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Abstract

The ethanol disturbs the cell cycle, transcription, translation, protein folding, cell
wall, membranes, and many Saccharomyces cerevisiae metabolic processes. Long
non-coding RNAs (IncRNAs) are regulatory molecules binding onto the genome or
proteins. The number of INcCRNAs described for yeast is still scarce, and little is known
concerning their roles in the system. There is a lack of knowledge concerning how
IncRNAs are responsive to the ethanol tolerance in yeast and whether they act in this
tolerance. Hence, by using RNA-Seq data from S. cerevisiae strains with different
ethanol tolerance phenotypes, we found the severe ethanol responsive INncRNAs. We
modeled how they participate in the ethanol tolerance by analyzing IncRNA-protein
interactions. The results showed that the EtOH tolerance responsive INCRNAs, in both
higher tolerant and lower tolerant phenotypes, work on different pathways: cell wall,
cell cycle, growth, longevity, cell surveillance, ribosome biogenesis, intracellular
transport, trehalose metabolism, transcription, and nutrient shifts. In summary,
IncRNAs seems to interconnect essential systems’ modules to overcome the ethanol
stress. Finally, here we also found the most extensive catalog of IncRNAs in yeast.
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Introduction

Biofuels can be produced from different sources (Demirbas 2017). Bioethanol
is the most important biofuel as the most promising gasoline substitute (Chakraborty
et al. 2012; Gupta and Verma 2015). The yeast Saccharomyces cerevisiae is the most
used organism for bioethanol production (Mussatto et al. 2010; Demeke et al. 2013).
Thus, understanding relevant factors to improve ethanol yield is essential for an ever-
growing environment that increasingly demands more fuel.

However, increasing the ethanol (EtOH) concentration compromises the yeast
survival affecting its growth rate and production (Stanley et al. 2010; Auesukaree
2017). For instance, EtOH rapidly affects the yeast’s plasma membrane integrity (Ding
et al. 2009; Ma and Liu 2010; Navarro-Tapia et al. 2016), leading to protein dysfunction
and denaturation, affecting the molecules intake (e.g., glucose and amino acids), and
causing an efflux of nucleotides and potassium (Ding et al. 2009; Ma and Liu 2010).

Experiments overexpressing or repressing candidate genes change the EtOH
tolerance in yeast (Alper et al. 2006; Teixeira et al. 2009; Mussatto et al. 2010; Lewis
et al. 2010; Swinnen et al. 2012). However, the complex molecular mechanisms
concerning this pathway are still poorly understood.

The long non-coding RNAs (IncRNAs) promptly respond to external stimuli
(Yamashita et al. 2016), regulating the gene expression and epigenetic modifications
(Anderson et al. 2015). Furthermore, the few known cases concerning IncRNA-protein
interactions suggest that IncRNAs work as a framework for macromolecular
complexes assembly, or bait transcription factors dampening the association of these
proteins to the DNA, or guide the chromatin modifiers (Tripathi et al. 2010; Geisler and
Coller 2013; Ferré et al. 2016; Li et al. 2019).

The IncRNA description for S. cerevisiae is scarce. Only 18 IncRNAs are
appropriately described and annotated for this species (Till et al. 2018). These
IncRNAs are directly involved in metabolic changes, sexual differentiation initiation,
and other unknown processes (Yamashita et al. 2016). Recently, experiments showed
that four ncRNAs affect the transcriptional systems as a whole mediated by a trans
effect on transcription factors. These ncRNAs may be associated with the EtOH
tolerance and stress response (Balarezo-Cisneros et al. 2020). However, little is
known concerning the roles of INcRNA-protein interactions for all species.
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Here we aimed to raise hypotheses concerning the relationship between
IncRNAs and the EtOH tolerance. For this purpose, we focused on analyzing the
interactions between the EtOH tolerance responsive INcCRNAs and proteins. RNA-Seq
data from S. cerevisiae strains with different EtOH tolerance phenotypes (higher and
lower EtOH tolerant ones) were used to seek the IncRNAs expressed during the
severe EtOH stress; in this case, we developed a pipeline to assemble these IncCRNAs.
Then, we analyzed how the IncRNAs impact the EtOH tolerance based on the
prediction of IncRNA-protein interactions, guilt-by-association, and information flow
throughout network approaches. The main pathways that EtOH stress-responsive
LncRNAs work on are the cell wall, cell cycle and growth, cell longevity, cell
surveillance, ribosome biogenesis, intracellular transport, trehalose metabolism,
transcription, and nutrients shifts. Our findings indicate that EtOH stress-responsive
IncRNAs interconnect essential systems’ modules in a sort of strain-specific way to
surpass a stressed environment's challenges. Altogether, here we provide insights and
hypotheses on how InNcRNAs may be working to the EtOH tolerance.

Material and Methods
Strains selection, ethanol tolerance definitions, and sequencing

The haploid strains BMAG64-1A (Euroscarf/20000A), BY4742 (SGD/BY4742),
X2180-1A (SGD/X2180-1A), BY4741 (SGD/BY4741), SEY6210 (SGD/SEY6210), and
S288C (SGD/S288c) were obtained from Euroscarf (European Saccharomyces
cerevisiae Archive for Functional Analysis) or NRBP (National Bioresources Project).

For the EtOH tolerance experiments, strains were grown overnight in YPD (2%
of peptone, 1% of yeast extract, and 2% of glucose) and further diluted to an ODeqo of
0.2. Then, 100 pL of cells were harvested by centrifugation at 2,000 RPM at 4°C for 5
min. Pellets were resuspended using YPD with different EtOH or physiological solution
concentrations (the treatment and control condition, respectively) in plate-wells. Plates
were incubated at 30°C for 1h and shaken at 120 RPM; the EtOH or physiological
solution ranged from 2% to 32% (v/v). The content of each plate-well was plated on
YPD and incubated at 30°C. Visual inspection allowed to set up the highest EtOH
tolerance level supported for each strain.

Total RNA of cells under control and treatment conditions (the highest EtOH
level supported per strain) was extracted from 1.5 mL of cells using Trizol after a cell
wall digestion using Lyticase. The RNA quality was checked by electrophoresis in
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agarose gel and Bioanalyzer, and Nanodrop and Qubit estimated the RNA
quantification. The samples were treated with TURBO DNase (ThermoFisher), and
rRNA depletion was performed. The transcriptome was obtained for 36 samples (6
strains x 2 (treatment and control) x 3 replicates). The genomic DNA of BMA64-1A
was extracted using phenol-chloroform, and the quality and quantity were estimated
using the equipment mentioned.

