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Abstract

Genome-wide association (GWA) studies have uncovered DNA variants associated with individual
differences in general cognitive ability (g), but these are far from capturing heritability estimates obtained
from twin studies. A major barrier to finding more of this ‘missing heritability’ is assessment — the use of
diverse measures across GWA studies as well as time and cost of assessment. In a series of four studies, we
created a 15-minute (40-item), online, gamified measure of g that is highly reliable (alpha = .78; two-week
test-retest reliability = .88), psychometrically valid and scalable; we called this new measure Pathfinder. In a
fifth study, we administered this measure to 4,751 young adults from the Twins Early Development Study.
This novel g measure, which also yields reliable verbal and nonverbal scores, correlated substantially with
standard measures of g collected at previous ages (r ranging from .42 at age 7 to .57 at age 16). Pathfinder
showed substantial twin heritability (.57, 95% ClIs = .43, .68) and SNP heritability (.37, 95% CIs = .04, .70).
A polygenic score computed from GWA studies of five cognitive and educational traits accounted for 12%
of the variation in g, the strongest DNA-based prediction of g to date. Widespread use of this engaging new
measure will advance research not only in genomics but throughout the biological, medical, and behavioural
sciences.
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Running Head: Pathfinder

Introduction

Given its association with crucial life outcomes, it is essential to understand the genetic and environmental
mechanisms that support the development of general cognitive ability (g). A major barrier in identifying the
genetics of g is measurement heterogeneity. Traditional cognitive assessment is expensive and time-
consuming and therefore unsuited to large biobanks; consequently, gene discovery studies have had to
integrate data from multiple cohorts that differ widely in the quality of measurement of g. We present a
brief, reliable, valid, and engaging new measure of g, Pathfinder, developed over four studies. In a fifth
study we administered this measure to a large sample of young adult twins and assessed the psychometric
and genetic properties of the measure.

General cognitive ability (g) is the best behavioural predictor of many educational, social and health
outcomes (1). The symbol g was proposed more than a century ago to denote the substantial covariance
among diverse tests of cognitive abilities. This underlying dimension runs through diverse cognitive abilities
such as abstract reasoning, spatial ability and verbal ability and dominates the predictive validity of
cognitive tests for educational, occupational, and life outcomes (2—4). In a meta-analysis of over 460
datasets, the average correlation among such diverse tests was about .30, and a general factor (first unrotated
principal component) accounted for about 40% of the tests’ total variance (5).

Model-fitting analyses that simultaneously analyze the mountain of family, adoption, and twin data on g
indicate that about half of the differences between individuals (i.e., variance) can be attributed to inherited
DNA differences, a statistic know as heritability (6,7). Shared environmental influences that make family
members similar to one another contribute 20% of the variance in parent-offspring studies, 25% in sibling
studies and 35% in twin studies (6). However, one of the most interesting and perhaps counterintuitive
findings about g is the developmental change in these estimates. Heritability increases from 45% in
childhood to 55% in adolescence to 65% in adulthood, while shared environmental influence decreases from
30% to 15% in twin studies (7,8) and is even less in adoption studies (9).

Multivariate genetic analysis, which examine associations between multiple traits, shows that genetic
overlap among cognitive tests is much greater than their phenotypic overlap. The average genetic correlation
among diverse cognitive tests is about .80, indicating that many of the same genes affect different cognitive
abilities (10—12). Recent evidence applying genomic methods has shown that this genetic covariance is
largely reflected in the g factor (12).

Progress in identifying some of the many DNA differences that account for the heritability of g would result
in advances not only in genomics, but across the psychological, biological and medical sciences (13). This is
because g pervades virtually all aspects of life, including education (14), job satisfaction and earnings
(15,16) and health and longevity (17-20). A substantial portion of the observed associations between g and
education, wealth and health is rooted in genetic variation (21,22). For example, substantial genetic
correlations have been observed between g and educational attainment (r = 0.73), longevity (r = 0.43) and
age of first birth (r = 0.46; (23)). This widespread pleiotropy (i.e. the same genetic variants contributing to
two or more traits) suggests that g can be a useful translational target for any area of research in the life
sciences —biology, brain as well as behaviour (24).
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Given the genetic overlap observed between g and physical and mental health (25), advances in uncovering
the DNA variants associated with individual differences in g are likely to enhance our understanding of the
genetics of health, illness and psychiatric disorders. This becomes particularly meaningful when considering
the major challenges related to gene discovery in specific areas of the psychological and medical sciences,
most prominently psychiatric disorders (26). With the notable exception of schizophrenia, for which a
polygenic score constructed from the latest GWA study (27) was found to account for 7.7% of the variance
in liability in independent samples, genomic prediction of psychiatric traits and disorders has been
considerably less successful (28,29) than for g (25,30). Leveraging on pleiotropy, progress in uncovering the
genetics of g might therefore exert important spillover effects for our understanding of the genetics of
physical and mental health.

We now know that the biggest effects of specific DNA variants associated with most complex traits,
including g, account for less than 0.1% of the variance (31). Genome-wide association (GWA) studies that
attempt to identify these DNA associations need very large samples to reliably detect the tiny effects;
however, testing large samples on g is challenging. As a result, it has been necessary to meta-analyze GWA
results across studies that have used different methods and measures to assess g.

The largest meta-analytic GWA study of g included a total of 270,000 individuals from 14 cohorts, all of
which used different measures of g (23). Despite the heterogeneity of measures, this GWA study was able to
identify 242 independent loci significantly associated with variation in g. A polygenic score derived from
this GWA meta-analysis predicted 7% of the variance in g at age 16 in the sample used in the present study
(30). A polygenic score for g is a genetic index of g for each individual that represents the sum across the
genome of thousands of DNA differences associated with g weighted by the effect size of each DNA
variant’s association with g in GWA studies. Adding a polygenic score derived from a GWA meta-analysis
for years of schooling (32) to the polygenic score for g boosts the prediction of g to 10% at age 16 (30).

Nonetheless, 10% is a long way from the heritability estimate of 50% from twin studies. This gap is known
as ‘missing heritability’, which is a key genetic issue for all complex traits in the life sciences (33).
Increasing GWA sample size and employing whole-genome sequencing approaches that can capture rare
variants are among the approaches in use to narrow the missing heritability gap (34). Better measurement of
the phenotype can also help. Differences between the psychometric quality of measures have been shown to
reduce the statistical power to detect genetic associations, the effect sizes of the detected associations, and
the predictive power and specificity of the polygenic scores that derive from GWA studies (36-38). For
example, a simulation study showed that with heterogeneity of 50%, the sample size needed to achieve the
same statistical power obtained from homogeneous samples increased by approximately three times (36).
Extant GWA studies of g differ widely in the quality of measurement, from individually administered full-
scale IQ tests to scores on a college entrance exam or a single reading test or six items on a digit-span test
(Savage et al., 2018). Rather than combining small heterogeneous GWA studies with diverse measures of g,
a better strategy is to incorporate the same high-quality measure of g in large biobanks that already have
genotype data on their participants. Cognitive testing has not been conducted in most biobanks because
traditional in-person testing is expensive and time-consuming.

This issue of heterogeneity of measurement in GWA studies motivated us to create a brief, reliable and valid
online measure of g that could be offered to participants in extant biobanks. In addition to the criterion of
brevity (15-minute) and ease of access and use, we set out to develop a g measure characterized by an
additional important feature: gamification. Evidence points to the positive impact of gamification on
participants’ engagement and motivation (39,40), which boosts the value of on-line gamified tests, for two
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reasons. First, increasing engagement and motivation is likely to reduce distractions and drift in attention,
leading to more reliable estimates of performance, especially in online testing conditions outside the
controlled environment of the laboratory. Second, participants’ satisfaction increases participation and
retention rates, which is especially important for large cohort studies (41).

