

1 Article

2 **Comparative genome analysis revealed gene**
3 **inversions, boundary expansion and contraction,**
4 **and gene loss in *Stemona sessilifolia* (Miq.) Miq.**
5 **chloroplast genome**

6

7 Jingting Liu¹, Mei Jiang¹, Haimei Chen¹, Yu Liu², Chang Liu^{1*}, Wuwei Wu^{2*}

8

9 1 Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from
10 Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of
11 Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking
12 Union Medical College, Beijing 100193, P. R. China.

13 2 Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, P. R. China.

14 *Corresponding Authors: Chang Liu; Tel: +86-10-57833111; Fax: +86-10-62899715; Email:
15 cliu6688@yahoo.com; Wuwei Wu; Tel: +86-771-5602461; Email: wuweiwu2013@163.com.

16

17 Email Address:

18 JTL: liujingtingy@163.com

19 MJ: mjiang0502@163.com

20 HMC: hmchen@implad.ac.cn

21 YL: 52888147@qq.com

22 CL: cliu6688@yahoo.com

23 WWW: wuweiwu2013@163.com

24

25

26

27

28

29

30

31

32

33

34

35 Abstract

36 *Stemona sessilifolia* (Miq.) Miq., commonly known as Baibu, is one of the most popular herbal
37 medicines in Asia. In Chinese Pharmacopoeia, Baibu has multiple authentic sources, and there are
38 many homonym herbs sold as Baibu in the herbal medicine market. The existence of the counterfeits
39 of Baibu brings challenges to its identification. To assist the accurate identification of Baibu, we
40 sequenced and analyzed the complete chloroplast genome of *Stemona sessilifolia* using
41 next-generation sequencing technology. The genome was 154,039 bp in length, possessing a typical
42 quadripartite structure consisting of a pair of inverted repeats (IRs: 27,094 bp) separating by a large
43 single copy (LSC: 81,950 bp) and a small single copy (SSC: 17,901 bp). A total of 112 unique genes
44 were identified, including 80 protein-coding, 28 transfer RNA, and four ribosomal RNA genes.
45 Besides, 45 tandem, 27 forward, 23 palindromic, and 72 simple sequence repeats were detected in
46 the genome by repeat analysis. Compared with its counterfeits (*Asparagus officinalis* and *Carludovica*
47 *palmata*), we found that IR expansion and SSC contraction events of *Stemona sessilifolia* resulted in
48 two copies of the *rpl22* gene in the IR regions and partial duplication of the *ndhF* gene in the SSC
49 region. Secondly, an approximately 3-kb-long inversion was identified in the LSC region, leading to
50 the *petA* and *cemA* gene presented in the complementary strand of the chloroplast DNA molecule.
51 Comparative analysis revealed some highly variable regions, including *trnF-GAA_ndhJ*, *atpB_rbcL*,
52 *rps15_ycf1*, *trnG-UCC_trnR-UCU*, *ndhF_rpl32*. Finally, gene loss events were investigated in the
53 context of phylogenetic relationships. In summary, the complete plastome of *Stemona sessilifolia* will
54 provide valuable information for the molecular identification of Baibu and assist in elucidating the
55 evolution of *Stemona sessilifolia*.

56 Introduction

57 Radix Stemonae, also known as Baibu, is one of the most popular herbal medicines used in
58 many Asian countries, including China, Korea, Japan, Thailand, and Vietnam. It has been used in
59 treating various respiratory diseases such as bronchitis, pertussis, and tuberculosis [1, 2]. It was also
60 well known for killing cattle parasites, agricultural pests, and domestic insects [3, 4]. Stenine B, one
61 of the major chemical ingredients of Baibu, has been considered a potential drug candidate against
62 Alzheimer's disease due to its significant acetylcholinesterase inhibitory activity [5]. Owing to the
63 important medicinal values, extensive genetic, biochemical, and pharmacological studies on Baibu is
64 needed.

65 According to Pharmacopoeia of the People's Republic of China (2015 edition), the root tubers of
66 *Stemona tuberosa*, *Stemona japonica*, and *Stemona sessilifolia* were all considered as the authentic
67 sources of Baibu. Although these three species were all employed as the raw materials of Baibu, we
68 cannot ignore their inherent difference. For example, Stemona alkaloids are the major components
69 responsible for Baibu's antitussive activities. However, their composition and contents vary among *S.*
70 *tuberosa*, *S. japonica*, and *S. sessilifolia* [6, 7]. These three species differ in antitussive, anti-bacterial,
71 and insecticidal activities [8]. Therefore, it is critical to determine the exact origin of plant materials
72 used as Baibu.

73 On the other hand, multiple authentic sources and the homonym also increase the difficulty of
74 identifying Baibu. In some area of China, another herbal medicine, *Aconitum kusnezoffii* Rchb., is
75 also called Baibu. However, the therapeutic activity of *Aconitum kusnezoffii* is significantly different
76 from the authentic sources of Baibu described in Chinese Pharmacopoeia. Researches even
77 reported that it might result in toxicity when *Aconitum kusnezoffii* was taken in large quantities [9].
78 Besides, counterfeits in the herbal market also brought challenges to the exact identification of Baibu.
79 Due to their similar morphologic features to the authentic sources for Baibu, many counterfeits
80 such as *Asparagus officinalis*, *Asparagus filicinus*, and *Asparagus acicularis* were sold as Baibu in
81 the herbal market frequently [10]. Therefore, the exact identification of Baibu origin is critical for its
82 usage as a medicinal herb.

83 DNA barcode was deemed a more efficient and effective method in identifying plant species
84 compared to morphological characteristics. Typical barcodes such as *ITS*, *psbA-trnH*, *matK*, and
85 *rbcL* have been used to distinguish different plant species [11-13]. However, these DNA barcodes
86 were not always working effectively, especially when distinguishing closely related plant species.
87 Such a phenomenon may attribute to single-locus DNA barcodes still lack adequate variations in
88 closely related taxa. Compared with DNA barcodes, the chloroplast genome provides more
89 abundant genetic information and higher resolution in identifying plant species. Some researchers
90 have proposed using the chloroplast genome as a species-level DNA barcode [14, 15].

91 The chloroplast is an organelle presenting in almost all green plants. It is the center of
92 photosynthesis and plays a vital role in sustaining life on earth by converting solar energy to
93 carbohydrates. Besides photosynthesis, chloroplast also plays critical roles in other biological
94 processes, including the synthesis of amino acids, nucleotides, fatty acids, and many secondary
95 metabolites. Furthermore, metabolites synthesized in chloroplasts are often involved in plants'
96 interactions with their environment, such as response to environmental stress and defense against
97 invading pathogens [16-18]. Due to its essential roles in the cellular processes and relatively small
98 genome size, the chloroplast genome is a good starting point for resolving phylogenetic ambiguity,
99 discriminating closely related species, and revealing the plants' evolutionary process. To date, over
100 5000 chloroplast genomes from a variety of land plants are available. Phylogenetic analyses have
101 demonstrated chloroplast genomes' effectiveness in inferring phylogenetic and distinguishing closely
102 related plant species [19, 20].

103 Unfortunately, the taxonomic coverage of the sequenced chloroplast genome is somewhat
104 biased. For example, until now, the chloroplast genome of *Stemon sessilifolia* has not been
105 reported. The lack of chloroplast genome information prohibited studies aiming to understand the
106 evolutionary processes in the family Stemonaceae. Here, we reported the full plastid genome of
107 *Stemon sessilifolia*. Based on the sequence data, we performed a multi-scale comparative genome
108 analysis among *Stemon sessilifolia*, *Asparagus officinalis*, and *Carludovica palmata* (the major
109 counterfeits of Baibu). We investigated the difference among these three species from three aspects,
110 including general characteristics, repeat sequences, and sequence divergences. We also
111 characterized the significant changes, including genome rearrangement, IR expansion, and SSC

112 contraction, in the plastid genome of *Stemona sessilifolia*, *Asparagus officinalis*, and *Carludovica*
113 *palmata*.

114 Lastly, we investigated the gene loss events in Stemonaceae and its closely related families
115 (Asparagoideae, Velloziaceae, Cyclanthaceae, Pandanaceae). The results obtained in this work will
116 provide valuable information for species identification of herb materials that are used as Baibu.
117 Furthermore, it lays the foundation for elucidating the evolutionary history of plant species in the
118 family Stemonaceae.

119 Materials and Methods

120 Plant Material and DNA Extraction

121 We collected fresh young leaves of *Stemona sessilifolia* from multiple individuals in the Institute
122 of Medicinal Plant Development (IMPLAD), Beijing, China, and stored them at -80°C for chloroplast
123 DNA extraction. All samples were identified by Professor Zhao Zhang, from the Institute of Medicinal
124 Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College. The
125 voucher specimens were deposited in the herbarium of IMPLAD. *Stemona sessilifolia* is not an
126 endangered or protected species. Therefore, specific permissions for the collection of *Stemona*
127 *sessilifolia* were not required. Total DNA was acquired from 100mg fresh young leaves using a plant
128 genomic DNA kit (Tiangen Biotech, Beijing, Co., Ltd.). Finally, 1.0% agarose gel and Nanodrop
129 spectrophotometer 2000 (Thermo Fisher Scientific, United States) was used to evaluate the purity
130 and concentration, respectively.

131 Genome Sequencing, Assembly, and Annotation

132 According to the standard protocol, the DNA of *Stemona sessilifolia* was sequenced using the
133 Illumina Hiseq2000 platform, with insert sizes of 500 bases for the library. A total of 5,660,432
134 paired-end reads (2 × 250bp) were obtained, and low-quality reads were trimmed with
135 Trimmomatic software [21].

136 To extract reads belonging to the chloroplast genome, we downloaded 1,688 chloroplast
137 genome sequences from GenBank and constructed a Basic Local Alignment Search Tool (BLASTn)
138 database. All trimmed reads were mapped to this database using the BLASTN program [22], and
139 reads with E-value > 1E-5 were extracted. The reads were assembled first using the SPAdes
140 software with default parameters [23]. The contigs were then subjected to gap closure using the
141 Seqman module of DNASTAR (V11.0) [24]. Finally, we evaluated the assembled genome's *quality*
142 by mapping the reads to the genome using Bowtie2 (v2.0.1) with default settings [25]. For further
143 evaluation, all the barcode sequences of *Stemona sessilifolia* available in GeneBank were download
144 (S1 file), including *matK* (1), *petD*(1), *rbcL* (1), *rpoC1* (1), *rps16* (1), *rps19-rpl22-psbA* (1), *trnL* (3),
145 and *trnL-trnF* (2), the number enclosed in parentheses represented the number of barcode
146 sequence. The BLAST program was used to calculate the identity between the chloroplast genome
147 sequence of *Stemona sessilifolia* and each barcode sequence. As a result, the barcode of
148 *rps19-rpl22-psbA* is located at the boundary of LSC/IRb, with an identity value of 100%. All the other
149 barcode sequences also gave identity values of 100%, indicating the high reliability of the chloroplast
150 genome sequence.

