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Abstract

A thorough understanding of sex-independent and sex-specific neurobiological features
that underlie cognitive abilities in healthy individuals is essential for the study of
neurological illnesses in which males and females differentially experience and exhibit
cognitive impairment. Here, we evaluate sex-independent and sex-specific relationships
between functional connectivity and individual cognitive abilities in 392 healthy young
adults (196 males) from the Human Connectome Project. First, we establish that sex-
independent models comparably predict crystallised abilities in males and females, but
more accurately predict fluid abilities in males. Second, we demonstrate sex-specific
models comparably predict crystallised abilities within and between sexes, and generally
fail to predict fluid abilities in either sex. Third, we reveal that largely overlapping
connections between visual, dorsal attention, ventral attention, and temporal parietal
networks are associated with better performance on crystallised and fluid cognitive tests
in males and females, while connections within visual, somatomotor, and temporal
parietal networks are associated with poorer performance. Together, our findings suggest
that shared neurobiological features of the functional connectome underlie crystallised

and fluid abilities across the sexes.
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Introduction

Sex differences in brain-behaviour relationships are widely studied and controversial in
neuroscience. Studies often report contradictory findings, and many are not replicated.
While some studies have found evidence for sex differences in healthy cognitive
functioning (Camarata & Woodcock, 2006; Irwing & Lynn, 2005; Lynn & Irwing, 2004),
others have reported a lack of differences (Hyde, 2005; Jancke, 2018). Similarly, while
some studies have found evidence for sex differences in healthy brain function and
structure (Cummings et al., 2020; De Bellis et al.,, 2001; Ruben C Gur et al., 1999;
Ingalhalikar et al., 2014; Kogler et al., 2016; Ritchie et al., 2018; Rodriguez, Warkentin,
Risberg, & Rosadini, 1988; Scheinost et al., 2015; Weis, Hodgetts, & Hausmann, 2019;
Weis, Patil, et al., 2019), others have observed the opposite (Bishop & Wahlsten, 1997,
Eliot, Ahmed, Khan, & Patel, 2021; Sommer, Aleman, Somers, Boks, & Kahn, 2008).
Finally, while some studies have demonstrated sex differences in the relationship
between neural function/structure and cognitive functioning in healthy individuals (R. C.
Gur & Gur, 2017; Kimura, 2004; Satterthwaite et al., 2015), others have shown otherwise
(Eliot, 2011; Sommer et al., 2008). It has also been suggested that sex differences in
neural circuitry and/or neurochemistry may reflect compensation for genetic and/or
hormonal differences to ensure that male and female behaviours are more similar than
different , and many of the contradictory findings may be attributable to differences in
sample sizes, methodology, and publication bias (Eliot et al., 2021). Hence, it remains to
be determined whether males and females have shared or distinct brain-behaviour

relationships.
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In recent years, sex differences in cognitive manifestations of various neurological,
neurodevelopmental, and neuropsychiatric illnesses have become increasingly evident
(Han et al., 2012; Irvine, Laws, Gale, & Kondel, 2012; Laws, Irvine, & Gale, 2016;
Subramaniapillai, Almey, Rajah, & Einstein, 2020). Insight into sex-independent and sex-
specific brain-behaviour relationships in healthy young adults can enable better
understanding of the neurobiological underpinnings of cognitive deficits within and across
sexes, paving the way for the development and implementation of personalised treatment
strategies. In this study, we aim to disentangle sex-specific and sex-independent brain-
behaviour relationships between resting-state functional connectivity and cognitive
abilities in healthy young adults.

Resting-state functional connectivity is defined as the temporal dependence of the blood-
oxygen-level dependent (BOLD) response in anatomically separate brain regions at rest
(Aertsen, Gerstein, Habib, & Palm, 1989; Friston, Frith, Liddle, & Frackowiak, 1993;
Martijn P Van Den Heuvel & Pol, 2010). Many studies have linked functional connectivity
to cognitive functioning (Casey, Galvan, & Hare, 2005; Casey, Giedd, & Thomas, 2000;
Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Moeller, Willmes, & Klein, 2015; Park
& Friston, 2013; Seeley et al., 2007; Spreng, Stevens, Chamberlain, Gilmore, & Schacter,
2010; M. P. van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) and predicted individual
cognitive abilities from functional connectivity (Chen et al., 2020; Dhamala, Jamison,
Jaywant, Dennis, & Kuceyeski, 2021; He et al., 2020; J. W. Li et al., 2019; Zimmermann,
Griffiths, & Mclntosh, 2018). Recent work in this area has shown global signal regression,
or removal of trends in the fMRI signal, improves prediction accuracy (J. W. Li et al.,

2019), machine and deep learning models perform comparably (He et al., 2020), and
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shared network features predict scores from distinct cognitive domains (Chen et al., 2020;
Dhamala et al., 2021). These studies aim to capture brain-behaviour relationships that
exist between functional connectivity and cognitive abilities, but it remains unclear
whether these relationships are consistent across the sexes.