Gamification sets our measure apart from the few other existing online batteries that are capable of reliably
assessing g. The two most prominent examples are the battery of cognitive tests that has been developed for
and administered to UK Biobank participants (42) and the Great British Intelligence Test (43), a citizen
science project launched in late December 2019 by BBC2 Horizon. The Great British Intelligence Test
includes a selection of 9 cognitive tests from a broader library of 12 tests available via the Cognitron
repository, which takes 20-30 minutes to complete. The cognitive tests administered to UK Biobank
participants, which take on average 21 minutes to complete, assess five abilities: visual memory, processing
speed, numeric working memory, prospective memory, and verbal and numerical reasoning. Recent analyses
found the tests to have moderate concurrent validity, with a mean correlation between the shortened version
and a validated reference test of 0.53, but ranging widely from 0.22 to 0.83, and moderate short-term
stability, with a mean four-week test-retest correlation of 0.55, ranging between 0.40 and 0.89 for individual
tests (44). In addition, although the five tests yielded a measure of g that correlated 0.83 with a measure of g
constructed from their corresponding standardized reference tests, the estimate of g provided by the battery
appears to reflect the fluid, largely not dependent on prior learning, aspects of intelligence more strongly
than the crystallized, academic forms of cognitive function, such as vocabulary and verbal knowledge (12).

Our g battery overcomes these limitations by providing a highly reliable, balanced assessment of g,
constructed from measures of verbal and nonverbal abilities. Importantly, and different from all existing
measures, our measure is gamified and engaging, accessible by all researchers through our open science
research framework, and easy to integrate within existing data collection platforms. It is also at least five
minutes shorter than existing measures, which is particularly meaningful when considering data collection in
large cohorts.
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d) Yield estimates of shared environmental influence less than 20%.
Third, we predicted multivariate approaches to calculating polygenic scores would predict over 10% of the
variance in individual differences in g in our sample of young adults.

Materials and Methods
Study 1
Participants

Participants (N = 142) were recruited from the Twins Early Development Study (TEDS) sample(46).
Specifically, for this first study we invited a group of TEDS twins whose co-twin was no longer actively
participating in the TEDS longitudinal data collection. Sixteen out of the 142 participants who agreed to take
part in the study did not complete the full battery, which resulted in N = 126 participants with complete data.
Participants’ ages ranged between 21.60 and 22.30 (M = 21.98, SD = .19). The sample included more
females (N = 97) than males (N = 45). Participants varied in their education level (58% had completed A-
level exams).

Measures

Cognitive battery. Participants were administered a battery of 18 well-established cognitive tests covering
four core domains of cognitive performance, including a total of 293 items: Nonverbal reasoning (6 tests for
a total of 75 items), Verbal reasoning (4 tests for a total of 98 items), Spatial ability (3 tests for a total of 45
items) and Memory (5 tests for a total of 75 items, 2 tests assessed long-term memory and 3 tests short-term
memory). A full list of tests is reported in Supplementary Table 1 and examples for each test can be found
at the following link: https://www.youtube.com/watch?v=TA38bsgp7Lg&ab channel=TEDSProject. The 18
tests were selected after a careful literature review and were chosen with three core features in mind: (1)
each test had to demonstrate high validity and reliability; (2) altogether, tests had to tap a wide array of
cognitive domains, from verbal and nonverbal reasoning to memory; and (3) they had to be tests that were
either developed or adapted for online administration, or tests that could easily be adapted by our team for
online administration.

The final battery was administered online using forepsyte.com, an online data collection platform. Tests
were presented in a fixed order and the order of presentation is reported in Supplementary Table 1. The
median time participants took to complete the battery was 68 minutes.

Study 2
Participants

Participants (N = 144) were recruited using Prolific.co (www.prolific.co), an online research recruitment
platform. Of the total sample, 30% (n = 43) were males, 68% (n = 98) females, and 2% (n = 3) did not
specify their gender. Participants’ ages ranged from 18 to 49 years (M = 30.99, SD = 8.67). Recruitment
was based on four selection criteria: 1) age between 18 and 50 years; 2) English as first language; 3) UK
nationality; and 4) education level which was selected in two groups, one of which had completed tertiary
education and the other not (this resulted in 40.9% of the total sample who had completed tertiary education
and 59.1% not, which is representative of educational levels in the UK population; see
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https://www.oecd.org/unitedkingdom/United%20Kingdom-EAG2014-Country-Note.pdf). Supplementary
Table 2 presents a breakdown of the participants’ education level and ethnicity.

Measures

Cognitive battery. The cognitive battery included 138 items (78 verbal and 60 non-verbal) from seven
well-established cognitive tests, which were selected from a larger battery based on the results of Study 1.
The three tests assessing verbal ability were: (1) the Mill Hill Vocabulary Scale (47), (2) a Missing Letter
Test and (3) a Verbal Analogies Test. The Mill Hill Vocabulary Scale consists of items assessing
individuals’ ability to select semantically related words. For each item a target word is displayed, and
participants are asked to select the word that is closest in meaning from six response options. In the Missing
Letter Test, participants were exposed to pairs or strings of words, each with a blank space indicating a

missing letter. Participants were asked to identify the missing letter that would meaningfully complete all
the words presented on the screen simultaneously and select the letter from a displayed alphabet. An
example of items is ban(?) (?)ave — fla(?) (?)ain and the missing letter in this instance is “g”. In the Verbal
Analogies Test, participants were presented with verbal analogies, having either one or two missing words.
An example of a one-word problem is: “Sadness is to happiness as defeat is to x”. Participants could solve x

by choosing between four options: Joy, Victory, Victor, Tears. An example of a two-word problem is:

“Robin is to x as Spider is to y”. Participants could choose between four options to solve x (Batman, Bird,
Christmas, Tree) and four options to solve y (Spiderman, Easter, Arachnid, Insect). Participants were asked
to select the word(s) that would correctly and meaningfully complete the missing part of the sentence. For
items containing one missing word, participants selected their answer from a choice of four or five. For
items with two missing words a choice of four was presented for every word missing.

The four tests assessing nonverbal ability were: (1) the Raven’s Standard Progressive Matrices (48), and
three Visual Puzzles tests: (2) Non-verbal Analogies, (3) Non-verbal groupings and (4) Nonverbal Logical
Sequences. The Raven’s progressive matrices test measures non-verbal abstract reasoning. Participants are
presented with a series of incomplete matrices and are asked to select the missing part from a choice of
eight. In the non-verbal analogies test, participants are presented with a series of images that contain a
logical statement phrased as "xis to y as z is to ", where x/y/z are replaced by images. Participants are
asked to select the correct missing image to complete this statement. In the non-verbal groups test,
participants are presented with the image of a group of shapes and are asked to identify which other shape,
out of five options, belongs to the group. In the non-verbal sequences test, participants are presented with

items containing a sequence of images, in which one is removed and replaced by a question mark and they
are asked to select the image that completes the sequence from five options.

The seven tests (three verbal and four nonverbal) were presented to participants in a randomized order.
Within each test, items were presented in fixed order, starting from easier items (determined from the results
of study 1) and moving on to progressively more difficult ones. Each item was presented for a maximum of
60 seconds.

Study 3
Participants

About two weeks (mean = 13.00 days) after the completion of Study 2, participants were invited back to
participate in Study 3. Of those invited back, 91.7% completed Study 3 (N = 132). Out of the total sample
for Study 3, 30.3% (n = 40) were males, 67.4% (n = 89) were females, and 2.3% (n = 3) did not specify their
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gender; the mean age was 31.3 years (SD = 8.7), and age ranged between 18 and 49 years. Supplementary
Table 2 presents a breakdown of the participants’ education levels and ethnicities.