The RNA-Seq was performed by the LcScience (Texas, USA) Company using
the lllumina HiSeq 4000 (100 nt, paired-end reads, insert size of 24-324 bp, and at
least 40 million reads per sample); the company ensured the absence of small RNAs
(<200 nts). The GenOne (Rio de Janeiro, Brazil) sequenced the genome using the
lllumina HiSeq 2500 (250 nt, paired-end reads, 1 Gb of throughput, and insert size
~500 bp).

Genome assembling, IncRNA identification, and differential expression

The paired-end reads of the BMAG4-1A genome were cleaned with
Trimmomatic v.0.36 and independently assembled using AbySS v.2.0.2 (Jackman et
al. 2017), IDBA v.1 (Peng et al. 2010), MIRA v.4.0.2, SPAdes v.3.10.1 (Bankevich et
al. 2012) and Velvet v.1.2.10 (Zerbino and Birney 2008), varying parameters and
assembling strategies. For an individual chromosome assembling, the reads were
mapped against the reference genome (S288C version R64-2-1) using the HISAT2
v.2.1.0 (Kim et al. 2015), and the mapped reads were assembled using IDBA v.1 (Peng
et al. 2010).

The genomic assembling metrics of each assembly were obtained with QUAST
v. 4.5 (Gurevich et al. 2013). The QUAST values were normalized, generating a score
from O to 1. Since QUAST generate many metrics for the assembling and reference,
the score mentioned was calculated for each assembling considering all QUAST-
normalized metrics (equation 1); the assembling with score value =0 was considered

the most similar to the reference genome, and we assumed as the final data:

. . \2
d= Z?=1\/(metrlcj — metric;) eq. 1
where metric; and metric; are the metrics of the reference genome and a given
assembling, respectively. To obtain d, all n metrics were considered.

For the BMAG4-1A genome annotation, the transcripts of S288C from SGD
were mapped over the best assembling using GMAP (Wu and Watanabe 2005), and
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a de novo annotation was performed using MAKER v.2.32 (Cantarel et al. 2008). A
manual curation comparing the two annotations was performed: 1- annotations
present in both strategies were considered correct; 2- by visual inspection of the
reference genome, the regions with disagreements passed by manual adjustments.
Finally, we adjusted the annotations using the results from AGAPE (Song et al. 2015).
The protein sequences were translated from annotated regions for further analysis.
RNA-Seq libraries were trimmed using
Trimmomatic v.0.36 (Bolger et al. 2014) and used to identify the IncRNAs.

We developed a pipeline to assembly the IncRNAs. Overall, the filtered reads

The paired-end reads for all

were mapped over coding sequences of many different species. After, the non-
mapped paired-reads were assembled using different algorithms, and a score was
calculated to rank the best assembling. The transcript redundancies within strains were
excluded, and the remaining transcripts were mapped over the genome of each strain
to exclude spurious assembling. The mapped transcripts that may be coding
sequences or mobile elements were excluded, and the remaining sequences were
rechecked concerning their potential coding (Figure 1). Details of this pipeline are
below described.

If coding
Pairfq If >10aaI CPC/ l
BioPython to T-Code
predict 4
aminoacids l
I Isitin Yes
HMMcode?
passed
Re-assembling l No
transcriptomes Blast Tools
with CAP3 RepeatM. Are the
. A Yes
intersections
Choose best If coding?
transcriptome mapped
l No
Transcripts enoe
redunda!lcles If >= 200nt mapping
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Figure 1: Pipeline to assembly the IncRNAs.
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It was created a dataset with millions of sequences including: 1- coding
sequences (CDS), and proteomes of eukaryotes and bacteria; 2- genomes; 3-
microRNAs precursors; 4- ncRNA families present in the Rfam database (Burge et al.
2013), being the IncRNAs (Rfam accession number 01884) the only exception; 5-
mobile elements. The RNA-Seq filtered reads of each strain were independently
aligned on nucleotide sequences of the database mentioned using HISAT2 v.2.1.0
(Kim et al. 2015). Then, we assembled the non-aligned read-pairs selected by Pairfq
script (The MIT License) since the ones are reads without similarity with coding,
NcRNAs (excepting IncRNAs), mobile elements, and mitochondrial and contaminants
genomes; reads that lost a member of the pair were excluded of this assembling
(Figure 1).

The “Single Assembler Multiple Parameters” strategy (He et al. 2015) was used
for the de novo assembling mentioned; it was performed parameter adjustments for
each step using the S288C reads, and then, we applied the best parameter set to
independently assembly the reads of all other strains. First, the Velvet/Oases (Zerbino
and Birney 2008; Schulz et al. 2012), Trinity (Haas et al. 2013), IDBA-tran (Peng et al.
2012), and rnaSPAdes (Bankevich et al. 2012) were independently tested to determine
which one was the best assembler for our dataset. For Velvet/Oases, rnaSPAdes, and
IDBA-tran parameters, the kmers ranged from 19 to 81, and for Velvet/Oases and
rnaSPAdes, we had set-up an automatic coverage cutoff and no scaffolding
assembling. For Trinity assembler, we set-up the kmers ranging from 19 to 31. These
programs were set-up to assemble only transcripts 2200 nts when this option was
available (Figure 1).

All assembled transcriptomes within each assembler were merged in a single
file, sequences with 210% of "Ns" (non-identified nucleotides) were removed, followed
by a generation of 1 transcriptome per assembler; this re-assembling was performed
using CAP3 (Huang 1999). The singlets and contigs from CAP3 were merged, and the
filtered reads (the ones used in the first assembling) were mapped over this file using
Bowtie2 (Langmead and Salzberg 2012). A score was used (equation 2) to evaluate
the final assembling, and the highest value indicates the best transcriptome. As
mentioned, after these adjustments of the de novo assembling pipeline using the reads
of S288C, the same settings were applied to independently assemble the IncRNAs of
other strains (Figure 1).
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Score = (1 —AG)3+P X3 + (Pfo>:)4)
S+C
AG = m eq. 2
p= $2200nts+C=200nts
- S+C

where AG (the assembling gain) is a rate of how many sequences the CAP3 used to
assemble. The P is the percentage of CAP3 assembled sequences =200 nts, and the
PA is the percentage of reads aligned using Bowtie2 over CAP3 assembling. The S
and C are the numbers of sequences in the "singlets" and "contigs" CAP3's output,
respectively. The ICAP is the number of sequences with <10% of "Ns" (assembled by
IDBA, rnaSPAdes, Trinity, or Velvet/Oases) used as CAP3 input. The PA and P range
from O to 100, while AG ranges from 0 to 1. The AG rates =0 are considered better
values since it expresses that a higher number of input sequences was re-assembled
by CAP3. The P and PA =1 are better, expressing that CAP3 assembled a higher
number of large transcripts, and a higher number of reads was used by the first
assemblers (the ones before CAP3), respectively.