Sex differences in functional connectivity have been observed across distinct populations,
including North American children and adolescents with and without psychiatric illnesses,
as well as North American and German healthy adults (Cummings et al., 2020; Gong, He,
& Evans, 2011; R. C. Gur & Gur, 2017; Kogler et al., 2016; Satterthwaite et al., 2015;
Scheinost et al., 2015; Weis, Hodgetts, et al., 2019; Zhang, Dougherty, Baum, White, &
Michael, 2018). Previous work in a developmental cohort has shown males exhibit
stronger inter-network connectivity, while females exhibit stronger intra-network
connectivity (Satterthwaite et al., 2015). Extant literature also suggests hormonal
modulation of functional connectivity (Dubol et al., 2020; Fitzgerald, Pritschet, Santander,
Grafton, & Jacobs, 2020; Hjelmervik, Hausmann, Osnes, Westerhausen, & Specht, 2014;
Pritschet et al., 2020; Weis, Hodgetts, et al., 2019). In terms of functional connectivity
features that discriminate sex, two studies identified that connections within and between
frontoparietal and default mode networks strongly contribute to the predictions (Weis,
Patil, et al., 2019; Zhang et al., 2018). Together, these studies suggest sex differences
exist in functional organisation of the brain, but do not address whether these differences
translate into sex differences in connectivity-cognition relationships.

A recent study similar to this one investigated differences between males and females in
predictability of individual intelligence quotient (IQ) and sub-domain cognitive scores

using whole-brain functional connectivity (Jiang, Calhoun, Fan, et al., 2020). Their
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individualized prediction integrated feature selection and regression with a leave-one-out
cross validation strategy, resulting in distinct functional connectivity features being
selected for each interaction. They reported IQ and other cognitive scores are generally
more predictable in females than they are in males, and the sex-specific models rely on
distinct functional connections to make predictions. A second study from the same group
used a similar approach to predict IQ in males and females using functional connectivity,
cortical thickness, or both (Jiang, Calhoun, Cui, et al., 2020). The reported no differences
in prediction accuracy between males and females but found that sex-specific models
relied on distinct neurobiological correlates. While these findings suggest the presence of
distinct brain-behaviour relationships across the sexes, their leave-one-out prediction
approach, resulting in distinct features for every iteration, limits the extent to which we
can compare and generalise these results because the features used are dependent on
which subject is left out in the cross validation. In this current study, we aim to address
this concern and expand upon this work.

Here, we study sex-independent and sex-specific brain-behaviour relationships between
functional connectivity and individual cognitive abilities in 392 healthy young adults (196
male-female pairs matched for cognitive composite scores) from the Human Connectome
Project (Van Essen et al., 2013). First, we quantify whether sex-independent models differ
in how accurately they can predict distinct cognitive abilities from functional connectivity
in males and females. Second, we quantify whether sex-specific models better predict
individual cognitive abilities from functional connectivity within or between sexes. Third,
we evaluate whether shared or sex-specific functional connectivity features map to

cognitive abilities.
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Methods

The methods used here build upon our prior work (Dhamala et al., 2021) but the analyses
presented are novel and aim to identify shared and sex-specific features that predict
cognitive abilities. Our experimental workflow is shown in Figure 1. The data that support
the findings of this study are openly available as part of the Human Connectome Project

at https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-

data-release (Van Essen et al., 2013). Code used to generate the results presented here

are available on GitHub (https://github.com/elvisha/SexSpecificCognitivePredictions).

Dataset: We used publicly-available high resolution, preprocessed MRI data from the
Human Connectome Project (HCP) — Young Adult S1200 release (Van Essen et al.,
2013). MRI data were acquired on a Siemens Skyra 3T scanner at Washington University
in St. Louis. Acquisitions included T1-weighted and T2-weighted anatomical images
(0.7mm isotropic), and functional MRI (2.0mm isotropic, TR/TE = 720/33.1ms, 8x
multiband acceleration). Functional MRI were collected with both left-right and right-left
phase encoding. We examined resting-state functional MRI (rfMRI) time series from 196
male-female pairs (n=392) of unrelated healthy young adults with four complete rfMRI
runs. Male-female pairs were matched for their Crystallised, Fluid, and Total composite
scores to ensure there were no significant differences in cognitive function (p>0.05)
between the two sexes. Although the term gender is used in the HCP Data Dictionary, we
use the term sex in this article because the database collected self-reported biological
sex information as opposed to gender identification. We did not verify the self-reported

biological sex using genetic information.
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Parcellation: We used a subject-specific CoCo439 parcellation that was developed in-
house by combining parts of several atlases. This parcellation includes 358 (of 360)
functionally derived cortical regions from HCP multi-modal parcellation (MMP) (Matthew
F Glasser et al., 2016) (two hippocampal regions were excluded as they were included in
other subcortical ROIs); 12 anatomically defined subcortical regions derived from
FreeSurfer's aseg.mgz, adjusted by FSL’s FIRST tool (Patenaude, Smith, Kennedy, &
Jenkinson, 2011); 12 anatomically defined subcortical nuclei from AAL3v1 (Rolls, Huang,
Lin, Feng, & Joliot, 2020); 30 anatomically defined subcortical nuclei from FreeSurfer 7
(Iglesias et al., 2018) (50 nuclei were merged down to 30 to remove the smallest nuclei,
as with AAL3v1); and 27 anatomically defined cerebellar regions from the SUIT atlas
(Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009). Additional details and
corresponding files for this parcellation are available on  GitHub

(https://github.com/kjamison/nemo#parcellations).