Measures

Cognitive battery. The cognitive battery included the 40 items selected based on the results of Study 2.
These 40 items covered five tests: 3 capturing verbal ability (Vocabulary, Verbal analogies and Missing
letter) and 2 nonverbal ability (Matrix reasoning and Visual puzzles, the latter being a composite of the best-
performing items from each of the three visual puzzles tests administered in Study 2). The order of
presentation of these tests was randomized to account for the potential effects of test-taking fatigue on
cognitive performance. Within each test, items were presented in order of difficulty, based on accuracy
results from Study 2 (see Supplementary Table 3). Each item was presented for between 20 to 40 seconds,
the time limit decisions were made based on the means and standard deviations for response time obtained
from Study 2 (see Supplementary Table 3). During this phase we also added four quality control (QC)
items. These were presented in the same form as test items, but they were extremely easy to solve; their aim
was to help us identifying ‘clickers’, i.e., participants who were just clicking through the test and providing
random responses. Control items did not contribute to either the tests or total score. A fifth standard quality
control question ‘This is a quality control question, please select option B’ was also added. QC items were
presented half-way through each test, except for the standard quality control question that was presented
between two tests in randomized order. Response accuracy for each QC item is presented in Supplementary
Table 4.

Study 4
Participants

Approximately one month after Study 3 (mean = 29, range = 23 to 35 days), participants who completed
both Study 2 and Study 3 were invited back to complete Study 4. Of those invited back, 85.4% completed
Study 4 (N = 123). Out of the total sample for Study 4, 30.1% (n = 37) were males, 68.3.% (n = 84) were
females, and 1.6% (n = 2) did not specify their gender; the mean age was 31.82 years (SD = 8.61), and age
ranged between 18 to 50 years. Supplementary Table 2 presents a breakdown of the participants’ education
levels and ethnicities.

Measures

Gamified cognitive battery. In Study 4 we administered the same battery of 40 items included in Study 3,
but this time the items were embedded in a gamified storyline, the Pathfinder, which took participants
through five ‘journeys’. A detailed description of each journey can be found in the TEDS data dictionary at
the following link: http://www.teds.ac.uk/datadictionary/studies/webtests/21yr _ggame description.htm.

Figure 2 provides a visual summary of the graphics of how items were presented in the gamified test and
Figure 2F provides an example of the feedback that participants were given at the end of the gamified test.

Study 5

Participants

In study 5, Pathfinder was administered to an initial sample of 4,751 twins (1,491 twin pairs and 1,769
individual twins) from the Twins Early Development Study (TEDS) (45). All families with twins born in
England and Wales between 1994 and 1996, identified through birth records, were invited to take part in
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TEDS. Over 15,000 families took part in the first data collection wave and over 10,000 families are still
actively participating in TEDS 25 years on. TEDS is an ongoing project and TEDS twins have contributed
data longitudinally from birth to the present day. The last major wave of assessment was conducted in 2018
when the twins were 21-23 years old. TEDS remains reasonably representative of the UK population in
terms of ethnicity and socioeconomic status (SES; see (46) for a detailed description). Data from twins
known to suffer from a severe medical condition including autism, cerebral palsy, chromosomal or single-
gene disorders and organic brain problems, were excluded from the current analyses, together with twins
whose sex and/or zygosity was unknown (N = 137 participants excluded). In addition, ‘clickers’ were
identified from a combination of the incorrect responses in QC items, rapid responding (based on the mean
item response time), low sub-test score and uniform responding (i.e. a pattern of clicking on the same
response over a series of items). This resulted in the exclusion of data from 69 additional participants. The
final sample consisted of 4,545 participants (1,416 twin pairs —639 monozygotic and 777 dizygotic pairs,
and 1,713 unpaired twins). The sample mean age was 24.81 (SD = 0.85), ranging between 23.29 and 26.41.
Genotyped DNA data was available for a subsample of 1,365 unrelated individuals. Genotypes underwent
phasing using EAGLE?2 and imputation into Haplotype Reference Consortium (release 1.1.), employing the
Positional Burrows-Wheeler Transform method via the Sanger Imputation Service (see (49) for additional
information). TEDS data collections have been approved by the King’s College London ethics committee.

Measures

Pathfinder. In Study 5 we
administered the same tests
administered in Study 4. The
15-minute (median time taken
to complete the battery = 15.95
minutes), gamified Pathfinder
g measure included two core
components assessing verbal
and nonverbal cognitive ability.
The verbal ability block
included 20 items from 3 tests:
vocabulary, verbal analogies
and missing letter. The
nonverbal ability block
included 20 items from 2 tests:

matrix reasoning and visual
puzzles (which grouped items
from three tests: non-verbal
analogies, non-verbal

Pathfinder

wet done! oversh you scored...
A

A
4

%k ok k
Mere are e scores Gor each puamey-
groupings and nonverbal
logical sequences). The items
were embedded in a gamified
storyline as participants solved
puzzles while moving through

Figure 2. Screenshots of each of the five ‘journeys’ included in the Pathfinder

. . gamified test (panels A-E) and a visual representation of the final feedback page (panel

different journeys (represented F). Panel A depicts the “Mountain” journey (Vocabulary test); panel B the “Tower”

as background images, which journey (Missing letter test); panel C the “Woodland” journey (Verbal analogies test);

changed after every 1-3 items): panel 'D the Space journey (Visual puzzles); and panel E the “Ocean” journey
(Matrix reasoning test).

The “Mountain” journey


https://doi.org/10.1101/2021.02.10.430571
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.10.430571; this version posted August 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

(Vocabulary test) included 8 items, the “Tower” journey (Missing letter) included 6 items, the “Woodland”
journey (Verbal analogies) included 6 items, the “Space” journey (Visual puzzles) included 9 items, and the
“Ocean” journey (Matrix reasoning) included 11 items (see Figure 2). The test included the same 5 QC
items described in Study 3 and included in Study 3 and 4. Screen size. Participants could complete
Pathfinder using a variety of devices, including laptops, tablets and mobile phones. To account for the
potentially confounding effects of screen size we created a categorical variable reflecting three screen size
categories in order to statistically control for the effects of screen size. These categories were “small screen
(< 768 pixels)”, “medium screen (768-1199 pixels)” and “large screen (>=1200 pixels)”.

Cognitive ability at earlier ages. TEDS includes measures of cognitive ability collected at multiple waves
from childhood to late adolescence.

At age 7 cognitive ability was measured using four cognitive tests that were administered over the telephone
by trained research assistants. Two tests assessed verbal cognitive ability: a 13-item Similarity test and 18-
item Vocabulary test, both derived from the Wechsler Intelligence Scale for Children (WISC; (50)).
Nonverbal cognitive ability was measured using two tests: a 9-item Conceptual Groupings Test (51), and a
21-item WISC Picture Completion Test (50). Verbal and nonverbal ability composites were created taking
the mean of the standardized test scores within each domain. A g composite was derived taking the mean of
the two standardized verbal and two standardized nonverbal test scores.

At age 9 cognitive ability was measured using four cognitive tests that were administered as booklets sent to
TEDS families by post. Verbal ability was measured using the first 20 items from WISC-III-PI Words test
(52) and the first 18 items from WISC-III-PI General Knowledge test (52). Nonverbal ability was assessed
using the Shapes test (CAT3 Figure Classification; (53) and the Puzzle test (CAT3 Figure Analogies; Smith
et. al., 2001). Verbal and nonverbal ability composites were created taking the mean of the standardized test
scores within each domain. A g composite was derived taking the mean of the two standardized verbal and
two standardized nonverbal test scores.

At age 12, cognitive ability was measured using four cognitive tests that were administered online. Verbal
ability was measured using the full versions of the verbal ability tests administered at age 9: the full 30 items
from WISC-III-PI Words test (52) and 30 items from WISC-III-PI General Knowledge test (52). Nonverbal
ability was measured with the 24-item Pattern test (derived from the Raven’s Standard Progressive Matrices;
(54) and the 30-item Picture Completion test (WISC-III-UK) (50). Verbal and nonverbal ability composites
were created taking the mean of the standardized test scores within each domain. A g composite was derived
taking the mean of the two standardized verbal and two standardized nonverbal test scores.

