on permutation tests. Vertical dotted lines separate 

individual tests according to cognitive domain: general, crystallised, and fluid.  

 

[Insert Figure 3 here] 
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Model Comparisons: Using exact tests of differences, we did not identify any significant 

differences in model performance between the sexes in the sex-independent models or 

the sex-specific models for any cognitive score.  

Feature Importance Comparisons: We correlated network-level feature importances 

between the sex-independent and sex-specific models (Figure 4). Feature importances 

between all pairs of sex-independent and sex-specific models are significantly correlated 

(corrected p<0.05). Features important in predicting the Total Composite, Crystallised 

Composite, and specific crystallised task scores from the sex-independent models are 

equally correlated to those from the male- and female- specific models. Features 

important in predicting the Fluid Composite and specific fluid scores are more strongly 

correlated to features important to predict those scores in males than in females. Features 

important in predicting each of the scores from the sex-specific models are generally more 

strongly correlated within sexes for different cognitive scores than across sexes for the 

same cognitive score; however, the correlations between models trained on different 

sexes is generally high. Features important in predicting the Total Composite score are 

correlated with features important to predict the Crystallised and Fluid composite scores 

and each of the individual task scores. Feature importance for predicting specific 

crystallised task scores are more strongly correlated with feature importance for 

predicting the Crystallised Composite score in females than they are in males. Features 

important for predicting specific fluid task scores are more strongly correlated to those 

important for predicting the Fluid Composite score in males than they are in females. 

Network-Level Feature Importance: Stronger functional connections between visual, 

dorsal attention, ventral attention, and temporal parietal networks are associated with 
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higher crystallised abilities in males and females (Figure 5). Stronger functional 

connections within and between visual, dorsal attention, ventral attention, and temporal 

parietal networks, as well as within visual, dorsal attention, and default mode networks 

predict higher fluid abilities in females, while stronger functional connections between 

visual, ventral attention, and temporal parietal networks predict higher fluid abilities in 

males. Stronger functional connections within visual, somatomotor, and temporal parietal 

networks predict lower fluid and crystallized abilities in both sexes. Generally similar 

functional connections predict Picture Vocabulary and Reading scores in both sexes 

(Figure 6) as well as scores in individual fluid tasks, with the exception of List Sort and 

Picture Sequence scores (Figure S4). In females, stronger functional connections within 

visual, dorsal attention, control, and default mode networks predict higher List Sort 

scores, while stronger connections between those networks predict lower scores. In 

males, stronger connections between visual, dorsal attention, and ventral attention, as 

well as within dorsal attention, control, and default mode networks predict higher List Sort 

scores, while stronger connections within visual, somatomotor, and temporal parietal 

networks predict lower scores. Stronger functional connections within visual and temporal 

parietal networks predict higher Picture Sequence scores in females, while stronger 

connections within the default mode network, and between visual, dorsal attention, and 

ventral attention networks predict higher scores in males. Similar patterns of connectivity-

cognition associations are also observed with the sex-independent models (Figure S5).  
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Figure 4: Pearson correlation of network-level feature importance for the sex-independent 

and sex-specific models predicting each cognitive score. Positive and negative network-

level feature importance were computed by taking the positive and negative sums of the 

regional feature importance. Correlations were evaluated between the concatenated 

positive and negative network-level feature importances.  

 
[Insert Figure 4 here]  
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Figure 5: Network-level positive and negative feature importance for females (left two 

columns) and males (right two columns) to predict crystallised (top), fluid (middle), and 

total (bottom) cognition composites. Node radii and colour denote strength of intra-

network feature importance. Edge thickness and colour denote strength of inter-network 

feature importance. Warmer colours are used for positive feature importance, and cooler 

colours for negative feature importance. 

[Insert Figure 5 here] 
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Figure 6: Network-level positive and negative feature importance for females (left two 

columns) and males (right two columns) to predict individual crystallised cognition task 

scores: picture vocabulary (top) and reading (bottom). Node radii and colour denote 

strength of intra-network feature importance. Edge weight and colour denote strength of 

inter-network feature importance. Warmer colours are used for positive feature 

importance, and cooler colours for negative feature importance. 