Functional Connectivity Extraction: Each subject underwent four gradient-echo EPI

resting-state fMRI (rsfMRI) runs of ~15 min each over two sessions. There are 1200
volumes per scan for a total of 4800 volumes for each subject over the four runs. The
minimal preprocessing pipeline performed by the HCP consortium included motion and
distortion correction, registration to subject anatomy and standard MNI space, and
automated removal of noise artefacts by independent components analysis (M. F.
Glasser et al., 2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). We regressed
the global signal and its temporal derivative from each rsfMRI time series and
concatenated the four scans. We then computed the zero lag Pearson correlation

between the concatenated time series from each pair of regions to derive the functional
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connectivity matrix, which we then Fisher’s z-transformed. We used the vectorised upper
triangular of this functional connectivity matrix to predict cognition.

Cognition: The NIH Toolbox Cognition Battery is an extensively validated battery of
neuropsychological tasks (Carlozzi et al., 2017; Gershon et al., 2013; Heaton et al., 2014;
Mungas et al., 2014; Tulsky et al., 2017; Weintraub et al., 2013; Weintraub et al., 2014;
Zelazo et al., 2014) that assesses five cognitive domains: language, executive function,
episodic memory, processing speed, and working memory through seven individual test
instruments (Heaton et al., 2014). The specific tasks include Dimensional Change Card
Sort Test, Flanker Inhibitory Control and Attention Test, Picture Sequence Memory Test,
Picture Vocabulary Test, Oral Reading Recognition Test, List Sorting Working Memory
Test, and Pattern Comparison Processing Speed (Heaton et al., 2014). Three composite
scores are derived from participants’ scores on the NIH Toolbox Cognitive Battery tasks:
Crystallised Cognition Composite, Fluid Cognition Composite, and Total Cognition
Composite (Heaton et al., 2014). Crystallised cognition primarily represents language
(vocabulary and reading decoding) abilities, while fluid cognition represents a wider range
of higher-order cognitive processes including executive function (cognitive flexibility and
inhibitory control and attention), episodic memory, working memory, and processing
speed. These composite scores are based on initial factor analysis of the NIH Toolbox
Cognition Battery. Specifically, the Crystallised Cognition Composite comprises the
Picture Vocabulary and Oral Reading Recognition tests and assesses language and
verbal skills. The Fluid Cognition Composite comprises scores on the Dimensional
Change Card Sort, Flanker Inhibitory Control and Attention, Picture Sequence Memory,

List Sorting Working Memory, and Pattern Comparison Processing Speed tests to broadly
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assess processing speed, memory, and executive functioning. The Total Cognition
Composite combines the Crystallised and Fluid Cognition Composites. Composite scores
tend to be more reliable/stable but do not capture variability in individual tasks (Heaton et
al.,, 2014). In this study, we investigated the Crystallised, Fluid, and Total Cognition
Composites, along with the individual scores from the seven tasks comprising them.

Prediction of Cognitive Performance: We used functional connectivity to predict ten

distinct outputs (three composite scores and seven task scores). For each prediction, we
trained three distinct models: one sex-independent (trained on both male and female
subjects), and two sex-specific (one trained on males, and one trained on females). For
each model, we randomly shuffled and split the male and female subjects into train (80%)
and test (20%) splits. We concatenated the male and female training sets for the sex-
independent models, and kept them separate for the sex-specific models. We fit a linear
ridge regression model on Scikit-learn (Pedregosa et al., 2011) using the training subset
and tuned the regularisation parameter with five shuffled iterations of nested cross
validation with three-fold inner and outer loops. We optimised the regularisation
parameter in the inner loop and validated it in the outer loop. We took the median
optimised hyperparameters from the five iterations to generate a single final model. We
trained this model on the entire (sex-independent or sex-specific) training set, extracted
feature weights, and evaluated the model’s prediction accuracy and explained variance
on two distinct hold-out test sets: one test set comprised of male subjects and the other
comprised of female subjects. Male and female train and test sets consisted of equal

numbers of subjects. We quantify prediction accuracy as the Pearson correlation between

11
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the true and predicted values (J. W. Li et al., 2019). We repeated this using 100 unique

train/test splits to generate a distribution of performance metrics.

Model Significance: For each predictive model, we generated a corresponding null

distribution to assess model significance as previously described (Dhamala et al., 2021;
Parkes et al., 2021). We permuted the predicted variables (cognitive score) 25,000 times
and then randomly split the data into train and test sets. For each of these 25,000
permutations, we trained and tested the model on the permuted data to obtain a null
distribution of model performance. We assessed whether the original model's
performance was significantly non-zero by comparing the prediction accuracy from each
of the original model’s 100 train/test splits to the median prediction accuracy from the null
distribution. Specifically, the p-value for the model’s significance is the proportion of 100
original models that had prediction accuracies less than or equal to the median
performance of the null model. We then corrected the p-values for multiple comparisons
over all models (trained on both sexes, trained on males only, and trained on females
only to predict ten distinct cognitive scores) and both test subsets (males only and females
only) using the Benjamini-Hochberg False Discovery Rate (q=0.05) procedure (Benjamini
& Hochberg, 1995).