The set of non-redundant transcripts found using CD-HIT (Li and Godzik 2006)
were merged. The non-redundant sequences of each strain were mapped over its own
genomes using GMAP (Wu and Watanabe 2005). The mapped transcripts were then
rechecked concerning their potential to be coding, ncRNAs (except IncRNAs),
repetitive elements, or contaminant genomes (viruses, bacteria, and mitochondria).
For this purpose, the mapped transcripts were: 1- aligned against the proteomes using
Blastx; 4- aligned against bacteria, viruses, and mitochondrial genomes using GMAP
(Wu and Watanabe 2005). The data distribution of all results was analyzed to establish
cutoffs to filter out undesirable sequences (Figure 1).

To verify the lack of coding regions on filtered sequence transcripts were protein
translated (=10 aa) using the Getorf (Rice et al. 2000), and transcripts/proteins were
evaluated using Hmmer (Mistry et al. 2013) with Pfam database v.31.0 (Finn et al.
2014), Tcode (Rice et al. 2000), Portrait (Arrial et al. 2009) and CPC (Kong et al. 2007).
The transcripts with motifs fitting Hmm models using Hmmer were assumed as
potentially coding, whereas the other sequences that fit coding sequences using at
least two out of the other three programs (Tcode, Portrait, or CPC) were defined as
coding sequences. Hence, sequences not found neither by Hmmer nor by two other
programs were assumed as putative INcRNAs (Figure 1).
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The RNA-Seq filtered reads of each strain were mapped over its genomes using
HISAT2 v.2.10 (Kim et al. 2015) (“-no-softclip”), the counting per transcript was
obtained using the Bedtools multiBamCov v.2.26.0 (Quinlan and Hall 2010), and the
IncRNAs differentially expressed comparing treatment vs. control was provided by
DESeq2 (Love et al. 2014) considering a false discovery rate <0.01.

LncRNA-protein interaction prediction and analysis

It was predicted the IncRNAs-protein interactions (LNCPI), considering proteins
=232 amino acids of each strain (downloaded from SGD and translated from the
BMAG4-1A genome assembling), using the IncPRO tool (Lu et al. 2013). The
probability distributions of interactions follow a normal distribution, then the ones 20.95
of probability were selected for further analysis.

We downloaded yeast’s protein-protein interactions (PPI) from Biogrid (Chatr-
Aryamontri et al. 2013) and MINT (Licata et al. 2012), gene regulatory networks from
the YTRP database (Yang et al. 2014), and metabolic networks from REACTOME
(Fabregat et al. 2014). Only physical interactions among proteins were selected from
Biogrid, and redundancies with MINT were excluded; we excluded the interactions
present in the NEGATOME (Blohm et al. 2014). The networks were combined to create
a single integrated network (Uninet). The Uninet was unified with the LNCPI of each
strain generating 6 networks (one per strain and each of them including its LNCPI
strain-specific) (equation 3). These networks were considered undirected graphs.

Ge = Vi, E) = LNCPI, U Uninet = A,
G =U"1, E'Y)
Ve ={vi} ={gffi} vV gf fi € GFF; q-
E') = {(vi,vj)} Va;; =1

which Gk is an adjacency matrix Ax (where ajjis an element of Ax) of a given strain (k).
The G’k is a subgraph from Gk. V'« is a subset of nodes v; from G’k generated based
on GFF annotation (gffx). E’x is a subset of edges of V’ from G’x. Hence, G’k are strain-
specific networks harboring their respective LNCPI as well.

To assess the influence of EtOH on the IncRNA target-protein and how the
IncRNAs could help to the EtOH tolerance, we analyzed the information flow
throughout LNCPI networks from each differentially expressed IncRNA (hereafter
referred to as IncRNA-propagation analysis). For this analysis, we selected the up-
regulated edges (log2 fold-change = 1E-6) of each strain (the network is the G’
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depicted in equation 3). Unconnected nodes or nodes with self-loops were excluded.
The network propagation using the diffusion algorithm (Cowen et al. 2017) was
assessed starting from all differential expressed INcCRNAs. After, the IncRNAs and their
first neighbors were selected, and only the top 20 ranked nodes from diffusion
information were retrieved to compose new subgraphs (the nodes with self-loops or
unconnected nodes were excluded again). Altogether, we could assess the
participation of INcRNAs in the EtOH tolerance and whether this compound triggers
similar effects on systems harboring different IncRNAs and interactions. The same
processes were performed for IncRNAs and genes down-regulated (log2 fold-change
<-1E-6).

The gene ontology of IncRNA target-proteins was analyzed using g:Profiler
(Reimand et al. 2016). The enriched terms were summarized by REVIGO (Supek et
al. 2011). For this purpose, we considered all target-proteins indiscriminate neither by
differential expression nor by strain.
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Results

The highest EtOH tolerance level observed for each strain allowed classifying
the ones as higher tolerant (HT) or lower tolerant (LT) phenotypes. The HT strains are
BMAG4-1A (tolerates 30% of EtOH), BY4742 (tolerates 26% of EtOH), and X2180-1A
(tolerates 24% of EtOH). The strains BY4741 (tolerates 22% of EtOH), SEY6210
(tolerates 20% of EtOH), and S288C (tolerates 20% of EtOH) were considered LTs.

A total of 6,410,152 filtered reads with ~250 nts length allowed to achieve 196
assemblings of the BMAG64-1A genome (Table 1). The best assembling has
11,880,801 bp, with 683 scaffolds, and with 134.88X of coverage. Only 36 out of 6,551
annotated coding genes did not present any similarity with the S288C genome (the

reference genome).

Value N50 Contigs/scaffolds GC% Genome size Genes AS
Minimum 1,437 17 37.93 126,580 1,744 0.054
Maximum 924,585 27,639 38.34 12,162,499 5,872 0.63
*Selected 202,259 683 38.06 11,880,801 5,668 0.29

Table 1: Metrics of BMA64-1A genome considering all assembling. *: metrics of
selected assembling; AS: assembling score.

The best IncRNA assemblings pipeline uses the Trinity, followed by a re-
assembling using CAP3. Although Velvet/Oases outperforms the Trinity (see the score
in Table 2), the latter presented the highest computational performance. Hence, all
IncRNA assembling used Trinity giving from 87 to 259 IncRNAs identified after the
filtering steps (Table 3).

Pipeline ICAP AG S+C Avg. len. P (%) PA (%) Score
Velvet/Oases 467816 0.18 82010 1792 99.30 99.46 9.43
Trinity 127202 0.26 33581 1161.5 100 99.62 9.19
IDBA 277106 0.07 18999 2144 100 78.65 8.64
rnaSPAdes 973409 0.48 464859 850.5 25.15 99.72 6.31

Table 2: Overview of de novo final assemblings of S288C’s IncRNAs. The ICAP, AG,
S+C, P, PA, and Score are described in equation 2. Avg. len.: the average sequence
length of CAP3 re-assembling.