151 Gene annotation of *Stemona sessilifolia* chloroplast genome was conducted using the
152 CpGAVAS web service with the default parameters [26]. The tRNA genes were confirmed with
153 tRNAscan-SE [27] and ARAGORN [28]. Then the gene/intron boundaries were inspected and
154 corrected using the Apollo program [29]. The Cusp and Compseq programs from EMBOSS were
155 used to calculate the codon usage and GC content [30]. Finally, OrganellarGenomeDRAW [31] was
156 used to generate the circular chloroplast genome map of *Stemona sessilifolia*.

157 Repeat Sequence Analysis

158 Perl script MISA(<http://pgrc.ipk-gatersleben.de/misa/>) was used to identify simple sequence
159 repeats (SSRs) with the following parameters: 8 repeat units for mononucleotide SSRs, 4 repeat
160 units for di- and tri-nucleotide repeat SSRs, and 3 repeat units for tetra-, Penta-, and hexanucleotide
161 repeat SSRs. Tandem Repeats Finder was used with parameters of 2 for matches and 7 for
162 mismatches and indels [32]. For the minimum alignment score and the maximum period, the size
163 was set to 50 and 500. Palindrome and forward repeats were identified by the REPuter web service
164 [33]. The minimum repeat size and the similarity cutoff were set to 30 bp and 90%, respectively.

165 Comparative Genomic Analysis

166 A total of four species, including *Stemona sessilifolia*, *Asparagus officinalis* (NC_034777),
167 *Carludovica palmata* (NC_026786), and *Sciaphila densiflora* (NC_027659), were subjected to
168 multiple sequence alignment using mVISTA with default parameters [34]. Subsequently, 20 introns
169 and 108 intergenic regions shared by *Stemona sessilifolia*, *Asparagus officinalis*, and *Carludovica*
170 *palmata* were extracted using custom MatLab scripts to perform sequence divergence analysis.
171 Firstly, sequences of each intergenic-region/intron were aligned individually using the CLUSTALW2
172 (v2.0.12) [35] program with options "-type = DNA -gapopen = 10 -gapext = 2". Secondly, Pairwise
173 distances were calculated with the Distmat program in EMBOSS (v6.3.1) using the Kimura
174 2-parameters (K2p) evolution model [36]. We attempted to discover highly divergent regions for the
175 development of novel molecular markers. To identify the occurrence of genome rearrangement
176 events in the chloroplast genome of *Stemona sessilifolia*, synteny analysis among the three species
177 mentioned above were performed using Mauve Alignment [37].

178 Phylogenetic Analysis

179 A total of 11 chloroplast genomes were distributed into Stemonaceae (3), Cyclanthaceae (1),
180 Pandanaceae (1), Velloziaceae (1), and Asparagoideae (5) were retrieved from the RefSeq
181 database. The protein sequences shared by these chloroplast genomes were used to construct a
182 phylogenetic tree with *Veratrum patulum* and *Paris dunniana* as outgroup taxa (S1 Table). Fifty-eight
183 proteins were involved, including ACCD, ATPA, ATPB, ATPE, ATPF, ATPH, ATPI, CLPP, MATK,
184 NDHB, NDHC, NDHJ, NDHK, PETA, PETB, PETD, PETG, PETL, PETN, PSAA, PSAB, PSAJ,
185 PSBA, PSBB, PSBC, PSBD, PSBE, PSBF, PSBH, PSBI, PSBJ, PSBK, PSBL, PSBM, PSBN, PSBT,
186 RBCL, RPL2, RPL14, RPL16, RPL22, RPL23, RPL33, RPL36, RPOA, RPOB, RPOC1, RPS2, RPS3,
187 RPS4, RPS7, RPS8, RPS11, RPS14, RPS18, RPS19, YCF3, AND YCF4. All these protein
188 sequences were aligned using the CLUSTALW2 (v2.0.12) program with options "-gap open = 10
189 -gapext = 2 -output = phylip". We used Maximum Likelihood (ML) method to infer the evolutionary

190 history of *Stemona sessilifolia* and species closely related to it. The detailed parameters were
191 "raxmlHPC-PTHREADS-SSE3 -f a -N 1000 -m PROTGAMMACPREV -x 551314260 -p 551314260
192 -o Nicotiana_tabacum, Solanum_lycopersicum -T 20".

193 Results and discussion

194 General characteristics of chloroplast genomes

195 The gene map of *Stemona sessilifolia* is shown in Fig 1. The sequence is provided in S2 File
196 along with those of the major counterfeit of Baibu, *Asparagus officinalis* (NC_034777), and
197 *Carludovica palmate* (NC_026786). The chloroplast genomes of *Stemona sessilifolia* and two other
198 species share the standard features of possessing a typical quadripartite structure consisting of a
199 pair of inverted repeats (IRs) separating a large single copy (LSC) and a small single copy (SSC),
200 similar to other angiosperm chloroplast genomes [38].

201 We then carried out a multi-scale comparative genome analysis of these three chloroplast
202 genomes from four aspects, including the size, the guanine-cytosine (GC) content, the count of
203 genes, and the gene organization (Table 1). The complete circle chloroplast genomes of *S.*
204 *sessilifolia*, *A. officinalis*, and *C. palmate* were 154,039 bp, 156,699 bp, and 158545 bp, respectively.
205 Compared to *A. officinalis* and *C. palmate*, *S. sessilifolia* showed a relatively short SSC region and a
206 relatively long IR region. We speculated that the chloroplast genome of *S. sessilifolia* might
207 undertake IR expansion and SSC contraction simultaneously. There has no significant difference
208 among *S. sessilifolia*, *A. officinalis*, and *C. palmate*. Such a result may attribute to the high
209 conservation of tRNAs and rRNAs. The length of CDS regions of *A. officinalis* and *C. palmate* is
210 shorter than *S. sessilifolia*, indicating gene loss events may occur in the chloroplast genome of *A.*
211 *officinalis* and *C. palmate*.

212 **Table 1.** Chloroplast genome characteristics of *Stemona sessilifolia* *Asparagus officinalis*
213 and *Carludovica palmate*.

Plastome	Characteristics	Species			State
		<i>Stemona sessilifolia</i>	<i>Asparagus officinalis</i>	<i>Carludovica palmate</i>	
Size (bp)	Genome	154039	156699	158545	>
	LSC	81950	84999	71426	>
	IR	27094	26531	26529	<
	SSC	17901	18638	18364	>
	tRNA genes	2874	2863	2816	<
	rRNA genes	9056	9052	8866	<
GC content	CDS	79641	77436	77802	<
	Overall	38.00	37.59	37.74	<
	LSC	36.18	35.60	35.79	<

(%)	IR	42.70	42.92	42.81	>
	SSC	32.13	31.50	31.51	<
	tRNA genes	53.42	53.57	53.40	>
	rRNA genes	55.22	55.38	55.38	-
	CDS	38.31	38.1	38.41	>
	1st position	45.7	45.64	45.93	>
	2nd position	38.46	38.56	38.39	>
	3rd position	30.78	30.09	30.91	<
NO. of genes	Total	112	110	112	<
	protein-coding genes	80	78	80	<
	tRNAs	28	28	28	-
	rRNAs	4	4	4	-
	Genes with introns	18	18	18	-
	Genes in IR	21	22	18	>

214 LSC: Large single-copy, IR: Inverted repeat, SSC: Small single-copy, CDS: Coding sequence. ">" and "<"
215 indicated the characteristic parameters of *Asparagus officinalis* greater than and less than *Stemona*
216 *sessilifolia*, respectively. "-" represented the characteristic parameters of *Asparagus officinalis* and
217 *Stemona sessilifolia* were equal to each other.

218 **Figure 1.** Gene maps of chloroplast genomes of *Stemona sessilifolia*, *Asparagus officinalis*, and
219 *Carludovica palmate*. Genes inside and outside the circle were transcribed clockwise and
220 counterclockwise, respectively. The darker gray in the inner circle indicated GC content. Genes
221 with different functions were characterized with varying bars of color

222 For GC content, *S. sessilifolia* showed a higher value in LSC, SSC, and CDS regions than *A. officinalis* and *C. palmate*, even in the complete chloroplast genome. However, in the IR regions, *A. officinalis* and *C. palmate* showed a GC content value larger than *S. sessilifolia*. The GC content
223 decreased remarkably from the first position to the third position in the codon position scale. Such a
224 result was in line with the phenomenon observed in most land plant plastomes.

227 We identified 112, 110, and 112 genes in the chloroplast genomes of *S. sessilifolia*, *A. officinalis*,
228 and *C. palmate*, respectively. All of these three chloroplast genomes have 28 tRNAs and four rRNAs.
229 The number of genes with introns in each species is 18, similar to reports in prior works [39].
230 Therefore, we may conclude that there have no intron loss events occurred in the chloroplast
231 genomes of these three species. All the genes with introns were described in Table S2. Besides, 21,
232 22, and 18 genes were predicted for *S. sessilifolia*, *A. officinalis*, and *C. palmate* in IR regions.

233 The gene organizations were compared in Table 2. In the upstream region and the downstream
234 region of the *C. palmate* chloroplast genome, premature stop codons were discovered in the *ycf1*
235 gene, resulting in the loss of this gene. Compared to *S. sessilifolia*, we found the shorter CDS
236 regions of *C. palmate* is directly related to the loss of this gene. We also found a full-length and a
237 pseudogene of *ndhF* gene coexist in the chloroplast genome of *S. sessilifolia*, which further indicated
238 SSC contraction events.

239

240 **Table 2.** Genes presented in chloroplast genomes of *Stemona sessilifolia*, *Asparagus*
241 *officinalis* and *Carludovica palmate*.