Model Comparisons: For each cognitive score, our workflow generated two distributions

of 100 performance values: the first representing model performance when evaluated on
only male individuals, and the second representing model performance when evaluated

on only female individuals. For each cognitive score, we compared prediction

12
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performance across the male and female test sets using an exact test of differences
(MacKinnon, 2009).

Feature Importance: We adjusted feature weights to increase their interpretability as

described in (Haufe et al., 2014). Briefly, for each iteration of a model, we used the feature
weights, W, the covariance of the input variable (functional connectivity) in the training
set, Z,, and the covariance of the output variable (cognitive score) in the training set, X,
to extract the adjusted feature weights, A, as follows:
A=z, W;?

We then averaged the adjusted feature weights over the 100 iterations of each model to
obtain feature importance matrices. Pairwise regional feature importances were mapped
to the network level (Figure S1) by assigning each cortical region from the CoCo0439 atlas
to one of 17 networks from the Yeo 17-network parcellation (Yeo et al., 2011). Subcortical
regions in the CoCo439 atlas were assigned to a subcortical network, and cerebellar
regions to a cerebellar network. The average of the positive and negative feature
importances of region pairs within and between the 17 networks were calculated
separately; the result is a set of positive and negative importance of connections between
and within the 17 networks. We evaluated the Pearson correlation between different
models’ pairwise network-level feature importances, where positive and negative
importances were considered together by concatenating them into a single vector. We
also computed sex differences in positive and negative importance of connections

between and within the 17 networks using an exact test of differences (MacKinnon, 2009).
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Figure 1: Experimental workflow. a) First, we generated individual functional connectivity
using Pearson correlation of regional global signal regressed resting-state functional MRI
time series. b) Second, we compiled cognitive scores for all subjects. The NIH Toolbox
Cognition Battery assesses five cognitive domains using seven tests. The Crystallised
Cognition Composite (blue) reflects language (vocabulary, reading decoding). The Fluid
Cognition Composite (green) reflects executive function (cognitive flexibility, inhibitory
control and attention), episodic memory, working memory, and processing speed. The
Total Cognition Composite (dotted) combines the Crystallised and Fluid Composite
scores. ¢) Third, we predicted each cognitive score from functional connectivity using sex-
independent and sex-specific linear ridge regression models. We randomly shuffled and
split the male and female subjects into train (80%) and test (20%) groups. Male and
female training subsets were concatenated for the sex-independent models and kept
separate for the sex-specific models. We performed five shuffled iterations of nested
cross validation with three-fold inner and outer loops. The model hyperparameter was
optimised in the inner loop and validated in the outer loop. The median optimised
hyperparameter from five iterations of nested cross validation was used to train the final
model on the entire (sex-independent or sex-specific) training set and evaluated on the
(sex-independent or sex-specific) test hold-out set. This was repeated for 100 unique
train/test splits.

[Insert Figure 1 here]

14
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Results
An overview of our experimental workflow is shown in Figure 1. Please refer to the
Methods section for details.

Sex-Independent Models: Sex-independent models significantly predict Total and

Crystallised Composite scores for both sexes, and Fluid Composite scores in males only,
(corrected p<0.05). Within the crystallised domain, we significantly predict Picture
Vocabulary scores in both sexes (corrected p<0.05), but only significantly predict Reading
scores in females (corrected p<0.05). Within the fluid domain, we significantly predict
Dimensional Change Card Sort, Picture Sequence Memory, and Processing Speed
scores in males (corrected p<0.05), while we fail to significantly predict Flanker and List
Sorting scores in males or females. Prediction accuracy for sex-independent models is
shown in Figure 2 and Table 1. Explained variance for sex-independent models is shown

in Figure S2 and Table S1.
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Table 1: Prediction accuracy (correlation between true and predicted cognitive scores)
for sex-independent models predicting cognitive composite scores and individual task
scores. Median prediction accuracy (interquartile range) is shown. Bolded prediction
accuracy values denote that the model performed better than chance after corrections for
multiple comparisons. * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001.

Male-Tested

Female-Tested

Total Composite

0.53 (0.15) ***

0.38 (0.15) ***

Crystallised Composite

Picture Vocabulary

0.42 (0.13) ***

0.44 (0.12) ***

0.45 (0.16) ***

0.43 (0.15) ***

Reading 0.30 (0.15) 0.35(0.15) *
Fluid Composite 0.41 (0.19) * 0.25 (0.17)
Flanker 0.10 (0.17) 0.08 (0.16)
Dimensional Change Card Sort 0.32 (0.21) *** 0.17 (0.18)
Picture Sequence Memory 0.25(0.18) * 0.14 (0.20)
List Sorting 0.14 (0.19) 0.05 (0.20)
Processing Speed 0.28 (0.15) * 0.13 (0.17)
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Figure 2: Violin plots of prediction accuracy (correlation between true and predicted
cognitive scores) for sex-independent models predicting cognitive composite scores and
individual task scores. Blue violins represent accuracy of models tested on male
subjects and red represents of models tested on female subjects. The shape of the
violin plots indicates the entire distribution of values, dashed lines indicate the median,
and dotted lines indicate the interquartile range. Solid colour violin plots represent
models that performed above chance levels based on permutation tests. Vertical dotted
lines separate individual tests according to cognitive domain: general, crystallised, and
fluid.

