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Abstract

Molecular identification is increasingly used to speed up biodiversity surveys and
laboratory experiments. However, many groups of organisms cannot be reliably
identified using standard databases such as GenBank or BOLD due to lack of sequenced
voucher specimens identified by experts. Sometimes a large number of sequences are
available, but with too many errors to allow identification. Here we address this
problem for parasitoids of Drosophila by introducing a curated open-access molecular
reference database, DROP (Drosophila parasitoids). Identifying Drosophila parasitoids is
challenging and poses a major impediment to realize the full potential of this model
system in studies ranging from molecular mechanisms to food webs, and in biological
control of Drosophila suzukii. In DROP (http://doi.org/10.5281/zenodo.4519656),

genetic data are linked to voucher specimens and, where possible, the voucher
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specimens are identified by taxonomists and vetted through direct comparison with
primary type material. To initiate DROP, we curated 154 laboratory strains, 856
vouchers, 554 DNA sequences, 16 genomes, 14 transcriptomes, and 6 proteomes drawn
from a total of 183 operational taxonomic units (OTUs): 114 described Drosophila
parasitoid species and 69 provisional species. We found species richness of Drosophila
parasitoids to be heavily underestimated and provide an updated taxonomic catalogue
for the community. DROP offers accurate molecular identification and improves cross-
referencing between individual studies that we hope will catalyze research on this
diverse and fascinating model system. Our effort should also serve as an example for
researchers facing similar molecular identification problems in other groups of

organisms.

Key Words
Biodiversity, DNA sequences, Genomes, Integrative taxonomy, Molecular diagnostics,

Biological control
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Introduction

Building a knowledge base that encompasses ecology, evolution, genetics, and
biological control is contingent on reliable taxonomic identifications. Molecular
identification is commonly used in groups of organisms with cryptic species that are
difficult to identify morphologically (Fagan-Jeffries et al., 2018; Miller et al., 2016;
Novotny & Miller, 2014), for the molecular detection of species interactions (Baker et
al., 2016; Condon et al., 2014; Gariepy et al., 2019; Hréek & Godfray, 2015; Hrcek et al.,
2011), and for identification of species from environmental DNA samples (Shokralla et
al., 2012). The accuracy of molecular identification, however, depends on the accuracy
of identifications associated with sequences databased in existing online depositories
(Fontes et al., 2021). The foundations of that accuracy are the voucher specimens which
were sequenced and the collaboration of a taxonomic authority in the deposition of the
sequence data.

GenBank serves as the most widely used sequence depository; however,
deposition of sequences in GenBank, which is required by most peer-reviewed journals,
does not require deposition of associated vouchers. The Barcode of Life Data System
database (BOLD) (Ratnasingham & Hebert, 2007) explicitly aims to provide a framework
for identifying specimens using single-locus DNA sequences (Hebert et al., 2003; Smith
et al., 2005), and while these are associated with vouchers and metadata, the curation
of these data is not consistently maintained by those submitting material. A recent
study by Pentinsaari et al. (2020) showed misidentification in both databases caused by

missteps in the protocols from query sequences to final determination.
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Although the BOLD database function “BOLD-IDS” allows considerable database
curation (e.g. flagging of misidentified/contaminated records), it also automatically
includes sequences from GenBank, and may perpetuate the shortcomings previously
mentioned since these cannot be curated from within BOLD. As such, the quality of
sequences and the reliability of identifications obtained from BOLD-IDS can vary, and
depends on the curation by taxonomists focusing on individual taxa (Meiklejohn et al.,
2019). BOLD-IDS works well for taxa where qualified taxonomists have been involved
with assuring data quality; some insect examples include beetles (Hendrich et al., 2015),
butterflies (Escalante et al., 2010), geometrid moths (Hausmann et al., 2011, 2016;
Miller et al., 2016), true bugs (Raupach et al., 2014), and microgastrine wasps (Smith et
al., 2013).

Unfortunately, this is not the case of parasitoids (Insecta: Hymenoptera) of
Drosophila flies (Insecta: Drosophilidae). There are vast numbers of Drosophila
parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and
their hosts are important model organisms in biology. As of this writing, there are
88,666 nucleotide sequences deposited in GenBank for Leptopilina heterotoma
(Thomson) and L. boulardi (Barbotin, Carton & Kelner-Pillault) (Hymenoptera: Figitidae)
alone. However, less than 1 % of the identifications associated with these sequences
have been confirmed by taxonomists or are associated with voucher specimens
deposited in museum collections. With sequencing shifting from individual genes to
genomes we risk that the identification problems will soon apply to whole genomes.

Drosophila and their parasitoids
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The phylogenetic and subgeneric structure within Drosophila and related genera is
not yet fully resolved (O’Grady & DeSalle, 2018). Various subgenera, including
Scaptomyza, Zaprionus, Lordiphosa and Samoaia, have been treated as both genera and
subgenera, and researchers have yet to achieve consensus on these various hypotheses
(O’Grady & DeSalle, 2018; Remsen & O’Grady, 2002; Yassin, 2013; Yassin & David,
2010). Species in Drosophila subgenera and genera closely related to Drosophila
commonly share niche space and natural histories and, as a result, are often attacked by
overlapping or identical groups of parasitoids. For instance, the invasive African fig fly,
Zaprionus indianus Gupta is attacked by Pachycrepoideus vindemiae (Rondani, 1875)
and Leptopilina boulardi (Pfeiffer et al., 2019; Santos et al., 2016), all of which have been
recorded from Drosophila. Therefore, we also include these groups within the contents
of DROP.

Parasitoids of Drosophila belong to four superfamilies of Hymenoptera
(Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of
Drosophila flies independently. All the parasitoids known to attack Drosophila are
solitary and attack either the larval or pupal stage; in both cases, they emerge from the
fly’s puparium (Carton et al., 1986; Prévost, 2009). The known Drosophila larval
parasitoids belong to two families (Table 1), Braconidae (including the genera Asobara,
Aphaereta, Phaenocarpa, Tanycarpa, Aspilota, Opius) and Figitidae (Leptopilina,
Ganaspis, Leptolamina, Kleidotoma); all are koinobionts that allow the host to continue
development while the parasitoid grows within it. The known Drosophila pupal

parasitoids belong to three other families (Table 1), Diapriidae (Trichopria, Spilomicrus),
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Pteromalidae (Pachycrepoideus, Spalangia, Trichomalopsis, Toxomorpha) and Encytidae
(Tachinaephagus); they are all idiobionts that terminate host development immediately.
Host-specificity across the Drosophila parasitoids is poorly characterized—while some
can parasitize other families of Diptera (e.g., Aphaereta aotea) (Hughes & Woolcock,
1976), most are thought to be limited to Drosophila hosts.