Category for genes	Group of genes	Name of genes
Ribosome RNA genes	rRNA genes	<i>rrn16S</i> ^a , <i>rrn23S</i> ^a , <i>rrn5S</i> ^a , <i>rrn4.5S</i> ^a
Transfer RNA genes	tRNA genes	<i>trnT-UGU</i> , <i>trnR-ACG</i> ^a , <i>trnT-GGU</i> , <i>trnS-UGA</i> , <i>trnfM-CAU</i> , <i>trnF-GAA</i> , <i>trnL-UAG</i> , <i>trnV-UAC</i> [*] , <i>trnL-CAA</i> ^a , <i>trnM-CAU</i> ^a , <i>trnG-GCC</i> , <i>trnQ-UUG</i> , <i>trnA-UGC</i> ^a , ^{**} , <i>trnD-GUC</i> , <i>trnP-UGG</i> , <i>trnI-CAU</i> ^a , <i>trnE-UUC</i> ^{**} , <i>trnL-UAA</i> ^{**} , <i>trnK-UUU</i> ^{**} , <i>trnW-CCA</i> , <i>trnY-GUA</i> , <i>trnI-GAU</i> ^a , [*] , <i>trnG-UCC</i> [*] , <i>trnS-GGA</i> , <i>trnR-UCU</i> , <i>trnH-GUG</i> ^a , <i>trnS-GCU</i> , <i>trnN-GUU</i> ^a , <i>trnV-GAC</i> ^a , <i>trnC-GCA</i>
Others	Large subunit of ribosome	<i>rpl14</i> , <i>rpl16</i> [*] , <i>rpl2</i> ^{a,*} , <i>rpl20</i> , <i>rpl22</i> ^a , <i>rpl23</i> ^a , <i>rpl32</i> , <i>rpl33</i> , <i>rpl36</i>
	Small subunit of ribosome	<i>rps11</i> , <i>rps12</i> ^{a,b,*} , <i>rps14</i> , <i>rps15</i> , <i>rps16</i> [*] , <i>rps18</i> , <i>rps19</i> ^a , <i>rps2</i> , <i>rps3</i> , <i>rps4</i> , <i>rps7</i> ^a , <i>rps8</i>
	DNA dependent RNA polymerase	<i>rpoA</i> , <i>rpoB</i> , <i>rpoC1</i> [*] , <i>rpoC2</i>
	Subunits of NADH dehydrogenase	<i>ndhA</i> [*] , <i>ndhB</i> ^{a,*} , <i>ndhC</i> , <i>ndhD</i> , <i>ndhE</i> , <i>ndhF</i> , <i>ndhG</i> , <i>ndhH</i> , <i>ndhI</i> , <i>ndhJ</i> , <i>ndhK</i>
	Subunits of cytochrome b/f complex	<i>petA</i> , <i>petB</i> [*] , <i>petD</i> [*] , <i>petG</i> , <i>petL</i> , <i>petN</i>
	Subunits of photosystem I	<i>psaA</i> , <i>psaB</i> , <i>psaC</i> , <i>psaI</i> , <i>psaJ</i>
	Subunits of photosystem II	<i>psbA</i> , <i>psbB</i> , <i>psbC</i> , <i>psbD</i> , <i>psbE</i> , <i>psbF</i> , <i>psbI</i> , <i>psbJ</i> , <i>psbK</i> , <i>psbL</i> , <i>psbM</i> , <i>psbN</i> , <i>psbT</i> , <i>psbZ</i> , <i>ycf3</i>
	Large subunit of rubisco	<i>rbcL</i>
	Subunits of ATP synthase	<i>atpA</i> , <i>atpB</i> , <i>atpE</i> , <i>atpF</i> [*] , <i>atpH</i> , <i>atpI</i>
	Subunit of Acetyl-CoA-carboxylase	<i>accD</i>
	C-type cytochrome synthesis gene	<i>ccsA</i>
	Envelope membrane protein	<i>cemA</i>
	Protease	<i>clpP</i> ^{**}
	Translational initiation factor	<i>infA</i>
	Maturase	<i>matK</i>

Conserved open reading frames	<i>ycf1</i> , <i>ycf2^a</i> , <i>ycf15^{**}</i> , <i>ycf4</i>
Pseudo genes	<i>ycf1^ψ</i> , <i>ndhF^ψ</i> , <i>infA^ψ</i> , <i>ycf15^{a,ψ}</i> , <i>ycf68^{a,ψ}</i>

242 * Gene with one intron, ** Gene with two introns, a Gene with two copies, b Trans-splicing gene,
243 ψ Pseudogene. Black, green, red, and blue indicated genes identified in all species, both in
244 *Stemona sessilifolia* and *Asparagus officinalis*, only in *Stemona sessilifolia*, and only in
245 *Asparagus officinalis*, respectively.

246 Repeat Sequence Analysis

247 Simple sequence repeats (SSRs), the tandem repeat sequences consisting of 1-6 repeat
248 nucleotide units, are widely distributed in prokaryotic and eukaryotic genomes. High polymorphism
249 makes the SSRs effective molecular markers in species identification, population genetics, and
250 phylogenetic research [40, 41]. In the current study, we investigated the distribution of SSRs in the
251 genomes and their count and type (Fig 2). As a result, a total of 81, 59, and 72 SSRs were detected
252 in *S. sessilifolia*, *A. officinalis*, and *C. palmata*, respectively. Mononucleotide motifs showed the
253 highest frequency of SSRs in these species, followed by di-nucleotides and tri-nucleotides.
254 Compared to *A. officinalis* and *C. palmata*, *S. sessilifolia* contained more SSRs. However, three
255 tri-nucleotide repeats were detected in *C. palmata* and one in *A. officinalis*, but none were identified
256 in *S. sessilifolia*. As expected, most mono-nucleotide and di-nucleotide repeats consisted of A/T and
257 AT/AT repeats, respectively. The results suggest that these chloroplast genomes are rich in short
258 poly-A and poly-T motifs, while poly-C and poly-G are relatively rare. We then use Tandem Repeats
259 Finder [32] and REPuter [33] to detect long repeats and found 95, 70, and 95 long repeat sequences
260 in *S. sessilifolia*, *A. officinalis*, and *C. palmata*, respectively. For *S. sessilifolia*, the number of
261 Tandem repeats, Forward repeats, and Palindromic repeats was 45, 27, and 23, respectively. The
262 number of the corresponding repeat sequences for *A. officinalis* was 45, 11, and 14, respectively.
263 The number of the repeat sequences for *C. palmata* was 45, 33, and 17, respectively.

264 There have significant differences in the types of repeat sequence among *S. sessilifolia*, *A.*
265 *officinalis*, and *C. palmata*. The repeat occurrence in *S. sessilifolia* was similar to that of *A. officinalis*
266 but significantly higher than that of *C. palmata*. It should be noted that the size of the *A. officinalis*
267 and *C. palmata* chloroplast genome is larger than the chloroplast genomes of *S. sessilifolia*.
268 Therefore, the relatively larger size of the chloroplast genome of *A. officinalis* and *C. palmata* does
269 not result from the repeat sequence.

270 **Figure 2.** Simple sequence repeats (SSRs) and long repeat sequences are identified in the
271 chloroplast genomes. (A) Distribution of different types of SSRs in the chloroplast genomes. (B)
272 Distribution of long repeat sequences in the chloroplast genomes. (C) Frequency of SSR motifs
273 in different repeat class types.

274 Sequence divergence analysis

275 To evaluate the genome sequence divergence, we aligned sequences from four species using
276 mVISTA [34] (Fig 3). The chloroplast genome of *S. sessilifolia* was significantly different from *A.*
277 *officinalis* and *C. palmata*. Severe gene loss events always lead to highly reduced plastomes [20, 42].
278 As expected, the non-coding regions were more divergent than coding regions among these species.

279 The two most divergent regions were *ycf4-psbJ* regions (red square A) and *rpl22* coding regions (red
280 square B). We suspected that such a phenomenon might result from gene loss events or genome
281 rearrangement events, and the detailed reasons will be discussed later. *Ycf1* gene is also highly
282 divergent, which may occur due to the occurrence of pseudogenization. In summary, the LSC region
283 showed the highest divergence, followed by the SSC region, and the IR regions were less divergent
284 than the LSC and SSC region. Compared to the coding areas, the intergenic spacers displayed
285 higher divergence.

286 Highly divergent regions always assist in the development of molecular markers. Because
287 non-coding regions are evolved more rapidly than coding regions, the intergenic regions and intron
288 regions were always considered ideal candidate regions of molecular markers with high resolution.
289 Therefore, we calculated the Kimura 2-parameter (K2p) distances for each set of the intergenic
290 regions and intron regions. A relatively higher K2p value between any two species is necessary to
291 distinguish each species from the other two species. Therefore, we calculated the minimal K2P
292 (MK2P) value for each set of intergenic regions and intron regions. The non-coding regions with
293 higher MK2P values are likely to be the candidate regions of high-resolution molecular markers.
294 Consequently, for introns (S3 Table), the MK2p value ranges from 0.0055 to 0.1096. *ClpP_intron2*
295 with the highest MK2p value followed by *rpl16_intron1*, the third, fourth, and fifth were *rps16_intron1*,
296 *ndhA_intron1*, and *trnL-UAA_intron1*, respectively. For intergenic spacers (S4 Table), five highly
297 conserved intergenic spacers were observed, including *ndhA_ndhH*, *psaB_psaA*, *psbL_psbF*,
298 *rpl2_rpl23*, and *trnL-GAU_trnA-UGC*. The MK2p value of intergenic spacers ranges from 0 to 0.3301,
299 and the top-10 intergenic spacers with higher MK2p values were listed as follows: *trnF-GAA_ndhJ*,
300 *atpB_rbcL*, *rps15_ycf1*, *trnG-UCC_trnR-UCU*, *ndhF_rpl32*, *accD_psaI*, *rps2_rpoC2*,
301 *trnS-GCU_trnG-UCC*, *trnT-UGU_trnL-UAA*, and *rps16_trnQ-UUG*. In conclusion, compared to
302 introns, we observed higher divergence in intergenic spacers. The intergenic spacers with large K2p
303 values represent good candidate molecular markers to distinguish these three species.

304 **Figure 3.** Comparison of four chloroplast genomes using mVISTA program. Gray arrows
305 indicated the orientations and positions of genes. Untranslated regions, conserved non-coding
306 regions, and coding regions were characterized by sky-blue block, red block, and blue block. We
307 adopted a cutoff value of 70% in the process of alignment.

308 **Rearrangement of the chloroplast genome**

309 To investigate whether there are significant differences in *ycf3-psbJ* regions (red square A in Fig
310 3) and *rpl22* coding regions (red square B in Fig 3) between *S. sessilifolia* and its closely related
311 species, we conducted synteny analysis. As plotted in Fig 4, we detected a large inversion of 3 kb
312 long in the LSC region. Interestingly, such an approximately 3-kb long inversion was confirmed
313 located in *ycf3-psbJ* regions. Therefore, we can conclude that the occurrence of genome
314 rearrangement events leads to a significant difference in the *ycf3-psbJ* areas between *S. sessilifolia*
315 and the other two species. To investigate whether such an inversion that exists in *S. sessilifolia* is
316 unique, we conducted synteny analysis between the chloroplast genome of *S. sessilifolia* and
317 species in Lioscoreales and Liliales, which belong to the two closely related orders of Pandanales.
318 Compared to any species in Dioscoreales and Liliales, inversion in *ycf3-psbJ* regions in *S. sessilifolia*

319 was always visible (data are not shown). Therefore, inversion in the *ycf3-psbj* areas may be unique
320 to *S. sessilifolia*.