[Insert Figure 2 here]
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Sex-Specific Models: Sex-specific male-trained and female-trained models significantly

predict Total Composite scores in both sexes (corrected p<0.05). Using female-trained
models, we significantly predict Crystallised Composite scores in both sexes (corrected
p<0.05), but fail to significantly predict Fluid Composite scores in either sex. Using male-
trained models, we significantly predict Crystallised Composite scores in females and
Fluid Composite scores in males (corrected p<0.05). Within the crystallised domain, we
significantly predict Picture Vocabulary scores in both sexes using both sex-specific
models (corrected p<0.05), but only significantly predict Reading scores in the opposite
sex (corrected p<0.05). Within the fluid domain, we significantly predict Dimensional
Change Card Sort in males using male-trained models (corrected p<0.05), but fail to
significantly predict all Flanker, Picture Sequence Memory, List Sorting, and Processing
Speed scores in either sex using either sex-specific model. Prediction accuracy for sex-
specific models is shown in Figure 3 and Table 2. Explained variance for sex-specific

models is shown in Figure S3 and Table S2.
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Table 2: Prediction accuracy (correlation between true and predicted cognitive scores)
for sex-specific models predicting cognitive composite scores and individual task scores.
Median prediction accuracy (interquartile range) is shown. Bolded prediction accuracy
values denote that the model performed better than chance after corrections for multiple

comparisons. * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001.

Male-Trained

Female-Trained

Male- Female- Male- Female-
Tested Tested Tested Tested
Total Composite 0.48 (0.12) *** 0.36 (0.14) * 0.46 (0.19) *** 0.24 (0.17) *
Crystallised
Composite 0.29 (0.18) 0.39 (0.14) * 0.38 (0.16) *** 0.32 (0.16) *
Picture Vocabulary 0.35(0.15) * 0.38 (0.16) *** | 0.39 (0.11) *** 0.36 (0.13) *
Reading 0.17 (0.16) 0.28 (0.13) * 0.30 (0.18) * 0.21 (0.18)
Fluid Composite 0.37 (0.17) * 0.24 (0.16) 0.30 (0.18) 0.13 (0.19)
Flanker -0.02 (0.22) 0.17 (0.17) 0.13(0.17) -0.10 (0.17)
Dimensional
Change Card Sort 0.30 (0.22) *** 0.19 (0.18) 0.25 (0.22) 0.04 (0.19)
Picture Sequence
Memory 0.25 (0.18) 0.07 (0.19) 0.05 (0.19) 0.15 (0.17)
List Sorting 0.09 (0.17) 0.15 (0.21) 0.15 (0.19) -0.10 (0.16)
Processing Speed 0.24 (0.16) 0.19 (0.17) 0.26 (0.19) 0.01 (0.18)
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Figure 3: Violin plots of prediction accuracy (correlation between true and predicted
cognitive scores) for sex-specific models predicting cognitive composite scores and
individual task scores. Purple indicates results from models trained and tested on males;
blue indicates results from models trained on males and tested on females; green
indicates results from models trained on females and tested on males; and orange
indicates results from models trained and tested on females. The shape of the violin plots
indicates the entire distribution of values, dashed lines indicate the median, and dotted
lines indicate the interquartile range. Solid colour violin plots indicate those models that
performed above chance levels based on permutation tests. Vertical dotted lines separate
individual tests according to cognitive domain: general, crystallised, and fluid.

[Insert Figure 3 here]
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Model Comparisons: Using exact tests of differences, we did not identify any significant

differences in model performance between the sexes in the sex-independent models or
the sex-specific models for any cognitive score.

Feature Importance Comparisons: We correlated network-level feature importances

between the sex-independent and sex-specific models (Figure 4). Feature importances
between all pairs of sex-independent and sex-specific models are significantly correlated
(corrected p<0.05). Features important in predicting the Total Composite, Crystallised
Composite, and specific crystallised task scores from the sex-independent models are
equally correlated to those from the male- and female- specific models. Features
important in predicting the Fluid Composite and specific fluid scores are more strongly
correlated to features important to predict those scores in males than in females. Features
important in predicting each of the scores from the sex-specific models are generally more
strongly correlated within sexes for different cognitive scores than across sexes for the
same cognitive score; however, the correlations between models trained on different
sexes is generally high. Features important in predicting the Total Composite score are
correlated with features important to predict the Crystallised and Fluid composite scores
and each of the individual task scores. Feature importance for predicting specific
crystallised task scores are more strongly correlated with feature importance for
predicting the Crystallised Composite score in females than they are in males. Features
important for predicting specific fluid task scores are more strongly correlated to those
important for predicting the Fluid Composite score in males than they are in females.