At age 16 cognitive ability was measured using a composite of one verbal and one nonverbal test
administered online. Verbal ability was assessed using an adaptation of the Mill Hill Vocabulary test (47),
Nonverbal ability was measured using an adapted version of the Raven’s Standard Progressive Matrices test
(47). A g composite was derived taking the mean of the two standardized tests.

Academic achievement at earlier ages. Measures of academic achievement have been obtained in TEDS
throughout compulsory education.

At age 7 academic achievement was measured with standardized teacher reports and consisted of
standardised mean scores of students’ achievements in English and mathematics, in line with the National
Curriculum Levels. Performance in English was assessed in four key domains: speaking, listening, reading
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and writing abilities; performance in maths was assessed in three key domains: applying mathematics, as
well as knowledge about numbers, shapes, space and measures.

At age 9, academic achievement was again assessed using teacher reports. The domains assessed were the
same for English and mathematics (although on age-appropriate content). In addition, performance in
science was assessed considering two key domains: scientific enquiry and knowledge and understanding of
life processes, living things and physical processes.

At age 12, academic achievement was assessed in the same way as at age 9, with the exception of
mathematics, which was added a fourth domain: data handling, and science, which added a third domain:
materials and their properties; these additions were in line with the changes made to the to the National
Curriculum teacher ratings.

At age 16, academic achievement was measured using the General Certificate of Secondary Education
(GCSE) exam scores. The GCSEs are the UK nationwide examination usually taken by 16-year-olds at the
end of compulsory secondary education (55). Twins’ GCSE scores were obtained via mailing examination
results forms to the families shortly after completion of the GCSE exams by the twins. For the GCSE,
students could choose from a wide range of subjects. In the current analyses the mean score of the
compulsory GCSE subjects English Language and/or English Literature, mathematics and a science
composite (a mean score of any of the scientific subjects taken, including physics, chemistry and biology).

At age 18, academic achievement was measured based on the A-Level (Advanced Level) grade. The A-
Level is a subject-based qualification conferred as part of the General Certificate of Education, as well as a
school leaving qualification. A Levels have no specific subject requirements. We used standardized mean
grade from all of the A-levels taken. Sample size was limited to those twins who who continued with
academic education beyond GCSE level, typically in preparation for university, thus reducing range as well.

Family socioeconomic status (SES). At first contact, parents of TEDS twins received a questionnaire by
post, and were asked to provide information about their educational qualifications and employment and
mothers’ age at first birth. SES was created by taking the mean of these three variables standardized. The
same measures, except for mother’s age at first birth, were used to assess SES at age 7. At age 16, the SES
was assessed based on a web questionnaire, and comprised a standardized mean score obtained from 5
items: household income, mother’s and father’s highest qualifications, mother’s and father’s employment
status.

Analyses
Phenotypic analyses

Phenotypic analyses were conducted in R version 4.0 (R Core Team, 2020) and Mplus version 8 (56). The
variables were adjusted for the effects of sex, age (and screen size for the Pathfinder measures) using linear
regression. Sex and age-controlled data were used in all downstream analyses. Because of the normal
distribution of the Pathfinder measures no transformations were applied.

We conducted univariate analysis of variance (ANOV As) to explore phenotypic sex differences and

Pearson’s correlations to examine phenotypic associations between measures. We conducted Principal
Component Analysis (PCA) and Confirmatory Factor Analysis (CFA) to examine the factor structure of the
Pathfinder measures.

10


https://doi.org/10.1101/2021.02.10.430571
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.10.430571; this version posted August 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

We applied Item Response Theory (IRT) modelling to reduce the cognitive battery, selecting items based on
their psychometric properties. IRT refers to a set of mathematical models that describe the relationship
between an individual’s response to test items and their level of the latent variable being measured by the

scale — in this case, g. IRT allows estimation of item information, difficulty, and discrimination parameters
(57). An item’s information properties are reflected in its item information curve, and its difficulty and
discrimination properties are reflected in its item characteristic curve. Ifem information reflects the
reliability of an item at a particular level of latent ability. The flatter the item information curve, the less
reliable the item. An information curve positioned further along the x-axis suggests that an item is
informative at the upper end of latent ability. Item difficulty is the level of latent ability at which the
probability of correct response is 50%. The more difficult the question, the further the item characteristic
curve will be to the right (more latent ability is needed to get it correct). Item discrimination indicates how
much an item is influenced by the latent trait and is thus similar to a factor loading. High discriminative
ability is indicated by a steep item characteristic curve. An item discriminates well at a particular level of g
if a small change in ability results in a large increase in the probability of correct response. We fitted a
binary 2-PL Model in the MPLUS software including all 138 verbal and non-verbal items. This model uses
maximum likelihood and estimates item difficulty and discrimination (whereas the 1 PL model assumes
items are equally discriminative). The 2 PL. model provided a better fit for the data (Akaike Information
Criterion (AIC) = 18327.596, Bayesian Information Criterion (BIC) = 19158.532, sample-size adjusted
BIC= 18285.045) than a three-item parameter (3 PL) model (AIC = 18496.790, BIC = 19743.193, sample-
size adjusted BIC= 18432.962), as indicated by the lower AIC, BIC and sample-size adjusted BIC indices
obtained for the 2 PL IRT model, and a 1PL model which failed to converge.

Genetic and genomic analyses

The twin method. We applied the univariate twin method to partition the variance in each phenotype into

genetic, shared and unique environmental influences. The twin method capitalizes on the genetic relatedness
between monozygotic twins (MZ), who share 100% of their genetic makeup, and dizygotic twins (DZ), who
share on average 50% of the genes that differ between individuals. The method is further grounded in the
assumption that both types of twins who are raised in the same family share their rearing environments to
approximately the same extent (58). By comparing how similar MZ and DZ twins are for a trait (intraclass
correlations), it is possible to estimate the relative contribution of genetic and environmental factors to
individual variation. Heritability (h?), the amount of variance in a trait that can be attributed to genetic
variance (A), can be roughly estimated as double the difference between the MZ and DZ twin intraclass
correlations (59). The ACE model further partitions the variance into shared environment (C), which
describes the extent to which twins raised in the same family resemble each other beyond their shared
genetic variance, and non-shared environment (E), which describes environmental variance that does not
contribute to similarities between twin pairs (and also includes measurement error). Structural equation
modelling provides more formal estimates of A, C, and E and calculates confidence intervals for all
estimates. We performed twin analyses using OpenMx 2.0 for R (60) and Mplus version 8 (56).

Model fit was measured using the difference between the likelihood (-2LL) of the assumed model (with
fewer parameters) and the likelihood of the saturated model, which provides a baseline summary of the data
prior to decomposition into variance components (61). Difference in -2LL is distributed as chi-square (y?)
with 2 degrees of freedom (df) representing the difference in number of parameters between the baseline
and more restrictive models. %2 and df are used to create a p value for model fit comparisons, with a non-
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significant p-value indicating that the more restrictive model does not fit the data significantly worse than
the saturated model (61).

The twin method was then extended to the exploration of the covariance between pairs of traits (bivariate
twin models), by modelling cross-twin cross-trait covariances. Cross-twin cross-trait covariances describe
the association between two variables, with twin 1°s score on variable 1 correlated with twin 2’s score on
variable 2, which are calculated separately for MZ and DZ twins. We employed the bivariate twin models to
explore genetic and environmental overlap between the Pathfinder composites and educationally relevant
traits over development, using OpenMx 2.0 for R.