321 **Figure 4.** Comparison of three chloroplast genomes using MAUVE algorithm. Local collinear
322 blocks were colored to indicate syntenic regions, and histograms within each block indicated the
323 degree of sequence similarity.

324 **IR expansion and SSC contraction**

325 IR contraction and expansion are common evolutionary events contributing to chloroplast
326 genomes size variation [43]. Here, boundary comparison analysis was performed by which we
327 attempt to identify IR contraction and expansion events (Fig 5). Compared to *A. officinalis* and *C.*
328 *palmate*, the relatively larger IR regions indicated IR expansion events in *S. sessilifolia*.
329 Simultaneously, the SSC region was shorter than *A. officinalis* and *C. palmate* by 465-737bp,
330 suggesting the occurrence of SSC contraction events in *S. sessilifolia*. For *A. officinalis* and *C.*
331 *palmate*, the *rpl22* gene is located at the LSC region with one copy. However, the IR regions of *S.*
332 *sessilifolia* spanned to the intergenic spacers between the *rpl22* gene and *rps3* gene, resulting in two
333 copies of the *rpl22* gene. Therefore, we can claim that the significant difference in *rpl22* coding
334 regions between *S. sessilifolia* and its closely related species was attributed to IR expansion events.
335 The IRb/SSC boundary extended into the *ycf1* genes by 1146-1260bp, creating *ycf1* pseudogene in
336 *S. sessilifolia* and *C. palmate*. Considering premature stop codons were discovered in the *ycf1* gene,
337 only one *ycf1* pseudogene was annotated in the SSC region in *A. officinalis*. The *ndhF* gene located
338 at SSC regions in *A. officinalis* and *C. palmate*, and it ranges from 10-40bp away from the SSC/IRa
339 boundary. However, in *S. sessilifolia*, the SSC region's shortening leads to the *ndhF* gene extended
340 into the IRa region by 186bp. The *ndhF* gene located at the SSC/IRa junction resulted in partial
341 duplication of this gene at the corresponding region. An overlap of 186bp between the *ndhF* gene
342 and *ycf1* pseudogene was also observed in *S. sessilifolia*. Summarily, compared to *A. officinalis* and
343 *C. palmate*, significant boundary expansion and contraction events were observed in *S. sessilifolia*
344 simultaneously.

345 **Figure 5.** Comparison of IR, LSC, and SSC regions among *Stemona sessilifolia*, *Carludovica*
346 *palmata*, and *Asparagus officinalis*. Numbers around the genes represented the gene lengths
347 and the distances between the gene ends and boundary sites. Please note that the figure
348 features were not to scale. ψ indicates pseudogene.

349 **Phylogenetic Analysis**

350 The chloroplast genome has been successfully used to determine plant categories and reveal
351 plant phylogenetic relationships [44, 45]. To determine the phylogenetic position of *S. sessilifolia*, we
352 constructed a phylogenetic tree with species in Stemonaceae and its closely related families
353 (Asparagoideae, Velloziaceae, Cyclanthaceae, Pandanaceae). A total of 13 chloroplast genomes
354 were retrieved from the RefSeq database, and 58 protein sequences shared by these species were
355 used to construct a phylogenetic tree with *Veratrum patulum*, and *Paris dunniana* served as an
356 outgroup (Fig 6). As a result, species in Stemonaceae, Asparagoideae, and Velloziaceae formed a
357 cluster, respectively. Besides, *S. sessilifolia* and *S. japonica* formed a cluster within Stemonaceae
358 with a bootstrap value of 100%, indicating the sister relationship between these two species.

359 As showed in Fig 6, a series of gene loss events were observed throughout Stemonaceae and
360 its closely related families (Asparagoideae, Velloziaceae, Cyclanthaceae, Pandanaceae). A total of
361 21 genes are lost in these species, including *ycf68* (11), *lhbA* (9), *infA* (4), *psbZ* (4), *ycf1* (3), *ccsA* (1),
362 *ndhA* (1), *ndhD* (1), *ndhE* (1), *ndhF* (1), *ndhG* (1), *ndhH* (1), *ndhI* (1), *psaC* (1), *psaI* (1), *ycf2* (1),
363 *rps16* (1), *rpl20* (1), *rpoC2* (1), *rps12* (1), and *rps15* (1), the number enclosed in parentheses
364 represented the frequency of gene loss events. As expected, closely related species always tend to
365 undertake the same gene loss events. A series of clusters formed by species undertaken the same
366 gene deletion events further confirmed such a phenomenon. *C. palmata* and *P. tectorius* formed a
367 cluster that lacked *psbZ* gene. The species from Pandanales (Stemnaceae, Cyclanthaceae,
368 Pandanaceae, and Velloziaceae) formed a cluster without *ycf68* gene. The species from
369 Asparagoideae formed a cluster without *lhbA* gene.

370 *Ycf68* gene has the highest frequency of gene deletion, and the second was *lhbA* gene. The
371 following three were the *infA* gene, *psbZ*, and *ycf1* gene, respectively. The *ycf68* gene was only
372 found in two species (*Asparagus racemosus*, *Asparagus setaceus*), and the *lhbA* gene was only
373 found in four species (*C. palmata*, *C. heterosepala*, *P. tectorius* and *S. japonica*). The function of the
374 *ycf68*, *lhbA*, and *ycf1* gene remained unknown. The occurrence of premature stop codons may
375 account for these three genes' rare existence in chloroplast genomes [38, 46, 47]. As one of the
376 most active genes in the chloroplast genome, the *infA* gene plays an essential role in protein
377 synthesis. The frequent absence of the *infA* gene may contribute to the transfer of this gene between
378 cytoplasm and nucleus [38, 48]. The lack of the subunits of the photosystem II gene *psbZ* was
379 frequently observed in Pandanales (Stemnaceae, Cyclanthaceae, Pandanaceae). For each of the
380 remaining 16 genes, only one gene loss event was observed, respectively. There was gene absence
381 in each species' chloroplast genome, indicating the variation in chloroplast genomes' contents.
382 However, for 16 out of 21 genes, the frequency of gene loss events was only one, suggesting the
383 chloroplast genome is highly conserved on the scale of gene contents. Such a phenomenon is
384 consistent with the highly conserved nature of the chloroplast genome and its feature of rich in
385 variation.

386 **Figure 6.** Molecular phylogenetic Analyses of Pandanales and its closely related orders. We
387 constructed the tree with the sequences of 58 proteins presented in 116 species using the
388 Maximum Likelihood method implemented in RAxML with *Nicotiana tabacum* and *Solanum*
389 *Lycopersicum* served as an outgroup. The numbers associated with the nodes indicate
390 bootstrap values tested with 1000 replicates. We marked the orders and families for each
391 species besides the branches and the occurrence of gene loss events.

392 Discussion

393 In this study, we sequenced and analyzed the chloroplast genome of *Stemona sessilifolia* and
394 performed multi-scale comparative genomics of *Stemona sessilifolia*, *Asparagus officinalis*, and
395 *Carludovica palmata* (the major counterfeit of Baibu). We also characterized the major changes in
396 the chloroplast genome of *Stemona sessilifolia* compared with those of Dioscoreales, Liliales, and
397 Pandanales, including genome rearrangement, IR expansion, and SSC contraction, and investigate
398 the occurrence of gene loss events in Dioscoreales, Liliales, Pandanales, and Asparagaceae.

399 Our results show that the genome of *Stemona sessilifolia* is very similar to that of *Stemona*
400 *japonica* previously reported. In both chloroplast genomes of *S. sessilifolia* and *S. japonica*, the rps12
401 gene contained two introns. It is a trans-spliced gene with a 5' end exon located in the LSC region,
402 and the 3' end exon and intron located in the IR regions [49]. Also, we detected a large inversion in
403 both species. The SSC region was found to have a reverse orientation in *S. japonica*. The SSC
404 region's reverse direction has been interpreted as a major inversion existing within the species
405 [50-52].

406 Interestingly, a 3-kb long inversion was detected in the chloroplast genome of *S. sessilifolia*. It
407 might result from a genome rearrangement event. This unique inversion phenomenon led to
408 significant differences in the ycf3-psbJ region between *Stemona sessilifolia* and its related species,
409 which can be used as a candidate region to identify *Stemona sessilifolia* from counterfeits.

410 SSRs have been widely used as molecular markers in the studies of species identification,
411 population genetics, and phylogenetic investigations based on their high-degree variations [53]. The
412 SSR consisting of A/T is the *most abundant type* in *S. sessilifolia* and *S. japonica*. These SSRs loci
413 were mainly located in intergenic regions and would help develop new phylogenetic markers for
414 species identification and discrimination [49]. Only forward and palindrome repeats were found in the
415 *S. sessilifolia* cp genome regarding the long repeat sequences. The biological implication of these
416 repeats remains to be elucidated.

417 Also, there were significant differences in IR contraction and expansion between *Stemona*
418 *sessilifolia* and other species. At the IRa/LSC border, the spacer from rpl22 coding regions to the
419 border is longer in *Stemona sessilifolia* (309 bp) than that of *Stemona japonica* (65 bp). The IRb/SSC
420 boundary extended into the ycf1 genes by only 18bp and created a ycf1 pseudogene in *Stemona*
421 *japonica* [49]. However, that region is 1146-1260bp long in *Stemona sessilifolia*. The function of ycf1
422 genes is mostly unknown, but it evolves rapidly [54]. The larger contraction and expansion of the IR
423 region in *Stemona sessilifolia* may lead to evolutionary differences between *Stemona sessilifolia*
424 and its closely related species. This may need further verification.

425 *Stemona sessilifolia* and *Stemona japonica* are the authentic sources of Baibu, according to
426 Pharmacopoeia of the People's Republic of China (2015 edition). Phylogenetic analyses showed
427 that they were placed close to each other with a bootstrap value of 100%. *Asparagus officinalis* and
428 *Carludovica palmata* (the major counterfeit of Baibu) were on the other branches. When we
429 investigated the gene loss events in the phylogenetic relationship context, we also see the cp
430 genomes of *Stemona sessilifolia* and *Stemona japonica* have similar gene loss patterns. These
431 findings support the pharmaceutical use of *Stemona sessilifolia* and *Stemona japonica* as genuine
432 Baibu. Also, they suggest the urgent need for new molecular markers for the identification of genuine
433 Baibu. This study will be of value in determining genome evolution and understanding phylogenetic
434 relationships within Pandanales and other species closed to Pandanales.

