

1 Direct-from-specimen microbial growth inhibition spectrums under antibiotic exposure and comparison to
2 conventional antimicrobial susceptibility testing

3

4 Jade Chen¹, Su Su Soe San¹, Amelia Kung¹, Michael Tomasek¹, Dakai Liu², William Rodgers^{2,3}, Vincent Gau^{1,*}

5

6 ¹GeneFluidics, Los Angeles, California, USA

7 ²Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, Flushing, New York, USA

8 ³Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York,
9 USA

10

11 *corresponding author

12 Email: vgau@genefluidics.com (VG)

13

14 Abstract

15 Increasing global travel and changes in the environment may increase the frequency of contact with a natural
16 host carrying an infection, and therefore increase our chances of encountering microorganisms previously
17 unknown to humans. During an emergency (man-made, natural disaster, or pandemic), the etiology of infection
18 might be unknown at the time of patient treatment. The existing local or global Antimicrobial Stewardship
19 Programs might not be fully prepared for emerging/re-emerging infectious disease outbreaks, especially if they
20 are caused by an unknown organism, engineered bioterrorist attack, or rapidly evolving superbug. We
21 demonstrate an antimicrobial efficacy profiling method that can be performed in hours directly from clinical urine
22 specimens. The antimicrobial potency is determined by the microbial growth inhibition and compared to
23 conventional antimicrobial susceptibility testing (AST) results. The oligonucleotide probe pairs on the sensor
24 were designed to target gram-negative bacteria, specifically *Enterobacterales* and *Pseudomonas aeruginosa*. A
25 total of 10 remnant clinical specimens from the CLIA labs of New York-Presbyterian Queens were tested,
26 resulting in 100% categorical agreement with reference AST methods (Vitek and broth microdilution method).
27 The combined categorical susceptibility reporting of 12 contrived urine specimens was 100% for ciprofloxacin,
28 gentamicin, and meropenem over a range of microbial loads from 10^5 to 10^8 CFU/mL.

29

30 Introduction

31 Direct-from-specimen microbial growth inhibition assessment can assist in emergency preparedness and pre-
32 hospital interventions with timely patient-specific antimicrobial efficacy profiling information. The very concept of
33 empirical therapy is a testament to the reality that the current methods used in clinical microbiology labs are
34 often unable to render information in a time frame that can inform initial treatment decisions [1]. Phenotypic
35 antimicrobial efficacy profiling, where clinical specimens are directly exposed to different antibiotic conditions,
36 could provide critical information for the prescription of antibiotics in hours. The results of a phenotypic
37 antimicrobial efficacy profile test, taken in conjunction with local antibiogram data, could guide the course of
38 therapy to improve patient outcomes and slow the spread of antimicrobial resistance. We demonstrate a

39 molecular test based on the transcriptional responses of causative bacteria to antibiotic exposure directly from
40 urine specimens. Quantification of group-specific or species-specific 16S rRNA growth sequences is used to
41 provide rapid antimicrobial efficacy profiling results, bypassing the necessity of overnight culture for generating
42 isolates. Categorical agreement is assessed with reference AST methods according to CLSI guidelines.

43

44 Even though antibiotics do not directly affect the SARS-CoV-2 respiratory virus responsible for the COVID-19
45 pandemic, physicians are administering many more antibiotics than normal when treating COVID-19 patients
46 [2]. As published in the New England Journal of Medicine, a majority of the surveyed 1,099 COVID-19 patients
47 (58.0%) received intravenous antibiotic therapy in China, while only 35.8% received oseltamivir antiviral therapy
48 [3]. Antibiotic use appears to be surging and higher percentages of COVID-19 patients with severe conditions
49 and pediatric patients (88% in a multicenter pediatric COVID-19 study [4]) received antibiotic therapies. WHO
50 warned that the majority of COVID-19 patients in the U.S. and Europe received similar antibiotic treatments from
51 physicians.⁵ Because viral respiratory infections often lead to bacterial pneumonia, physicians can struggle to
52 identify which pathogen is causing a person's lung problems. A recent study by Zhou et al. [6] found that 15% of
53 191 hospitalized COVID-19 patients - and half of those who died - acquired bacterial infections. Major outbreaks
54 of other respiratory viruses illustrate the same concern: the majority of deaths from the 1918 flu showed autopsy
55 results consistent with bacterial pneumonia, and up to half of the 300,000 people who died of the 2009 H1N1 flu
56 were confirmed to have died from pneumonia [7-8]. Therefore, a shorter time to rule out certain antibiotic options
57 if there is microbial growth under such conditions can provide the physicians valuable information before the
58 availability of conventional AST results.

59

60 Microbial growth inhibition response curves to antibiotic exposure conditions across a range of microbial loads
61 can provide a dynamic and rapid method for estimating antimicrobial efficacy in a much shorter timeframe than
62 the endpoint minimum inhibitory concentration (MIC) method used in conventional AST. Here, we present a
63 method to quantify the 16S rRNA content of viable targets pathogens in raw specimens such as urine following
64 exposure to certain concentrations of an antibiotic *in vitro*, and we have developed a method to interpret the
65 antimicrobial effect by analyzing the differential microbial responses at two dilutions. The hypothesis is that the

66 growth inhibition concentration (GIC) is the lowest concentration necessary to inhibit growth in all strains in a
67 given sample after adjusting for pathogen concentration effects. We compare the GIC reported from this
68 antimicrobial efficacy profiling directly from the specimen with the MIC and susceptibility reporting from CLSI
69 reference methods to obtain the categorical agreement, and we then establish a correlation between the
70 microbiological susceptibility (i.e., MIC) and antimicrobial efficacy (i.e., GIC).

71

72 **Electrochemical-based molecular quantification of RNA transcription** 73 **for streamlined ID and phenotypic AST**

74 Prior to developing antimicrobial efficacy profiling directly from unprocessed specimens, a PCR-less RNA
75 quantification protocol through enzymatic signal amplification with a proprietary electrochemical sensor array
76 was developed, applied to streamlined pathogen identification and AST with species-specific probe pairs,
77 validated and published with contrived and remnant clinical specimens with our clinical collaborators [9-44]. The
78 detection strategy of our universal, electrochemical-based sensors is based on sandwich hybridization of capture
79 and detector oligonucleotide probes which target 16S rRNA. The capture probe is anchored to the gold sensor
80 surface, while the detector probe is linked to horseradish peroxidase (HRP). When a substrate such as 3,3',5,5'-
81 tetramethylbenzidine (TMB) is added to an electrode with capture-target-detector complexes bound to its
82 surface, the substrate is oxidized by HRP and reduced by the bias potential applied onto the working electrode.
83 This redox cycle results in shuttling of electrons by the substrate from the electrode to the HRP, producing
84 enzymatic signal amplification of current flow in the electrode. The concentration of the RNA target captured on
85 the sensor surface can be quantified by the reduction current measured through the redox reaction between the
86 TMB and HRP with a built-in multi-channel potentiostat in our system. The implementation of robotic automation
87 of the molecular quantification of 16S rRNA transcription as a growth marker on the current lab automation
88 system was to address the adaptation into the workflow of a clinical microbiology laboratory and the assay
89 variance caused by manual operation [45]. The centrifugation-based specimen preparation can be performed
90 on our current systems, but manual specimen processing was used in this study for assay parameter
91 optimization. The change in RNA transcription is among the earliest cellular changes upon exposure to

92 antibiotics, long before phenotypic changes in growth can be observed [46]. Quantifying changes in RNA
93 signatures is therefore a particularly appealing approach for slow-growing organisms [47]. Measuring the RNA
94 response of pathogens to antibiotic exposure directly in clinical specimens would provide a rapid susceptibility
95 assessment that can be performed in clinical settings.

96

97 **Material and Methods**

98 **Bacterial strains and antibiotic stripwells**

99 Strains included in this study were obtained from various sources including the CDC AR Bank and New York-
100 Presbyterian Queens (NYPQ) and consisted of the following organisms listed with the number of clinical isolates:
101 11 *Escherichia coli*, 5 *Klebsiella pneumoniae*, and 5 other species as detailed in S1 Table. All clinical isolates
102 were obtained anonymously from remnant patient samples collected for routine culture and were de-identified
103 prior to testing under the approved NYP/Queens Institutional Review Board and joint master agreement. We
104 aimed to test an even distribution of species with MIC values on or near the susceptible and resistant breakpoints
105 of each antibiotic including three representative antibiotics of three different classes (fluoroquinolones,
106 aminoglycosides, and carbapenems): ciprofloxacin (CIP; Cayman Chemical Company, Ann Arbor, MI),
107 gentamicin (GEN; Sigma-Aldrich, St. Louis, MO), and meropenem (MEM; Cayman Chemical Company). CDC
108 AR Bank isolates were used to include representative bacteria susceptibility profiles that were not covered by
109 those from NYPQ. CDC AR Bank isolates were stored as glycerol stocks at -80°C and were grown from these
110 stocks at 35°C on tryptic soy agar plates with 5% sheep's blood (Hardy Diagnostics) for 18-24 hours before
111 testing. Suspensions of each isolate to be used for contriving urine samples were prepared using cation-adjusted
112 Mueller-Hinton II broth and a Grant DEN-1B densitometer (Grant Instruments, Cambridge, UK). Negative urine
113 specimens to be used for testing of contrived samples were stored in Falcon tubes at 4°C. Clinical urine samples
114 from NYPQ were stored in BD 364954 Vacutainer Plus C&S tubes containing boric acid at 4°C prior to overnight
115 shipment for testing. Consumables consisted of stripwells with dried antibiotics, electrochemical-based sensor
116 chips functionalized with oligonucleotide probe pairs complementary to *Enterobacteriales* and *Pseudomonas*
117 *aeruginosa* for RNA quantification, and a reagent kit for lysing and viability culture. Stripwells were prepared by

118 drying antibiotics in DI water with 0.1% Tween onto EIA/RIA 8-well strips (Corning, Corning, NY) at the following
119 concentrations: CIP 0.0625, 0.125, 0.25, 0.5, 1, 2, 4 μ g/mL; GEN 1, 2, 4, 8, 16, 32 μ g/mL; MEM 0.5, 1, 2, 4, 8,
120 16, 32 μ g/mL. The first well of each stripwell was left without antibiotic to be used as a growth control (GC) during
121 the assay.

122

123 **Specimen collection and matrix removal**

124 Urine samples were spun down to remove the majority of matrix components in the supernatant. Specifically,
125 urine samples with 4-mL starting volume were spun in a centrifuge at 5,000 RPM for 5 minutes, after which
126 supernatant was removed and replaced with cation-adjusted MH broth to make 1x and 0.1x inoculums for
127 delivery to the antibiotic exposure stripwells.