Network-Level Feature Importance: Stronger functional connections between visual,

dorsal attention, ventral attention, and temporal parietal networks are associated with
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higher crystallised abilities in males and females (Figure 5). Stronger functional
connections within and between visual, dorsal attention, ventral attention, and temporal
parietal networks, as well as within visual, dorsal attention, and default mode networks
predict higher fluid abilities in females, while stronger functional connections between
visual, ventral attention, and temporal parietal networks predict higher fluid abilities in
males. Stronger functional connections within visual, somatomotor, and temporal parietal
networks predict lower fluid and crystallized abilities in both sexes. Generally similar
functional connections predict Picture Vocabulary and Reading scores in both sexes
(Figure 6) as well as scores in individual fluid tasks, with the exception of List Sort and
Picture Sequence scores (Figure S4). In females, stronger functional connections within
visual, dorsal attention, control, and default mode networks predict higher List Sort
scores, while stronger connections between those networks predict lower scores. In
males, stronger connections between visual, dorsal attention, and ventral attention, as
well as within dorsal attention, control, and default mode networks predict higher List Sort
scores, while stronger connections within visual, somatomotor, and temporal parietal
networks predict lower scores. Stronger functional connections within visual and temporal
parietal networks predict higher Picture Sequence scores in females, while stronger
connections within the default mode network, and between visual, dorsal attention, and
ventral attention networks predict higher scores in males. Similar patterns of connectivity-

cognition associations are also observed with the sex-independent models (Figure S5).
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Figure 4: Pearson correlation of network-level feature importance for the sex-independent
and sex-specific models predicting each cognitive score. Positive and negative network-
level feature importance were computed by taking the positive and negative sums of the
regional feature importance. Correlations were evaluated between the concatenated
positive and negative network-level feature importances.

[Insert Figure 4 here]
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Figure 5: Network-level positive and negative feature importance for females (left two
columns) and males (right two columns) to predict crystallised (top), fluid (middle), and
total (bottom) cognition composites. Node radii and colour denote strength of intra-
network feature importance. Edge thickness and colour denote strength of inter-network
feature importance. Warmer colours are used for positive feature importance, and cooler
colours for negative feature importance.

[Insert Figure 5 here]
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Figure 6: Network-level positive and negative feature importance for females (left two
columns) and males (right two columns) to predict individual crystallised cognition task
scores: picture vocabulary (top) and reading (bottom). Node radii and colour denote
strength of intra-network feature importance. Edge weight and colour denote strength of
inter-network feature importance. Warmer colours are used for positive feature
importance, and cooler colours for negative feature importance.

[Insert Figure 6 here]
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Sex Differences in Network-Level Feature Importance: Using exact tests of differences,

we found there are no significant sex differences in the strength of the positive or negative
associations between functional connectivity and the Crystallised Composite, Picture
Vocabulary, Reading, or Flanker scores, but there are significant sex differences in the
strength of the positive and negative associations between functional connectivity and
Total Composite, Fluid Composite, Card Sort, List Sort, Picture Sequence, and
Processing Speed scores (Figure S6). Specifically, females generally exhibit stronger
negative connectivity-cognition associations (i.e., stronger functional connections = lower
cognitive scores), while males generally exhibit stronger positive connectivity-cognition

associations (i.e., stronger functional connections = higher cognitive scores).
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Discussion

In this study, we quantified sex-independent and sex-specific relationships between
functional connectivity and cognition. Using whole brain resting-state functional
connectivity, we predicted individual crystallised and fluid abilities in 392 healthy young
adults. First, we find sex-independent models predict with equivalent accuracy
crystallised abilities in both sexes but predict fluid abilities more accurately in males.
Second, we show sex-specific models perform comparably when predicting crystallised
abilities within and between sexes, but generally fail to predict fluid abilities in either sex,
except for the Fluid Composite and Dimensional Change Card Sort score in males. Third,
we demonstrate that sex-specific models predicting crystallised and fluid abilities
generally rely on shared functional connections within and between distinct cortical
networks. Together, our findings largely suggest that shared neurobiological features
predict general and specific crystallised abilities in both sexes.

Crystallised cognition represents language abilities, while fluid cognition represents
executive function, memory, and processing speed. Prior work has shown Total and
Crystallised Composite scores are more predictable than the Fluid Composite (Dhamala
et al., 2021) but that work did not investigate whether the same is true for specific tasks
within the cognitive domains or whether these results hold equally among males and
females. In this current work, we replicate and expand upon those previous findings.
Results from our sex-independent models suggest they might be capturing shared
relationships between functional connectivity and crystallised abilities in males and
females, but male-specific relationships between functional connectivity and fluid abilities.

This is supported by our observation that connectivity-cognition relationships for fluid
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abilities from the sex-independent models more closely resemble those from the male-
specific models than the female-specific models. Results from our sex-specific models
provide additional support for our findings from the sex-independent models, as we find
that connectivity-cognition relationships for crystallised abilities and overall cognition are
generally shared between the sexes. We also observe an even greater inability to predict
fluid abilities with our sex-specific models compared to our sex-independent models,
which could be in part due to the decreased sample size in the sex-specific models. The
general lack of predictability observed for fluid abilities in both types of models may be
underscored by individual differences in the signal-to-noise ratio of the specific brain-
behaviour relationships. Fluid abilities are more susceptible to factors including sleep,
stress, and mood which directly influence executive functions and memory and less stable
within an individual over time (Nilsson et al., 2005; O'Neill, Kamper-DeMarco, Chen, &
Orom, 2020; Salthouse, 2010). This contradicts prior reports of successful prediction of
fluid intelligence from functional connectivity (Finn et al., 2015). However, it is noting that
even though our models do not perform better than chance (as evaluated by comparing
to a null distribution), our Fluid Composite prediction accuracies are generally comparable
to those previously reported as significant (evaluated using Pearson’s correlation) (Finn
et al., 2015). Other prior work has also demonstrated that fluid intelligence, as well as
other behavioural variables, can be successfully predicted using white matter functional
connectivity at accuracies comparable to those reported in this study (J. Li, Biswal, et al.,
2020; J. Li, Chen, et al., 2020). Our smaller sample size and choice of significance
evaluation method may explain our inability to successfully predict fluid intelligence and