[Insert Figure 6 here] 
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Sex Differences in Network-Level Feature Importance: Using exact tests of differences, 

we found there are no significant sex differences in the strength of the positive or negative 

associations between functional connectivity and the Crystallised Composite, Picture 

Vocabulary, Reading, or Flanker scores, but there are significant sex differences in the 

strength of the positive and negative associations between functional connectivity and 

Total Composite, Fluid Composite, Card Sort, List Sort, Picture Sequence, and 

Processing Speed scores (Figure S6). Specifically, females generally exhibit stronger 

negative connectivity-cognition associations (i.e., stronger functional connections = lower 

cognitive scores), while males generally exhibit stronger positive connectivity-cognition 

associations (i.e., stronger functional connections = higher cognitive scores).  
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Discussion 

In this study, we quantified sex-independent and sex-specific relationships between 

functional connectivity and cognition. Using whole brain resting-state functional 

connectivity, we predicted individual crystallised and fluid abilities in 392 healthy young 

adults. First, we find sex-independent models predict with equivalent accuracy 

crystallised abilities in both sexes but predict fluid abilities more accurately in males. 

Second, we show sex-specific models perform comparably when predicting crystallised 

abilities within and between sexes, but generally fail to predict fluid abilities in either sex, 

except for the Fluid Composite and Dimensional Change Card Sort score in males. Third, 

we demonstrate that sex-specific models predicting crystallised and fluid abilities 

generally rely on shared functional connections within and between distinct cortical 

networks. Together, our findings largely suggest that shared neurobiological features 

predict general and specific crystallised abilities in both sexes.  

Crystallised cognition represents language abilities, while fluid cognition represents 

executive function, memory, and processing speed. Prior work has shown Total and 

Crystallised Composite scores are more predictable than the Fluid Composite (Dhamala 

et al., 2021) but that work did not investigate whether the same is true for specific tasks 

within the cognitive domains or whether these results hold equally among males and 

females. In this current work, we replicate and expand upon those previous findings.  

Results from our sex-independent models suggest they might be capturing shared 

relationships between functional connectivity and crystallised abilities in males and 

females, but male-specific relationships between functional connectivity and fluid abilities. 

This is supported by our observation that connectivity-cognition relationships for fluid 
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abilities from the sex-independent models more closely resemble those from the male-

specific models than the female-specific models. Results from our sex-specific models 

provide additional support for our findings from the sex-independent models, as we find 

that connectivity-cognition relationships for crystallised abilities and overall cognition are 

generally shared between the sexes. We also observe an even greater inability to predict 

fluid abilities with our sex-specific models compared to our sex-independent models, 

which could be in part due to the decreased sample size in the sex-specific models. The 

general lack of predictability observed for fluid abilities in both types of models may be 

underscored by individual differences in the signal-to-noise ratio of the specific brain-

behaviour relationships. Fluid abilities are more susceptible to factors including sleep, 

stress, and mood which directly influence executive functions and memory and less stable 

within an individual over time (Nilsson et al., 2005; O'Neill, Kamper-DeMarco, Chen, & 

Orom, 2020; Salthouse, 2010). This contradicts prior reports of successful prediction of 

fluid intelligence from functional connectivity (Finn et al., 2015). However, it is noting that 

even though our models do not perform better than chance (as evaluated by comparing 

to a null distribution), our Fluid Composite prediction accuracies are generally comparable 

to those previously reported as significant (evaluated using Pearson’s correlation) (Finn 

et al., 2015). Other prior work has also demonstrated that fluid intelligence, as well as 

other behavioural variables, can be successfully predicted using white matter functional 

connectivity at accuracies comparable to those reported in this study (J. Li, Biswal, et al., 

2020; J. Li, Chen, et al., 2020). Our smaller sample size and choice of significance 

evaluation method may explain our inability to successfully predict fluid intelligence and 

the differences in the conclusions we draw from our results. Moreover, despite initially 
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matching participants across sex by cognitive scores, we also observe a greater inability 

to predict cognitive abilities in females compared to males, and this may be due to sex 

differences in the variances of the cognitive scores. Of the ten cognitive measures 

predicted in this study, the Fluid Cognition Composite, Flanker, and Processing Speed 

scores have significantly different variances across the sexes. Specifically, male scores 

for those cognitive measures had significantly larger variances than female scores 

(corrected p <0.05; data not shown). Using the sex-independent models, the Fluid 

Cognition Composite and the Processing Speed scores, were predicted above chance 

levels in males but not in females, while the Flanker predictions were comparable to 

chance levels for both sexes. A lower variance in the scores within the females means a 

more restricted range of scores making it less likely that a significant association can be 

identified. Additionally, it may result in a lower signal-to-noise ratio in females, thus make 

the scores harder to predict. Similar results demonstrating sex differences in predictions 

of fluid intelligence have previously been published (Greene, Gao, Scheinost, & 

Constable, 2018). Specifically, they showed that models using resting-state functional 

connectivity to predict fluid intelligence in children/adolescents and adults tend to perform 

better in males than in females across different edge thresholds (Greene et al., 2018). 