435 **Conclusions**

436 In summary, the complete plastome of *Stemona sessilifolia* (Miq.) Miq. was provided in the
437 current study. We believe it will benefit as a reference for further complete chloroplast genome
438 sequencing within the family. A multi-scale comparative genome analysis among *Stemona*
439 *sessilifolia*, *Asparagus officinalis*, and *Carludovica palmate* (the major counterfeit of Baibu) was
440 based on sequence data provided performed. Comparative Analysis of these three species revealed
441 the existence of a unique inversion in the ycf3-psbJ regions. Interestingly, IR expansion and SSC
442 contraction were observed simultaneously in *Stemona sessilifolia*, resulting in a rare boundary
443 pattern. Some highly variable regions were screened as potential DNA barcodes for identification of
444 these three species, including *trnF-GAA_ndhJ*, *atpB_rbcL*, *rps15_ycf1*, *trnG-UCC_trnR-UCU*,
445 *ndhF_rpl32*. Phylogenetic analyses showed that the two *Stemona* species were placed close to each
446 other with a bootstrap value of 100%. Finally, we investigated the gene loss events in the context of
447 the phylogenetic relationship. Closely related species always share similar gene loss patterns,
448 consistent with those observed previously. This study will be of value in determining genome
449 evolution and understanding phylogenetic relationships within Stemonaceae and families closed to
450 Stemonaceae.

451 **Acknowledgments**

452 This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS)
453 (2016-I2M-3-016, 2017-I2M-1-013) from the Chinese Academy of Medical Science,
454 National Natural Science Foundation of China (31460237),Guangxi science and technology
455 program (AD17292003), Guangxi R&D project of medical and health technology (S201529). The
456 funders were not involved in the study design, data collection, and Analysis, decision to publish, or
457 manuscript preparation.

458 **Author Contributions**

459 CL and WW conceived the research; JTL and MJ carried out the bioinformatics studies and prepared
460 the manuscript; HMC and YL collected samples of *Stemona sessilifolia*, extracted DNA for
461 next-generation sequencing. All authors have read and approved the manuscript.

462 **Conflicts of Interest**

463 The authors declare no conflict of interest.

464 **References**

- 465 1. Pilli RA, Rosso GB, Oliveira MdCFd. The chemistry of *Stemona* alkaloids: An update. Natural
466 Product Reports. 2010;27.
- 467 2. Wang Z, Yang W, Yang P, Gao B, Luo L. Effect of Radix Stemonae concentrated decoction on
468 the lung tissue pathology and inflammatory mediators in COPD rats. BMC Complementary and
469 Alternative Medicine. 2016;16(1):1-7.
- 470 3. Brem B, Seger C, Pacher T, Hofer O, Greger H. Feeding deterrence and contact toxicity of
471 *Stemona* alkaloids-a source of potent natural insecticides. Journal of Agricultural & Food Chemistry.
472 2002;50(22):6383-8.

473 4. Liu ZL, Goh SH, Ho SH. Screening of Chinese medicinal herbs for bioactivity against *Sitophilus*
474 *zeamais* Motschulsky and *Tribolium castaneum* (Herbst). *Journal of Stored Products Research*.
475 2007;43(3):290-6.

476 5. Lai DH, Yang ZD, Xue WW, Sheng J, Shi Y, Yao XJ. Isolation, characterization, and
477 acetylcholinesterase inhibitory activity of alkaloids from roots of *Stemona sessilifolia*. *Fitoterapia*.
478 2013;89(Complete):257-64.

479 6. Fan LL, Xu F, Hu JP, Yang DH, Chen HB, Komatsu K, et al. Binary chromatographic fingerprint
480 analysis of *Stemonae Radix* from three *Stemona* plants and its applications. *Journal of Natural*
481 *Medicines*. 2015.

482 7. Li SL, Jiang RW, Hon PM, Cheng L, Shaw PC. Quality evaluation of *Radix Stemonae* through
483 simultaneous quantification of bioactive alkaloids by high-performance liquid chromatography
484 coupled with diode array and evaporative light scattering detectors. *Biomedical Chromatography*
485 *Bmc*. 2010;21(10):1088-94.

486 8. Xu YT, Hon PM, Jiang RW, Cheng L, Li SH, Chan YP, et al. Antitussive effects of *Stemona*
487 *tuberosa* with different chemical profiles. *Journal of Ethnopharmacology*. 2006;108(1):46-53.

488 9. Yan Y, Zhang A, Dong H, Yan G, Wang X. Toxicity and Detoxification Effects of Herbal Caowu
489 via Ultra Performance Liquid Chromatography/Mass Spectrometry Metabolomics Analyzed using
490 Pattern Recognition Method. *Pharmacognosy Magazine*. 2017;13(52):683-92.

491 10. Fan LL, Zhu S, Chen HB, Yang DH, Cai SQ, Komatsu K. Molecular analysis of *Stemona* plants
492 in China based on sequences of four chloroplast DNA regions. *Biological & Pharmaceutical Bulletin*.
493 2009;32(8):1439.

494 11. Vere ND, Rich TCG, Trinder SA, Long C. DNA Barcoding for Plants. *Methods in Molecular*
495 *Biology*. 2015;1245:101-18.

496 12. Penikar ZF, Buzan EV. 20 years since the introduction of DNA barcoding: From theory to
497 application. *Journal of Applied Genetics*. 2013;55(1):43-52.

498 13. W., John, Kress, Carlos, García-Robledo, María, et al. DNA barcodes for ecology, evolution,
499 and conservation. *Trends in Ecology & Evolution*. 2015.

500 14. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to
501 genome. *Biological Reviews*. 2015.

502 15. Hollingsworth PM, Li DZ, Michelle VDB, Twyford AD. Telling plant species apart with DNA: from
503 barcodes to genomes. *Philosophical Transactions of the Royal Society B Biological Sciences*.
504 2016;371(1702):20150338.

505 16. H., E., Neuhaus, and, M., J., et al. NONPHOTOSYNTHETIC METABOLISM IN PLASTIDS.
506 *Annual Review of Plant Physiology & Plant Molecular Biology*. 2000.

507 17. Krzysztof B, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. *Frontiers*
508 *in Plant Science*. 2015;6(781):781.

509 18. Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant–virus interaction.
510 *Molecular Plant Pathology*. 2018.

511 19. Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory
512 Hormone and FMRFamide-Like Peptide Systems. *Frontiers in Neuroscience*. 2018;12.

513 20. Lam VKY, Marybel SG, Graham SW. The Highly Reduced Plastome of Mycoheterotrophic
514 *Sciaphila* (Triuridaceae) Is Colinear with Its Green Relatives and Is under Strong Purifying Selection.
515 *Genome Biology and Evolution*. 2015;(8):8.

516 21. Bolger AM, Marc L, Bjoern U. Trimmomatic: a flexible trimmer for Illumina sequence data.
517 *Bioinformatics*. 2014;(15):2114-20.

518 22. Camacho C, Coulouris G, Avagyan V, Ning M, Madden TL. BLAST+: architecture and
519 applications. *BMC Bioinformatics* 10:421. *Bmc Bioinformatics*. 2009;10(1):421.

520 23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new
521 genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol*.
522 2012;19(5):455-77. Epub 2012/04/18. DOI: 10.1089/cmb.2012.0021. PubMed PMID: 22506599;
523 PubMed Central PMCID: PMCPMC3342519.

524 24. Burland TG. DNASTAR's Lasergene sequence analysis software. *Methods Mol Biol*.
525 2000;132:71-91.

526 25. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short
527 DNA sequences to the human genome. *Genome Biol*. 2009;10(3):R25. Epub 2009/03/06. DOI:
528 10.1186/GB-2009-10-3-r25. PubMed PMID: 19261174; PubMed Central PMCID:
529 PMCPMC2690996.

530 26. Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, et al. CpGAVAS, an integrated web server for the
531 annotation, visualization, Analysis, and GenBank submission of completely sequenced chloroplast
532 genome sequences. *BMC Genomics*. 2012;13:715. Epub 2012/12/22. DOI:
533 10.1186/1471-2164-13-715. PubMed PMID: 23256920; PubMed Central PMCID:
534 PMCPMC3543216.

535 27. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoScan and snoGPS web servers for
536 the detection of tRNAs and snoRNAs. *Nucleic Acids Res*. 2005;33(Web Server issue):W686-9. Epub
537 2005/06/28. DOI: 10.1093/nar/gki366. PubMed PMID: 15980563; PubMed Central PMCID:
538 PMCPMC1160127.

539 28. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in
540 nucleotide sequences. *Nucleic Acids Res*. 2004;32(1):11-6. Epub 2004/01/06. DOI:
541 10.1093/nar/gkh152. PubMed PMID: 14704338; PubMed Central PMCID: PMCPMC373265.

542 29. Misra S, Harris N. Using Apollo to browse and edit genome annotations. 2006.

543 30. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite.
544 *Trends Genet*. 2000;16(6):276-7. Epub 2000/05/29. DOI: 10.1016/s0168-9525(00)02024-2. PubMed
545 PMID: 10827456.

546 31. Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy
547 generation of high-quality custom graphical maps of plastid and mitochondrial genomes. *Current
548 Genetics*. 2007;52(5-6):267-74.

549 32. Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res*.
550 1999;27(2):573-80. Epub 1998/12/24. DOI: 10.1093/nar/27.2.573.

551 33. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the
552 manifold applications of repeat analysis on a genomic scale. *Nucleic Acids Res*.
553 2001;29(22):4633-42. Epub 2001/11/20. DOI: 10.1093/nar/29.22.4633.

554 34. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for
555 comparative genomics. *Nucleic Acids Res*. 2004;32(Web Server issue):W273-9. Epub 2004/06/25.
556 DOI: 10.1093/nar/gkh458.

557 35. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W
558 and Clustal X version 2.0. *Bioinformatics*. 2007;23(21):2947-8. Epub 2007/09/12. DOI:
559 10.1093/bioinformatics/btm404.

560 36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through
561 comparative studies of nucleotide sequences. *J Mol Evol.* 1980;16(2):111-20. Epub 1980/12/01. DOI:
562 10.1007/bf01731581.

563 37. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain,
564 loss and rearrangement. *PLoS One.* 2010;5(6):e11147. Epub 2010/07/02. DOI:
565 10.1371/journal.pone.0011147.

566 38. Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid
567 chromosome in land plants: gene content, gene order, gene function. *Plant Mol Biol.*
568 2011;76(3-5):273-97. Epub 2011/03/23. doi: 10.1007/s11103-011-9762-4.