Most IncRNAs range from ~200-400 nts (Figure 2), being the IncRNA
transcr_28768 of S288c the largest one (2,739 nts). Interestingly, all IncRNAs do not
present similarities to those previously published (Parker et al. 2017, 2018).
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Figure 2: The distribution of IncRNA lengths.

The filtered LNCPI networks (probability 295%) harbor most of the identified
IncRNAs. The filtered networks presented from 17 to 44 IncRNAs and from 86 to 394
target-proteins. The number of edges found is higher than the number of target-
proteins, indicating that some IncRNAs interact with multiple proteins (Table 3).

Indeed, the average of target proteins divided by the number of IncRNAs is ~8.1.

Strain *Num. IncRNAs **Num. target-proteins Num. edges
BMAG4-1A 36 159 244
BY4742 25 200 369
X2180-1A 17 86 153
BY4741 17 230 286
SEY6210 20 174 233
S288C 44 394 706

Table 3: Summary of LNCPI. *: the number of IncRNAs with at least one interaction;

**: the number of proteins potentially binding to IncRNAs.

The EtOH stress-responsive IncCRNAs lie in four functional categories. These
categories were identified based on the function of target-proteins selected by INcRNA-
propagation analysis from each differentially expressed IncRNAs. The 15t category
("essential process") includes genes related to transcription, replication, and ribosome
biogenesis. The 2" (“membrane dependent process”) includes genes related to
signaling and cell division, membranes and cell wall, and intracellular transport. The
3 (“metabolic process”) includes genes related to oxidative stress response, diauxic

shift, fermentation, and other metabolisms. The 4™ includes genes of the "degradation
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process" (Figure 3A). Moreover, the whole set of target-proteins (without considering
differential expression and strain-specificities) are mainly related to "RNA polymerase
assembling" and "negative regulation of protein kinase activity by protein
phosphorylation" (Figure 3B).

BMdA64- 1A BY4742 B}4742 X2180-1A X2dl 80-1A

. @ Oxidative stress response £@ Degradation

z @ Transcription ¢ £ @ Signaling and cell div. £ S

7 O Replication ég. Membranes and cell wall £ : l?;‘:élgt;gl(g §,

" B Ribosamesbiog 5% W Tntesltilar tamsport. = O Other metabolism @ Unknown function
B

Figure 3: Functional annotation of INCcRNAs A: selected subsystems using the
IncRNA-propagation analysis. The node colors are related to biological functions
depicted under the graphs; B: enriched terms of all target-proteins without considering

neither strains nor differential expression and without excluding redundant proteins.
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Discussion
EtOH stress-responsive IncRNAs are diverse and may be directly involved in the
EtOH tolerance

Few IncRNAs have been found in yeasts, counting up to 18 IncRNAs for S.
cerevisiae (Till et al. 2018). Here, we present the most extensive catalog of INcCRNAs
of 6 different S. cerevisiae strains; the ones were never identified before since there
was no similarity to the previously IncRNAs found in yeast (Parker et al. 2017, 2018).

LncRNAs can act as protein-baits providing a negative impact on the target-
protein by blocking its function. However, IncRNA-scaffolders help the protein complex
organization positively or negatively (Wang and Chang 2011). The LNCPI here
predicted fits the number of edges (ncRNA-protein interactions) previously reported
(Panni et al. 2017), as well as the number of target proteins (~8.1 proteins per
transcript); in fact, one small RNA (100 nts) can trap around 5-20 proteins (Chujo et
al. 2016).

We used the guilt-by-association and the information flow throughout LNCPI (the
IncRNA-propagation) to assess the IncRNA functions. Overall, the EtOH tolerance
responsive INncRNAs in both higher tolerant (HT) and lower tolerant (LT) phenotypes
work on different pathways; we highlight the cell wall, cell cycle and growth, cell
longevity, cell surveillance, ribosome biogenesis, intracellular transport, trehalose
metabolism, transcription, and nutrients shifts pathways. Below, we discuss some
exciting interactions that may be related to EtOH tolerance.

The down-regulated IncRNA transcr_63478 of BY4742 binds to the Cin8p
(YELO61C), responsible for the mitotic spindle assembly and chromosome
segregation (Roof et al. 1992). The lack of CIN8 leads to cell cycle progression delay
(Straight et al. 1998; Mittal et al. 2020). Remarkably, CIN8 is down-regulated in all HT
strains and not differentially expressed in most LTs (data not shown). Additionally, this
IncRNA also binds to Def1p, an RNAPII degradation factor (Woudstra et al. 2002).

The EtOH affects yeast's cell wall components (Aguilar-Uscanga and Francois
2003). The down-regulated IncRNA transcr_8290 of X2180-1A bind to the ATPases
Dnf1lp (YER166W), Neo1p (YILO48W), Dsr2p (YAL026C), Dnf3 (YMR162C), and
chitin synthases Chs3p (YBR023C), and Chs1p (YNL192W). The 4 P-type ATPases
mentioned transport phospholipids through a bilayer membrane (Paulusma and Oude
Elferink 2005), and then, chitin synthases produce chitins for the cell wall (Ziman et al.
1996). Moreover, these proteins lie in the membrane, working as multi-drug transport
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in the responsive drug system (Golin et al. 2007). Altogether, we suggest that
transcr_8290 of X2180-1A may act as an assembler of protein complexes related to
membrane and cell wall.

The down-regulated IncRNAs transcr_18820, transcr_21244, and transcr_6225
of S288C bind to the Ecm16p (YMR128W), and Rea1p/Mdn1p (YLR106C), which are
small nucleolar ribonucleoprotein (snoRNP) and ribosome biogenesis protein,
respectively (Shiratori et al. 1999; Colley et al. 2000; Nissan 2002). Additionally,
transcr_19266 interacts with Rpa190p (YOR341W), which is part of RNA Polymerase
| (RNAPI) (Kuhn et al. 2007).

The up-regulated INcRNAs transcr_3338 and transcr_2916 of BY4741 bind to the
flippases Drs2p (YAL026C) and Dnf2p (YDRO93W), respectively. These flipases are
P-type ATPases that concentrate phosphatidylserine and phosphatidylethanolamine
on the cytosolic leaflet, contributing to endocytosis, intracellular transport, and cell
polarity (Chen et al. 1999; Hua et al. 2002; Pomorski et al. 2003; lwamoto et al. 2004).
Transcr_2916 also binds to the two low-affinity phosphate transporters Pho90p
(YJL198W) and Pho87p (YCRO037C); the overexpression of these genes leads to
abnormal cell cycle progression and a reduction of vegetative growth rate (Stevenson
et al. 2001; Sopko et al. 2006; Yoshikawa et al. 2011). BY4741 is the only strain with
up-regulation of these PHO genes (data not shown).