128

129 **Electrochemical-based microbial growth quantification**

130 Since there are no commercially available FDA-cleared systems or CLSI reference methods to provide AST
131 results directly from specimens without overnight culture or clinical isolates, the direct-from-specimen
132 antimicrobial efficacy profiling approach presented in this study aims to demonstrate a significant correlation to
133 conventional AST results. The electrochemical-based biosensor measures the reduction current from cyclic
134 enzymatic amplification of an HRP label with TMB and H_2O_2 . The resulting reduction current signal can be
135 estimated with the Cottrell equation [48]. Signal levels (in nanoamps) from each microbial exposure well (no
136 antimicrobial for GC well) were normalized to the one from the GC well and plotted against the spectrum of
137 antimicrobial tested. Two antibiotic exposure stripwells with a spectrum of seven antibiotic concentrations and
138 one GC were used for each specimen at 1x (undiluted pellet) and 0.1x (diluted pellet) to generate two microbial
139 responsive curves. Each dual-response-curve signature was generated by overlaying two GC ratio curves over
140 the antibiotic spectrum, establishing a signature library corresponding to each antimicrobial efficacy and
141 microbial susceptibility combination. Changes in response signature and inflection point in GC curve were
142 analyzed by three algorithms as in the corresponding tables in Supplemental Material to match a categorical
143 classification (susceptible, intermediate, or resistant).

144

145 **Antibiotic exposure stripwell inoculation and molecular quantification**

146

147 One hundred microliters of reconstituted specimen pellets (1x and 0.1x) were inoculated into each well of an
148 AST stripwell. All stripwells were incubated at 35°C for the exposure time indicated in each study. Thirty-six
149 microliters of 1M NaOH were added to each well to lyse target gram-negative pathogens after antibiotic exposure
150 with a 3-minute incubation at room temperature. Twenty-four microliters of 1M HCl were then added to each well
151 to neutralize the pH of the lysed sample, or lysate, and prevent the degradation of free RNA. Ten microliters of
152 the lysate from each well were pipetted to its corresponding sensors on two electrochemical sensor chips (a total
153 of 4 sensors per well). No sample was delivered to the negative control sensors. All chips were incubated for 30
154 minutes at 43°C, and the RNA content was quantified for microbial growth response as described above.

155

155 **Clinical feasibility validation with blind clinical specimens**

156

157 The clinical specimens for the blind testing study were remnant specimens collected at NYPQ under the current
158 IRB. Incoming urine specimens for urine culture as part of routine care with confirmed positives for either
159 *Enterobacterales* or *Pseudomonas aeruginosa* were shipped overnight to GeneFluidics for testing. De-
160 identification and data analysis were performed by administrative staff. Species belonging to the
161 *Enterobacterales* family such as *Escherichia coli*, *Klebsiella* spp., and *Enterobacter* spp. are the major cause of
162 urinary tract infections, blood-stream infections, and healthcare-associated pneumonia [49-50]. The
163 *Enterobacterales* family and *Pseudomonas aeruginosa* were selected due to their increasing resistance to
164 commonly used antimicrobial agents [51].

165

165 **Statistical analysis**

166

167 Signals generated from each sensor from enzymatic reaction with TMB substrate were analyzed with three
168 different algorithms for comparison. Before reporting GC ratio, the algorithm first assessed the signal level from
169 the negative and growth controls from each sensor chip. If either control was out of the acceptable range (i.e.,
greater than 50 nA for the negative control, less than 50 nA for the growth control), the algorithm reported "NC

170 fail" or "GC fail", respectively, indicating substandard quality of a sensor chip or no bacterial growth. If all controls
171 passed the acceptance criteria, the algorithm proceeded to determine the inflection point from the GC ratio plot
172 against the antibiotic spectrum. The antibiotic concentration corresponding to the inflection point was estimated
173 by two algorithms (inhibited growth cutoff and maximum inhibition) and reported as the growth inhibition
174 concentration (GIC). The inhibited growth cutoff method reported the highest antibiotic concentration with a GC
175 ratio lower than a predetermined cutoff value, so the GIC was determined solely based on the signal level from
176 each antibiotic exposure condition normalized to the one from the growth control. Initial assessment used both
177 0.4 and 0.5 as cutoff values with on-scale strains to determine the final cutoff value. The maximum inhibition
178 method reported the GIC as the highest antibiotic concentration after the maximum GC reduction in a
179 microbiological response plot against a series of 2-fold dilutions of the antibiotic of interest, so the GIC
180 corresponded to the greatest change in the slope of the response curve as a whole instead of signal levels. If
181 the GC value from the lowest antibiotic concentration was less than 0.45, indicating significant growth inhibition,
182 the GIC was reported as less than the lowest antibiotic concentration tested. If the GC value from the highest
183 antibiotic concentration was higher than 0.9, indicating very limited growth inhibition, the GIC was reported as
184 larger than the highest antibiotic concentration tested. The first level of analysis was qualitative, whereby the
185 antimicrobial efficacy profiles (significant growth, moderate growth, and inhibited growth) derived from the GIC
186 were compared to the corresponding antibiotic susceptibility results (R for resistant, I for intermediate, or S for
187 susceptible) from the clinical microbiology lab or CLSI reference methods.

188
189 Any direct-from-specimen antimicrobial efficacy profiles found to be misclassified (i.e., GIC higher than the
190 susceptible breakpoint for a susceptible strain) were retested with both growth inhibition and microdilution
191 reference methods. Categorical agreements were calculated for each specimen type. As a second level of
192 analysis for GIC to MIC comparison only, the discrepant GIC/MIC values (i.e., GIC 2-fold above or below the
193 MIC value from the clinical microbiology lab) were retested and compared to the microdilution reference method.
194 Essential agreements were calculated for each specimen type.

196

Results

197 There is always a valid concern about the detection sensitivity and matrix interference when developing a direct-
198 from-specimen microbial growth inhibition test without the need of an overnight cultured isolate. Since the direct-
199 from-specimen microbial growth inhibition test starts with a specimen with unknown pathogen concentration from
200 0 to $> 10^8$ CFU/mL in different specimen types, the correlation between the limit of detection (LOD) of the current
201 molecular analysis platform with the assay turnaround time (TAT) was established in Fig 1 in order to determine
202 the minimum assay time needed for quantification of RNA transcription at different levels of pathogen
203 concentrations. As shown in Fig 1C, the TAT and dynamic range of ID can be configured to be from 16 minutes
204 to 36 minutes by adjusting the analyte incubation time for higher target LODs. Target pathogen enrichment and
205 matrix component removal can be carried out by centrifugation to achieve lower target LODs with TAT of 42
206 minutes to 110 minutes. For low-abundance pathogens and early infection diagnostics, additional viability culture
207 steps with TAT of 4 to 5.5 hours can be included to achieve an LOD of < 10 CFU/mL. The direct-from-specimen
208 antimicrobial efficacy profiling protocol was based on these assay parameters summarized in Fig 1D.

209

210

Fig 1. Calibration curves of configurable ID protocols with various TAT and LODs.

211

(A) TAT for “low” pathogen concentrations, (B) “medium” pathogen concentrations, (C) “high” pathogen
212 concentrations. (D) Summary of various TAT and LOD.

213

214

We first focus on the feasibility of assessing microbial growth inhibition without the potential interference of matrix
215 effects by using contrived samples in culture media (Mueller Hinton Broth, Sigma-Aldrich) with one of two clinical
216 isolates with distinct susceptibilities. The initial evaluation was conducted with highly susceptible *E. coli* (EC69,
217 MIC ≤ 0.06 μ g/mL for ciprofloxacin) and highly resistant *K. pneumoniae* (KP79, MIC: >8 μ g/mL for ciprofloxacin)
218 strains from the CDC AR Bank (Fig 2). Since the goal of the pilot study was to investigate the potential
219 interference in urine, the spiked concentration was set to 10^7 CFU/mL. Three antibiotic exposure times (30, 60,
220 and 90 minutes) were tested as primary parameters for optimization. Microbial growth inhibition was plotted with
221 the signal ratios normalized to the one from the growth control, GC ratio, against the ciprofloxacin concentrations
222 tested ranging from 0.0625 μ g/mL (two 2-fold dilutions under the *Enterobacteriales* susceptible breakpoint) to 4

223 $\mu\text{g/mL}$ (two 2-fold dilutions above the *Enterobacterales* resistant breakpoint). As shown in Fig 2A, all microbial
224 response curves of resistant *K. pneumoniae* CDC 79 (no-fill pattern) were overlapping at the GC ratios at around
225 1.0 (see S2 Table for GIC reporting from all three algorithms), indicating no inhibited growth no matter how long
226 the exposure time was. However, there was a clear trend of inhibited growth with lower GC ratios with the
227 susceptible *E. coli* CDC 69 (gradient pattern), indicating more significant inhibited growth while increasing the
228 exposure time or ciprofloxacin concentration. The reported GIC value from the Maximum Inhibition algorithm
229 (see Algorithm section for details) is listed to the right of each response curve. We then repeated the same
230 protocols with the contrived urine samples to evaluate the impact of the urine matrix components in Fig 2B. The
231 bolded GIC value (S strain in MH 30 min, S strain in urine 30 min, S strain in urine 60 min) represents incorrect
232 categorical susceptibility reporting, which occurs when the exposure time is insufficient. The microbial growth
233 inhibition curves from contrived urine samples in Fig 2B exhibit identical characteristics as those in culture media
234 in Fig 2A. This suggests the supernatant removal step is efficient enough to remove urine matrix, but not too
235 harsh to put the pathogen into the stationary phase.

236
237 Since a shorter antimicrobial exposure time might result in errors in categorical susceptibility reporting due to
238 insignificant growth inhibition of susceptible strains compared to resistant ones as shown in Figs 2A and 2B
239 without a more sophisticated algorithm, we suspected the similar insignificant growth inhibition separation could
240 occur if the microbial load is much higher than the standard inoculum density of $5 \times 10^5 \text{ CFU/mL}$. We needed to
241 adjust the antibiotic exposure time and the matrix interference reduction procedures for each specimen types for
242 the maximum differential antimicrobial efficacy profiling between susceptible and resistant strains over a
243 physiological range of microbial loads. Contrived urine samples were used at three different microbial loads
244 against a different class of antibiotic. To explore biological, chemical and molecular analytical limitations, shorter
245 antibiotic exposure times were used for urine samples in Fig 2C to assess the separation of responses curves
246 from both resistant and susceptible strains. Antimicrobial efficacy profiling tests directly from urine contrived
247 samples were evaluated. Based on the trend of GC ratio changing along the increasing meropenem
248 concentrations (0.5 to 32 $\mu\text{g/mL}$), the GIC would be reported as “susceptible” (\leq S-breakpoint of 1 $\mu\text{g/mL}$ for
249 meropenem) for *E. coli* CDC 77 (MIC: $\leq 0.12 \mu\text{g/mL}$) and “resistant” (\geq R-breakpoint of 4 $\mu\text{g/mL}$ for meropenem)

250 for *E. coli* CDC 55 (MIC: > 8 μ g/mL), which agree with the categorical susceptibility from CDC AR Bank even
251 though the reported GIC was not exactly the same as the MIC value.
252 To establish a higher correlation between the MIC and GIC values it would be necessary to incorporate the
253 impact of inoculum effect on the GIC reporting, which is not within the scope of this initial study. With higher
254 contrived concentrations, we expect the inflection point would be higher due to the higher bug-to-drug ratio. Even
255 for susceptible strains, microbial growth can be observed at low antibiotic exposure concentrations at or below
256 the susceptible breakpoint if the microbial load is higher than the typical inoculation concentration at 5×10^5
257 CFU/mL.