Moreover, they also showed that predicting fluid intelligence using emotion task-based 

models significantly outperformed working memory task-based models in females, while 

working memory task-based models significantly outperformed emotion task-based 

models in males, and suggested that there exist fundamental sex differences in the spatial 

distribution and modulation of networks related to fluid intelligence (Greene et al., 2018).  
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Our understanding of cognitive sex differences and brain-behaviour relationships have 

widely shifted over the decades. While research has confirmed some differences, many 

others have been refuted (Halpern, 2013; Miller & Halpern, 2014). Two similar studies to 

date investigating sex-specific brain-behaviour relationships have reported contradictory 

findings. Implementing a connectome-based prediction modelling approach, Jiang et al 

observed no differences in prediction accuracy between males and females when 

predicting IQ using functional connectivity (Jiang, Calhoun, Cui, et al., 2020). In a second 

study from the group, they demonstrated IQ was more predictable in females than in 

males (Jiang, Calhoun, Fan, et al., 2020). In this current work, our sex-independent 

models comparably predict overall cognition and crystallised abilities in males and 

females, but better predict some fluid abilities in males compared to females while failing 

to predict other fluid tasks in either sex altogether. In this study, we implemented a nested 

cross validation approach with 100 different randomised splits of the data to generate a 

distribution of performance accuracy measures. Previous studies relied on integrating 

feature selection with a leave-one-out cross validation approach resulting in a single 

accuracy value for the model and distinct features being used to predict the output 

variable for each subject (Jiang, Calhoun, Cui, et al., 2020; Jiang, Calhoun, Fan, et al., 

2020). Due to these methodological differences, our prediction accuracy results cannot 

be directly compared to prior work. However, it is worth noting that our sex-specific 

models comparably predict overall and crystallised aspects of cognition in males and 

females, supporting one of the previous studies (Jiang, Calhoun, Cui, et al., 2020) but 

contradicting the other (Jiang, Calhoun, Fan, et al., 2020). 
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In this study, we find connections within and between distinct cortical networks are crucial 

to predict cognition, and these features are shared between the sexes, contradicting 

extant literature implementing sex-specific models (Jiang, Calhoun, Cui, et al., 2020; 

Jiang, Calhoun, Fan, et al., 2020). More specifically, we find stronger connections 

between the visual, dorsal attention, ventral attention, and temporal parietal networks 

predict higher crystallised and fluid ability scores in both sexes, while stronger 

connections within visual, somatomotor, and temporal parietal networks predict lower 

crystallised and fluid ability scores in both sexes. While some differences in male and 

female models’ feature importances exist, their correlations are moderate to high (R = 

0.6-0.9). Specifically, we observe that there exist significant sex differences in the 

strength of the positive and negative associations between functional connectivity and 

Total Composite, Fluid Composite, Card Sort, List Sort, Picture Sequence, and 

Processing Speed scores.  While males and females share positive (i.e., stronger 

functional connections predict higher cognitive scores) and negative (i.e., stronger 

functional connections predict weaker cognitive scores) connectivity-cognition 

associations, females exhibit stronger negative relationships between distributed network 

connectivity patterns and the cognitive scores while males exhibit stronger positive 

relationships. Hence, while males and females share the same connectivity-cognition 

relationships, the strength of those relationships may vary between the sexes. However, 

the List Sort, Picture Sequence, and Processing Speed models performed worse than 

chance for predictions in both sexes, and the Fluid Composite and Card Sort models only 

performed better than chance in males, limiting the relevance of this finding. We also 

demonstrate that feature importance correlations, within and between sexes, are stronger 
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for tasks within the crystallised domain than tasks within the fluid domain or tasks between 

the two domains. This is likely related to the models’ overall lower accuracies in predicting 

fluid abilities; if the models are not reliably mapping functional connectivity to fluid abilities, 

there will be more noise in their feature importance, resulting in lower correlations across 

models. Our results contradict findings from prior work identifying distinct correlates of 

cognition in males and females. In one study, authors reported the top 100 functional 

connections to predict IQ in males and females are distinct with only three overlapping 

features (Jiang, Calhoun, Fan, et al., 2020). In a second study, authors found male IQ 

was more strongly correlated with functional connectivity in left parahippocampus and 

default mode network, while female IQ was more strongly correlated with functional 

connectivity in putamen and cerebellar network (Jiang, Calhoun, Cui, et al., 2020). This 

discrepancy in findings could be due to model differences, particularly in the cross-

validation, feature selection, and inference choices, or the choice of cognitive score. 