SNP heritability (SNP h?). SNP heritability was estimated using the Genome-wide complex trait analysis
(GCTA) software that employs a genome-based restricted maximum likelihood method (GREML). GREML
estimates the proportion of the variance in a trait that is captured by all genotyped single nucleotide
polymorphisms (SNPs) in samples of unrelated individuals (62). GREML uses individual-level genotypic
data to estimate narrow-sense SNP h?, the proportion of phenotypic variation explained by the additive
effects of genetic variants measured using a genotype array and subsequent imputation (62). Cryptic
relatedness was controlled for by setting the relatedness threshold to .05, which resulted in removing pairs of
individuals who are genetically as similar as 4th-degree relatives (63). The grm-adj O option was used to
control for incomplete tagging of causal variants. Due to the fact that causal regions are likely to show lower
MAF (minor allele frequency) compared to the genotyped set of genetic variants, weak LD (linkage
disequilibrium) estimates may result. Incomplete tagging of causal loci may therefore be mitigated by
assuming similar allele frequencies of causal loci and genotyped SNPs (63).

Genome-wide polygenic scores (GPS). We constructed GPS using LD-pred (64) with an infinitesimal
prior, which corrects for local linkage disequilibrium (LD), correlations between SNPs. We used the 1000
genomes phase 1 sample as a reference for the LD structure (see (65) for a detailed description of LD-pred
analytic strategies used in calculating GPS in the TEDS sample). Three univariate polygenic scores were
calculated from GWA summary statistics of intelligence (IQ3; N= 266,453 (23)), years of education (EA3;
excluding 23andMe; N= 766,345 (66)) and childhood I1Q (N= 12,441;(67)). Because the original IQ3 GWA
meta-analysis included the TEDS sample, we used summary statistics that excluded TEDS to avoid bias due
to sample overlap. The EA3 summary statistics employed here do not include 23andMe data (~300k
individuals) due to their data availability policy.

In addition to examining the predictions from individual GPS, we investigated the extent to which
multivariate approaches boost the GPS prediction of g, verbal and nonverbal ability. Following the pipeline
developed by Allegrini et al. (2019), multivariate polygenic scores were constructed using MTAG (68) and
Genomic SEM (69), and combined the IQ3 and EA3 GPS with summary statistics of three additional
educationally relevant traits: household income (N= 96,900, (70)), age at completion of full-time education
(N=226,899; (69)) and time spent using computer (N=261,987; (71)).

Linear regression analyses were performed in R to investigate the association between the GPS and
Pathfinder composites (R Core Team, 2017). We report results for the GPS constructed assuming a fraction
of casual markers of 1 (assuming that all markers have non-zero effects). GPS results for other fractions (p-
value thresholds) are included in the Supplementary Material. Phenotypic data, polygenic scores and
covariates were standardized prior to the regression analysis to achieve the z-distribution and obtain R?
estimates in units of standard deviation. Variance explained by the GPS was determined as the difference
between variance explained by the full model (including both GPS and covariates as predictors) and the null
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model (including the covariates alone). Each linear regression analysis included the following covariates:
batch, chip and 10 principal components of population structure. All analyses were performed on samples of
unrelated individuals.

Results

Over four studies we adopted multiple psychometric approaches to develop the shortest possible, yet highly
valid and reliable, measure of general cognitive ability (g).

Study 1: Identifying the most informative verbal and nonverbal cognitive tests: Principal component
analysis

In study 1 we administered a battery of 18 widely used cognitive tests, which we identified through an in-
depth review of the literature. The sample and procedures are detailed in the Methods section. The final
battery included 293 items that spanned four key areas of cognitive performance: nonverbal reasoning (75
items), verbal reasoning (98 items), spatial ability (45 items) and memory (75 items). Supplementary Table
1 presents a full list of tests, which are described in greater detail in the Methods section, a demonstration of
each test is provided at the following link:

https://www.youtube.com/watch?v=TA38bsgp7Lg&ab channel=TEDSProject. We conducted Principal
Component Analysis (PCA) of these 18 tests to reduce the number of tests and select those that best
represent verbal and nonverbal cognitive ability, the two core subdomains of cognitive skills which also
reflect the key distinction between verbal and performance 1Q.

We ran two separate PCAs, one for the 12 nonverbal measures and a second for the six verbal measures. The
first PCA (Supplementary Table 5a) identified four tests that most reliably captured nonverbal reasoning,
indexed by the highest loadings onto the first principal component (PC) of nonverbal ability. These
nonverbal tests assessed Matrix reasoning (Raven’s progressive matrices), and Visual puzzles (Groups,
Sequences and Nonverbal analogies). The second PCA (Supplementary Table 5b) indicated three tests that
captured the majority of the variance in verbal ability: Similarities (Verbal analogies), Vocabulary (Mill Hill
vocabulary test) and Information (Missing letter test). A first principal component including these seven
tests accounted for 60% of the total variance. A composite g score (the scores summed) created from these
seven tests, including a total of 138 items (average correlation across all individual items = .10), was
strongly correlated (r = .85, p <.001, N = 126) with a g composite constructed from the entire battery (293
items). Cronbach’s alpha for each of the seven tests is reported in Supplementary Table Sc; the average
alpha across the seven tests was .75 (min = .65, max = .86).

Study 2: Selecting the items that best captured variation in g: Item Response Theory

With the aim of further reducing our g battery and selecting only the best performing items for each test, in a
second study (study 2) we administered the seven tests selected in study 1 to an independent sample. We
conducted an item response theory (IRT; (72)) analysis to identify items that best capture individual
differences in g and estimated their difficulty, discrimination, and information parameters (see Methods).
Since one of the main assumptions of IRT is the unidimensionality of the latent construct, we first fitted a
principal component analysis (PCA) and a principal component parallel analysis including all 138 items to
determine the number of components or factors to retain from PCA and examine whether the assumption of
unidimensionality held. Although results of the parallel analysis suggested the existence of 3 components,
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the adjusted eigenvalue for the first component (15.73) was substantially larger than the eigenvalues
obtained for the second and third components (2.50 and 1.24, respectively). Further examination of the scree
plot obtained from PCA (Supplementary Figure 1a) indicated one dimension, which explained 15.3% of
the total variance. In addition, when plotting the first three principal components against one another, we
found no evidence for multidimensionality (see Supplementary Figure 1b, 1c and 1d). Therefore, we
proceeded to perform IRT analysis. Our IRT analysis proceeded in three stages. First, we inspected item
information curves for each of the 138 items included in the seven tests. Information curves indicate how
informative (reliable) each item is over a particular range of the latent trait. We identified 37 items
characterized by horizontal (completely flat) information curves, indicating items that did not discriminate
well at any level of the latent trait; these items were removed.

Second, we removed 51 additional items with flat information curves under a threshold of 0.2 or with
information curves out of range, either extremely high or low, indicating that the items were either too hard
or too easy. This selection process resulted in 20 nonverbal and 30 verbal items.

Third, we focused on refining the verbal battery in order to further reduce the number of items capturing
verbal ability. We identified 3 items showing significantly lower information scores than all others; 3 other
items with flat item characteristic curves, therefore not discriminating at any level of the latent trait; and 4
additional items that had item characteristic curves that were identical to other items, therefore not providing
unique information. These 10 verbal items were deleted, resulting in a battery of 20 nonverbal and 20 verbal
items. This 40-item battery included items from all seven tests (see Supplementary Table 6 for a summary
of the reduction process) ranging from very easy (96% of correct responses) to very difficult (7% of correct
responses). Information and characteristic curves for the selected items are reported in Supplementary
Figures 2 and 3, and discrimination and difficulty parameters for all items are reported in Supplementary
Table 7. Percentages of correct responses and average response times are reported in Supplementary
Table 3.

These 40 items spanned five tests: 3 verbal ability tests (Vocabulary, Verbal analogies, and Missing letters)
and 2 nonverbal ability tests (Matrix reasoning and Visual puzzles). A PCA of the composite scores for the
five subdomains showed that the first PC accounted for 67% of the total variance, with factor loadings
ranging between .78 and .86 (see Supplementary Table 8 for the factor loadings).