258

259 **Fig 2. Investigation of matrix interference components and starting inoculum concentration.**

260 (A) Ciprofloxacin antimicrobial efficacy profiling in MH broth and (B) direct-from-urine ciprofloxacin antimicrobial
261 efficacy profiling using very susceptible (*E. coli* CDC 69) and very resistant (*K. pneumoniae* CDC 79) strains
262 from the CDC AR bank. (C) Direct-from-specimen meropenem antimicrobial efficacy profiling with 2-hr exposure
263 for urine with very susceptible (*E. coli* CDC 77) and resistant strains (*E. coli* CDC 55). Bolded GIC values indicate
264 incorrect categorical susceptibility as in short exposure time (30 or 60 min.) in Figs 2A and 2B or high microbial
265 load (10^8 CFU/mL) in Fig 2C.

266

267 Because Fig 2C only demonstrated the feasibility to differentiate highly susceptible from highly resistant strains,
268 which do not represent all clinical strains, we wanted to evaluate the growth inhibition curves with on-scale strains
269 (with an MIC value on or near the susceptible or resistant breakpoints) with *E. coli* CDC 1 with an MIC of 4 μ g/mL
270 for gentamicin (on susceptible breakpoint), *E. coli* CDC 85 with an MIC of 1 μ g/mL for meropenem (on susceptible
271 breakpoint), *K. pneumoniae* CDC 80 with an MIC of 0.5 μ g/mL for ciprofloxacin (on intermediate breakpoint) and
272 the exposure time at 2, 3 and 4 hours. General susceptibility trends with inhibited growth were observed at 2, 3
273 and 4 hours as shown in Fig 3 with different slopes along the antibiotic exposure conditions (1 to 32 μ g/mL for
274 gentamicin, 0.5 to 32 μ g/mL for meropenem, and 0.0625 to 4 μ g/mL for ciprofloxacin). The GIC values reported
275 for *E. coli* CDC 1 were all at 2 μ g/mL for all exposure times, and they were within one two-fold dilution of the MIC
276 (see S3 Table for GIC reporting from all three algorithms). In addition, the categorical susceptibility indicated in

277 the parentheses is correctly reported as susceptible. The GIC values for *E. coli* CDC 85 moved up from ≤ 0.5 to
278 2 $\mu\text{g}/\text{mL}$ when meropenem exposure time was increased from 2 to 4 hours. Even though the GIC values at all
279 three exposure times were within one dilution of the MIC for *E. coli* CDC 85, longer exposure times strongly align
280 the GIC with the MIC value. The reproducibility of GIC reporting from two different batches of stripwell (010621
281 and 112420) was evaluated in Figs 3C and 3D, and the GIC reporting was consistent at all three conditions. The
282 initial GIC reporting with just two hours of ciprofloxacin exposure was 0.5 $\mu\text{g}/\text{mL}$ for both batches, and it agreed
283 with the MIC values from CDC AR Bank database. However, the GIC value transitioned to 0.125 $\mu\text{g}/\text{mL}$ with
284 longer exposure time. The MIC from the microdilution method for *K. pneumoniae* CDC 80 was 0.25 $\mu\text{g}/\text{mL}$, which
285 is within one two-fold dilution from the GIC reporting in all exposure times with both batches of stripwell.

286

287 **Fig 3. Varying antibiotic exposure times for direct-from-urine antimicrobial efficacy profiling of on-scale**
288 **strains for different antibiotics classes.** (A) Gentamicin responses. (B) Meropenem responses. (C, D)

289 Ciprofloxacin responses with different stripwell batches. Bolded GIC values indicate incorrect categorical
290 susceptibility.

291

292 After demonstrating that 3 hours of exposure time is sufficient for determining categorical susceptibility based
293 on the reported GIC compared to the one based on the MIC reported from the microdilution reference method,
294 we explored the ability to differentiate bacterial strains with on-scale MIC values over the range on or near the
295 susceptible and resistant breakpoints in Fig 4. Fig 4A shows the growth inhibition responses to ciprofloxacin from
296 *E. coli* (EC69: MIC ≤ 0.0625 $\mu\text{g}/\text{mL}$, EC85: MIC > 8 $\mu\text{g}/\text{mL}$) and *K. pneumoniae* (KP126: MIC= 0.125 $\mu\text{g}/\text{mL}$, KP80:
297 MIC= 0.5 $\mu\text{g}/\text{mL}$, KP76: MIC= 1 $\mu\text{g}/\text{mL}$), and there is a clear trend in the shift of GIC (from ≤ 0.06 $\mu\text{g}/\text{mL}$ to > 4
298 $\mu\text{g}/\text{mL}$) along with the MIC values (from ≤ 0.06 $\mu\text{g}/\text{mL}$ to > 8 $\mu\text{g}/\text{mL}$). See S4 Table for GIC reporting from all three
299 algorithms. Similarly, the growth inhibition responses to gentamicin from *K. pneumoniae* (KP126: MIC \leq
300 0.25 $\mu\text{g}/\text{mL}$, KP79: MIC > 16 $\mu\text{g}/\text{mL}$) and *E. coli* (EC1: MIC= 4 $\mu\text{g}/\text{mL}$, EC451: MIC= 8 $\mu\text{g}/\text{mL}$, EC543: MIC= 16
301 $\mu\text{g}/\text{mL}$) are illustrated in Fig 4B, and there is a clear trend in the shift of GIC (from ≤ 1 $\mu\text{g}/\text{mL}$ to > 32 $\mu\text{g}/\text{mL}$) along
302 with the MIC values (from ≤ 0.25 $\mu\text{g}/\text{mL}$ to > 16 $\mu\text{g}/\text{mL}$). The categorical susceptibility of all susceptible and
303 resistant strains was reported correctly based on the reported GIC value except the two intermediate strains

304 (KP80 for ciprofloxacin and EC451 for gentamicin). Both intermediate strains reported a GIC value two-fold lower
305 than the MIC values from the reference methods. The essential agreement based on MIC/GIC values are
306 acceptable, but both intermediate strains had minor errors according to the CLSI M100 and FDA Class II Special
307 Controls Guidance for AST systems [52-53].
308

309 **Fig 4. Direct-from-urine antimicrobial efficacy profiling of pathogens with a range of on-scale MIC values.**
310 All urine specimens contrived at 10^6 CFU/mL. (A) Ciprofloxacin responses. (B) Gentamicin responses. Bolded
311 GIC values indicate incorrect categorical susceptibility.

312
313 As shown in bolded GIC values, categorical susceptibility reporting (susceptible, intermediate or resistant) might
314 be incorrect if the antimicrobial exposure time is too short (Figs 2A, 2B, and 3B), microbial load is too high (Fig
315 2C), or the MIC is on intermediate or resistant breakpoints (Figs 3C-D and 4A-B). Besides extending the
316 antimicrobial exposure time, especially for time-dependent antibiotics such as meropenem, we explored the
317 feasibility of a dual-kinetic response approach to cover a broader range of microbiological responses by
318 inoculating two sets of seven antimicrobial concentrations in two antibiotic stripwells with clinical specimens at
319 the original concentration (1x) and the 10-fold dilution (0.1x). Additionally, to ensure that the current GIC reporting
320 algorithm is correlated with the microbial susceptibility and MIC values throughout the physiological range, a set
321 of microbial loads in urine (10^5 to 10^8 CFU/mL) were tested in Fig 5, and the GIC was calculated from the dual
322 kinetic (1x and 0.1x) curves. The inflection point shifted toward higher antibiotic concentrations with higher
323 microbial loads, but the GICs were the same without the inoculum effect adjustment (see S5 Table for GIC
324 reporting from all three algorithms). In Fig 5B, the growth inhibition curves of 1x and 0.1x of 10^6 CFU/mL overlap
325 with each other in the insert graph, even though the signal levels of these two sets of curves were very different.
326 Because the microbial load from 10^5 to 5×10^5 CFU/mL and from 5×10^5 to 10^6 CFU/mL is the same (2-fold), the
327 symmetrical characteristics result in overlapping GC ratio curves. Figs 5A-D show the transition of GIC reporting
328 from ≤ 0.0625 $\mu\text{g}/\text{mL}$ (susceptible), 0.125 $\mu\text{g}/\text{mL}$ (susceptible), to 1 $\mu\text{g}/\text{mL}$ (resistant). The categorical
329 susceptibility reporting of “susceptible” was correct over a range from 10^4 CFU/mL (0.1x of 10^5 CFU/mL) to 10^7
330 CFU/mL (0.1x of 10^8 CFU/mL). The GIC value jumped from 0.125 $\mu\text{g}/\text{mL}$ (0.1x of 10^8 CFU/mL) to 1 $\mu\text{g}/\text{mL}$ (1x

331 of 10^8 CFU/mL) as shown in Fig 5D. Similar microbial responses were observed in the rapid ciprofloxacin
332 exposure study with the same *E. coli* CDC 69 strain in Fig 2B; the GIC value jumped from 0.0625 $\mu\text{g/mL}$ (90-min
333 exposure) to 1 $\mu\text{g/mL}$ (30-min and 60-min exposure). The GC signal levels as shown in S5 Table were saturated
334 at 10,000 nA for 10^7 and 10^8 CFU/mL, so the reported GIC value is expected to be higher than the MIC values
335 due to the inoculum effect.

336

337 **Fig 5. Direct-from-urine ciprofloxacin antimicrobial efficacy profiling with dual kinetic curves on**
338 **different contrived urine concentrations.** Dual kinetic curves for *E. coli* CDC 69 with MIC of $\leq 0.0625 \mu\text{g/mL}$
339 at starting sample concentrations of (A) 10^5 CFU/mL, (B) 10^6 CFU/mL, (C) 10^7 CFU/mL, (D) 10^8 CFU/mL. The
340 bolded GIC value indicates incorrect categorical susceptibility.