There are around 4000 described species of Drosophilidae, and Drosophila contains
more than a third of the family’s described species (O’Grady & DeSalle, 2018). By
contrast, although parasitic wasps are generally a species-rich group (Dolphin & Quicke,
2001; Quicke, 2015), the most recent catalogue of parasitoid species that attack
Drosophila lists only 50 described species (Carton et al., 1986). This disparity suggests
that the diversity of parasitic wasps attacking Drosophila is severely underestimated, an
assertion supported by the results presented here. This is largely a consequence of the
challenging nature of parasitoid taxonomy, in which morphological identification is
intractable for many species, and the fact that taxonomic specialists are greatly
outnumbered by the species they study.

Currently, only a few biological study systems have been characterized in
sufficient breadth and depth to allow researchers to connect various levels of biological
organization, from molecular mechanisms to food webs of interacting species.
Parasitoids of Drosophila represent one such system (Prévost, 2009). Moreover, the
practical feasibility of rearing parasitoids of Drosophila under laboratory conditions has
led to a number of fundamental discoveries in ecology (Carton et al., 1991; Terry et al.,

2021), evolution (Kraaijeveld & Godfray, 1997), immunology (Kim-Jo et al., 2019; Nappi

10
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220 & Carton, 2001; Schlenke et al., 2007), physiology (Melk & Govind, 1999), symbiosis (Xie
221  etal., 2011, 2015), behavioral science (Lefévre et al., 2012) and other fields. In contrast
222 tothis large body of laboratory studies, basic natural history of Drosophila parasitoids,
223 especially their species richness is little known (Kimura & Mitsui, 2020; Lue et al., 2018).
224 Addressing this knowledge gap is especially pressing given current efforts to use

225  parasitoids in biological control efforts, such as those of the invasive pest spotted wing
226  Drosophila, Drosophila suzukii (Abram et al., 2020; Daane et al., 2016; Giorgini et al.,
227  2019; Wang et al., 2020 a&b).

228 Properly executed molecular identification has the potential to be much more

229  efficient for the majority of researchers, and many laboratory strains are commonly
230  identified using DNA sequences alone. While it is practical for researchers to assign

231  species names based on a match to sequence records in genetic databases, this practice
232 often causes a cascade of inaccuracies. To illustrate the extent of the problem, we

233 present the example of Ganaspis, a genus of parasitoids commonly used in laboratories
234 thatincludes both superficially indistinguishable species with highly divergent

235  sequences that are often treated as conspecific, as well as specimens with identical

236  sequences identified under different names (Figure 1).

237  Aims

238 To address these issues, we introduce a newly curated molecular reference database
239  for Drosophila parasitoids —DROP— in which sequences are either linked to voucher
240  specimens identified by taxonomists or have a traceable provenance (Figure 2). The first

241  aim of DROP is to provide a reliable DNA sequence library for molecular identification of

11
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Drosophila parasitoids that enables cross-referencing of original taxonomic concepts
with those of subsequent studies. We pay special attention to live parasitoid strains
which are available for future experiments. The second aim is to standardize and
expedite the linkage between specimens and available sequence data; we place a
premium on museum vouchers as they allow for repeatable scientific research. In DROP,
this goal is facilitated through a consolidated digital infrastructure of data associated
with laboratory strains, offering the opportunity for researchers to re-examine past
experimental results in a permanent context. The third aim is to provide an up-to-date
catalogue of the diversity of Drosophila parasitoids as a foundation for advancing the
understanding of their taxonomy. Finally, the fourth aim of DROP is for our collaborative
effort to serve as an inspiration to communities of researchers studying other groups of
organisms who are experiencing difficulties with the reliability of molecular reference

databases.

Materials and Methods
Data sources

To assemble the DROP database, we targeted 20 wasp genera that potentially
parasitize frugivorous Drosophila species. We compiled DNA sequence and voucher data
from four sources: 1) museum collections, 2) publications, for which we selected the
reference with taxonomist or parasitoid biologists as coauthors to ensure reliable

species identity, 3) molecular biodiversity inventories publicly available in BOLD and

12
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GenBank, for which we managed to secure inspection of the vouchers by taxonomists,
and 4) a sequencing and taxonomic inventory of laboratory strains we conducted.

We first gathered species information into a catalogue of Drosophila parasitoid
species (Table 1) from 216 references (see DROP database reference table) and 36
institutes (Table S2). To ensure reliable names for nominal species (sequences identified
by a species name) in our database, we confirmed their taxonomic validity using the
Ichneumonoidea 2015 digital catalogue (Yu et al., 2016) and Hymenoptera Online (HOL;

http://hol.osu.edu/), both of which are curated by taxonomic experts. To obtain reliable

molecular identification data, we harvested 8,298 DNA sequences from GenBank and

BOLD (all compiled in BOLD as DS-DROPAR dataset dx.doi.org/10.5883/DS-DROPAR). As

of writing, these sequences represented 445 Barcode Index Numbers (BINs — a form of
dynamic provisionary taxa in BOLD, more detail in Ratnasingham & Hebert 2013), and
211 named taxa.

The majority of the harvested sequences were Braconidae (6690), Diapriidae
(967), Figitidae (622), and Pteromalidae (19). Because of the concerns with generic
databases (noted above and in Figure 1 and Table S1), we assembled a list of sequences
with valid species names that could either be traced back to vouchers examined by
taxonomists or were referred to directly in publications authored by a recognized expert
in the relevant taxon group. We then cross-checked species names with their
corresponding BINs in BOLD and flagged potential conflicts between species names and

BINs (Table S1).

13
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A core goal of DROP besides that of a tool for biodiversity research is to function as a
platform that accommodates Drosophila parasitoids kept in laboratory strains (for
experimental work) or cultures in quarantine facilities (for biological control
applications). So far, there has been a lack of a coherent and reliable means of verifying
identification of species kept in laboratory settings, which can be a serious problem.
Since lab cultures are routinely contaminated by neighboring cultures (e.g., through
escapees), one species may be displaced by another even under a vigilant eye.