Studies 3 and 4: Test-retest reliability and gamification

In studies 3 and 4 we assessed the test-retest reliability of the 40-item measure. In study 3 we examined two-
week test-retest reliability, which was excellent for g, verbal and nonverbal ability, with phenotypic
correlations ranging between .78 (95% Cls= .70, .84) and .89 (95% Cls= .85, .92) (Supplementary Table
9). Information on the time limits and order of presentation of each item and subdomain is included in
Supplementary Table 10.

We proceeded with the process of gamification. Items from each subdomain were embedded into a gamified
story line, the Pathfinder, which took participants through five ‘journeys’: mountain, tower, woodland,
space and ocean (this 2-minute video demonstrates how items were incorporated into the gamified
environment:

https://www.youtube.com/watch?v=KTk1Ej4F8zE&ab channel=TEDSProject).
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In study 4 we administered Pathfinder to the same participants who participated in studies 2 and 3 in order
to assess whether the gamification process affected the psychometric properties of the test. Supplementary
Table 10 presents a summary of the Pathfinder journeys and the number and type of items included in each
test. Within each sub-domain, items were presented for the same amount of time and in the same order as in
study 3. Additional information on Pathfinder can be found at the following link:
http://www.teds.ac.uk/datadictionary/studies/webtests/21yr ggame description.htm.

Study 4, which was conducted approximately 1 month (mean = 29, range = 23 to 35 days) after study 3,
showed that test-retest reliability and external validity (i.e., association with education level) remained
excellent for g, verbal and nonverbal ability even following the gamification of the 40 items .The test-retest
correlations ranged between .78 and .91, while the correlations between g, verbal and nonverbal ability and
education level ranged from .36 to .45 (Supplementary Table 9). We also compared the factor structure
obtained across the two versions of the test (i.e., study 3 vs. the gamified version administered in study 4) by
including the 40 items in two separate CFA model, one for each study. The factor scores derived from each
one-factor CFA model correlated at .86, p< .0001, as shown in Supplementary Figure 4.

Study 5: Testing the new g measure in a large sample of young adults: Distributions, sex differences,
dimensionality and intercorrelations

In study 5, we administered the new g measure (Pathfinder) to 4,751 twins from the Twins Early
Development Study (see Method section and (46) for an in-depth description of the sample). This allowed us
to conduct in-depth developmental and genetic analyses to further characterize Pathfinder. The first
requirement of a good measure of g is that it should be distributed normally. We found that the scores for the
g, verbal and nonverbal ability composites were normally distributed (see Figure 3A). We subsequently
investigated sex differences in g, verbal ability and nonverbal ability using univariate analysis of variance
(ANOVA). Sex differences were significant but small, accounting for between 1 and 3% of the variance.
Males outperformed females across the three composites and in four out of five tests, the only exception was
performance in the Missing Letter test, for which we found no significant sex differences (Figure 3B and
Supplementary Table 11 and 12 for the same analyses in cognitive measures collected over development).

A second requirement of a good measure of g is that it should tap into correlated, yet distinct components of
cognitive functioning. We explored this examining the observed correlations between performance in the
five subdomains of cognitive ability, which ranged from moderate to strong, as shown in Figure 3C. The
network plot in Figure 3C shows how performance in verbal tests, particularly vocabulary and verbal
analogies created a verbal ability cluster, which was correlated with, but more distant from, the nonverbal
ability cluster that comprised matrix reasoning and visual puzzles. Performance in the missing letter test was
moderately correlated with verbal tests (r = .47 and .35 with verbal analogies and vocabulary, respectively)
and nonverbal tests (r = .43 and .37 with matrix reasoning and visual puzzles, respectively). Correlations
between all tests are reported in Supplementary Table 13.

A third requirement of a good measure of g is that it should produce a first PC accounting for a substantial
portion of variance across several cognitive tests, typically about 40%. A PCA of our five tests yielded a
first PC that accounted for 52% of variance (Figure 3D and Supplementary Table 14a). Scores on this first
PC correlated .99 with a composite score of g created by taking the sum of performance across the 40 verbal
and nonverbal items and .99 with a latent factor of g created using confirmatory factor analysis (CFA). The
results of this CFA analysis are reported in Supplementary Table 14b. A one-factor CFA provided a good
fit for the data (CFI = 0.95, TLI = 0.90, SRMS = 0.03) and accounted for 73% of the common variance and
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between 30.1% and 53.1% of the variance in each of the five tests (see Supplementary Figure 5).
Reliability for this novel g measure was high, as indicated by a Cronbach’s alpha of 0.78 and a hierarchical
omega coefficient of 0.68.

Considering the nearly perfect correlations between different way of aggregating across cognitive tests, we
henceforth consider a composite of g constructed from the sum of all items (see Method), a more
straightforward approach to compositing. As expected, this g composite correlated strongly with verbal
ability (.89) and nonverbal ability (.88), while the verbal and nonverbal ability composites correlated with
each other to a lesser extent (.57; Figure 3E).
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Figure 3. Visual summary of the descriptive properties of the Pathfinder measure administered in study 5. (a) distributions of
standardized test scores for the g, verbal and nonverbal ability composites as well as for each subdomain. The colored dots
indicate individuals’ performance in each test, black dots represent means and error bars indicate standard deviations for the
standardized scores. (b) sex differences in performance across all subdomains and composite scores, *** = p< .001 (two-tailed).
(c) Network plot showing the correlations between subdomains, the greater the proximity between points, the greater the
correlation between pairs of subdomains. (d) Scree plot of the proportion of variance explained by the principal

components. (e) phenotypic correlations between pathfinder composite scores: g, verbal and nonverbal ability.
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External validity: Performance in Pathfinder correlates strongly with cognitive performance
measured using well-established cognitive tests, with academic achievement and with family
socioeconomic status during childhood and adolescence.

Given the developmental nature of the TEDS sample and the rich cognitive and educational data collected

from early childhood to emerging adulthood, in study 5 we also examined how well performance in
Pathfinder mapped onto well-established developmental indicators of cognitive and academic performance

assessed at ages 7 to 18. Correlations between the Pathfinder composites (g, verbal and nonverbal ability)

and the corresponding composites created from these other cognitive measures are presented in Figure 4A-
C. Overall, correlations were strong and increased with age, ranging from .42 at age 7 to .57 at age 16 for g,
from .39 to .45 for verbal ability and from .28 to .52 for nonverbal ability (Supplementary Table 15).

Pathfinder composites were also found to be strongly linked to academic achievement during the period of

compulsory education, correlations were observed to increase developmentally, ranging from .45 at age 7 to
.58 at age 16 for g, from .45 to .57 for verbal ability and from .34 to .46 for nonverbal ability (Figure 4D-F
and Supplementary Table 15). The correlation between Pathfinder composites and academic performance
at age 18, measured with A-level exam grades (see Method) was found to be lower, ranging between .20 and

.30, likely due to a restriction of variance as the measure included only those individuals who had continued

their education and had
taken A-level exams.

In order to further
examine how
Pathfinder related to
constructs known to be
associated with
traditional measures of
cognitive ability, we
examined the
association between
the Pathfinder
composites and family
socioeconomic status
(SES). In line with the
research literature,
correlations with SES
over development were
modest to moderate
and similar across the
Pathfinder composites
(average r = .30 for g
and verbal ability and
.25 for nonverbal
ability; Figure 4G-1
and Supplementary
Table 15).