341

342 The combined categorical susceptibility reporting as shown in Table 1 of the dual-kinetic-curve response in Fig
343 5 using the Maximum Inhibition algorithm is the maximum GC reduction in both microbiological response plots,
344 so the combined GIC corresponds to the greatest change in the slope of both response curves. Table 1 is the
345 summary of the individual and combined GIC reporting from all contrived concentrations in Fig 5. Since the
346 combined categorical susceptibility is determined by the largest GC ratio change in an extended antimicrobial
347 spectrum (1x and 0.1x combined), it represents the most significant growth inhibition caused by the antimicrobial
348 exposure throughout the entire spectrum. Even though there was one categorical susceptibility reporting error
349 in the 1x curve in Fig 5D, all combined categorical susceptibility reports were correct for all conditions. The
350 purpose of the combined GIC reporting from a dual-kinetic-curve response is to only report the maximum growth
351 inhibition and discard GIC reporting errors due to very high or very low microbial loads.

352

353 **Table 1. Ciprofloxacin growth inhibition concentration reporting for Fig 5.**

Contrived concentration	1X response GIC ($\mu\text{g/mL}$)	0.1X response GIC ($\mu\text{g/mL}$)	Combined response GIC ($\mu\text{g/mL}$)	Combined categorical susceptibility
10^5 CFU/mL	≤ 0.0625	≤ 0.0625	≤ 0.0625	Susceptible (categorical correct)

10^6 CFU/mL	≤ 0.0625	≤ 0.0625	≤ 0.0625	Susceptible (categorical correct)
10^7 CFU/mL	≤ 0.0625	≤ 0.0625	≤ 0.0625	Susceptible (categorical correct)
10^8 CFU/mL	1	0.125	0.125	Susceptible (categorical correct)

354 GIC reporting of original sample (1X), dilution (0.1X), and combined dual-curve response of a ciprofloxacin-
355 susceptible strain with an MIC of ≤ 0.0625 μ g/mL.

356

357 To evaluate the correlation of the GIC reporting algorithm to the microbial susceptibility and MIC values
358 throughout the physiological range with other antimicrobial classes, the same set of microbial loads in urine (10^5
359 to 10^8 CFU/mL) were repeated with gentamicin in Fig 6 and meropenem in Fig 7. The reported GIC value of
360 each response curve from the dual kinetic (1x and 0.1x) curves from the Maximum Inhibition algorithm is listed
361 in the graph. See S6 and S7 Tables for GIC reporting from all three algorithms. Figs 6 A-D show the transition
362 of GIC reporting for gentamicin from ≤ 1 μ g/mL (susceptible), 4 μ g/mL (susceptible), 8 μ g/mL (intermediate), to
363 16 μ g/mL (resistant). The categorical susceptibility reporting of “susceptible” was correct over a range of 10^4
364 CFU/mL (0.1x of 10^5 CFU/mL) to 10^6 CFU/mL (0.1x of 10^7 CFU/mL). A reporting of 8 μ g/mL GIC from 10^7
365 CFU/mL (1x of 10^7 CFU/mL and 0.1x of 10^8 CFU/mL) is one dilution higher than the MIC of 4 μ g/mL, and it is
366 acceptable for essential agreement but a minor error for categorical agreement. The GIC reporting of 16 μ g/mL
367 from 10^8 CFU/mL was a major error. The GC signal levels as shown in S6 Table were saturated at 10,000 nA
368 for 10^7 and 10^8 CFU/mL, so the reported GIC value is expected to be higher than the MIC values due to the
369 inoculum effect.

370

371 **Fig 6. Direct-from-urine gentamicin antimicrobial efficacy profiling with dual kinetic curves on different**
372 **contrived urine concentrations.** Dual kinetic curves for *E. coli* CDC 451 with MIC of 4 μ g/mL at starting
373 sample concentrations of (A) 10^5 CFU/mL, (B) 10^6 CFU/mL, (C) 10^7 CFU/mL, (D) 10^8 CFU/mL. Bolded GIC
374 values indicate incorrect categorical susceptibility.

375

376 Table 2 is the summary of the individual and combined GIC reporting from all contrived concentrations in Fig 6.
377 The MIC value of *E. coli* CDC 451 is 8 μ g/mL and therefore intermediate, but our microdilution indicated the MIC

378 was 4 $\mu\text{g/mL}$ and would be classified categorically as susceptible. The combined response GIC for Fig 6C and
379 6D would be 8 $\mu\text{g/mL}$ to report the maximum growth inhibition, but the combined GIC was adjusted due to signal
380 level saturated at the growth control (GC) and low antibiotic concentrations (1 and 2 $\mu\text{g/mL}$ in 1x response curve
381 in Fig 6C, 1 – 8 $\mu\text{g/mL}$ in 1x response curve and 1-4 $\mu\text{g/mL}$ in 0.1x response curve in Fig 6D). The electrochemical
382 current reading is set to saturate at 10,000 nA to maximize the resolution at lower current readings around the
383 limit of detection. So, the reading would be saturated if the microbial load were too high ($>10^8 \text{ CFU/mL}$). The
384 reported GIC was adjusted one dilution down for every antibiotic concentration reported saturated at 10,000 nA.
385 So the GIC reporting of combined responses from Figs 6C and 6D was adjusted from 8 $\mu\text{g/mL}$ to 4 $\mu\text{g/mL}$. There
386 were three categorical susceptibility reporting errors in Figs 6C and 6D compared to the microdilution, and all
387 combined categorical susceptibility reporting were correct for all conditions.

388

389 **Table 2. Gentamicin growth inhibition concentration reporting for Fig 6.**

Contrived concentration	1X response GIC ($\mu\text{g/mL}$)	0.1X response GIC ($\mu\text{g/mL}$)	Combined response GIC ($\mu\text{g/mL}$)	Combined categorical susceptibility
10^5 CFU/mL	≤ 1	4	4	Susceptible (categorical correct)
10^6 CFU/mL	4	4	4	Susceptible (categorical correct)
10^7 CFU/mL	$8 \rightarrow 4$	4	4	Susceptible (categorical correct)
10^8 CFU/mL	$16 \rightarrow 8$	$8 \rightarrow 4$	4	Susceptible (categorical correct)

390 GIC reporting of original sample (1X), dilution (0.1X), and combined dual-curve response of a gentamicin
391 susceptible strain with an MIC of 4 $\mu\text{g/mL}$.

392

393 Similar results were observed for the same study with meropenem in Fig 7. The reported GIC transitioned from
394 $\leq 0.5 \mu\text{g/mL}$ (susceptible), 4 $\mu\text{g/mL}$ (susceptible), to 32 $\mu\text{g/mL}$ (resistant). The categorical susceptibility reporting
395 of “resistant” was correct over a range of 10^5 CFU/mL to 10^8 CFU/mL . A reporting of $\leq 0.5 \mu\text{g/mL}$ GIC from 10^4
396 CFU/mL (0.1x of 10^5 CFU/mL) was a very major error for categorical agreement, but the GC signal level as

397 shown in S7 Table was 39 nA, which is considered “no growth.” No GIC value would be reported in the case of
398 GC failure (<50 nA).
399

400 Table 3 is the summary of the individual and combined GIC reporting in Fig 7. The MIC value of *K. pneumoniae*
401 CDC 79 is 8 µg/mL as listed in CDC AR bank database, but our microdilution indicated the MIC was 4 µg/mL.
402 The combined response GIC for Figs 7A and 7D would be 0.5 and 32 µg/mL, respectively, to report the maximum
403 growth inhibition, but the combined GIC was adjusted due to growth control failure (39 nA for 0.1x of 10^5 CFU/mL)
404 and the signal level saturated at the growth control (GC) and five low antibiotic concentrations (0.5 to 16 µg/mL
405 in 1x response curve in Fig 7D). Originally, there was only one categorical susceptibility reporting error in Fig 7A,
406 but it would not be reported due to GC fail. All combined categorical susceptibility reports were correct for all
407 conditions.
408

409 **Fig 7. Direct-from-urine meropenem antimicrobial efficacy profiling dual kinetic curves for different**
410 **starting sample concentrations.** Dual kinetic curves for *K. pneumoniae* CDC 79 with MIC of 4 µg/mL at
411 starting sample concentrations of (A) 10^5 CFU/mL, (B) 10^6 CFU/mL, (C) 10^7 CFU/mL, (D) 10^8 CFU/mL. Bolded
412 GIC values indicate incorrect categorical susceptibility.

413
414 **Table 3. Meropenem growth inhibition concentration reporting for Fig 7.**

Contrived concentration	1X response GIC (µg/mL)	0.1X response GIC (µg/mL)	Combined response GIC (µg/mL)	Combined categorical susceptibility
10^5 CFU/mL	4	≤ 0.5	4	Resistant (categorical correct)
10^6 CFU/mL	4	4	4	Resistant (categorical correct)
10^7 CFU/mL	4	4	4	Resistant (categorical correct)
10^8 CFU/mL	$32 \rightarrow 20$	4	20	Resistant (categorical correct)

415 GIC reporting of original sample (1X), dilution (0.1X), and combined dual-curve response of a meropenem-
416 resistant strain with an MIC of 4 µg/mL.

417

418 After the initial validation of the presented microbial growth inhibition response curves to antibiotic exposure
419 conditions with CDC clinical strains, we conducted a pilot feasibility study on blinded urine specimens from
420 NYPQ. De-identified clinical remnant specimens were shipped overnight to GeneFluidics for testing as
421 described above, and the summary of combined categorical susceptibility is detailed in Table 4. Sample #7
422 was positive for *P. aeruginosa* but when tested with the assay produced a GC fail. Subculture of NYPQ sample
423 #7 on Chromagar plate indicated two separate strains, so the original specimen might have been a
424 polymicrobial infection or there was contamination during sample collection or testing. The species-specific
425 susceptibility reporting would require the pathogen identification (ID) sensor chip with complementary
426 oligonucleotide probes against each target pathogen, which is outside the scope of this study. All other nine
427 specimens were reported correctly to match the categorical susceptibility verified by NYPQ. All individual and
428 combined GIC reports are listed in S8 Table. Because NYPQ's AST panel tests levofloxacin (LEV) instead of
429 ciprofloxacin (CIP) for the class of fluoroquinolones, the GIC reporting of the CIP susceptibility for Samples 1,
430 4, and 6 were compared to the categorical susceptibility as determined by the reference broth microdilution
431 method for ciprofloxacin. Susceptibility data show levofloxacin to be less potent than ciprofloxacin against
432 gram-negative pathogens such as *Pseudomonas aeruginosa* and certain *Enterobacteriales* [54-55]. If a
433 pathogen is susceptible to levofloxacin, it might not be susceptible to ciprofloxacin as seen in Sample 4.
434 However, if a pathogen is resistant to ciprofloxacin, it is most likely to be resistant to levofloxacin as seen in
435 Sample 6.