the differences in the conclusions we draw from our results. Moreover, despite initially
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matching participants across sex by cognitive scores, we also observe a greater inability
to predict cognitive abilities in females compared to males, and this may be due to sex
differences in the variances of the cognitive scores. Of the ten cognitive measures
predicted in this study, the Fluid Cognition Composite, Flanker, and Processing Speed
scores have significantly different variances across the sexes. Specifically, male scores
for those cognitive measures had significantly larger variances than female scores
(corrected p <0.05; data not shown). Using the sex-independent models, the Fluid
Cognition Composite and the Processing Speed scores, were predicted above chance
levels in males but not in females, while the Flanker predictions were comparable to
chance levels for both sexes. A lower variance in the scores within the females means a
more restricted range of scores making it less likely that a significant association can be
identified. Additionally, it may result in a lower signal-to-noise ratio in females, thus make
the scores harder to predict. Similar results demonstrating sex differences in predictions
of fluid intelligence have previously been published (Greene, Gao, Scheinost, &
Constable, 2018). Specifically, they showed that models using resting-state functional
connectivity to predict fluid intelligence in children/adolescents and adults tend to perform
better in males than in females across different edge thresholds (Greene et al., 2018).
Moreover, they also showed that predicting fluid intelligence using emotion task-based
models significantly outperformed working memory task-based models in females, while
working memory task-based models significantly outperformed emotion task-based
models in males, and suggested that there exist fundamental sex differences in the spatial

distribution and modulation of networks related to fluid intelligence (Greene et al., 2018).
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Our understanding of cognitive sex differences and brain-behaviour relationships have
widely shifted over the decades. While research has confirmed some differences, many
others have been refuted (Halpern, 2013; Miller & Halpern, 2014). Two similar studies to
date investigating sex-specific brain-behaviour relationships have reported contradictory
findings. Implementing a connectome-based prediction modelling approach, Jiang et al
observed no differences in prediction accuracy between males and females when
predicting 1Q using functional connectivity (Jiang, Calhoun, Cui, et al., 2020). In a second
study from the group, they demonstrated 1Q was more predictable in females than in
males (Jiang, Calhoun, Fan, et al., 2020). In this current work, our sex-independent
models comparably predict overall cognition and crystallised abilities in males and
females, but better predict some fluid abilities in males compared to females while failing
to predict other fluid tasks in either sex altogether. In this study, we implemented a nested
cross validation approach with 100 different randomised splits of the data to generate a
distribution of performance accuracy measures. Previous studies relied on integrating
feature selection with a leave-one-out cross validation approach resulting in a single
accuracy value for the model and distinct features being used to predict the output
variable for each subject (Jiang, Calhoun, Cui, et al., 2020; Jiang, Calhoun, Fan, et al.,
2020). Due to these methodological differences, our prediction accuracy results cannot
be directly compared to prior work. However, it is worth noting that our sex-specific
models comparably predict overall and crystallised aspects of cognition in males and
females, supporting one of the previous studies (Jiang, Calhoun, Cui, et al., 2020) but

contradicting the other (Jiang, Calhoun, Fan, et al., 2020).
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In this study, we find connections within and between distinct cortical networks are crucial
to predict cognition, and these features are shared between the sexes, contradicting
extant literature implementing sex-specific models (Jiang, Calhoun, Cui, et al., 2020;
Jiang, Calhoun, Fan, et al.,, 2020). More specifically, we find stronger connections
between the visual, dorsal attention, ventral attention, and temporal parietal networks
predict higher crystallised and fluid ability scores in both sexes, while stronger
connections within visual, somatomotor, and temporal parietal networks predict lower
crystallised and fluid ability scores in both sexes. While some differences in male and
female models’ feature importances exist, their correlations are moderate to high (R =
0.6-0.9). Specifically, we observe that there exist significant sex differences in the
strength of the positive and negative associations between functional connectivity and
Total Composite, Fluid Composite, Card Sort, List Sort, Picture Sequence, and
Processing Speed scores. While males and females share positive (i.e., stronger
functional connections predict higher cognitive scores) and negative (i.e., stronger
functional connections predict weaker cognitive scores) connectivity-cognition
associations, females exhibit stronger negative relationships between distributed network
connectivity patterns and the cognitive scores while males exhibit stronger positive
relationships. Hence, while males and females share the same connectivity-cognition
relationships, the strength of those relationships may vary between the sexes. However,
the List Sort, Picture Sequence, and Processing Speed models performed worse than
chance for predictions in both sexes, and the Fluid Composite and Card Sort models only
performed better than chance in males, limiting the relevance of this finding. We also

demonstrate that feature importance correlations, within and between sexes, are stronger
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for tasks within the crystallised domain than tasks within the fluid domain or tasks between
the two domains. This is likely related to the models’ overall lower accuracies in predicting
fluid abilities; if the models are not reliably mapping functional connectivity to fluid abilities,
there will be more noise in their feature importance, resulting in lower correlations across
models. Our results contradict findings from prior work identifying distinct correlates of
cognition in males and females. In one study, authors reported the top 100 functional
connections to predict IQ in males and females are distinct with only three overlapping
features (Jiang, Calhoun, Fan, et al., 2020). In a second study, authors found male 1Q
was more strongly correlated with functional connectivity in left parahippocampus and
default mode network, while female 1Q was more strongly correlated with functional
connectivity in putamen and cerebellar network (Jiang, Calhoun, Cui, et al., 2020). This
discrepancy in findings could be due to model differences, particularly in the cross-
validation, feature selection, and inference choices, or the choice of cognitive score.
Limitations:

In this study, we trained and tested sex-independent and sex-specific models on 196 male
and 196 female subjects, all unrelated. Over each of the 100 unique train/test splits, we
ensured the same set of male/female subjects were in the training and testing subsets for
the sex-independent and the male/female-specific models. Maintaining this consistency
of subjects allowed us to maintain the variance within the subjects, but also resulted in
our sex-independent models being trained and tested on twice as many subjects as our
sex-specific models. Prior work has demonstrated that fluid abilities are more difficult to
predict than crystallised abilities (Dhamala et al., 2021). In this study, we found sex-

independent models were able to predict some fluid abilities above chance levels in
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males, but sex-specific models generally did not perform above chance levels for either
sex. The inherent difficulty in predicting fluid abilities, combined with the lower number of
subjects for the sex-specific models, may explain why many of our sex-specific models
performed poorly. In this study, our main goal was to evaluate whether the models differed
in their predictions of cognitive abilities between males and females rather than between
the models themselves. However, future work in this area should explore whether sex-
independent and sex-specific models differ from one another when training sample sizes
are consistent.

Many researchers studying cognitive differences between males and females compare
group averages between the sexes. While this approach can yield insightful results
pertaining to general sex differences, their relevance to individual cognitive abilities in
males and females is limited. Genetic, hormonal, cultural, and psychosocial factors can
influence sex-related and sex-independent individual differences in functional
connectivity and cognition (Cosgrove, Mazure, & Staley, 2007; Miller & Halpern, 2014).
Here, we sought to uncover whether relationships between functional connectivity and
cognition are shared between the sexes or are distinct. Our results largely suggest shared
network connectivity features equally predict cognitive abilities in males and females.
However, we must acknowledge that here, due to the limitations of the data set, we can
only consider individuals’ sex but not their gender identity or fluidity. Our society projects
distinct gender roles onto males and females paving the way for a lifetime of gender-
differentiated experiences (Eliot, 2011). These distinct social factors may drive gender
differences in brain-behaviour relationships, even in the absence of sex differences, that

our study is not designed to capture. Future work in this area should aim to collect and
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integrate data about gender identity and fluidity so we can better understand how
relationships between connectivity and cognition may or may not vary with gender.

Many machine learning models based on neuroimaging data struggle with generalisability
due to differences in study sites, scanner types, and scan parameters. The models we
have designed in this study were only trained, validated, and tested on data from the
Human Connectome Project. Although we implement a nested cross validation approach
and evaluate our models with 100 distinct train/test splits, the results we report may not
be entirely comparable or generalisable to other datasets. Future studies should aim to

integrate data from multiple sites to address this limitation.
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Conclusion

A comprehensive understanding of neurobiological markers that underlie cognitive
abilities within and across sexes is necessary if we are to understand sex-specific effects
of aging and illness on cognition. Here, we implement predictive modelling approaches
to explore sex-independent and sex-specific relationships between functional connectivity
and cognitive abilities. We report three main findings. We demonstrate that sex-
independent models comparably capture relationships between connectivity and
crystallised abilities in males and females, but only successfully capture relationships
between connectivity and fluid abilities in males. We find sex-specific models comparably
predict crystallised abilities within and between sexes, but fail to predict fluid abilities in
either sex. Finally, we find that stronger connections between visual, dorsal attention,
ventral attention, and temporal parietal networks predict higher crystallised and fluid
ability scores, and stronger connections within visual, somatomotor, and temporal parietal
networks predict lower crystallised and fluid ability scores in both sexes. Taken together,
this suggests that brain-behaviour relationships are shared between the sexes and rely

on overlapping network connectivity within and between cortical structures.
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Citation Gender Diversity Statement: Recent work in neuroscience and other fields has
identified a bias in citation practices such that papers from women and other minorities
are under-cited relative to the number of such papers in the field (Caplar, Tacchella, &
Birrer, 2017; Chakravartty, Kuo, Grubbs, & Mcllwain, 2018; Dion, Sumner, & Mitchell,
2018; Dworkin et al., 2020; Maliniak, Powers, & Walter, 2013; Thiem, Sealey, Ferrer,
Trott, & Kennison, 2018). Here we sought to proactively consider choosing references
that reflect the diversity of the field in thought, form of contribution, gender, and other
factors. We used classification of gender based on the first names of the first and last
authors (Dworkin et al., 2020), with possible combinations including male/male,
male/female, female/male, and female/female. Excluding self-citations to the first and last
authors of our current paper, the references contain 45.2% male/male, 16.7%
male/female, 21.4% female/male, and 16.7% female/female. We look forward to future
work that could help us to better understand how to support equitable practices in science.
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