A
Pathfinder g
@
B
o 06
2 T oF
2 T = '
= aE 2k
o 04 i B
=
E
So2
=
g
8 0.0
o @ Q{L g\\a
D Pathfinder g
=
E
o 0.6
g
B
=
[*]
© 04
£
=
c
So2
(1]
B
=
o
Q0.0 ’ ! ! ' !
1 2 N o \-]
R S S S

(2]

Pathfinder g

o
m

o
=

Hi
HH

Correlation with SES
-]
o

o
o

HH

3 K
< e

el

o

(]

Correlation with achievement m Correlation with cognitive traits

Correlation with SES

08

04

0.2

0.0

08

a.0

0.6

0.4

0.2

0.0

Pathfinder verbal ability

H

HH

b

1'
<©

ﬁﬁ

&
o

K
o

Pathfinder verbal ability

1
o

]

2
0
&

ﬁ‘i ﬁ\é

B
’ZE’“

Pathfinder verbal ability

Hi

Hi

T
ik

& 3

&

A

e

(2]

Correlation with achievement ™ Correlation with cognitive traits

Correlation with SES

0.8

0.0

0.6

o
o

e
=

=
o

0.0

Pathfinder nonverbal ability

4 ) KA K
o o & &

Pathfinder nonverbal ability

A 5 2 © o
£ & e

Pathfinder nonverbal ability

A 1 ©
& & &

Figure 4. External validity: phenotypic correlations between Pathfinder g, verbal, and nonverbal
composites and cognitive (A-C), achievement (D-F) and family socioeconomic status (G-I)
measures over development. vb = verbal ability, nv = nonverbal ability, ach = academic

achievement, ses = family socioeconomic status. The numbers following each variable name
indicate age in years. The length of each bar represents the size of the correlation, and the error

bars indicate 95% confidence interval (CIs).

17


https://doi.org/10.1101/2021.02.10.430571
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.10.430571; this version posted August 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

In a further set of analyses, we examined the extrinsic convergent validity (73—75) of Pathfinder relative to
other well-known measures of cognitive functioning. Specifically, we compared the external correlational
profile of Pathfinder to those of other standardized measures of g as well as verbal and nonverbal ability
collected in the TEDS sample over development. These external criteria included measures of academic
achievement and SES. Supplementary Table 16 reports the results of these analyses, which show excellent
extrinsic convergent validity for g, verbal, and nonverbal Pathfinder composites. All these measures are
functionally equivalent and empirically interchangeable and appear to be indexing the same underlying
source of individual difference, general intellectual ability (or g).

Pathfinder g, verbal and nonverbal ability show substantial heritability in twin and DNA analyses

A further key requirement for this novel measure was that it should show substantial heritability for two
reasons. First, a meta-analysis of cognitive measures across the lifespan yielded an average heritability of
47% (Polderman et al. 2015). Second, substantial heritability is crucial in order for Pathfinder to foster
genomic discoveries in the cognitive domain. We quantified the heritability of Pathfinder g, verbal and
nonverbal ability indirectly from the classical twin design and directly from variation in single nucleotide
polymorphisms (SNPs) in unrelated individuals (see Method for a description of both techniques).

Twin correlations profiled by zygosity (see Supplementary Table 17) revealed substantial differences in
MZ and DZ resemblance across the three Pathfinder composites: DZ correlation were about half the MZ
correlations (Supplementary Table 17). In line with the twin correlations, univariate twin model fitting
revealed substantial heritability (h?) for Pathfinder g (h*> = .57;95% Cls = .43, .68), verbal ability (h?> = .63;
95% ClIs = .49, .69) and nonverbal ability (h? = .46; 95% Cls = .29; .55) and minor shared environmental
influences (.08, .03 and .05, respectively) (Figure SA). (See Supplementary Table 18 for model-fitting
estimates and Supplementary Table 19 for model fit indices). Twin correlations calculated separately for
sex and zygosity indicated potential qualitative sex differences (Supplementary Table 17) (i.e., differences
in same-sex and opposite-sexes DZ twin correlations) for g (r = .35 for same sex vs. .25 for opposite sex
twins), verbal (.33 vs. .24) and non-verbal (.26 vs. .18) ability. However, formal twin sex-limitation model
fitting (Supplementary Table 20) showed that both qualitative and quantitative (i.e., differences in MZ-DZ
similarity between males and females) sex differences were not significant, indicating that the same genetic
effects operate in males and females (76).

SNP-based heritability, calculated using GCTA-GREML (see Method), was substantial for the three
Pathfinder composites (SNP h? = .37 (SE = .17) for g, h> = .31 (SE = .17) for verbal ability and h?> = .39 (SE
=.17) for nonverbal ability, see Figure SB and Supplementary Table 21), around half of the twin
heritability estimates. The large standard errors around the estimates indicate that the point estimates were
not significantly different, a product of the modest sample size (N = 1,365 unrelated individuals).

We also examined polygenic score heritability: the extent to which genome-wide polygenic scores (GPS, see
Method) constructed from GWA studies of cognitive and educationally relevant traits predicted variance in
performance in Pathfinder g, verbal and nonverbal ability. Specifically, we examined the extent to which the
individual GPS based on predictions of childhood 1Q (67), adult cognitive performance (IQ3)(23) and
educational attainment (EA3)(32) predicted variation in Pathfinder g, verbal ability and nonverbal ability.
These GPS accounted for between 2% and 9% of the variance in Pathfinder g, between 1% and 9% in verbal
ability and between 2% and 6% in nonverbal ability (Figure SC, bottom three lines in each case, and
Supplementary Table 22).
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Following examination of how individual GPSs related to variation in performance, we applied multivariate
genomic methods to construct GPS aggregating findings from GWAS based on predictions of five cognitive
and educationally relevant traits: 1Q3, EA3, household income (70), age at completion of full-time education
(69) and time spent using computer. Multivariate GPS improved prediction of cognitive measures,
accounting for up to 12% of the variance in Pathfinder g ( = 0.35, SE =0.02, t = 19.85, p < .001), up to
12% of the variance in verbal ability (B = 0.35, SE = 0.02, t = 19.67, p <.001) and up to 8% of the variance
in nonverbal ability (f = 0.28, SE =0.02, t = 15.52, p<.001; Figure 5C). Supplementary Table 22 presents
these results separately for males and females: GPS prediction were comparable between males and females.
This provides support for the potential utility of administering Pathfinder to large cohorts to advance our
knowledge of the genetics of cognitive ability.

A B
1.00
Bo7s
T =04
-3 A -
@ 0.50 c kS
g E 2
s a02
§025 &
0.00 . ‘ . 0.0 ‘ ' .
a vb nv g vb nv
@
c O
 J 2 “
©
_. __|  Polygenic score
® [, © Edutraits 103 MTAG
@ g | @ Edu traits Genomic SEM
® 2| @ Edu traits EA3 MTAG
,‘g g2 @ EA3
—e < @3
=1 @ Childhood IQ
® :
3
o’ 1
O g
—e i | —
0.00 0.04 0.08 0.12
Variance explained
D
-0 [N
-7 [
o-ve [
g :
0.00 0.25 0.50 0.75 1.00