For lab and quarantine lines in DROP, we deposited DNA extractions and vouchers in
the National Insect Collection, National Museum of Natural History, Smithsonian
Institution (USNM; Washington, DC, USA). During their initial assembly of DROP,
laboratory OTUs (operational taxonomic unit) were designated by their strain name;
most laboratory strains can be associated with provisional species, but some cannot yet
be assigned. Three females and three males of each strain were dry-mounted and
individually assigned a USNMENT ‘QR code’ specimen label as representative vouchers.
For each molecular voucher, three legs from a female wasp were removed for DNA
extraction and sequencing (Supplementary Methods for details), and the rest of the
body was assigned a USNMENT specimen label and preserved for morphological
identification. Both DNA extraction and vouchers were entered into the database and

uploaded to BOLD (DROP project: DS-LABS dx.doi.org/10.5883/DS-LABS) with an

associated GenBank ID.
Where possible, we identified OTU strains using a combination of morphological and

sequence data, and characterized provisional species or species clusters using neighbor-

14
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306 joining trees (Figure S1) based on the COI gene sequences (Supplemental material). For
307  establishing BIN limits in the context of DROP, we have adopted an initial percent cutoff
308 at 2%. We acknowledge that 2% genetic diverge cutoffs (or BINs) are unlikely to work
309  well across range of widely distributed species (Lin et al., 2015). But as Ratnasingham &
310  Hebert (2013) pointed out, 2% is a good starting point for many taxa, also it may need to
311  be adjusted as more samples are acquired and compared. Note that we use the term
312  “OTU” as a general and neutral designation encompassing described species, provisional
313  species, undescribed species, and cryptic species.

314

315 Drosophila parasitoid database—DROP

316 To compile the above information, we built a simple Structured Query Language
317  (SQL) database in sqlite3 format using SQLiteStudio (step by step user instruction in

318  supplemental material). Sqlite3 is a cross-platform format which can be also be opened
319  using a number of other programs. There are eight linked tables in the database —

320  species, strain, voucher, sequence, genome, transcriptome, proteome and reference —
321  along with additional tables for linking these to reference table (Figure S2). The

322  database incorporates all sample fields used by BOLD for compatibility and includes a
323  number of new fields to accommodate a catalogue of Drosophila parasitoid species,
324  laboratory strain information, and links from the DROP database to BOLD and GenBank
325  records.

326 DROP is available on Zenodo (http://doi.org/10.5281/zenod0.4519656) for

327  permanent deposition and version control. In addition to the main database, the
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Zenodo repository includes additional files to facilitate easy use of the database. These
files include: 1) the reference database in comma-separated text (.csv) and FASTA
format ready to be used for molecular identification; 2) a species catalogue with
taxonomic information; and 3) a list of laboratory strains with confirmed molecular
vouchers. DROP will be continued to be curated and maintained by C-HL at the Zenodo
repository and sequences generated in the future will also be deposited in BOLD (DROP
project). If the curator changes, this will be announced in the README.md file in Zenodo
repository. As the database relies on vouchers, we will aim for it to be continued to be

maintained by taxonomists with direct access to museums.

Species, provisional species, and OTU designations

In addition to the inherent value of a formal taxonomic name, a reliable provisional
taxon label can also be used for exchanging scientific information and conveying
experimental results among researchers (Schindel & Miller, 2010). Based on the amount
of sequence divergence between described species, we observed what appears to be a
significant number of provisional OTUs in the initial dataset we compiled. Furthermore,
among the data linked to a valid species name, some of these provisional OTUs are
actively being used in research and have sequences available to the public. We
therefore provide a list of provisional species (potential new species) with their
molecular vouchers.

We use the following designation format for OTUs that refer to a provisional species:

“Drop_strainX_sp.1” or, when no other information is known, “DROP_sp.1”. Where
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possible, these OTUs are linked to a voucher USNM specimen label number. If the genus
of the OTU is known, the “Drop_Leptopilina_sp.1” format is followed. These
designations can facilitate species identification as well as discovery and description of
new species without compromising the existing taxonomy of the described OTUs in
guestion. As more complete species descriptions become available, this provisional
species framework can be updated while keeping the link to previous provisional species

name through deposited vouchers.

Results
Overview of DROP

We catalogued 183 OTUs in the DROP database with 114 described species of
Drosophila parasitoids and 69 provisional species (Table 1). In total, we documented 154
laboratory strains (Table S3), and 853 vouchers from 36 institutions (Table S2). Among
the described species, 98 have voucher information, of which 61 are traceable to type
specimens, including 45 to holotypes (i.e., specimen used to root a name to the
taxonomic author’s concept of the species). Leptopilina is represented by the highest
number of species with 45 OTUs, followed by Asobara with 26 OTUs. Within the 154
catalogued lab strains, 86 were actively being used in ongoing research (i.e., a live strain
being cultivated). These strains represent 39 OTUs: 11 described species and 28

provisional species (Table S3, Figure S1).

Molecular Vouchers
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So far, DROP includes 545 DNA sequences and links to 16 genomes (Table S4), 14
transcriptomes (Table S5), and 6 proteomes (Table S6). From the total of 8298 DNA
sequences (BOLD dataset: DS-DROPAR) collected from public databases, only 322
sequences (less than 4% of available sequences) satisfied the reliability criteria we
imposed for molecular vouchers to be included in DROP (see Materials and Methods).

The DS-DROPAR dataset dx.doi.org/10.5883/DS-DROPAR initially referred to 211 taxon

names, but only 52 names were valid, linked to vouchers, or linked to a publication with
evidence that the specimens had been identified by taxonomists. The remaining 223 of
545 DROP DNA sequences were generated by DROP project (datasets: DS-LABS

dx.doi.org/10.5883/DS-LABS and DS-AUSPTOID dx.doi.org/10.5883/DS-AUSPTOID) and

came from 121 OTUs (101 lab strains and 12 provisional species).

The DROP database is largely made up of standard barcode COIl sequences (349
sequences), which includes 77 OTUs: 43 described species and 33 provisional species.
We aimed to supplement COI with secondary markers (28SD2, 18S, ITS2) when possible,
resulting in an additional 120 sequences from 26 OTUs: 15 described species and 11
provisional species. There are currently 19 OTUs that have sequences from more than

one genetic marker.

Species Delimitation in Laboratory Strains
We used 298 COI sequences to resolve the identification of each laboratory
strain, and where possible, indicated potential species clusters (Fig. S1 and Table S3).

Using a fixed 2% divergence cutoff, a total of 31 lab strain OTUs were assignable to a
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valid species name, and the remaining 70 strain OTUs were assigned to a provisional
species. The taxonomic status of several of these provisional species is also being
investigated using an integrative taxonomic approach involving morphological

identification, genomic data, or other genetic data.