436

437 **Table 4. Summary of direct-from-urine antimicrobial efficacy profiling using de-identified remnant urine**
438 **specimens from NYPQ.**

Sample Code	Organism	1X response GIC ($\mu\text{g/mL}$)	0.1X response GIC ($\mu\text{g/mL}$)	Combined response GIC ($\mu\text{g/mL}$)	NYPQ reported susceptibility (MIC: $\mu\text{g/mL}$)	Combined categorical susceptibility

0001	<i>Citrobacter koseri</i>	0.125	<0.06	<0.06	CIP susceptible (≤ 0.0625)	CIP Susceptible (categorical correct)
0002	<i>Escherichia coli</i>	<0.5	0.5	<0.5	MEM susceptible (≤ 0.25)	Susceptible (categorical correct)
0003	<i>Enterobacter cloacae</i> complex	16	16	16	GEN resistant (≥ 16)	Resistant (categorical correct)
0004	<i>Escherichia coli</i>	0.5	0.25	0.5	CIP susceptible (0.5)	CIP Intermediate (categorical correct)
0005	<i>Serratia marcescens</i>	<0.5	No growth	<0.5	MEM susceptible (≤ 0.25)	Susceptible (categorical correct)
0006	<i>Klebsiella pneumoniae</i>	>4	>4	>4	CIP resistant (>4)	CIP Resistant (categorical correct)
0007	<i>Pseudomonas aeruginosa</i>	No growth	No growth		MEM resistant (≥ 32)	No growth
0008	<i>Proteus penneri</i>	<1	<1	<1	GEN susceptible (<1)	Susceptible (categorical correct)
0009	<i>Citrobacter koseri</i>	<1	<1	<1	GEN susceptible (≤ 1)	Susceptible (categorical correct)
0010	<i>Escherichia coli</i>	32	32	32	GEN resistant (≥ 16)	Resistant (categorical correct)

439

440 Discussion

441 To date, PCR-based pathogen identification can be performed in less than 30 minutes, but no phenotypic AST
 442 exists that can be performed within a reasonable time frame (in hours) directly from clinical samples in clinical
 443 microbiology laboratory settings. Schoepp et. al. demonstrated that AST results can be obtained by using
 444 benchtop digital nucleic acid LAMP quantification of DNA replication to measure the phenotypic response of fast-
 445 growing *E. coli* present within clinical urine samples exposed to an antibiotic for 15 min, but only highly resistant

446 or susceptible strains were selected for testing [56]. For slow-growing pathogens, a longer antibiotic-exposure
447 incubation would be required. Khazaei et. al. demonstrated that quantifying changes in RNA signatures instead
448 of DNA replication resulted in significant shifts (>4-fold change) in transcription levels within 5 min. of antibiotic
449 exposure [57-58]. However, there was a wide range of control:treated ratio (C:T ratio) dispersion from highly
450 susceptible strains with MICs at least seven 2-fold dilutions below the resistant break point. The C:T ratio can
451 change from 2 to 6 with 8 strains with an MIC of 0.015 µg/mL and one strain with an MIC of 0.03 µg/mL, while
452 the C:T ratio separation between the resistant and susceptible populations is only about 0.4. This indicates the
453 limitation in clinical settings when not all susceptible strains have MICs that low.

454

455 While the concept of direct-from-specimen AST or antimicrobial efficacy profiling is appealing, there are
456 significant challenges to this approach. The first challenge is that most growth-based susceptibility testing
457 requires a standardized inoculum where a known concentration of organism is used for AST. In routine testing,
458 the organism concentration is fixed, and it may be significantly higher than what is encountered in a clinical
459 specimen which may be used for direct inoculation. An exception may be the urine culture, where patients with
460 real infections commonly have more than 10^5 CFU/ml. Mezger et al. published a proof-of-concept study in which
461 urine was used as an inoculum for rapid AST [59]. This method employed a brief incubation period (~120 min)
462 followed by quantitative PCR designed to quantify growth. Pilot experiments showed that the assay was able to
463 accurately determine *E. coli* susceptibility to ciprofloxacin and trimethoprim within 3.5 h, however the
464 susceptibility profiling algorithm was not correlated to CLSI M100 categorical reporting. This challenge is
465 addressed by assessing susceptibility response dynamic trends at three different bug/drug ratios by inoculating
466 the raw specimens in two dilutions as detailed above. The second challenge is to provide susceptibility profiling
467 equivalent to AST reported by a clinical microbiology lab with >95% categorical agreement. The third challenge
468 is the need to ensure pathogens are isolated from clinical samples to allow for retesting, confirmation of
469 phenotypic testing (e.g., AST) or epidemiological studies. This challenge will be addressed by setting aside the
470 remainder of specimens for QC or archiving purposes.

471

472 Despite being recognized as the standard quantitative index of antimicrobial potency, the MIC is subject to
473 several limitations. It is determined only at the end-point between 16 and 24 hours, at a low initial bacterial
474 inoculum (i.e. 3 to 5 colonies usually in the absence of resistant populations), and utilizes constant (i.e. static)
475 antibiotic concentrations [60]. Therefore, the MIC neither provides information on the time-course of bacterial
476 killing nor on emergence of resistance [61-65]. Several static and dynamic *in vitro* and *in vivo* infection model
477 studies have been demonstrated for analysis and interpretation of *in vitro* efficacy results of antimicrobial drugs
478 as an alternative to MIC reporting [66-71]. These experimental models provide a wealth of time-course data on
479 bacterial growth and killing, but have not adopted into a diagnostic test directly from clinical specimens [72].

480
481 An ideal growth inhibition spectrum can fit concentration-responses in sigmoidal curves that are symmetrical
482 about its inflection point and flattened on both ends with statistical fluctuations as shown in Figs 5-7. The left
483 plateau represents insignificant grow inhibition under antibiotic exposures below the MIC, and the right plateau
484 represents significant grow inhibition above the MIC. The inflection point indicates the concentration at which
485 antimicrobial potency lies midway between non-inhibited growth (left plateau) and total inhibited growth (right
486 plateau), and the slope of the tangent to the curve at the inflection point is a measure of the antimicrobial intensity.

487
488 With predetermined concentrations of antibiotics in each growth well, the effectiveness of the antibiotics
489 increases and lowers the rate of viability; and this is reflected in the growth control (GC) ratio, which would be
490 negatively correlated with the instantaneous mortality rate. Therefore, the concentration at the inflection point or
491 GIC should increase when the microbial load in the clinical specimen is higher. This agrees with the studies
492 published by other groups [73-76]. Based on this hypothesis, we developed a direct-from-specimen microbial
493 growth inhibition test with two dilutions from unprocessed clinical specimens (1x and 0.1x) as inoculums for two
494 sets of antibiotic exposure stripwells with one GC and seven antibiotic concentrations each to generate a
495 microbial growth inhibition spectrum. As the drug concentration increases, the probability that drug molecules
496 reach a lethal concentration increases as a function modeled by a smooth sigmoidal curve. Since the microbial
497 load in the clinical specimen is unknown, the coverage of this spectrum is designed to capture the inflection point
498 within the whole range of physiological conditions. The GC well of each stripwell serves two purposes: (1) GIC

499 adjustment based on the microbial load under no antibiotics, and (2) quality control to eliminate the data set if
500 there is no growth due to microbial load below limit of detection (LoD). A tentative algorithm has been developed
501 to identify the antibiotic concentration at the inflection point adjusted by the microbial load from the signal level
502 from GC wells, and the reported GICs were compared to MIC from reference methods or FDA cleared systems.

503 **References**

¹ Doern CD. The Slow March toward Rapid Phenotypic Antimicrobial Susceptibility Testing: Are We There Yet? *J Clin Microbiol.* 2018;56(4): e01999-17. doi: 10.1128/JCM.01999-17.

² Reardon S. Antibiotic treatment for COVID-19 complications could fuel resistant bacteria. *Science.* 2020 Apr 6. doi: 10.1126/science.abc2995.

³ Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med.* 2020;382: 1708-20. doi: 10.1056/NEJMoa2002032.

⁴ Zhang C, Gu J, Chen Q, Deng N, Li J, Huang L, et al. Clinical Characteristics of 34 Children with Coronavirus Disease-2019 in the West of China: a Multiple-center Case Series. *Curr Med Sci.* 2020;40(2): 275-280. doi: 10.1007/s11596-020-2172.

⁵ AFP in Geneva. WHO warns overuse of antibiotics for Covid-19 will cause more deaths. *The Guardian.* 2020 Jun 1 [Cited 2021 Jan 12]. Available from: <https://www.theguardian.com/world/2020/jun/01/who-warns-overuse-of-antibiotics-for-covid-19-will-cause-more-deaths>

⁶ Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet.* 2020;395(10229): 1054-1062. doi: 10.1016/S0140-6736(20)30566-3.

⁷ Morris DE, Cleary DW, Clarke SC. Secondary Bacterial Infections Associated with Influenza Pandemics. *Front Microbiol.* 2017;8: 1041. doi:10.3389/fmicb.2017.01041.

⁸ Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. *J Infect Dis.* 2008;198(7): 962-970. doi:10.1086/591708.

⁹ Halford C, Gonzalez R, Campuzano S, Hu B, Babbitt JT, Liu J, et al. Rapid antimicrobial susceptibility testing by sensitive detection of precursor rRNA using a novel electrochemical biosensing platform. *Antimicrob Agents Chemother.* 2013;57(2): 936-43. doi: 10.1128/AAC.00615-12.

¹⁰ Patel M, Gonzalez R, Halford C, Lewinski MA, Landaw EM, Churchill BM, et al. Target-specific capture enhances sensitivity of electrochemical detection of bacterial pathogens. *J Clin Microbiol.* 2011;49(12): 4293-6. doi: 10.1128/JCM.01261-11.

¹¹ Kuralay F, Campuzano S, Haake DA, Wang J. Highly sensitive disposable nucleic acid biosensors for direct bioelectronic detection in raw biological samples. *Talanta.* 2011;85(3): 1330-7. doi: 10.1016/j.talanta.2011.06.012.

¹² Campuzano S, Kuralay F, Lobo-Castañón MJ, Bartošík M, Vyawahare K, Paleček E, et al. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. *Biosens Bioelectron.* 2011;26(8): 3577-83. doi: 10.1016/j.bios.2011.02.004.