569 39. Chen H, Shao J, Zhang H, Jiang M, Huang L, Zhang Z, et al. Sequencing and Analysis of
570 *Strobilanthes cusia* (Nees) Kuntze Chloroplast Genome Revealed the Rare Simultaneous
571 Contraction and Expansion of the Inverted Repeat Region in Angiosperm. *Front Plant Sci.*
572 2018;9:324. Epub 2018/03/30. DOI: 10.3389/fpls.2018.00324.

573 40. Xue J, Wang S, Zhou SL. Polymorphic chloroplast microsatellite loci in *Nelumbo*
574 (Nelumbonaceae). *Am J Bot.* 2012;99(6):e240-4. Epub 2012/05/23. DOI: 10.3732/ajb.1100547.

575 41. Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA. Polymorphic simple sequence
576 repeat regions in chloroplast genomes: applications to the population genetics of pines. *Proc Natl
577 Acad Sci U S A.* 1995;92(17):7759-63. Epub 1995/08/15. DOI: 10.1073/pnas.92.17.7759.

578 42. Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, et al. Mechanisms of
579 functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants
580 of the broomrape family. *Plant Cell.* 2013;25(10):3711-25. Epub 2013/10/22. DOI:
581 10.1105/tpc.113.113373.

582 43. Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the
583 inverted repeat-large single copy junctions in the chloroplast genomes of monocots. *BMC Evol Biol.*
584 2008;8:36. Epub 2008/02/02. DOI: 10.1186/1471-2148-8-36.

585 44. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, et al. Analysis
586 of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies
587 genome-scale evolutionary patterns. *Proc Natl Acad Sci U S A.* 2007;104(49):19369-74. Epub
588 2007/12/01. DOI: 10.1073/pnas.0709121104.

589 45. Moore MJ, Bell CD, Soltis PS, Soltis DE. Using plastid genome-scale data to resolve enigmatic
590 relationships among basal angiosperms. *Proc Natl Acad Sci U S A.* 2007;104(49):19363-8. Epub
591 2007/12/01. DOI: 10.1073/pnas.0708072104.

592 46. Jiang M, Chen H, He S, Wang L, Chen AJ, Liu C. Sequencing, Characterization, and
593 Comparative Analyses of the Plastome of *Caragana rosea* var. *rosea*. *Int J Mol Sci.* 2018;19(5).
594 Epub 2018/05/12. DOI: 10.3390/ijms19051419.

595 47. Nguyen PA, Kim JS, Kim JH. The complete chloroplast genome of colchicine plants (*Colchicum*
596 *autumnale* L. and *Gloriosa superba* L.) and its application for identifying the genus. *Planta.*
597 2015;242(1):223-37. Epub 2015/04/24. DOI: 10.1007/s00425-015-2303-7.

598 48. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, et al. Many parallel losses
599 of *infA* from chloroplast DNA during angiosperm evolution with multiple independent transfers to the
600 nucleus. *Plant Cell.* 2001;13(3):645-58. Epub 2001/03/17. DOI: 10.1105/tpc.13.3.645.

601 49. Lu Q, Ye W, Lu R, Xu W, Qiu Y. Phylogenomic and Comparative Analyses of Complete
602 Plastomes of *Croomia* and *Stemonaceae* (*Stemonaceae*). *Int J Mol Sci.* 2018;19(8). Epub 2018/08/15.
603 DOI: 10.3390/ijms19082383.

604 50. Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, et al. Phylogenetic and
605 evolutionary implications of complete chloroplast genome sequences of four early-diverging
606 angiosperms: *Buxus* (Buxaceae), *Chloranthus* (Chloranthaceae), *Dioscorea* (Dioscoreaceae), and
607 *Illicium* (Schisandraceae). *Mol Phylogenet Evol.* 2007;45(2):547-63. Epub 2007/07/24. DOI:
608 10.1016/j.ympev.2007.06.004.

609 51. Liu Y, Huo N, Dong L, Wang Y, Zhang S, Young HA, et al. Complete chloroplast genome
610 sequences of Mongolia medicine *Artemisia frigida* and phylogenetic relationships with other plants.
611 *PLoS One.* 2013;8(2):e57533. Epub 2013/03/06. DOI: 10.1371/journal.pone.0057533.

612 52. Walker JF, Zanis MJ, Emery NC. Comparative Analysis of complete chloroplast genome
613 sequence and inversion variation in *Lasthenia burkei* (Madieae, Asteraceae). *Am J Bot.*
614 2014;101(4):722-9. Epub 2014/04/05. DOI: 10.3732/ajb.1400049.

615 53. Provan J, Corbett G, McNicol JW, Powell W. Chloroplast DNA variability in wild and cultivated
616 rice (*Oryza* spp.) revealed by polymorphic chloroplast simple sequence repeats. *Genome.*
617 1997;40(1):104-10. Epub 1997/02/01. DOI: 10.1139/g97-014.

618 54. Wang L, Zhang H, Jiang M, Chen H, Huang L, Liu C. Complete plastome sequence of *Iodes*
619 *cirrhosa* Turcz., the first in the Icacinaceae, comparative genomic analyses and possible split of
620 *Idoes* species in response to climate changes. *PeerJ.* 2019;7:e6663. Epub 2019/04/12. DOI:
621 10.7717/peerj.6663.

622 Supporting information

623 **S1 File. The barcode sequences of *Stemona sessilifolia* available in GeneBank.**

624 **S2 File. The sequence of *Stemona sessilifolia*, *Carludovica palmata*, and *Asparagus*
625 *officinalis*.**

626 **S1 Table. List of chloroplast genomes used in this study.**

627 **S2 Table. The length of introns and exons for intron-containing genes.**

628 **S3 Table. K2p distances for intron regions among *Stemona sessilifolia*, *Carludovica*
629 *palmata*, and *Asparagus officinalis*.**

630 **S4 Table. K2p distances for intergenic regions among *Stemona sessilifolia*, *Carludovica*
631 *palmata*, and *Asparagus officinalis*.**