Discussion

In this paper, we introduce and describe a free and open-access database for the
reliable molecular identification of Drosophila parasitoids. The guiding principle of DROP
is data credibility, based on the prerequisite that genetic data are explicitly associated
with voucher specimens and taxonomic concepts of the original authors (Troudet et al.,
2018). When incorporating information from public genetic databases, we included only
sequences that have passed our filtering protocol. This protocol ensures each entry is
associated with a valid scientific name, provisional name, or consistently applied OTU
designation that can be used to integrate genetic and organismal data from
independent studies.

The following discussion expands on the utility of DROP and how we hope it will
benefit molecular species identification, connect research from various disciplines,
support biological control applications, and serve as a long-term molecular voucher
repository and clearinghouse for vetted data. We also provide specific guidance for
users how best to refer to DROP in their publications to allow cross-linking between

studies.
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Molecular (mis-)identification

We observe that 17% of the described Drosophila parasitoid OTUs in BOLD and
GenBank (dataset: DS-DROPAR) are associated with more than one BIN; these are
examples of BIN-ID conflict. Roughly half of these OTUs are used as lab strains. This
latter observation is disturbing, because it demonstrates that the criteria used to
differentiate and reference species in active research programs are clouded. For
example, BIN-ID conflicts were observed in the Drosophila parasitoids Ganaspis
brasiliensis (Ihering) and Asobara japonica Belokobylskij (Table S1), both of which are in
active use in numerous research programs (e.g. Moreau et al., 2009; Nomano et al.,
2017; Reumer et al., 2012; Wang et al., 2020a & 2021) as well as in biological control
efforts against the invasive D. suzukii (e.g. Abram et al., 2020; Daane et al., 2016;
Giorgini et al., 2019). All the BINs from G. brasiliensis carry the name G. xanthopoda
(Figure 1). In such instances, assigning an identification by matching specimens to
barcode records in the genetic database is problematic, as two names are applied to the
same BIN. If sequences comprising the BIN are not linked to a voucher that can be
examined, teasing apart the two names and how they are applied is impossible.
Applying explicit, consistent criteria for species determination ensures that
experimental results can be reliably repeated, and that any potentially novel
observations will not be explained away as artifacts of identification. DROP addresses
these concerns by linking reliable reference sequences and vouchers for G. brasiliensis

(Figure 1) between different studies: one with reference to the morphological
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description (Buffington & Forshage, 2016) and the other with reference to the genome
(using voucher specimens from the morphological study; Blaimer et al., 2020).

We were not able to resolve all conflicts between BIN and species identity, for one
or more of the following three reasons: First, many records lack reliably identified
vouchers and have often been themselves used for molecular identification,
proliferating errors. Second, in some cases, it is not possible to verify whether the
genetic differences among BINs represent different species or simply intraspecific
genetic variation (Bergsten et al., 2012), because BINs themselves are not a species
concept. The only solution to this problem is to derive original sequence data from type
specimens (which is often either impractical or impossible for a number of technical
reasons), or from specimens whose conspecificity with the types has been corroborated.
Since species boundaries are always subject to testing, additional specimens from
multiple collecting events (ideally representing different seasons and geographic
regions) may help provide the additional data to circumscribe a given species’ limits. The
third difficulty in resolving BIN-ID conflict derives from the data themselves: Although
the mitochondrial COI gene is the locus most frequently chosen for identification of
insects and other animals, its effectiveness varies among insect groups (Brower &
DeSalle, 2002; Gompert et al., 2008; Lin & Danforth, 2004). In part, this derives from
gene-tree/species-tree conflict as a function of mitochondrial DNA introgression
(Gompert et al., 2008; Klopfstein et al., 2016), parthenogenesis (Reumer et al., 2012),
and/or Wolbachia infection (Ferrer-Suay et al., 2018; Wachi et al., 2015; Xiao et al.,

2012), any of which may lead to complications in species delimitation using
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mitochondrial loci. Ideally, studies should apply multiple loci, genomes, and comparative
taxonomic data to clarify species boundaries. As Drosophila parasitoids are often
maintained in laboratory cultures, it is also possible to use mating experiments to
explore species boundaries under the paradigm of the biological species concept

(Seehausen et al., 2020).

DROP as a taxonomic tool

DROP offers an empirical platform for species discovery and a useful tool for
taxonomic research. The fact that the number of BINs reported here exceeds the
number of described species (Table S1, Figure S3) highlights the need for taxonomic
work. But such work cannot proceed on the basis of BINs or barcodes, but requires
integrative taxonomic approach employing a combination of molecular and
morphological data. Describing new species on the sole basis of a barcode or BIN,
without the benefit of independent character data, should, in general, be avoided
(Meier et al., 2021). It risks creating nomenclatural synonymy if it is later determined
that a sequence can be attributed to a specimen that bears a valid, available name.
Moreover, BINs are based on distance analyses which, by definition, are incompatible
with diagnoses per se (Ferguson, 2002; Prendini et al., 2002; Goldstein & DeSalle, 2011).
Therefore, in taxonomic treatments, it is critical to clarify the range of applicability of a
given BIN and its overlap with a taxonomic name (see example in Figure 1). DROP allows

cross-linking between studies and therefore provides researchers with valuable tools for
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taxonomic revisions, including the means of discovery, corroboration, and description of

new species.

How to use DROP to ensure cross-linking between studies and reliable molecular
identification?

Public genetic databases have adopted a longstanding convention in treating
undetermined OTUs and sequences, referring to provisional species with numbers, as
for example “sp. 17, and these are rarely linked to vouchers. For OTUs designated as
provisional species, DROP enables cross-indexing of specimens, sequences and
references between any studies (ecological, taxonomic, evolutionary, genetic, etc). The
best way to ensure cross-linking is depositing a voucher in DROP, together with a
sequence or genome from the same individual (or individual from the same strain or

series). For example, one can write:

Provisional species “drop_Gan1_sp.1” refers to voucher USNMENT01557320
deposited in the USNM, Washington DC, COI sequence (DROP sequence_id: 2, BOLD
Process ID: DROP143-21), 285D1 sequence (DROP sequence_id: 289), and 285D2

sequence (DROP sequence_id: 303).

Similarly, laboratory strains can be reported in the same way, just adding the
DROP lab strain_id. It is important to periodically recheck identification of laboratory

strains as cultures are easily cross-contaminated, and deposit vouchers of laboratory
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strains associated with experiments to DROP. In the future, when e.g.
“drop_Ganl_sp.1” is described as a new species with a formal specific epithet, DROP
curator will update the species status and holotype information while keeping this
provisional species name as an informal “synonym.”