Limitations:  

In this study, we trained and tested sex-independent and sex-specific models on 196 male 

and 196 female subjects, all unrelated. Over each of the 100 unique train/test splits, we 

ensured the same set of male/female subjects were in the training and testing subsets for 

the sex-independent and the male/female-specific models. Maintaining this consistency 

of subjects allowed us to maintain the variance within the subjects, but also resulted in 

our sex-independent models being trained and tested on twice as many subjects as our 

sex-specific models. Prior work has demonstrated that fluid abilities are more difficult to 

predict than crystallised abilities (Dhamala et al., 2021). In this study, we found sex-

independent models were able to predict some fluid abilities above chance levels in 
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males, but sex-specific models generally did not perform above chance levels for either 

sex. The inherent difficulty in predicting fluid abilities, combined with the lower number of 

subjects for the sex-specific models, may explain why many of our sex-specific models 

performed poorly. In this study, our main goal was to evaluate whether the models differed 

in their predictions of cognitive abilities between males and females rather than between 

the models themselves. However, future work in this area should explore whether sex-

independent and sex-specific models differ from one another when training sample sizes 

are consistent.  

Many researchers studying cognitive differences between males and females compare 

group averages between the sexes. While this approach can yield insightful results 

pertaining to general sex differences, their relevance to individual cognitive abilities in 

males and females is limited. Genetic, hormonal, cultural, and psychosocial factors can 

influence sex-related and sex-independent individual differences in functional 

connectivity and cognition (Cosgrove, Mazure, & Staley, 2007; Miller & Halpern, 2014). 

Here, we sought to uncover whether relationships between functional connectivity and 

cognition are shared between the sexes or are distinct. Our results largely suggest shared 

network connectivity features equally predict cognitive abilities in males and females. 

However, we must acknowledge that here, due to the limitations of the data set, we can 

only consider individuals’ sex but not their gender identity or fluidity. Our society projects 

distinct gender roles onto males and females paving the way for a lifetime of gender-

differentiated experiences (Eliot, 2011). These distinct social factors may drive gender 

differences in brain-behaviour relationships, even in the absence of sex differences, that 

our study is not designed to capture. Future work in this area should aim to collect and 
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integrate data about gender identity and fluidity so we can better understand how 

relationships between connectivity and cognition may or may not vary with gender.  

Many machine learning models based on neuroimaging data struggle with generalisability 

due to differences in study sites, scanner types, and scan parameters. The models we 

have designed in this study were only trained, validated, and tested on data from the 

Human Connectome Project. Although we implement a nested cross validation approach 

and evaluate our models with 100 distinct train/test splits, the results we report may not 

be entirely comparable or generalisable to other datasets. Future studies should aim to 

integrate data from multiple sites to address this limitation.   
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Conclusion 

A comprehensive understanding of neurobiological markers that underlie cognitive 

abilities within and across sexes is necessary if we are to understand sex-specific effects 

of aging and illness on cognition. Here, we implement predictive modelling approaches 

to explore sex-independent and sex-specific relationships between functional connectivity 

and cognitive abilities. We report three main findings. We demonstrate that sex-

independent models comparably capture relationships between connectivity and 

crystallised abilities in males and females, but only successfully capture relationships 

between connectivity and fluid abilities in males. We find sex-specific models comparably 

predict crystallised abilities within and between sexes, but fail to predict fluid abilities in 

either sex. Finally, we find that stronger connections between visual, dorsal attention, 

ventral attention, and temporal parietal networks predict higher crystallised and fluid 

ability scores, and stronger connections within visual, somatomotor, and temporal parietal 

networks predict lower crystallised and fluid ability scores in both sexes. Taken together, 

this suggests that brain-behaviour relationships are shared between the sexes and rely 

on overlapping network connectivity within and between cortical structures.   
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Citation Gender Diversity Statement: Recent work in neuroscience and other fields has 

identified a bias in citation practices such that papers from women and other minorities 

are under-cited relative to the number of such papers in the field (Caplar, Tacchella, & 

Birrer, 2017; Chakravartty, Kuo, Grubbs, & McIlwain, 2018; Dion, Sumner, & Mitchell, 

2018; Dworkin et al., 2020; Maliniak, Powers, & Walter, 2013; Thiem, Sealey, Ferrer, 

Trott, & Kennison, 2018). Here we sought to proactively consider choosing references 

that reflect the diversity of the field in thought, form of contribution, gender, and other 

factors. We used classification of gender based on the first names of the first and last 

authors (Dworkin et al., 2020), with possible combinations including male/male, 

male/female, female/male, and female/female. Excluding self-citations to the first and last 

authors of our current paper, the references contain 45.2% male/male, 16.7% 

male/female, 21.4% female/male, and 16.7% female/female. We look forward to future 

work that could help us to better understand how to support equitable practices in science.  
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Data Availability Statement: The data used are openly available as part of the Human 
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