Proportion of rp accounted for by ra, rc and re

Figure 5. Twin, SNP and polygenic score heritability for Pathfinder composites, and genetic and environmental associations with
measures of g during childhood and adolescence. A. Proportion of variance in Pathfinder g, verbal and nonverbal ability
accounted for by heritability, shared environment and nonshared environment calculated using twin design. B. SNP heritability
estimates (represented by the length of the red bars) and standard errors (represented by the error bars) for Pathfinder g, verbal and
nonverbal ability composites calculated using GCTA/GREML. C. Univariate and multivariate genome-wide polygenic score
(GPS) predictions of Pathfinder g, verbal and nonverbal ability. D. Proportion of the phenotypic correlation between Pathfinder g
and cognitive and achievement measures accounted for by their genetic (ra), shared environmental (rc) and nonshared
environmental (rg) correlation using the twin design. The length of each bar indicates the size of the phenotypic correlation.
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A further characteristic of tests of cognitive ability is that they overlap genetically with many other traits
(indexing pleiotropy), and particularly so with other cognitive and educational traits. Genetic correlations
(ra) between Pathfinder and other traits were derived from bivariate twin model fitting (see Method).
Genetic correlations were substantial between the three Pathfinder composites (ra ranging between .73 (95%
CIs = .68, .81) and .94 (95% Cls = .92; .96)) and with cognitive and educational measures at earlier ages (ra
ranging between .43 (95% Cls = .39, .60) and .95 (95% Cls = .89, 1.00)) (Supplementary Table 23). In
addition to estimating the extent to which two traits overlap genetically, bivariate twin model fitting also
estimates the extent to which they overlap for environmental reasons. Shared environmental correlations,
indicating how similarities between family members contribute to the association between traits, were
mostly not significant. On the other hand, nonshared environmental correlations, pointing to how
environmental experiences that differ between siblings contribute to the association between two traits, were
modest between Pathfinder composites (re=.33; 95% Cls = .26, .39) but small with cognitive and
educational measures obtained at earlier ages, with re ranging between -0.03 (95% Cls = -.12, .07) and 0.28
(95% Cls = .18, .37) (Supplementary Table 23).

Bivariate associations between traits can also be expressed in terms of the proportion of their phenotypic
correlations that is accounted for by genetic, shared environmental and nonshared environmental factors,
respectively. For example, genetic factors accounted for 64.9% of the correlation between Pathfinder verbal
ability and nonverbal ability, shared environmental factors accounted for 10.5% of their correlation and
nonshared environmental factors accounted for 24.6% of their correlation. (Figure SD, with fit statistics in
Supplementary Table 24). Figure 5D also shows the proportional contribution of genetics (A), shared
environment (C) and nonshared environment (E) to the phenotypic correlation between Pathfinder g and
cognitive performance over development. Estimates for verbal and nonverbal composites are reported in
Supplementary Table 25.

Discussion

Pathfinder is a 15-minute gamified online test whose construction was guided by item response theory and
principal component analysis to be a maximally efficient and reliable measure of g. The first principal
component accounts for 52% of the total variance, which reflects the communalities among the five tests.
The g score is normally distributed and its one-month test-retest reliability is .88. Despite the strong g factor,
we were able to differentiate verbal and non-verbal cognitive abilities, which correlated .57 and yielded one-
month test-retest reliabilities of .90 for verbal and .75 for nonverbal. This engaging, freely available and
easily accessible measure is a fundamental resource that enables scientists easily to incorporate general
cognitive ability in research across the biological, medical, and behavioural sciences.

We were especially interested in the application of Pathfinder in genetic studies. In the midst of a replication
crisis in science (77), it is noteworthy that genetic and genomic results replicate reliably (78). On the basis of
previous research, we predicted (https://osf.io/pc9yh/) that twin heritability for g would be greater than 50%,
that shared environmental influence would be less than 20% and that multivariate polygenic scores would
predict more than 10% of the variance. Our results confirmed these hypotheses: Heritability was 57%,

shared environmental influence was 8% and multivariate polygenic scores predicted up to 12% of the
variance.

The latter finding — that 12% of the variance of Pathfinder g can be predicted by DNA — makes this the
strongest polygenic score predictor of g reported to date (13). Although 12% is only one fifth of the twin
study estimate of heritability, we hope that adding Pathfinder g in large biobanks will improve the yield of
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meta-analytic GWAS analyses by increasing sample sizes and decreasing heterogeneity of cognitive
measures. It should be possible to use the brute force method of increasing sample sizes, especially with less
heterogeneity of measures, to close the missing heritability gap from 12% to the SNP heritability of about
30%.

A more daunting challenge is to break through the ceiling of 30% SNP heritability to reach the 60%
heritability estimated by twin studies of adults. Both GPS heritability and SNP heritability are limited to the
additive effects of the common SNPs assessed on SNP chips used in GWAS studies. Going beyond SNP
heritability will require whole-genome sequencing that can assess rare variants and methodologies to
analyze gene-gene and gene-environment interactions (13).

Nonetheless, predicting 12% of the variance of g is a notable achievement for two reasons. First, until 2016
polygenic scores could predict only 1% of the variance in general cognitive ability (13). Predicting a
substantial amount of variance (more than 10% in this case) is an important milestone for genetic research
on intelligence because effect sizes of this magnitude are large enough to be ‘perceptible to the naked eye of
a reasonably sensitive observer’ (79). Second, effect sizes like this, are rare in the behavioural sciences. For
example, one of the most widely used predictors of children’s g and educational achievement is family SES.
We showed that family SES predicts 9% of the variance of Pathfinder-assessed g. At 2 years of age, infant
intelligence tests predict less than 5% of the variance of g in late adolescence (80,81). It is not until the early
school years that children’s cognitive test scores predict more than 10% of the variance of adult g. The
unique value of polygenic scores is that their prediction of adult g is just as strong from early in life as it is
in adulthood because inherited DNA differences do not change. Increasing the predictive power of
polygenic scores also opens important new avenues for investigating the mechanisms underlying this
prediction, including the environmental experiences that mediate this pathway from genotype to phenotype
(24).

We were primarily motivated to create a measure of g that could be used in large biobanks to improve the
power of meta-analytic GWA studies to identify the minuscule SNP associations we now know to be
responsible for the heritability of g. However, because g pervades so many aspects of life — education,
occupation, wealth, and health — we hope that Pathfinder will open new avenues for research into the causes
and consequences of general cognitive ability throughout the life sciences. Incorporating g in biological,
medical, and behavioural research can add a new dimension that capitalizes on the pleiotropic power of g.
Using Pathfinder as a standard measure of g will also improve the reproducibility of research in the life
sciences, which is critical in light of the replication crisis (82). For these reasons, we have designed a
platform to make it easy to use Pathfinder. Further information on how to access Pathfinder can be found at
the following webpage, specifically created for the purpose of sharing the test:
www.pathfindertestgame.com

Limitations of the present study point the way to future research. Like most genetic and genomic research,
the results of our study cannot be safely generalized beyond its UK sample whose ancestry is 90% northern
European. Although twin study heritability estimates of g are substantial in other countries and ancestries
(83,84), polygenic scores derived largely from GWAS of northern European samples are not yet as
predictive in other ancestral groups (85). The present study has three more practical limitations. First,
Pathfinder is as yet limited to English, although the test’s language load is light, which will render
translation, including appropriate linguistic and cultural adaptation, manageable. Second, no alternate forms
have as yet been created, which would be useful for longitudinal designs that require repeated testing,
although the high one-month test-retest reliability suggests that the Pathfinder test can be used for repeated
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testing. Third, Pathfinder was created in samples of adults from 18 to 49 years of age, so its utility for
younger or older groups remains to be investigated.

One of the most widely adopted definition of g describes it as “...a very general mental capability that,
among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend
complex ideas, learn quickly and learn from experience.” (Gottfredson, 1997, p. 13). Alternative
conceptualizations and interpretations have also been proposed, most notably the view that g does not reflect
a set of a domain general abilities, but is in fact mental energy (86), or a property of the mind (87),
potentially simply indexing overall cognitive potential. However the statistical abstraction of g is
interpreted, its remarkable ability to predict important functional and life outcomes, and its likely
universality supported by cross-cultural research (88,89), a deeper understanding of g has the potential to
lead to major scientific advances in our understanding of human development from several scientific angles,
from molecular genetics to psychology and evolutionary biology.

To conclude, over four studies we have created a very brief (15-minute), reliable and valid measure of g,
Pathfinder, that given its gamified features, is also engaging. Pathfinder can be accessed by all researchers,
and easily integrated within existing data collection platforms. It is our hope that widespread use of this
engaging new measure will advance research not only in genomics but throughout the biological, medical,
and behavioural sciences.
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