¹³ Walter A, Wu J, Flechsig G-U, Haake DA, Wang J. Redox cycling amplified electrochemical detection of DNA hybridization: application to pathogen *E. coli* bacterial RNA. *Anal Chim Acta.* 2011;689(1): 29-33. doi: 10.1016/j.aca.2011.01.014.

¹⁴ Wu J, Campuzano S, Halford C, Haake DA, Wang J. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic-Acid Hybridization without Signal Amplification. *Anal Chem.* 2010;82(21): 8830-8837. doi: 10.1021/ac101474k.

¹⁵ Lawi W, Wiita C, Snyder ST, Wei F, Wong D, Wong PK, et al. A Microfluidic Cartridge System for Multiplexed Clinical Analysis. *JALA Charlottesv Va.* 2009;14(6): 407-412. doi: 10.1016/j.jala.2009.05.002.

¹⁶ Wu J, Chumbimuni-Torres KY, Galik M, Thammakhet C, Haake DA, Wang J. Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver ion selective electrode. *Anal Chem.* 2009;81(24): 10007-12. doi: 10.1021/ac9018507.

¹⁷ Ma Y, Sun C-P, Fields M, Li Y, Haake DA, Churchill BM, et al. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure. *J Micromech Microeng.* 2008;18: 45015. doi: 10.1088/0960-1317/18/4/045015.

¹⁸ Gau V, Ma S-C, Wang H, Tsukuda J, Kibler J, Haake DA. Electrochemical molecular analysis without nucleic acid amplification. *Methods.* 2005;37(1): 73-83. doi: 10.1016/j.ymeth.2005.05.008.

¹⁹ Sun C-P, Liao JC, Zhang Y-H, Gau V, Mastali M, Babbitt JT, et al. Rapid, species-specific detection of uropathogen 16S rDNA and rRNA at ambient temperature by dot-blot hybridization and an electrochemical sensor array. *Mol Genet Metab.* 2005;84(1): 90-9. doi: 10.1016/j.ymgme.2004.11.006.

²⁰ Ouyang M, Mohan R, Lu Y, Liu T, Mach KE, Sin MLY, et al. An AC electrokinetics facilitated biosensor cassette for rapid pathogen identification. *Analyst.* 2013;138(13): 3660-6. doi: 10.1039/c3an00259d.

²¹ Mach KE, Wong PK, Liao JC. Biosensor diagnosis of urinary tract infections: a path to better treatment? *Trends Pharmacol Sci.* 2011;32(6): 330-6. doi: 10.1016/j.tips.2011.03.001.

²² Gaster RS, Hall DA, Nielsen CH, Osterfeld SJ, Yu H, Mach KE, et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. *Nat Med.* 2009;15(11): 1327-32. doi: 10.1038/nm.2032.

²³ Gao J, Sin MLY, Liu T, Gau V, Liao JC, Wong PK. Hybrid electrokinetic manipulation in high-conductivity media. *Lab Chip.* 2011;11(10): 1770-5. doi: 10.1039/c1lc20054b.

²⁴ Sin MLY, Gao J, Liao JC, Wong PK. System Integration - A Major Step toward Lab on a Chip. *J Biol Eng.* 2011;5(1): 6. doi: 10.1186/1754-1611-5-6.

²⁵ Chen CH, Lu Y, Sin MLY, Mach KE, Zhang DD, Gau V, et al. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. *Anal Chem.* 2010;82(3): 1012-9. doi: 10.1021/ac9022764.

²⁶ Pan Y, Sonn GA, Sin MLY, Mach KE, Shih M-C, Gau V, et al. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. *Biosens Bioelectron.* 2010;26(2): 649-54. doi: 10.1016/j.bios.2010.07.002.

²⁷ Sin MLY, Gau V, Liao JC, Wong PK. Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications. *JALA Charlottesv Va.* 2010;15(6): 426-432. doi: 10.1016/j.jala.2010.05.004.

²⁸ Chiu ML, Lawi W, Snyder ST, Wong PK, Liao JC, Gau V. Matrix Effects—A Challenge Toward Automation of Molecular Analysis. *JALA Charlottesv Va.* 2010;15(3): 233-242. doi: 10.1016/j.jala.2010.02.001.

²⁹ Lawi W, Wiita C, Snyder ST, Wei F, Wong D, Wong PK, et al. A Microfluidic Cartridge System for Multiplexed Clinical Analysis. *JALA Charlottesv Va.* 2009;14(6): 407-412. doi: 10.1016/j.jala.2009.05.002.

³⁰ Sin MLY, Gau V, Liao JC, Haake DA, Wong PK. Active manipulation of quantum dots using AC electrokinetics. *J Phys Chem C.* 2009;113(16): 6561-6565. doi: 10.1021/jp9004423.

³¹ Liao JC, Ma Y, Li Y, Gau V, Mastali M, Sun C-P, et al. A point-of-care micro-laboratory for direct pathogen identification in body fluids. In: IEEE Nanotechnology Council Review on Advances of Micro, Nano, and Molecular Systems. 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems; 18-21 Jan 2006; Zhuhai, China. 2006;1: 507. doi: 10.1109/NEMS.2006.334642.

³² Sin MLY, Gau V, Liao JC, Wong PK. A Universal Electrode Approach for Molecular Diagnostics. *IEEE Nanotechnology Magazine.* 2013;7: 31-37. doi: 10.1109/MNANO.2012.2237331.

³³ Lu Y, Gao J, Zhang DD, Gau V, Liao JC, Wong PK. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. *Anal Chem.* 2013;85(8): 3971-3976. doi: 10.1021/ac4004248.

³⁴ Ouyang M, Mohan R, Lu Y, Liu T, Mach KE, Sin MLY, et al. An AC electrokinetics facilitated biosensor cassette for rapid pathogen identification. *Analyst.* 2013;138(13): 3660-3666. doi: 10.1039/c3an00259d.

³⁵ Gao J, Riahi R, Sin MLY, Zhang S, Wong PK. Electrokinetic focusing and separation of mammalian cells in conductive biological fluids. *Analyst.* 2012;137(22): 5215-5221. doi: 10.1039/c2an35707k.

³⁶ Sin MLY, Liu T, Pyne JD, Gau V, Liao JC, Wong PK. In situ electrokinetic enhancement for self-assembled-monolayer-based electrochemical biosensing. *Anal Chem.* 2012;84(6): 2702-2707. doi: 10.1021/ac203245j.

³⁷ Mach KE, Mohan R, Baron EJ, Shih M-C, Gau V, Wong PK, et al. A Biosensor Platform for Rapid Antimicrobial Susceptibility Testing Directly from Clinical Samples. *J Urol.* 2011;185(1): 148-153. doi: 10.1016/j.juro.2010.09.022.

38 Chen CH, Gau V, Zhang DD, Liao JC, Wang F-Y, Wong PK. Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions. *PLoS ONE*. 2010;5(11): e15472. doi: 10.1371/journal.pone.0015472.

39 Sin MLY, Shimabukuro Y, Wong PK. Hybrid Electrokinetics for Separation, Mixing, and Concentration of Colloidal Particles. *Nanotechnology*. 2009;20(16): 165701. doi: 10.1088/0957-4484/20/16/165701.

40 Gau JJ, Lan EH, Dunn B, Ho CM, Woo JC. A MEMS based amperometric detector for *E. coli* bacteria using self-assembled monolayers. *Biosens Bioelectron*. 2001;16(9-12): 745-55. doi: 10.1016/s0956-5663(01)00216-0.

41 Gau V, Ma S-C, Wang H, Tsukuda J, Kibler J, Haake DA. Electrochemical molecular analysis without nucleic acid amplification. *Methods*. 2005;37(1): 73–83. doi: 10.1016/j.ymeth.2005.05.008.

42 Liao JC, Mastali M, Gau V, Suchard MA, Møller AK, Bruckner DA, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. *J Clin Microbiol*. 2006;44(2): 561–570. doi: 10.1128/JCM.44.2.561-570.2006.

43 Liao JC, Mastali M, Li Y, Gau V, Suchard MA, Babbitt J, et al. Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. *J Mol Diagn*. 2007;9(2):158–168. doi: 10.2353/jmoldx.2007.060052.

44 Lawi W, Wiita C, Snyder ST, Wei F, Wong D, Wong PK, et al. A microfluidic cartridge system for multiplexed clinical analysis. *JALA Charlottesv Va*. 2009;14(6):407–412. doi: 10.1016/j.jala.2009.05.002.

45 Liu D, Gau V, Tomasek M, Chen J, Singh V, Memmer M, et al. Evaluation of an automated rRNA quantitation system for rapid AST in clinical lab diagnostics. In: Association for Molecular Pathology 2020 Annual Meeting Abstracts. *J Mol Diagn*. 2020;22(11 Suppl): S28. doi: [https://doi.org/10.1016/S1525-1578\(20\)30513-4](https://doi.org/10.1016/S1525-1578(20)30513-4).

46 Khazaei T, Barlow JT, Schoepp NG, Ismagilov RF. RNA markers enable phenotypic test of antibiotic susceptibility in *Neisseria gonorrhoeae* after 10 minutes of ciprofloxacin exposure. *Sci Rep*. 2018;8(1): 11606. doi: 10.1038/s41598-018-29707-w.

47 Sangurdekar DP, Srienc F, Khodursky AB. A classification based framework for quantitative description of large-scale microarray data. *Genome Biol*. 2006;7(4):R32. doi: 10.1186/gb-2006-7-4-r32.

48 Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. *Sensors (Basel)*. 2008;8(3): 1400-1458. doi: 10.3390/s80314000

49 Paterson DL. Resistance in gram-negative bacteria: enterobacteriaceae. *Am J Med*. 2006;119(6 Suppl 1): S20-8; discussion S62-70. doi: 10.1016/j.amjmed.2006.03.013.

50 Breijeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. *Molecules*. 2020;25(6): 1340. doi: 10.3390/molecules25061340.

51 Oiphant CM, Eroschenko K. Antibiotic Resistance, Part 2: Gram-negative Pathogens. *J Nurse Pract*. 2015;11(1): 79-86. doi: 10.1016/j.nurpra.2014.10.008.

52 CLSI. CLSI supplement M100. *Performance Standards for Antimicrobial Susceptibility Testing*. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.

53 U.S. Food and Drug Administration. Guidance for industry and FDA. Class II special controls guidance document: antimicrobial susceptibility test (AST) systems. Silver Spring, MD: Center for Devices and Radiological Health, U.S. Food and Drug Administration; 2009. Available from: <http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071462.pdf>

54 Scheld WM. Maintaining Fluoroquinolone Class Efficacy: Review of Influencing Factors. *Emerg Infect Dis*. 2003;9(1): 1-9. doi: 10.3201/eid0901.020277.