A weaker and thus much less preferred way of cross-linking is to state in the
study that the identification of organisms was performed based on molecular
identification match of a sequence to DROP sequences. This is the only available option

for environmental DNA studies. For example, one can write:

Provisional species “drop_Ganl_sp.1” was identified based on 99.9% blast match

of COI to DROP sequence_id: 2 (BOLD Process ID: DROP143-21).

DROP deposition in Zenodo allows referencing of DROP either through general
doi (the doi we use throughout this paper), which takes the user always to the latest
database version, or through a doi specific to DROP version. When referencing DROP
please primarily cite this paper, but for reproducibility it is also good practice to include
doi of the specific DROP version used.

There are two basic ways of molecular identification which should ideally be
used in combination: sequence matching (blast), and tree-building methods which
investigate membership to a cluster. Further, there are a number of decisions to be
made with each method, concerning locus (or loci) and thresholds. DROP leaves these

decisions up to the users, only provides raw sequences or links to them. Practically, the
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choice of loci is currently mostly limited to COI, but in the future it is likely that
molecular identifications will be based on multiple loci or whole genomes. Over time we
will also get a better idea about what thresholds are more appropriate than a fixed 2%
cut off. For rarer parasitoid genera which attack also other hosts besides Drosophila
(e.g. Opius, or Spalangia wasps) we suggest caution in the identification using only
DROP sequences as DROP does not include all sequences from these genera, but just

from species which are already known to attack Drosophila.

From molecular mechanisms to ecosystem structure

The use of molecular tools in insect biodiversity studies has gradually expanded from
barcoding single individuals to metabarcoding large environmental samples
representing entire food webs (Jeffs et al., 2020; Littlefair et al., 2016). Drosophila and
their parasitoids are among the few systems that currently allow us to explore
thoroughly the mechanisms of species interactions at scales ranging from the molecular
to the ecological. Here, we highlight two examples where information compiled in DROP
enables the study of the Drosophila-parasitoid system across multiple levels of biological

organization:

DROP includes a DNA reference library of Australian Drosophila parasitoids (dataset:

DS-AUSPTOID dx.doi.org/10.5883/DS-AUSPTOID) that connects laboratory experiments

and field research. Molecular vouchers of both hosts and parasitoids were collected
along altitudinal gradients in the rainforest of northern Queensland, Australia (Jeffs et

al., 2021). With this DNA reference library, researchers can detect interactions between
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Drosophila and their parasitoids using PCR-based approaches and parasitized pupae
(Hrcek & Godfray, 2015; Jeffs et al., 2020). Surveying host-parasitoid interactions in this
way will improve our understanding of how environmental change alters the structure
of host-parasitoid networks (Morris et al., 2014; Staniczenko et al., 2017; Tylianakis et
al., 2007) by accelerating data collection in the field. In addition, JH established lab
cultures of both hosts and their parasitoids from the same Australian sampling sites with
the aim of conducting laboratory experiments (e.g. Thierry et al., 2021). Molecular
vouchers of the lab strains were then submitted to DROP as a reference database

(datasets: DS-LABS dx.doi.org/10.5883/DS-LABS) to ensure that criteria for species

determination were applied consistently—and will continue to be applied consistently—
between the natural community studies and the laboratory experiments.

The presence of a foundational DNA reference library and species catalogue in
DROP will enable the process of exploring parasitoid biodiversity to become more
efficient. For example, DROP includes molecular vouchers from Drosophila parasitoids
that were collected across seasons and along latitudinal gradients in the eastern United
States (Lue et al., 2016, 2018). These data proved to be extremely useful for identifying
species in a more recent exploration of native parasitoid biodiversity across North
America (e.g., Abram et al., 2020). There are additional uses for DROP: curated
specimen collections may be used to document species distributions, phenology,
understand micro-evolutionary patterns, observe the effects of climate change, and
detect and track biological invasions (Funk, 2018; Schilthuizen et al., 2015; Tarli et al.,

2018).
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Taxonomic accuracy for biocontrol studies

Unfortunately, the history of biological control includes many examples of
misidentifications that have resulted in failures to employ or establish the expected
control agent, thus hindering eventual success (Buffington et al., 2018; Rosen, 1986;
Huffaker et al. 1962). In the context of biological control research on Drosophila pest
species, a simple, reliable, and rapid identification tool for their natural enemies is
essential (Wang et al. 2020b). By anchoring the criteria for determining identities of
organisms being considered for biological control programs, DROP annotation enables
the direct examination of centers of origin for parasitoid species, their co-occurrence
with natural enemies, and the optimal timing for potential introductions of such
enemies (Abram et al., 2020; Daane et al., 2016; Girod et al., 2018a and b; Kimura, 2015;
Mitsui et al., 2007). Because most sequences from DROP are already vetted for
reliability, they can be used to identify biological control agents rapidly, before or after
being brought into quarantine facilities for safety and efficacy testing. This will decrease
the risk of non-target ecological impacts arising from misidentifications and facilitate

regulatory review for releases of effective and specific natural enemies.

In addition to species identification, reference sequences from DROP may be used as
a starting point to create species-specific primers for the accurate identification of
parasitoids, design multiplex PCR assays that rapidly distinguish species in natural or
agricultural ecosystems (Ye et al., 2017), and apply high-throughput molecular

identification diagnostics (Fagan-Jeffries et al., 2018).
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Long-term molecular voucher preservation

During the curation of DROP, we found that holotype specimens were missing from
museums for several iconic Drosophila parasitoid species: Asobara tabida (Nees von
Esenbeck), Leptopilina clavipes (Hartig), and Leptopilina longipes (Hartig). This is not
uncommon and impedes future taxonomic revisions regardless of whether or not
molecular data are used. To avoid contributing to this problem, DROP uses museums as
depositories for ensuring that sequenced vouchers of both described species and
provisional species are permanently stored. In order to stabilize nomenclature, we
further advocate the designation of neotypes (a replacement specimen for a missing
holotype or type series) that have museum-vouchered DNA barcodes and additional
genomic extractions in storage.