The up-regulated IncRNAs of SEY6210 seem to act mainly on “membrane
dependent processes” in the cell modeling processes (such as the ones during the cell
cycle). In this case, the interaction between transcr_8157 and transcr_9136 with the
proteins Bni1p (YNL271C), Sla1p (YBLO07C), and Hbt1p (YDL223C) indicate that
these INcRNAs may work on the cell cortex modeling system, albeit the mentioned
genes have different roles. Sla1p is a cytoskeletal binding protein associated with
endocytosis or binds to proteins to regulate actin dynamics (Pruyne and Bretscher
2000; Howard et al. 2002). Bni1p and Hbt1p are responsible for cell polarization (Lee
et al. 1999; Dittmar 2002; Pruyne et al. 2002, 2004; Tcheperegine et al. 2005;
Guarente 2010).

The up-regulated IncRNAs transcr_18666 of S288C seems to work on
trehalose metabolism actively. There is a positive correlation between cell viability and
trehalose concentration in cells under EtOH stress, providing a protective effect to the
EtOH (Mansure et al. 1994). The Ath1p (YPR026W), a trehalose degradation protein
(Nwaka et al. 1996; Jules et al. 2004), interacts with transcr_18666. Interestingly,
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S288C has the lowest EtOH tolerance. Altogether, our initial hypothesis is that the
transcr_18666 may negatively impact ATH1 under the severe EtOH stress.

The X2180-1A up-regulated IncRNA transcr_3746 may be acting on cellular
surveillance mediated by a "membrane dependent process". We found that the Cyr1p
(YJLOOSW) (works on signal transduction, which is required for cAMP production
(Kataoka et al. 1985)) also binds to transcr_3746. The cAMP is involved in cell cycle
progression, sporulation, cell growth, stress response, and longevity (Casperson et al.
1985). Hence, we suggest that the transcr_3746 may also be related to cell longevity,
growth, and proliferation.

The up-regulated IncRNAs transcr_10883, transcr_10027, and transcr_9158 of
BY4742 may be directly involved in the EtOH tolerance controlling nutrient supply.
These IncRNAs bind to Pik1p (YNL267W), a kinase that can rapidly restore the
nutrients supply in cells under nutrient deprivation (Demmel et al. 2008). Interestingly,
cells under EtOH stress ongoing by a variation on nutrients depletion (Tesniére et al.
2013).

The down-regulated IncRNA transcr_6448 of BMAG64-1A had one target-protein
coded by the gene YER040W (GLN3). GIn3p is a transcriptional activator of genes
subject to nitrogen catabolite repression (Feller et al. 2013). The deletion of GLN3
boosts the yeast to the branched-chain alcohols tolerance (Kuroda et al. 2019). The
finding mentioned fits our hypothesis since BMAG4-1A is the only strain with the down-
regulation of GLN3 (data not shown) and presents the highest EtOH tolerance here
analyzed. In this case, we suggest that the transcr_6448 may act as a sort of GIn3p
repressor under the severe EtOH stress by an unknown negative-feedback loop.
Altogether, we hypothesize that the highest EtOH tolerance observed for BMA64-1A
may be a by-product of the negative GLN3 regulation by the transcr_6448 under
stress.

Plenty of IncRNA's target-proteins are related to transcriptional mechanisms
("RNA polymerase assembling" and "negative regulation of protein kinase activity by
protein phosphorylation"). The proteins related to the “RNA polymerase assembling”
mechanism are related to the "transcription by RNA polymerase II". LncRNAs can
contribute to a balance of transcription/degradation rate (Timmers and Tora 2018).
Therefore, we hypothesize that IncRNA-RNAPII interactions might be acting as
signaling molecules to counterbalance the transcription/degradation rate of mMRNAs.

Altogether, network analysis provided hints about the role of many EtOH stress-
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responsive INcCRNA. These ncRNAs seem to act as baits, backbones, or adapter
molecules to maintain protein complexes essentials to improve yeast capacity to
endure the severe EtOH stress. Finally, our findings indicate that yeasts’ IncRNAs
under a severe EtOH stress seem to interconnect a diversity of modules to surpass

hurdles imposed by this stressor.

16


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

References

Aguilar-Uscanga B., and J. M. Francois, 2003 A study of the yeast cell wall
composition and structure in response to growth conditions and mode of
cultivation. Lett. Appl. Microbiol. 37: 268-274. https://doi.org/10.1046/j.1472-
765X.2003.01394.x

Alper H., J. Moxley, E. Nevoigt, G. R. Fink, and G. Stephanopoulos, 2006
Engineering yeast transcription machinery for improved ethanol tolerance and
production. Science 314: 1565-1568. https://doi.org/10.1126/science.1131969

Anderson D. M., K. M. Anderson, C.-L. Chang, C. A. Makarewich, B. R. Nelson, et
al., 2015 A Micropeptide Encoded by a Putative Long Noncoding RNA
Regulates Muscle Performance. Cell 160: 595-606.
https://doi.org/10.1016/j.cell.2015.01.009

Arrial R. T., R. C. Togawa, and M. de M. Brigido, 2009 Screening non-coding RNAs
in transcriptomes from neglected species using PORTRAIT: case study of the
pathogenic fungus Paracoccidioides brasiliensis. BMC Bioinformatics 10: 239.
https://doi.org/10.1186/1471-2105-10-239

Auesukaree C., 2017 Molecular mechanisms of the yeast adaptive response and
tolerance to stresses encountered during ethanol fermentation. J. Biosci.
Bioeng. 124: 133-142. https://doi.org/10.1016/j.jbiosc.2017.03.009

Balarezo-Cisneros L. N., S. Parker, M. G. Fraczek, S. Timouma, P. Wang, et al.,
2020 Functional and transcriptional profiling of non-coding RNAs in yeast reveal
context-dependent phenotypes and widespread in trans effects on the protein
regulatory network. bioRxiv 1-26. https://doi.org/10.1101/2020.04.07.029611

Bankevich A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, et al., 2012 SPAdes:
A New Genome Assembly Algorithm and Its Applications to Single-Cell
Sequencing. J. Comput. Biol. 19: 455-477.
https://doi.org/10.1089/cmb.2012.0021

Blohm P., G. Frishman, P. Smialowski, F. Goebels, B. Wachinger, et al., 2014
Negatome 2.0: a database of non-interacting proteins derived by literature
mining, manual annotation and protein structure analysis. Nucleic Acids Res. 42:
D396-D400. https://doi.org/10.1093/nar/gkt1079