55 Phillips I, King A, Shannon K. Comparative in-vitro properties of the quinolones. In: Andriole VT, editor. *The quinolones*. 3rd ed. San Diego: Academic Press; 2000. p. 99–137.

56 Schoepp NG, Schlappi TS, Curtis MS, Butkovich SS, Miller S, Humphries RM, et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. *Sci Transl Med*. 2017;9(410): eaal3693. doi: 10.1126/scitranslmed.aal3693.

57 Khazaei T, Barlow JT, Schoepp NG, Ismagilov RF. RNA markers enable phenotypic test of antibiotic susceptibility in *Neisseria gonorrhoeae* after 10 minutes of ciprofloxacin exposure. *Sci Rep*. 2018;8(1): 11606. doi: 10.1038/s41598-018-29707-w.

58 Tobiason DM, Seifert HS. The obligate human pathogen, *Neisseria gonorrhoeae*, is polyploid. *PLoS Biol*. 2006;4(6): e185. doi: 10.1371/journal.pbio.0040185.

⁵⁹ Mezger A, Gullberg E, Göransson J, Zorzet A, Herthnek D, Tano E, et al. A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. *J Clin Microbiol*. 2015;53(2):425–432. doi: 10.1128/JCM.02434-14.

⁶⁰ Andrews JM. Determination of minimum inhibitory concentrations. *J Antimicrob Chemother*. 2001;48 Suppl 1: 5–16. doi: 10.1093/jac/48.suppl_1.5. Erratum in: *J Antimicrob Chemother*. 2002;49(6):1049.

⁶¹ Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. *Clin Infect Dis*. 1998;26(1): 1–10; quiz 11–2. doi: 10.1086/516284.

⁶² Czock D, Keller F. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antimicrobial drug effects. *J Pharmacokinet Pharmacodyn*. 2007;34(6): 727–51. doi: 10.1007/s10928-007-9069-x.

⁶³ Mueller M, de la Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. *Antimicrob Agents Chemother*. 2004;48(2):369–77. doi: 10.1128/aac.48.2.369-377.2004.

⁶⁴ Chung P, McNamara PJ, Campion JJ, Evans ME. Mechanism-based pharmacodynamic models of fluoroquinolone resistance in *Staphylococcus aureus*. *Antimicrob Agents Chemother*. 2006;50(9): 2957–65. doi: 10.1128/AAC.00736-05.

⁶⁵ Grégoire N, Raherison S, Grignon C, Comets E, Marliat M, Ploy MC, et al. Semimechanistic pharmacokinetic-pharmacodynamic model with adaptation development for time-kill experiments of ciprofloxacin against *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother*. 2010;54(6):2379–84. doi: 10.1128/AAC.01478-08.

⁶⁶ Jacobs M, Grégoire N, Couet W, Bulitta JB. Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling. *PLoS Comput Biol*. 2016;12(3): e1004782. doi: 10.1371/journal.pcbi.1004782.

⁶⁷ Craig WA. Choosing an antibiotic on the basis of pharmacodynamics. *Ear Nose Throat J*. 1998;77(6 Suppl): 7–11; discussion 11–2.

⁶⁸ Gloede J, Scheerans C, Derendorf H, Kloft C. In vitro pharmacodynamic models to determine the effect of antibacterial drugs. *J Antimicrob Chemother*. 2010;65(2): 186–201. doi: 10.1093/jac/dkp434.

⁶⁹ Grégoire N, Raherison S, Grignon C, Comets E, Marliat M, Ploy MC, et al. Semimechanistic pharmacokinetic-pharmacodynamic model with adaptation development for time-kill experiments of ciprofloxacin against *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother*. 2010;54(6): 2379–84. doi: 10.1128/AAC.01478-08.

⁷⁰ Katsume T, Yano Y, Yamano Y, Munekage T, Kuroda N, Takano M. Pharmacokinetic-pharmacodynamic modeling and simulation for bactericidal effect in an in vitro dynamic model. *J Pharm Sci*. 2008;97(9): 4108–17. doi: 10.1002/jps.21265.

⁷¹ Schmidt S, Sabarinath SN, Barbour A, Abbanat D, Manitpisitkul P, Sha S, et al. Pharmacokinetic-pharmacodynamic modeling of the in vitro activities of oxazolidinone antimicrobial agents against methicillin-resistant *Staphylococcus aureus*. *Antimicrob Agents Chemother*. 2009;53(12): 5039–45. doi: 10.1128/AAC.00633-09.

⁷² Mouton JW, Vinks AA. Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. *Clin Pharmacokinet*. 2005;44(2): 201–10. doi: 10.2165/00003088-200544020-00005.

⁷³ Egervärn M, Lindmark H, Roos S, Huys G, Lindgren S. Effects of Inoculum Size and Incubation Time on Broth Microdilution Susceptibility Testing of Lactic Acid Bacteria. *Antimicrob Agents Chemother*. 2006;51(1): 394–396. doi: 10.1128/AAC.00637-06.

⁷⁴ Mizunaga S, Kamiyama T, Fukuda Y, Takahata M, Mitsuyama J. Influence of inoculum size of *Staphylococcus aureus* and *Pseudomonas aeruginosa* on in vitro activities and in vivo efficacy of fluoroquinolones and carbapenems. *J Antimicrob Chemother*. 2005;56(1): 91–6. doi: 10.1093/jac/dki163.

⁷⁵ Lass-Flörl C, Speth C, Kofler G, Dierich MP, Gunsilius E, Würzner R. Effect of increasing inoculum sizes of *Aspergillus* hyphae on MICs and MFCs of antifungal agents by broth microdilution method. *Int J Antimicrob Agents*. 2003;21(3): 229–33. doi: 10.1016/s0924-8579(02)00189-9.

⁷⁶ Smith P, Hiney MP, Samuels OB. Bacterial resistance to antimicrobial agents used in fish farming: a critical evaluation of method and meaning. *Annu Rev Fish Dis*. 1994;4: 273–313. doi: 10.1016/0959-8030(94)90032-9.

504 Supporting information

505 **S1 Table. Clinical isolate counts with strain # and antimicrobial tested (MIC).** On-scale strains in bold.

506 **S2A Table. GIC reporting values for Fig 2A.** Ciprofloxacin GIC reporting with three algorithms for *E. coli* CDC
507 69 with a MIC of $\leq 0.0625 \mu\text{g/mL}$ and *K. pneumoniae* CDC 79 with an MIC of $>8 \mu\text{g/mL}$ for Fig 2A.

508 **S2B Table. GIC reporting values for Fig 2B.** Ciprofloxacin GIC reporting with three algorithms for *E. coli* CDC
509 69 with a MIC of $\leq 0.0625 \mu\text{g/mL}$ and *K. pneumoniae* CDC 79 with a MIC of $>8 \mu\text{g/mL}$ for Fig 2B.

510 **S2C Table. GIC reporting values for Fig 2C.** Meropenem GIC reporting with three algorithms for *E. coli* CDC
511 77 with a MIC of $\leq 0.12 \mu\text{g/mL}$ and *E. coli* CDC 55 with an MIC of $> 8 \mu\text{g/mL}$.

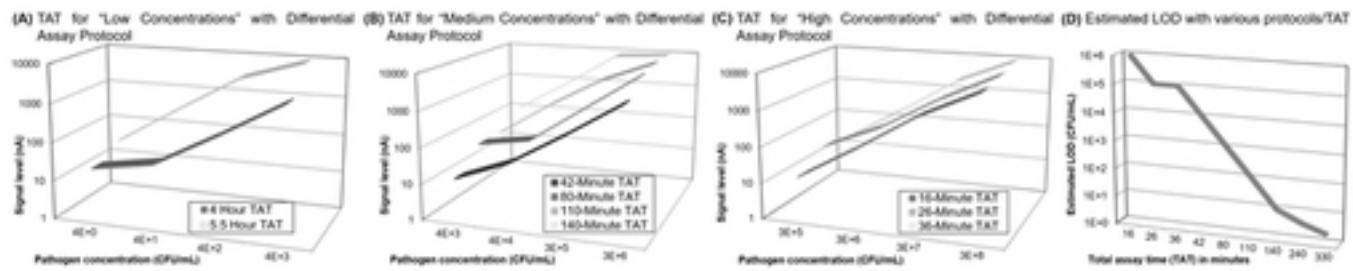
512 **S3A Table. GIC reporting values for Fig 3A.** Gentamicin GIC reporting with three algorithms for *E. coli* CDC 1
513 with an MIC of $4 \mu\text{g/mL}$.

514 **S3B Table. GIC reporting values for Fig 3B.** Meropenem GIC reporting with three algorithms for *E. coli* CDC
515 85 with an MIC of $1 \mu\text{g/mL}$.

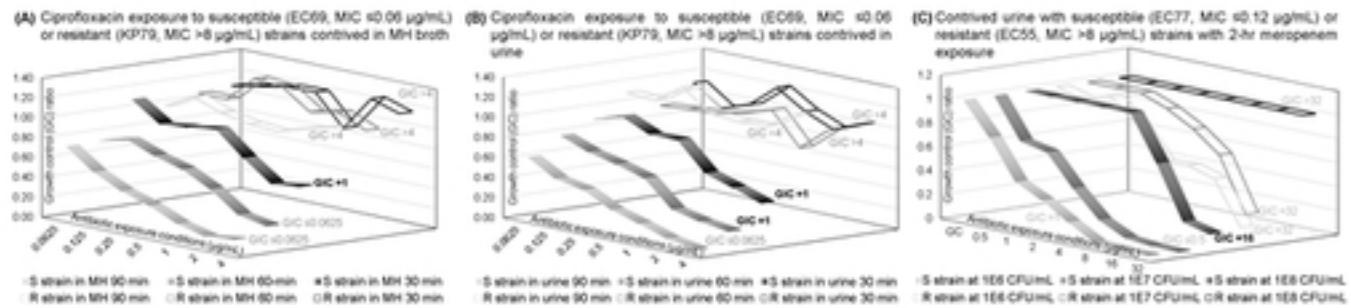
516 **S3C Table. GIC reporting values for Fig 3C.** Ciprofloxacin GIC reporting with three algorithms for *K.*
517 *pneumoniae* CDC 80 with an MIC of $0.5 \mu\text{g/mL}$.

518 **S3D Table. GIC reporting values for Fig 3D.** Ciprofloxacin GIC reporting with three algorithms for *K.*
519 *pneumoniae* CDC 80 with an MIC of $0.5 \mu\text{g/mL}$.