Natural history museums are designed to maintain vouchers (including types) for
long-term preservation, and increasingly they implement institutionalized workflows
that link DNA sequences to specimens and specimen metadata (Prendini et al., 2002).
We strongly encourage the deposition of voucher specimens from field surveys and
experimental studies in museum collections, as has been urged by the Entomology
Collections Network (ECN) and required in many PhD programs. No matter how quickly
new molecular techniques are developed or refined, there is no substitute for a reliable
database of voucher specimens when it comes to ensuring the repeatability of biological

research (Funk et al., 2005; Lendemer et al., 2020).
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Our results show that species richness of the parasitic wasps that attack Drosophila
is severely underestimated, and only a fraction of them have been described. In DROP,
38% of the OTUs are provisional species, and more than 46% of the named OTUs have
synonyms. Remarkably, Leptopilina heterotoma, one of the world’s most studied
parasitoids, has more than 20 synonyms! As is generally the case, the rate of species
description and revision of Drosophila parasitoids lags far behind that with which
molecular sequence data are generated. Ensuring a consistent application of OTU
recognition is therefore essential. With DROP, researchers may ensure consistency in
their application of scientific names, and that those names are valid, making the
daunting process of describing Drosophila parasitoids more accurate and efficient. In
addition to the collection of physical museum resources, a central role taxonomists play
in DROP and its curation is that of fostering better integration of taxonomy with
experimental and biodiversity research. Our intention is to perpetuate DROP beyond
this introductory publication. We hope that experts in all areas of Drosophila-parasitoid

biology and related fields will join us in this effort.

Conclusion

Taxonomic confusion presents many obstacles in experimental and biodiversity
studies. One way of addressing this impediment is to provide a reliable DNA library with
traceable vouchers (Astrin et al., 2013). Compared to BOLD and GenBank, DROP is a
small database that provides some advantages over an immense genetic database. For

example, it is easier for the research community to have direct communication amongst
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themselves, when there is a strong focus on a few specific taxa (Weigand et al., 2019). A
good database has to maintain good quality of molecular data, but even more
challenging is to maintain quality of identification from different sources (Fontes et al.,
2021). In a big database, setting up a universal standard that satisfied all the taxa and
researchers desires is particularly challenging. The curated nature of DROP will allow us
to make strong rules to govern this data and assure users of its fidelity. While GenBank
and BOLD each perform some amount of curation, it could be difficult to agree on
curators for the whole range of animal and plant species catalogued there. We
developed DROP as a resource and platform for gathering and sharing reliable genomic
sequence data for Drosophila parasitoids. We hope it will serve as a model for
researchers working with organisms which present similar difficulties. While compiling
DROP, we found that the high number of provisional versus named OTUs suggests that
the diversity of parasitic wasps attacking Drosophila is greatly underestimated. With this
in mind, DROP represents the start of an important knowledge base that will strengthen
future studies of natural host-parasitoid interactions, population dynamics, biocontrol,

and the impact of climate change on biodiversity and ecosystem services.
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Figure 1: An example of difficulties of molecular identification demonstrated on
Ganaspis xanthopoda and G. brasiliensis. Only two sequences (in bold text) can be
reliably used for identification and are included in DROP database. To select the
sequences, we searched the BINs associated with the organism’s name “Ganaspis
xanthopoda” (green) or “Ganaspis brasiliensis” (purple) in BOLD. From each BIN, two
sequences from each species were selected to build a neighbor-joining tree (bottom axis
indicated % genetic divergence). There was a total of 6 BINs (gray boxes) in this
sequence complex. Of these, 4 BINs contained both species names and without
examination of vouchers, identification would be impossible. In DROP, vouchers from
two sequences, MG755073 and MG755072, were deposited in CNR-IPSP (Table S2),
examined by taxonomists and identified as G. brasiliensis. These two COIl sequences can
now be used to reliably identify G. brasiliensis. For G. xanthopoda, there were no
available vouchers or reliable sequences that passed DROP standards to use for
identification. Species delimitation between G. brasiliensis and G. xanthopoda is
convoluted, varies according to arbitrary % genetic divergence (gray vertical lines), and
needs an integrative taxonomic revision.
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Figure 2: Concept of a centralized, vetted, curated database for Drosophila Parasitoids
(DROP) we developed. First, we provide a species and provisional species catalog with
correct taxonomy. Second, to provide a reliable genetic reference library, we link
genetic data (DNA sequences, genomes, transcriptomes, proteomes) to a voucher
connected to the species catalog. Third, we link the two primary sources of data (field
surveys and laboratory experiments) by requiring a permanent deposition of vouchers
and sequences in order to be included in DROP.

Tables:

Table 1: List of species and provisional species included in DROP. For additional
taxonomic details, see DROP.

Superfamily Family Genus Species_Name Author
Chalcidoidea Encyrtidae drop_Cha2_sp12
Chalcidoidea Encyrtidae Tachinaephagus drop_ IR1_sp41 Kimura
Chalcidoidea Encyrtidae Tachinaephagus  drop_BG1_sp42 Kimura
Chalcidoidea Encyrtidae Tachinaephagus  zealandicus Ashmead 1904
Chalcidoidea Pteromalidae drop_Pte69 spll
Chalcidoidea Pteromalidae Pachycrepoideus vindemmiae (Rondani, 1875)
Chalcidoidea Pteromalidae Spalangia drop_IR1_sp38 Kimura
Chalcidoidea Pteromalidae Spalangia drop_NG1_sp39 Kimura
Chalcidoidea Pteromalidae Spalangia drop_SK1_sp40 Kimura
Chalcidoidea Pteromalidae Spalangia drosophilae Ashmead 1887
Chalcidoidea Pteromalidae Spalangia erythromera Foerster 1850
Chalcidoidea Pteromalidae Trichomalopsis dubia (Ashmead, 1896)
Chalcidoidea Pteromalidae Trichomalopsis microptera (Lindeman, 1887)
Chalcidoidea Pteromalidae Trichomalopsis nigricola Boucek
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Chalcidoidea Pteromalidae Trichomalopsis sarcophagae (Gahan, 1914)
Chalcidoidea Pteromalidae Vrestovia brevior Boucek 1993
Chalcidoidea Pteromalidae Vrestovia fidenas (Walker, 1848)
Chalcidoidea Pteromalidae drop_ PacAtl_sp46
drop_