Bolger A. M., M. Lohse, and B. Usadel, 2014 Trimmomatic: a flexible trimmer for
lllumina sequence data. Bioinformatics 30: 2114-20.
https://doi.org/10.1093/bioinformatics/btu170

17


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Burge S. W., J. Daub, R. Eberhardt, J. Tate, L. Barquist, et al., 2013 Rfam 11.0: 10
years of RNA families. Nucleic Acids Res. 41: D226-32.
https://doi.org/10.1093/nar/gks 1005

Cantarel B. L., I. Korf, S. M. C. Robb, G. Parra, E. Ross, et al., 2008 MAKER: An
easy-to-use annotation pipeline designed for emerging model organism
genomes. Genome Res. 18: 188—196. https://doi.org/10.1101/gr.6743907

Casperson G. F., N. Walker, and H. R. Bourne, 1985 Isolation of the gene encoding
adenylate cyclase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 82:
5060-5063. https://doi.org/10.1073/pnas.82.15.5060

Chakraborty S., V. Aggarwal, D. Mukherjee, and K. Andras, 2012 Biomass to biofuel:
a review on production technology. Asia-Pacific J. Chem. Eng. 7: S254-S262.
https://doi.org/10.1002/apj.1642

Chatr-Aryamontri A., B. J. Breitkreutz, S. Heinicke, L. Boucher, A. Winter, et al., 2013
The BioGRID interaction database: 2013 Update. Nucleic Acids Res. 41: 470—
478. https://doi.org/10.1093/nar/gks1158

Chen C. Y., M. F. Ingram, P. H. Rosal, and T. R. Graham, 1999 Role for Drs2p, a P-
type ATPase and potential aminophospholipid translocase, in yeast late Golgi
function. J. Cell Biol. 147: 1223-36. https://doi.org/10.1083/jcb.147.6.1223

Chujo T., T. Yamazaki, and T. Hirose, 2016 Architectural RNAs (arcRNAs): A class
of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim.
Biophys. Acta - Gene Regul. Mech. 1859: 139-146.
https://doi.org/10.1016/j.bbagrm.2015.05.007

Colley A., J. D. Beggs, D. Tollervey, and D. L. J. Lafontaine, 2000 Dhr1p, a Putative
DEAH-Box RNA Helicase, Is Associated with the Box C+D snoRNP U3. Mol.
Cell. Biol. 20: 7238-7246. https://doi.org/10.1128/mcb.20.19.7238-7246.2000

Cowen L., T. Ideker, B. J. Raphael, and R. Sharan, 2017 Network propagation: A
universal amplifier of genetic associations. Nat. Rev. Genet. 18: 551-562.
https://doi.org/10.1038/nrg.2017.38

Demeke M. M., H. Dietz, Y. Li, M. R. Foulquié-Moreno, S. Mutturi, et al., 2013
Development of a D-xylose fermenting and inhibitor tolerant industrial
Saccharomyces cerevisiae strain with high performance in lignocellulose
hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels
6: 89. https://doi.org/10.1186/1754-6834-6-89

Demirbas A., 2017 Tomorrow’s biofuels: Goals and hopes. Energy Sources, Part A

18


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Recover. Util. Environ. Eff. 39: 673—-679.
https://doi.org/10.1080/15567036.2016.1252815

Demmel L., M. Beck, C. Klose, A.-L. Schlaitz, Y. Gloor, et al., 2008
Nucleocytoplasmic Shuttling of the Golgi Phosphatidylinositol 4-Kinase Pik1 Is
Regulated by 14-3-3 Proteins and Coordinates Golgi Function with Cell Growth,
(B. Glick, Ed.). Mol. Biol. Cell 19: 1046—1061. https://doi.org/10.1091/mbc.e07-
02-0134

Ding J., X. Huang, L. Zhang, N. Zhao, D. Yang, et al., 2009 Tolerance and stress
response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol.
Biotechnol. 85: 253—-263.

Dittmar G. A. G., 2002 Role of a Ubiquitin-Like Modification in Polarized
Morphogenesis. Science (80-. ). 295: 2442-2446.
https://doi.org/10.1126/science.1069989

Fabregat A., S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, et al., 2014 The
Reactome Pathway Knowledgebase. Nucleic Acids Res. 44: D481-D487.
https://doi.org/10.1093/nar/gkt1102

Feller A., I. Georis, J. J. Tate, T. G. Cooper, and E. Dubois, 2013 Alterations in the
Ure2 aCap domain elicit different GATA factor responses to rapamycin
treatment and nitrogen limitation. J. Biol. Chem. 288: 1841-55.
https://doi.org/10.1074/jbc.M112.385054

Ferre F., A. Colantoni, and M. Helmer-Citterich, 2016 Revealing protein-IncRNA
interaction. Brief. Bioinform. 17: 106—16. https://doi.org/10.1093/bib/bbv031

Finn R. D., A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt, et al., 2014 Pfam:
The protein families database. Nucleic Acids Res. 42: 222-230.
https://doi.org/10.1093/nar/gkt1223

Geisler S., and J. Coller, 2013 RNA in unexpected places: long non-coding RNA
functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 14: 699-712.
https://doi.org/10.1038/nrm3679

Golin J., S. V. Ambudkar, and L. May, 2007 The yeast PdrS5p multidrug transporter:
How does it recognize so many substrates? Biochem. Biophys. Res. Commun.
356: 1-5. https://doi.org/10.1016/j.bbrc.2007.02.011

Guarente L., 2010 Forever young. Cell 140: 176-8.
https://doi.org/10.1016/j.cell.2010.01.015

Gupta A., and J. P. Verma, 2015 Sustainable bio-ethanol production from agro-

19


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

residues: A review. Renew. Sustain. Energy Rev. 41: 550-567.
https://doi.org/10.1016/j.rser.2014.08.032

Gurevich A., V. Saveliev, N. Vyahhi, and G. Tesler, 2013 QUAST: quality
assessment tool for genome assemblies. Bioinformatics 29: 1072-1075.
https://doi.org/10.1093/bioinformatics/btt086

Haas B. J., A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, et al., 2013 De
novo transcript sequence reconstruction from RNA-seq using the Trinity platform
for reference generation and analysis. Nat. Protoc. 8: 1494—1512.
https://doi.org/10.1038/nprot.2013.084

He B., S. Zhao, Y. Chen, Q. Cao, C. Wei, et al., 2015 Optimal assembly strategies of
transcriptome related to ploidies of eukaryotic organisms. BMC Genomics 16:
65. https://doi.org/10.1186/s12864-014-1192-7

Howard J. P., J. L. Hutton, J. M. Olson, and G. S. Payne, 2002 Sla1p serves as the
targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis. J. Cell
Biol. 157: 315-26. https://doi.org/10.1083/jcb.200110027