632

633

634

635

636

637

638

639

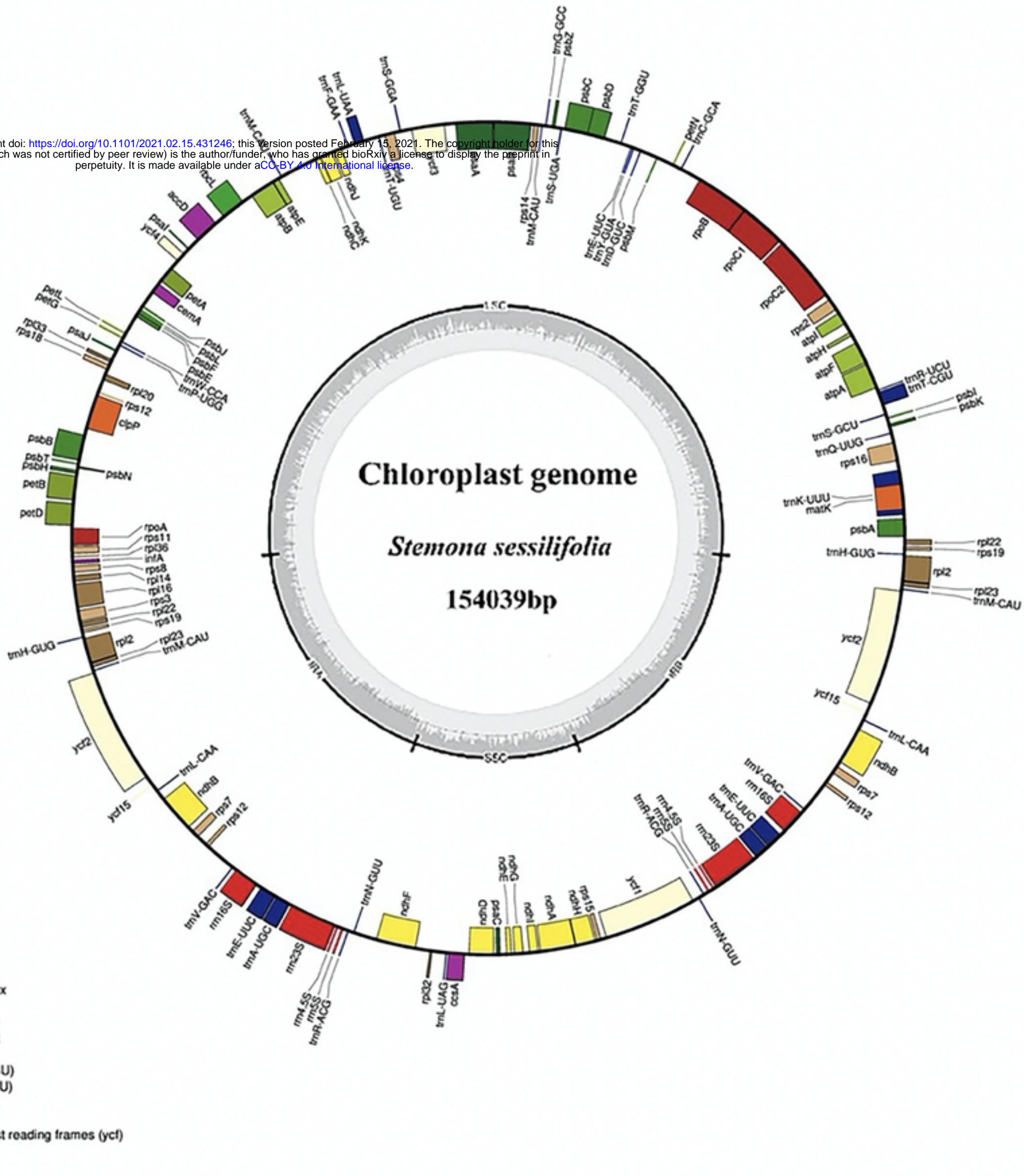
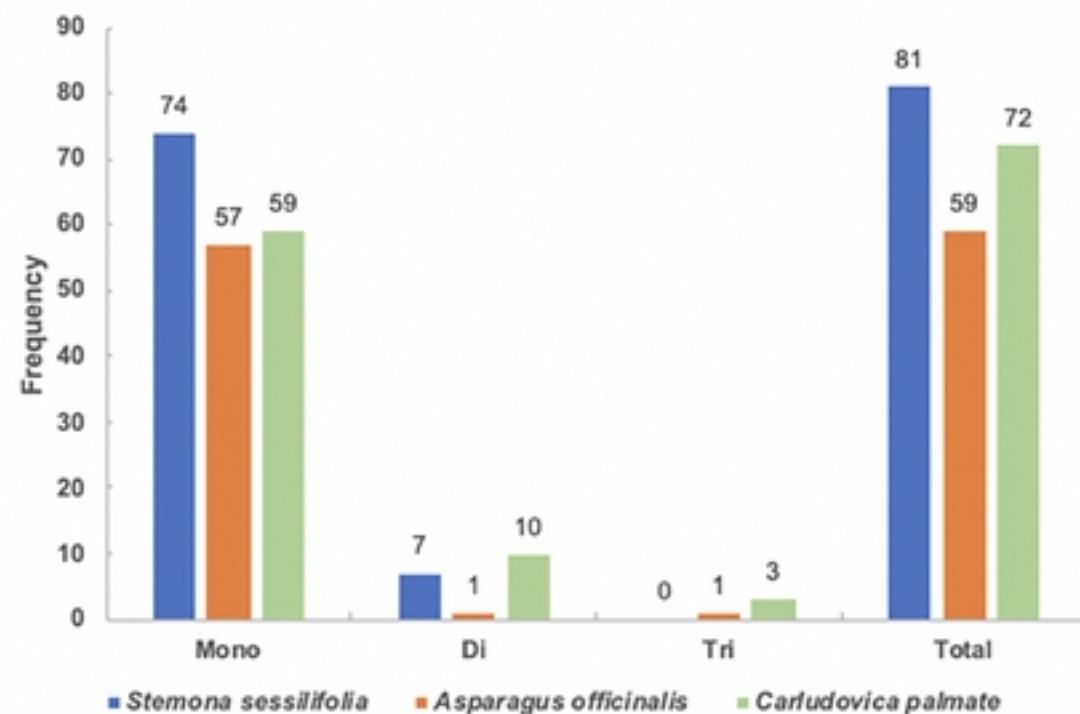
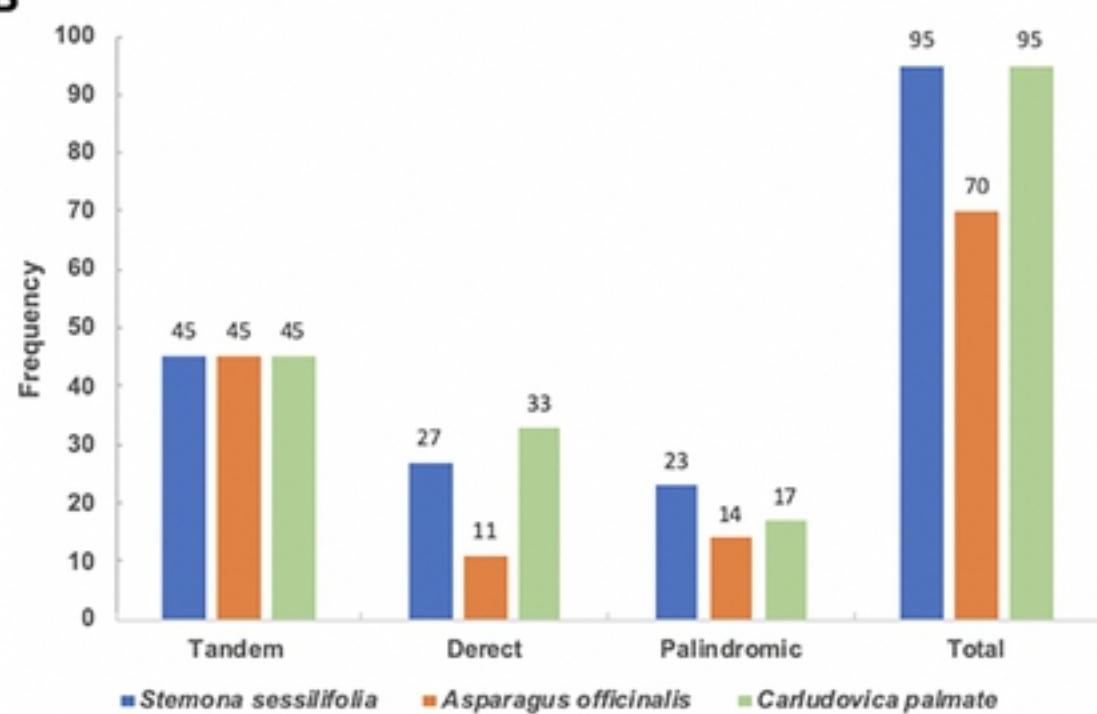
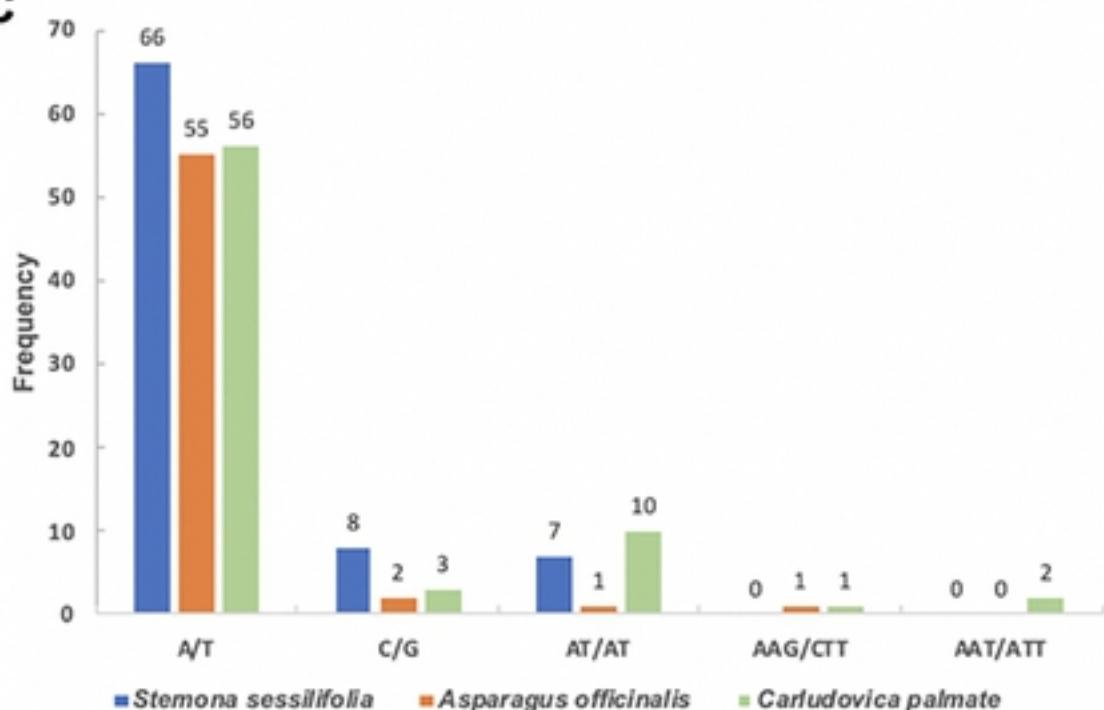