Chalcidoidea Pteromalidae PachyPort_sp45
Chalcidoidea drop_ CH_sp64
Cynipoidea Figitidae Ganaspis brasiliensis (Ihering, 1905)
Cynipoidea Figitidae Ganaspis drop_ Gan_sp51
Cynipoidea Figitidae Ganaspis drop_ Gan_sp52
Cynipoidea Figitidae Ganaspis drop_ Gan_sp53
Cynipoidea Figitidae Ganaspis drop_ Gspl _sp67
Cynipoidea Figitidae Ganaspis drop_ Gsp2 sp68
Cynipoidea Figitidae Ganaspis drop_ Gsp50_sp66
Cynipoidea Figitidae Ganaspis drop_IR1_sp25 Kimura
Cynipoidea Figitidae Ganaspis drop_IR2 _sp26 Kimura
Cynipoidea Figitidae Ganaspis drop_Ganl_spl
Cynipoidea Figitidae Ganaspis drop TK1_sp27 Kimura
Cynipoidea Figitidae Ganaspis hookeri Craword 1913
Cynipoidea Figitidae Ganaspis mahensis Kieffer 1911
Cynipoidea Figitidae Ganaspis mellipes (Say, 1826)
Cynipoidea Figitidae Ganaspis mundata Forster 1869
Cynipoidea Figitidae Ganaspis seticornis (Hellen, 1960)
Cynipoidea Figitidae Ganaspis tenuicornis Kieffer 1904
Cynipoidea Figitidae Ganaspis xanthopoda (Ashmead, 1896)
Cynipoidea Figitidae Kleidotoma bicolor (Giraud, 1860)
Cynipoidea Figitidae Kleidotoma dolichocera Thomson 1877
Cynipoidea Figitidae Kleidotoma drop TK1_sp28 Kimura
Cynipoidea Figitidae Kleidotoma filicornis (Cameron, 1889)
Cynipoidea Figitidae Kleidotoma icarus (Quinlan, 1964)
Cynipoidea Figitidae Kleidotoma psiloides Westwood 1833
Cynipoidea Figitidae Kleidotoma tetratoma (Hartig, 1841)
Cynipoidea Figitidae Leptolamina drop_Fig64_sp5
Cynipoidea Figitidae Leptolamina drop_Lmn_sp6
Cynipoidea Figitidae Leptolamina drop_TK1_sp29 Kimura

Yoshimoto &
Cynipoidea Figitidae Leptolamina gressitti Yasumatsu 1965
Cynipoidea Figitidae Leptolamina papuensis Yoshimoto 1963
Cynipoidea Figitidae Leptolamina ponapensis Yoshimoto 1962
Cynipoidea Figitidae Leptolamina seychellensis (Kieffer, 1911)
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Cynipoidea Figitidae Leptopilina atraticeps (Kieffer, 1911)

Cynipoidea Figitidae Leptopilina australis (Belizin, 1966)
(Barbotin, Carton &

Cynipoidea Figitidae Leptopilina boulardi Kelner-Pillault, 1979)

Cynipoidea Figitidae Leptopilina clavipes (Hartig, 1841)

Cynipoidea Figitidae Leptopilina cupulifera (Kieffer, 1916)
Lue & Buffington

Cynipoidea Figitidae Leptopilina decemflagella 2017

Cynipoidea Figitidae Leptopilina drop_Lep _sp54

Cynipoidea Figitidae Leptopilina drop_Lep _sp55

Cynipoidea Figitidae Leptopilina drop_Lep _sp56

Cynipoidea Figitidae Leptopilina drop_ Lep _sp57

Cynipoidea Figitidae Leptopilina drop_Lep sp58

Cynipoidea Figitidae Leptopilina drop_Lep _sp59

Cynipoidea Figitidae Leptopilina drop_ Lep sp60

Cynipoidea Figitidae Leptopilina drop_Lep sp61

Cynipoidea Figitidae Leptopilina drop_Lep sp62

Cynipoidea Figitidae Leptopilina drop_BG1_sp34 Kimura

Cynipoidea Figitidae Leptopilina drop_Fig059 sp4

Cynipoidea Figitidae Leptopilina drop_Fig124 sp2

Cynipoidea Figitidae Leptopilina drop_Fig58 sp3

Cynipoidea Figitidae Leptopilina drop_IR1_sp30 Kimura

Cynipoidea Figitidae Leptopilina drop_ NG1_sp33 Kimura

Cynipoidea Figitidae Leptopilina drop_SK1_sp35 Kimura

Cynipoidea Figitidae Leptopilina drop _STL sp7

Cynipoidea Figitidae Leptopilina drop _TK2 sp31 Kimura

Cynipoidea Figitidae Leptopilina drop_TK3_sp32 Kimura

Cynipoidea Figitidae Leptopilina fimbriata (Kieffer, 1901)
Allemand &

Cynipoidea Figitidae Leptopilina freyae Nordlander 2002
Allemand &

Cynipoidea Figitidae Leptopilina guineaensis Nordlander 2002

Cynipoidea Figitidae Leptopilina heterotoma (Thomson, 1862)
Novkovic & Kimura

Cynipoidea Figitidae Leptopilina japonica japonica 2011
Buffington &

Cynipoidea Figitidae Leptopilina lasallei Guerrieri 2020
Lue & Buffington

Cynipoidea Figitidae Leptopilina leipsi 2018

Cynipoidea Figitidae Leptopilina lonchaeae (Cameron, 1912)

Cynipoidea Figitidae Leptopilina longipes (Hartig, 1841)

Cynipoidea Figitidae Leptopilina mahensis (Kieffer, 1911)
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Lue & Buffington
Cynipoidea Figitidae Leptopilina maia 2016
Cynipoidea Figitidae Leptopilina maria (Girault, 1930)

Allemand &
Cynipoidea Figitidae Leptopilina orientalis Nordlander 2002

Novkovic & Kimura
Cynipoidea Figitidae Leptopilina pacifica 2011
Cynipoidea Figitidae Leptopilina rufipes (Cameron, 1908)
Cynipoidea Figitidae Leptopilina rugipunctata (Yoshimoto, 1962)

Novkovic & Kimura
Cynipoidea Figitidae Leptopilina ryukyuensis 2011

Wachi & Kimura
Cynipoidea Figitidae Leptopilina tokioensis 2015

Wachi & Kimura
Cynipoidea Figitidae Leptopilina tsushimaensis 2015
Cynipoidea Figitidae Leptopilina victoriae Nordlander 1980
Cynipoidea Figitidae Rhoptromeris heptoma (Hartig, 1840)
Cynipoidea Figitidae Rhoptromeris nigriventris Nordlander 1978
Cynipoidea Figitidae Rhoptromeris rufiventris (Giraud, 1860)
Cynipoidea Figitidae Rhoptromeris villosa (Hartig, 1840)
Cynipoidea Figitidae drop_Lg500_sp43
Ichneumonoidea Braconidae Alysia drop_SP1 sp24 Kimura