Hua Z., P. Fatheddin, and T. R. Graham, 2002 An essential subfamily of Drs2p-
related P-type ATPases is required for protein trafficking between Golgi complex
and endosomal/vacuolar system., (R. Schekman, Ed.). Mol. Biol. Cell 13: 3162—
3177. https://doi.org/10.1091/mbc.e02-03-0172

Huang X., 1999 CAP3: A DNA Sequence Assembly Program. Genome Res. 9: 868—
877. https://doi.org/10.1101/gr.9.9.868

lwamoto K., S. Kobayashi, R. Fukuda, M. Umeda, T. Kobayashi, et al., 2004 Local
exposure of phosphatidylethanolamine on the yeast plasma membrane is
implicated in cell polarity. Genes Cells 9: 891-903.
https://doi.org/10.1111/j.1365-2443.2004.00782.x

Jackman S. D., B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo, et al., 2017 ABySS
2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome
Res. 27: 768-777. https://doi.org/10.1101/gr.214346.116

Jules M., V. Guillou, J. Francgois, and J.-L. Parrou, 2004 Two distinct pathways for
trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl. Environ.
Microbiol. 70: 2771-8. https://doi.org/10.1128/aem.70.5.2771-2778.2004

Kataoka T., D. Broek, and M. Wigler, 1985 DNA sequence and characterization of
the S. cerevisiae gene encoding adenylate cyclase. Cell 43: 493-505.
https://doi.org/10.1016/0092-8674(85)90179-5

20


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Kim D., B. Langmead, and S. L. Salzberg, 2015 HISAT: a fast spliced aligner with
low memory requirements. Nat. Methods 12: 357-360.
https://doi.org/10.1038/nmeth.3317

Kong L., Y. Zhang, Z.-Q. Ye, X.-Q. Liu, S.-Q. Zhao, et al., 2007 CPC: assess the
protein-coding potential of transcripts using sequence features and support
vector machine. Nucleic Acids Res. 35: W345-\W349.
https://doi.org/10.1093/nar/gkm391

Kuhn C.-D., S. R. Geiger, S. Baumli, M. Gartmann, J. Gerber, et al., 2007 Functional
Architecture of RNA Polymerase I. Cell 131: 1260-1272.
https://doi.org/10.1016/j.cell.2007.10.051

Kuroda K., S. K. Hammer, Y. Watanabe, J. Montaio Lopez, G. R. Fink, et al., 2019
Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-
Specific Tolerance in Yeast. Cell Syst. 9: 534-547.e5.
https://doi.org/10.1016/j.cels.2019.10.006

Langmead B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9: 357-9. https://doi.org/10.1038/nmeth.1923

Lee L., S. K. Klee, M. Evangelista, C. Boone, and D. Pellman, 1999 Control of mitotic
spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol.
144: 947-61. https://doi.org/10.1083/jcb.144.5.947

Lewis J. a., |. M. Elkon, M. a. McGee, A. J. Higbee, and A. P. Gasch, 2010 Exploiting
natural variation in Saccharomyces cerevisiae to identify genes for increased
ethanol resistance. Genetics 186: 1197-1205.
https://doi.org/10.1534/genetics.110.121871

Li W., and A. Godzik, 2006 Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics 22: 1658-9.
https://doi.org/10.1093/bioinformatics/btl158

Li Z., W. Zhao, M. Wang, and X. Zhou, 2019 The Role of Long Noncoding RNAs in
Gene Expression Regulation, in Gene Expression Profiling in Cancer,
IntechOpen.

Licata L., L. Briganti, D. Peluso, L. Perfetto, M. lannuccelli, et al., 2012 MINT, the
molecular interaction database: 2012 update. Nucleic Acids Res. 40: D857—
D861. https://doi.org/10.1093/nar/gkr930

Love M. |., W. Huber, and S. Anders, 2014 Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq?2.

21


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Lu Q., S. Ren, M. Lu, Y. Zhang, D. Zhu, et al., 2013 Computational prediction of
associations between long non-coding RNAs and proteins. BMC Genomics 14:
651. https://doi.org/10.1186/1471-2164-14-651

Ma M., and Z. L. Liu, 2010 Mechanisms of ethanol tolerance in saccharomyces
cerevisiae. Appl. Microbiol. Biotechnol. 87: 829-845.

Mansure J. J. ., A. D. Panek, L. M. Crowe, and J. H. Crowe, 1994 Trehalose inhibits
ethanol effects on intact yeast cells and liposomes. Biochim. Biophys. Acta -
Biomembr. 1191: 309-316. https://doi.org/10.1016/0005-2736(94)90181-3

Mistry J., R. D. Finn, S. R. Eddy, A. Bateman, and M. Punta, 2013 Challenges in
homology search: HMMER3 and convergent evolution of coiled-coil regions.
Nucleic Acids Res. 41. https://doi.org/10.1093/nar/gkt263

Mittal P., K. Ghule, D. Trakroo, H. K. Prajapati, and S. K. Ghosh, 2020 Meiosis-
Specific Functions of Kinesin Motors in Cohesin Removal and Maintenance of
Chromosome Integrity in Budding Yeast. Mol. Cell. Biol. 40.
https://doi.org/10.1128/MCB.00386-19

Mussatto S. |., G. Dragone, P. M. R. Guimaraes, J. P. a Silva, L. M. Carneiro, et al.,
2010 Technological trends, global market, and challenges of bio-ethanol
production. Biotechnol. Adv. 28: 817-830.

Navarro-Tapia E., R. K. Nana, A. Querol, and R. Pérez-Torrado, 2016 Ethanol
Cellular Defense Induce Unfolded Protein Response in Yeast. Front. Microbiol.
7: 1-12. https://doi.org/10.3389/fmicb.2016.00189

Nissan T. A., 2002 60S pre-ribosome formation viewed from assembly in the
nucleolus until export to the cytoplasm. EMBO J. 21: 5539-5547.
https://doi.org/10.1093/emboj/cdf547

Nwaka S., B. Mechler, and H. Holzer, 1996 Deletion of the ATH1 gene in
Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett. 386: 235—
8. https://doi.org/10.1016/0014-5793(96)00450-4

Panni S., A. Prakash, A. Bateman, and S. Orchard, 2017 The yeast noncoding RNA
interaction network. RNA 23: 1479-1492.
https://doi.org/10.1261/rna.060996.117

Parker S., M. G. Fraczek, J. Wu, S. Shamsah, A. Manousaki, et al., 2017 A resource
for functional profiling of noncoding RNA in the yeast Saccharomyces
cerevisiae. RNA 23: 1166—-1171. https://doi.org/10.1261/rna.061564.117

Parker S., M. G. Fraczek, J. Wu, S. Shamsah, A. Manousaki, et al., 2018 Large-

22


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

scale profiling of noncoding RNA function in yeast, (M. Snyder, Ed.). PLOS
Genet. 14: e1007253. https://doi.org/10.1371/journal.pgen.1007253

Paulusma C. C., and R. P. J. Oude Elferink, 2005 The type 4 subfamily of P-type
ATPases, putative aminophospholipid translocases with a role in human
disease. Biochim. Biophys. Acta - Mol. Basis Dis. 1741: 11-24.
https://doi.org/10.1016/j.bbadis.2005.04.006

Peng Y., H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin, 2010 IDBA — A Practical
Iterative de Bruijn Graph De Novo Assembler, pp. 426—440 in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics),.