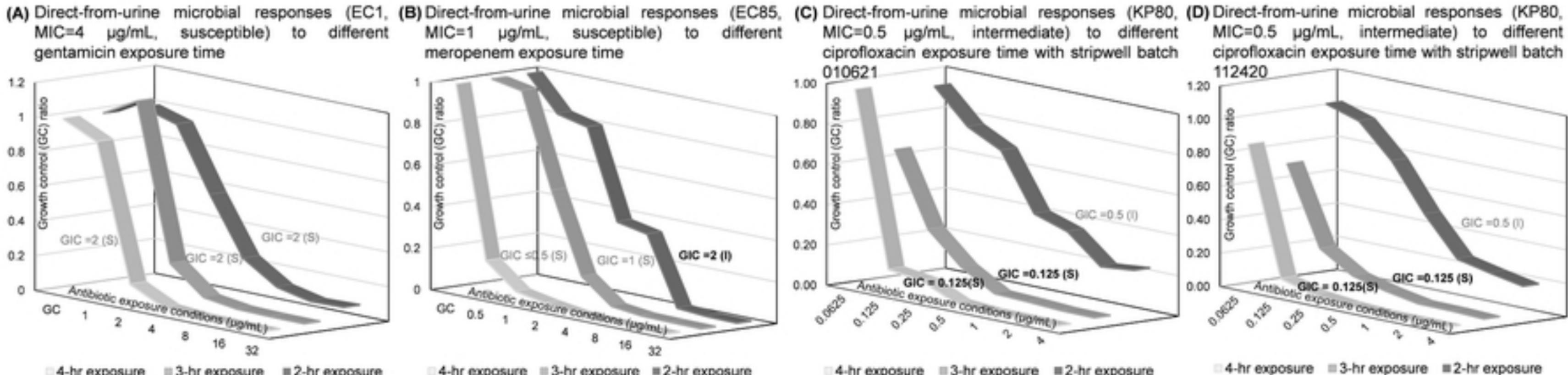
520 **S4A Table. GIC reporting values in three algorithms for Fig 4A.**

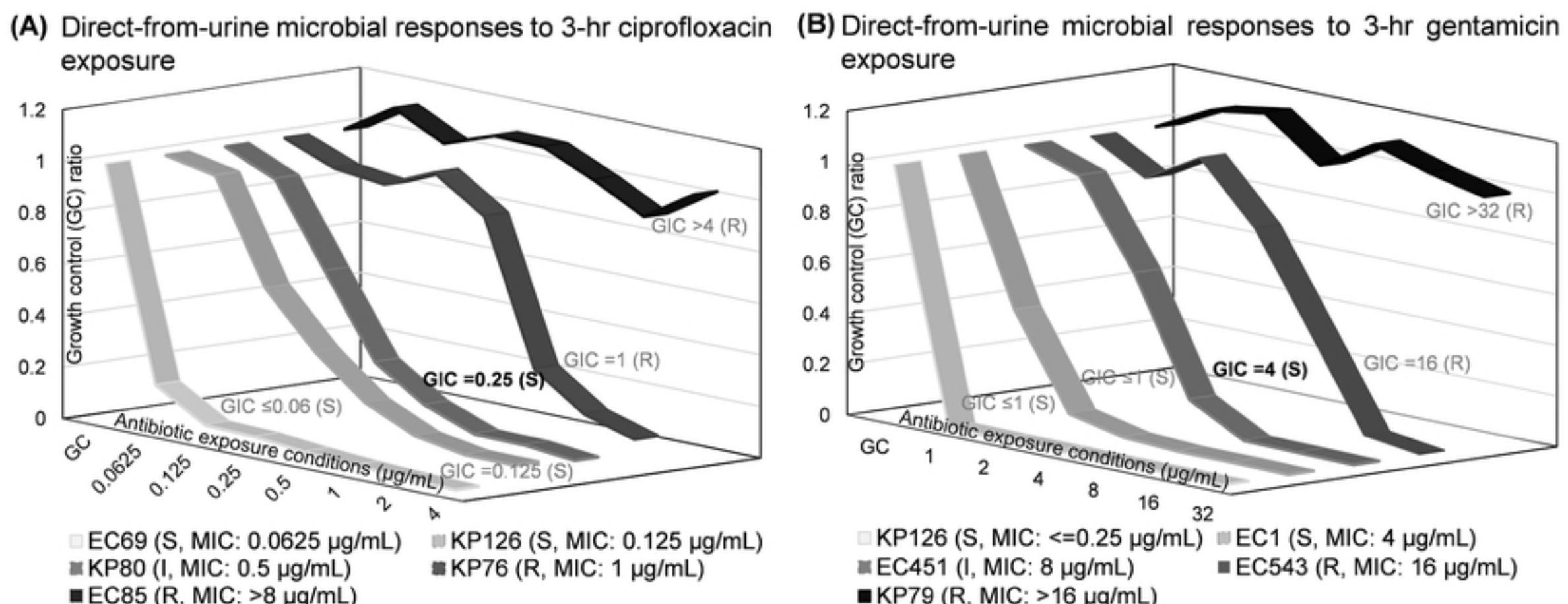

521 **S4B Table. GIC reporting values in three algorithms for Fig 4B.**

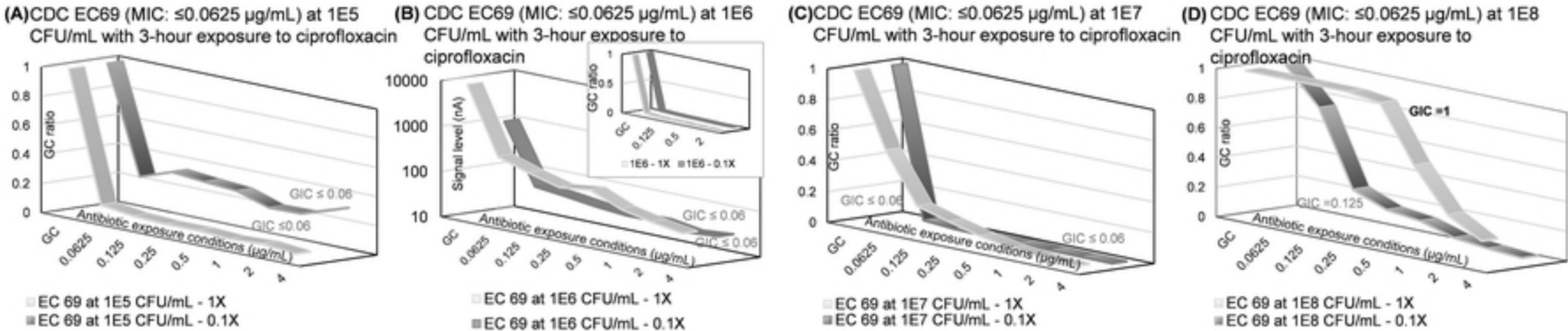
522 **S5 Table. GIC reporting values for Fig 5.** Ciprofloxacin GIC reporting with three algorithms for *E. coli* CDC 69
523 with a MIC of $\leq 0.0625 \mu\text{g/mL}$.

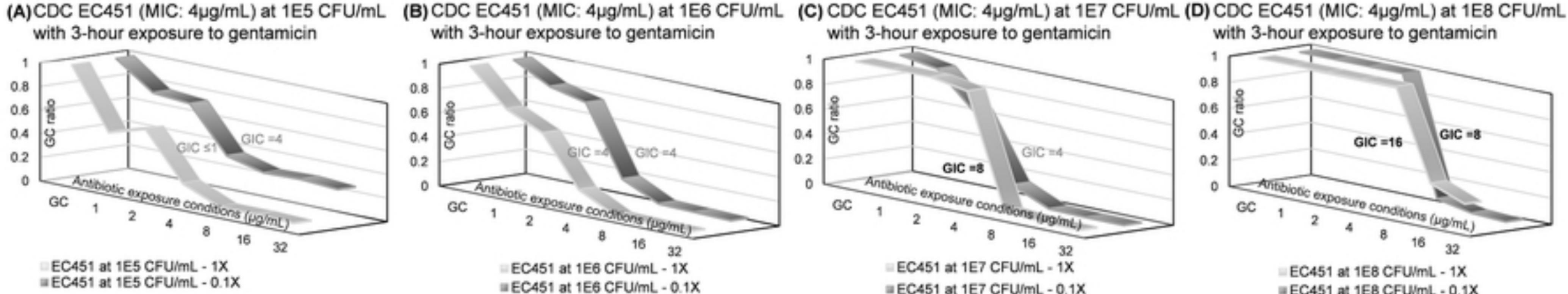

524 **S6 Table. GIC reporting values for Fig 6.** Gentamicin GIC reporting with three algorithms for *E. coli* CDC 451
525 with a MIC of $4 \mu\text{g/mL}$.

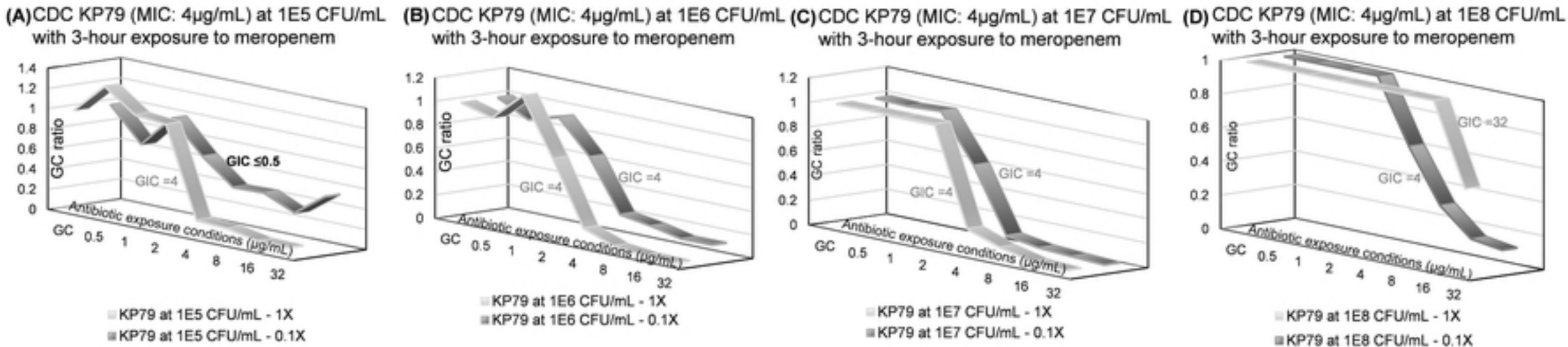
526 **S7 Table. GIC reporting values for Fig 7.** Meropenem GIC reporting with three algorithms for *K. pneumoniae*
527 CDC 79 with a MIC of $4 \mu\text{g/mL}$.


528 **S8 Table. GIC reporting of NYPQ blinded clinical specimens.**


Figure


Figure


Figure


Figure

Figure

Figure

Figure