Hughes & Woolcock
Ichneumonoidea Braconidae Aphaereta aotea 1976
Ichneumonoidea Braconidae Aphaereta drop_SP1 spl5 Kimura
Ichneumonoidea Braconidae Aphaereta drop TK1_sp13 Kimura
Ichneumonoidea Braconidae Aphaereta drop TM1_sp14 Kimura
Ichneumonoidea Braconidae Aphaereta minuta (Nees, 1811)
Ichneumonoidea Braconidae Aphaereta pallipes (Say, 1829)
Ichneumonoidea Braconidae Aphaereta scaptomyzae Fischer 1966

Li & van Achterberg
Ichneumonoidea Braconidae Areotetes striatiferus 2013

Li & van Achterberg
Ichneumonoidea Braconidae Areotetes carinuliferus 2013
Ichneumonoidea Braconidae Asobara ajbelli Berry 2007
Ichneumonoidea Braconidae Asobara albiclava Berry 2007
Ichneumonoidea Braconidae Asobara antipoda (Ashmead, 1900)
Ichneumonoidea Braconidae Asobara bactrocerae (Gahan, 1952)

van Achterberg &
Ichneumonoidea Braconidae Asobara brevicauda Guerrieri 2016
Ichneumonoidea Braconidae Asobara citri (Fischer, 1963)
Ichneumonoidea Braconidae Asobara drop_KG1_spl6 Kimura
Ichneumonoidea Braconidae Asobara drop NG1_sp17 Kimura
Ichneumonoidea Braconidae Asobara drop_SK2_sp20 Kimura
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Ichneumonoidea Braconidae Asobara drop_SP1 sp18 Kimura
Ichneumonoidea Braconidae Asobara drop_Sp2 sp19 Kimura

van Achterberg &
Ichneumonoidea Braconidae Asobara elongata Guerrieri 2016
Ichneumonoidea Braconidae Asobara gahani (Papp, 1969)
Ichneumonoidea Braconidae Asobara japonica Belokobylskij 1998
Ichneumonoidea Braconidae Asobara kenyaensis Peris-Felipo 2014
Ichneumonoidea Braconidae Asobara leveri (Nixon, 1939)

van Achterberg &
Ichneumonoidea Braconidae Asobara mesocauda Guerrieri 2016
Ichneumonoidea Braconidae Asobara orientalis Viereck 1913
Ichneumonoidea Braconidae Asobara persimilis (Prince, 1976)
Ichneumonoidea Braconidae Asobara pleuralis (Ashmead, 1905)
Ichneumonoidea Braconidae Asobara rossica Belokobylskij 1998
Ichneumonoidea Braconidae Asobara rufescens (F"rster, 1862)
Ichneumonoidea Braconidae Asobara tabida (Nees, 1834)

van Achterberg &
Ichneumonoidea Braconidae Asobara triangulata Guerrieri 2016
Ichneumonoidea Braconidae Asobara turneri Peris-Felipo 2014

van Achterberg &
Ichneumonoidea Braconidae Asobara unicolorata Guerrieri 2016
Ichneumonoidea Braconidae Aspilota albertica Berry 2007
Ichneumonoidea Braconidae Aspilota andyaustini Wharton 2002
Ichneumonoidea Braconidae Aspilota angusta Berry 2007
Ichneumonoidea Braconidae Aspilota concolor Nees 1812
Ichneumonoidea Braconidae Aspilota parecur Berry 2007
Ichneumonoidea Braconidae Aspilota villosa Berry 2007
Ichneumonoidea Braconidae Dinotrema barrattae Berry 2007
Ichneumonoidea Braconidae Dinotrema longworthi Berry 2007
Ichneumonoidea Braconidae Dinotrema philipi Berry 2007
Ichneumonoidea Braconidae drop_Aso_sp8
Ichneumonoidea Braconidae Opiognathus pactus (Haliday, 1837)
Ichneumonoidea Braconidae Opius bellus Gahan 1930
Ichneumonoidea Braconidae Opius cinerariae Fischer

Li & van Achterberg
Ichneumonoidea Braconidae Opius crenuliferus 2013

Li & van Achterberg
Ichneumonoidea Braconidae Opius monilipalpis 2013
Ichneumonoidea Braconidae Opius ocreatus (Papp)
Ichneumonoidea Braconidae Opius pallipes Wesmael 1835

Wharton & Austin
Ichneumonoidea Braconidae Opius pteridiophilus 1990
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Wharton & Austin
Ichneumonoidea Braconidae Opius pterus 1990
Ichneumonoidea Braconidae Opius trimaculatus Spinola

Li & van Achterberg
Ichneumonoidea Braconidae Opius youi 2013
Ichneumonoidea Braconidae Phaenocarpa conspurcator (Haliday, 1838)
Ichneumonoidea Braconidae Phaenocarpa drop_IR1_sp22 Kimura
Ichneumonoidea Braconidae Phaenocarpa drop TK1_sp21 Kimura
Ichneumonoidea Braconidae Phaenocarpa tacita Stelfox 1941
Ichneumonoidea Braconidae Phaenocarpa drosophilae (Fischer 1975)
Ichneumonoidea Braconidae Tanycarpa bicolor (Nees, 1814)
Ichneumonoidea Braconidae Tanycarpa chors Belokobylskij 1998
Ichneumonoidea Braconidae Tanycarpa drop_ NG1_sp23 Kimura
Ichneumonoidea Braconidae Tanycarpa punctata van Achterberg 1976
Ichneumonoidea Braconidae drop_Aly _sp47
Ichneumonoidea Braconidae drop_Aly_sp48
Ichneumonoidea Braconidae drop_Aly_sp49
Ichneumonoidea Braconidae drop_ Aly_sp50
Ichneumonoidea Braconidae drop_Aly sp63
Ichneumonoidea Braconidae drop_Aso_sp69
Diaprioidea Diapriidae Trichopria anastrephae Costa Lima 1940
Diaprioidea Diapriidae Trichopria drop_BG1 sp37 Kimura
Diaprioidea Diapriidae Trichopria drop_ Dia70_sp65
Diaprioidea Diapriidae Trichopria drop_ Tri_sp44
Diaprioidea Diapriidae Trichopria drop_Bdia_sp10
Diaprioidea Diapriidae Trichopria drop_Dial27 sp9
Diaprioidea Diapriidae Trichopria drop _TK1_sp36 Kimura
Diaprioidea Diapriidae Trichopria drosophilae (Kieffer, 1912)
Diaprioidea Diapriidae Trichopria modesta (Ratzeburg, 1848)
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