Figure 1

A**B****C****Figure2**

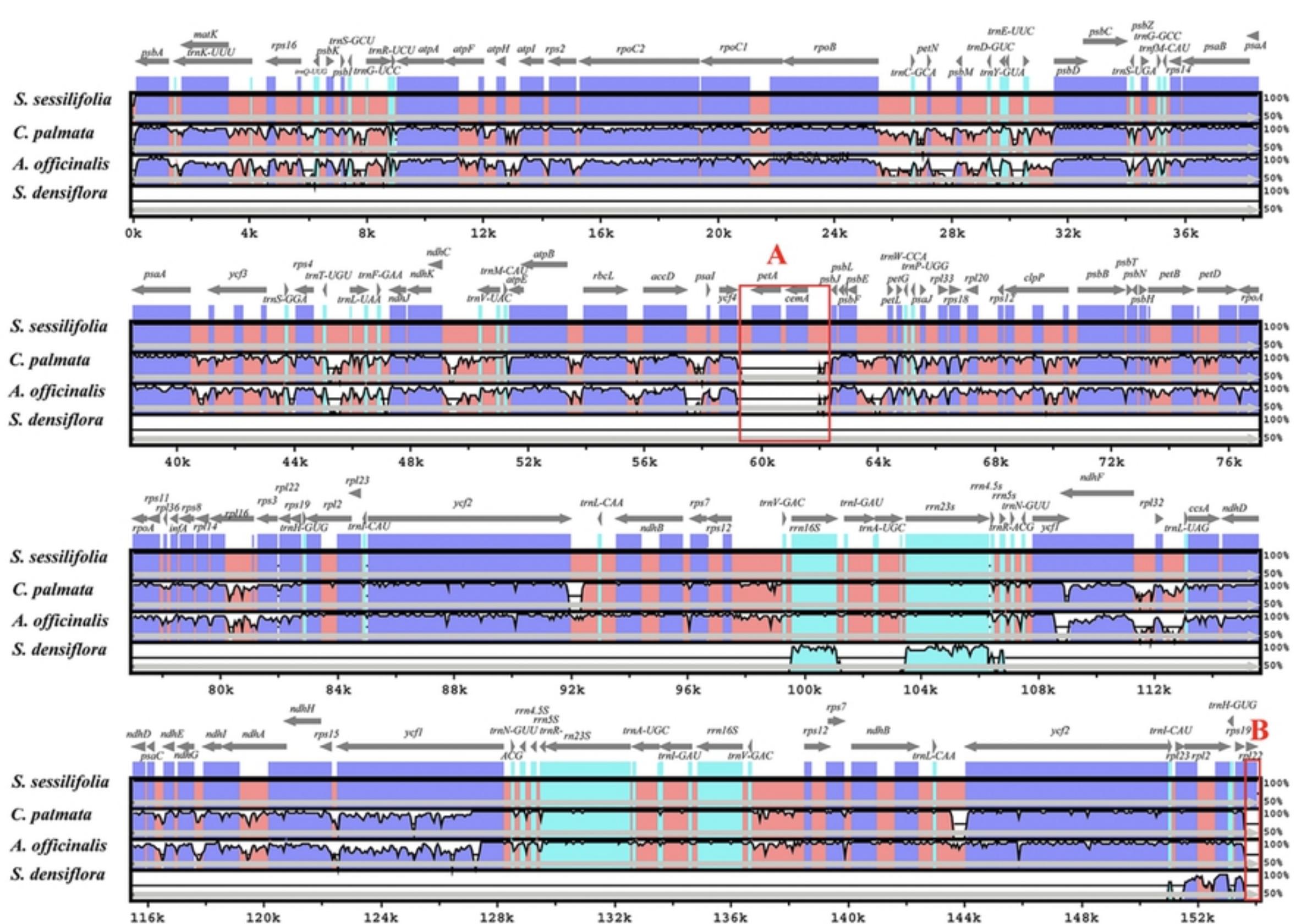


Figure 3

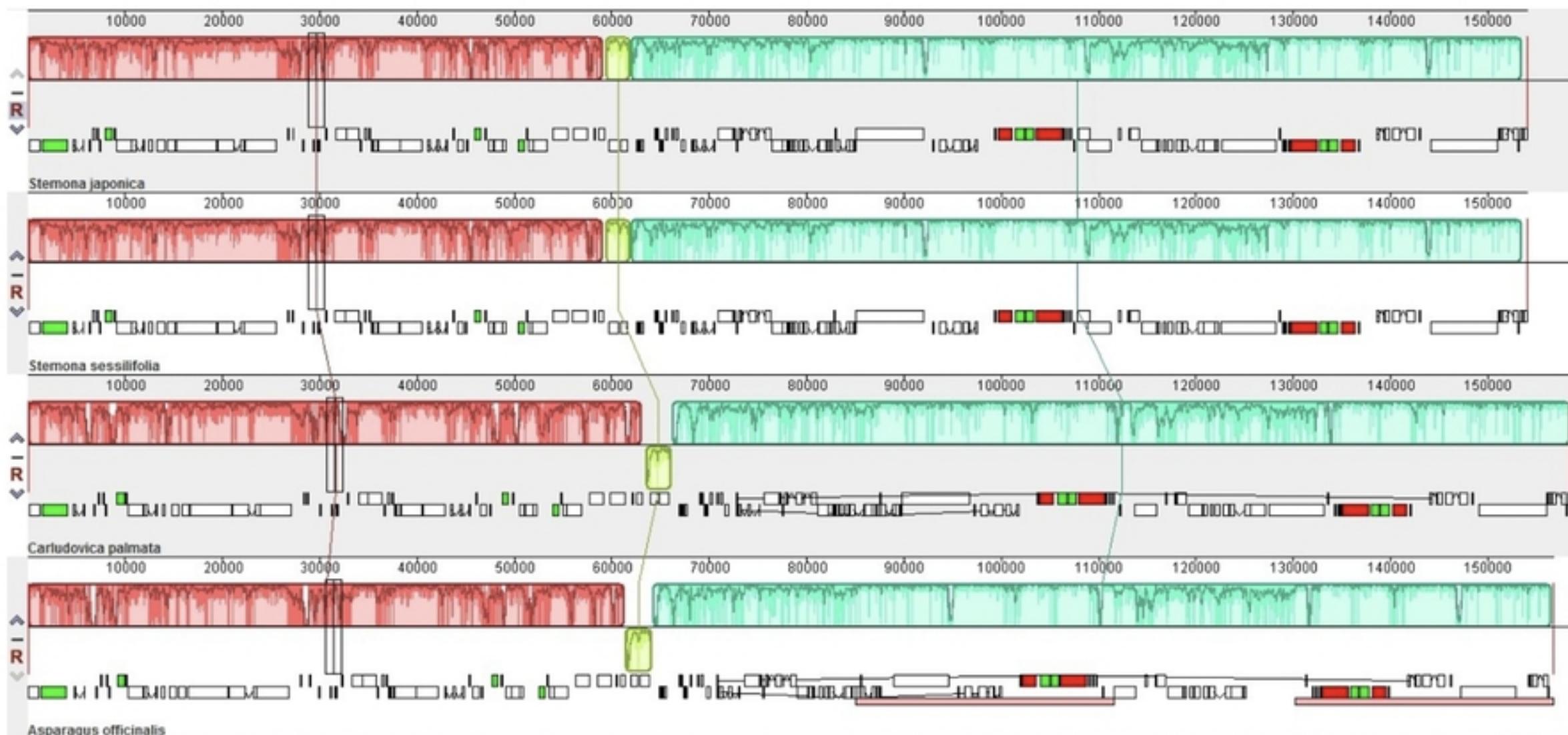


Figure4

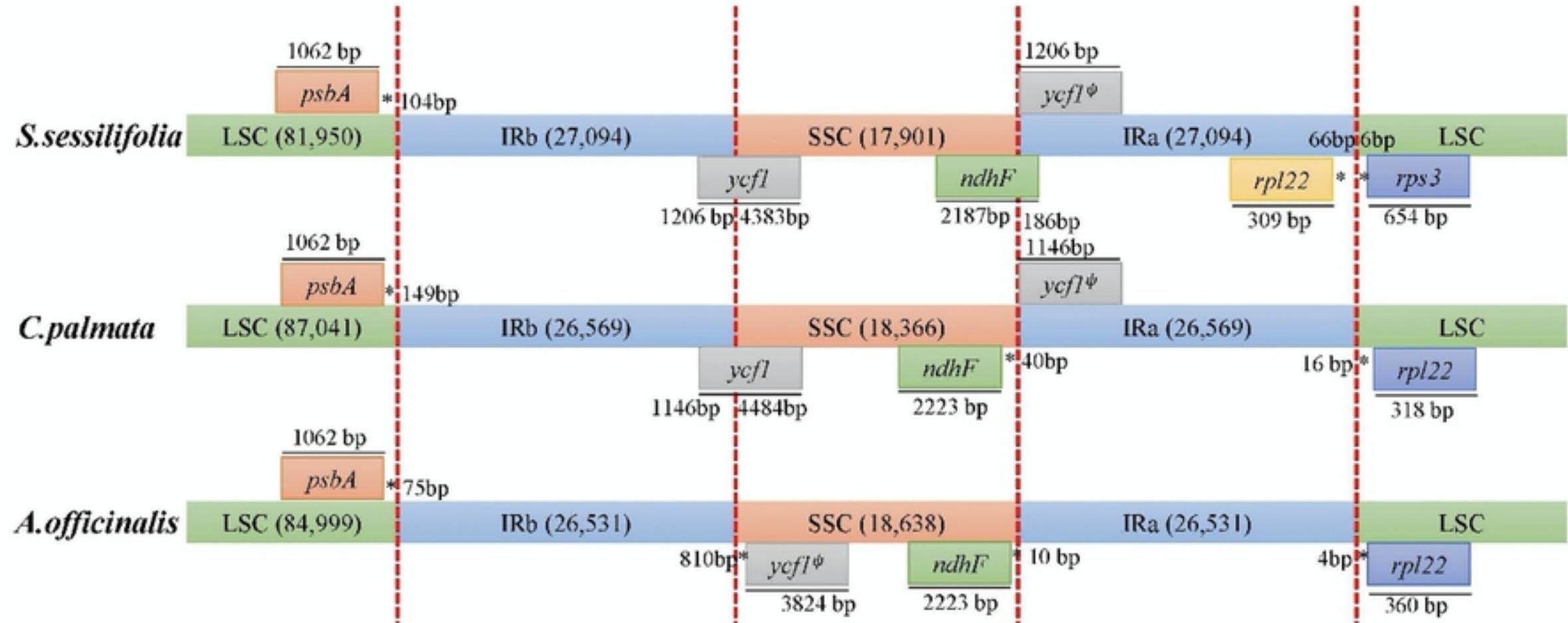


Figure 5

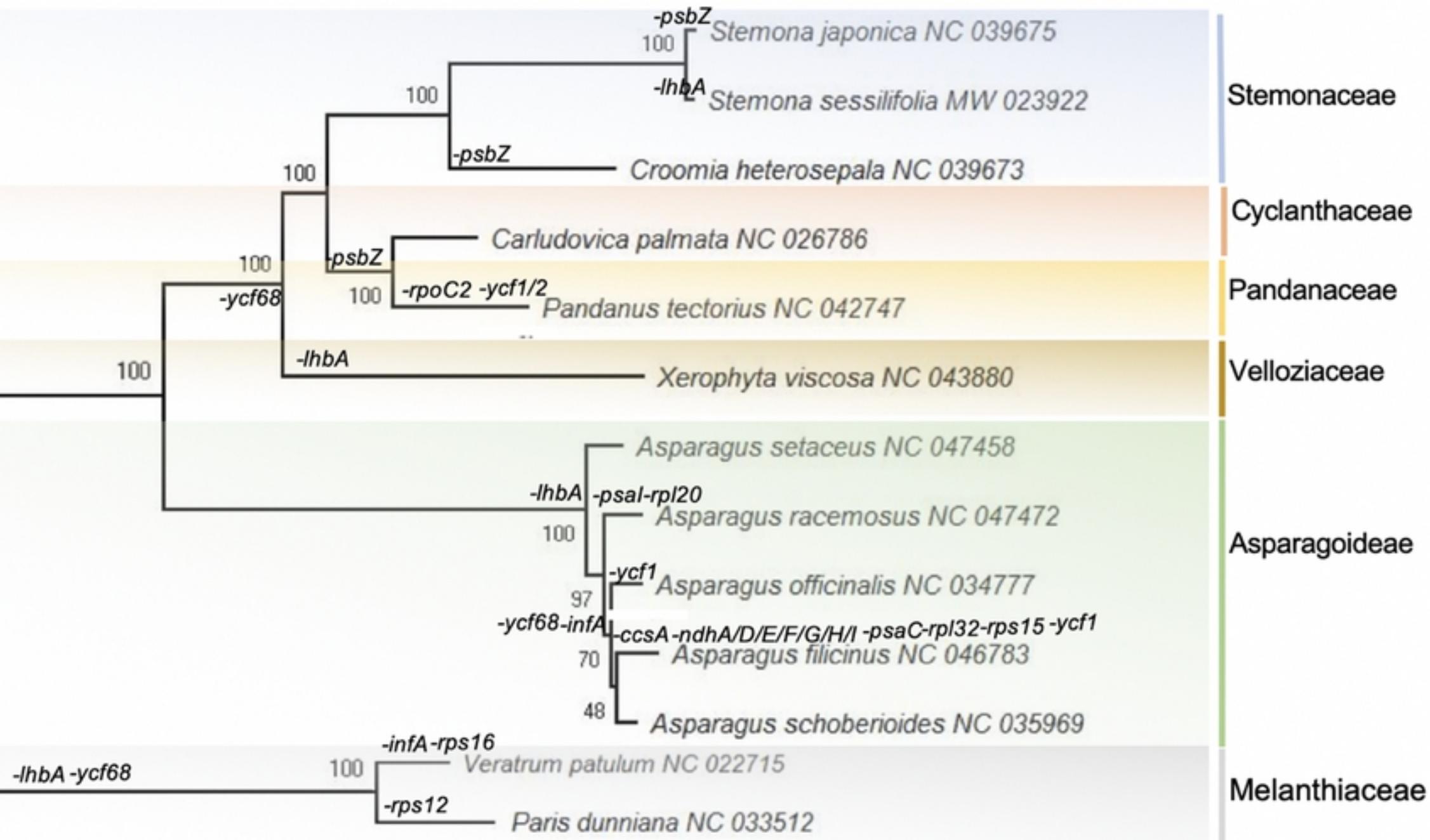


Figure 6