Peng Y., H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin, 2012 IDBA-UD: a de novo
assembler for single-cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics 28: 1420-1428.
https://doi.org/10.1093/bioinformatics/bts174

Pomorski T., R. Lombardi, H. Riezman, P. F. Devaux, G. van Meer, et al., 2003
Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid
translocation across the yeast plasma membrane and serve a role in
endocytosis. Mol. Biol. Cell 14: 1240-54. https://doi.org/10.1091/mbc.e02-08-
0501

Pruyne D., and A. Bretscher, 2000 Polarization of cell growth in yeast. J. Cell Sci.
113 (Pt 4: 571-85.

Pruyne D., M. Evangelista, C. Yang, E. Bi, S. Zigmond, et al., 2002 Role of formins in
actin assembly: nucleation and barbed-end association. Science 297: 612-5.
https://doi.org/10.1126/science.1072309

Pruyne D., L. Gao, E. Bi, and A. Bretscher, 2004 Stable and dynamic axes of polarity
use distinct formin isoforms in budding yeast. Mol. Biol. Cell 15: 4971-89.
https://doi.org/10.1091/mbc.e04-04-0296

Quinlan A. R., and |. M. Hall, 2010 BEDTools: A flexible suite of utilities for
comparing genomic features. Bioinformatics 26: 841-842.
https://doi.org/10.1093/bioinformatics/btq033

Reimand J., T. Arak, P. Adler, L. Kolberg, S. Reisberg, et al., 2016 g:Profiler—a web
server for functional interpretation of gene lists (2016 update). Nucleic Acids
Res. 44: W83-W89. https://doi.org/10.1093/nar/gkw199

Rice P., |. Longden, and A. Bleasby, 2000 EMBOSS: The European Molecular

23


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Biology Open Software Suite. Trends Genet. 16: 276-277.
https://doi.org/10.1016/S0168-9525(00)02024-2

Roof D. M., P. B. Meluh, and M. D. Rose, 1992 Kinesin-related proteins required for
assembly of the mitotic spindle. J. Cell Biol. 118: 95-108.
https://doi.org/10.1083/jcb.118.1.95

Schulz M. H., D. R. Zerbino, M. Vingron, and E. Birney, 2012 Oases: robust de novo
RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics 28: 1086—1092. https://doi.org/10.1093/bioinformatics/bts094

Shiratori A., T. Shibata, M. Arisawa, F. Hanaoka, Y. Marakami, et al., 1999
Systematic identification, classification, and characterization of the open reading
frames which encode novel helicase-related proteins inSaccharomyces
cerevisiae by gene disruption and Northern analysis. Yeast 15: 219-253.
https://doi.org/10.1002/(SICI)1097-0061(199902)15:3<219::AID-
YEA349>3.0.CO;2-3

Song G., B. J. A. Dickins, J. Demeter, S. Engel, B. Dunn, et al., 2015 AGAPE
(Automated Genome Analysis PipelinE) for Pan-Genome Analysis of
Saccharomyces cerevisiae, (J. Schacherer, Ed.). PLoS One 10: e0120671.
https://doi.org/10.1371/journal.pone.0120671

Sopko R., D. Huang, N. Preston, G. Chua, B. Papp, et al., 2006 Mapping pathways
and phenotypes by systematic gene overexpression. Mol. Cell 21: 319-30.
https://doi.org/10.1016/j.molcel.2005.12.011

Stanley D., A. Bandara, S. Fraser, P. J. Chambers, and G. a. Stanley, 2010 The
ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J.
Appl. Microbiol. 109: 13-24. https://doi.org/10.1111/j.1365-2672.2009.04657 .x

Stevenson L. F., B. K. Kennedy, and E. Harlow, 2001 A large-scale overexpression
screen in Saccharomyces cerevisiae identifies previously uncharacterized cell
cycle genes. Proc. Natl. Acad. Sci. U. S. A. 98: 3946-51.
https://doi.org/10.1073/pnas.051013498

Straight A. F., J. W. Sedat, and A. W. Murray, 1998 Time-lapse microscopy reveals
unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143:
687-94. https://doi.org/10.1083/jcb.143.3.687

Supek F., M. Bosnjak, N. Skunca, and T. Smuc, 2011 REVIGO Summarizes and
Visualizes Long Lists of Gene Ontology Terms, (C. Gibas, Ed.). PLoS One 6:
€21800. https://doi.org/10.1371/journal.pone.0021800

24


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Swinnen S., K. Schaerlaekens, T. Pais, J. Claesen, G. Hubmann, et al., 2012
|dentification of novel causative genes determining the complex trait of high
ethanol tolerance in yeast using pooled-segregant whole-genome sequence
analysis. Genome Res. 22: 975-984. https://doi.org/10.1101/gr.131698.111

Tcheperegine S. E., X.-D. Gao, and E. Bi, 2005 Regulation of cell polarity by
interactions of Msb3 and Msb4 with Cdc42 and polarisome components. Mol.
Cell. Biol. 25: 8567-80. https://doi.org/10.1128/MCB.25.19.8567-8580.2005

Teixeira M. C., L. R. Raposo, N. P. Mira, A. B. Lourenco, |. Sa-Correia, et al., 2009
Genome-Wide ldentification of Saccharomyces cerevisiae Genes Required for
Maximal Tolerance to Ethanol. Appl. Environ. Microbiol. 75: 5761-5772.
https://doi.org/10.1128/AEM.00845-09

Tesniére C., P. Delobel, M. Pradal, and B. Blondin, 2013 Impact of Nutrient
Imbalance on Wine Alcoholic Fermentations: Nitrogen Excess Enhances Yeast
Cell Death in Lipid-Limited Must, (C. Menezes, Ed.). PLoS One 8: e61645.
https://doi.org/10.1371/journal.pone.0061645

The MIT License, Pairfg-Research Computing Center Wiki

Till P., R. L. Mach, and A. R. Mach-Aigner, 2018 A current view on long noncoding
RNAs in yeast and filamentous fungi. Appl. Microbiol. Biotechnol. 102: 7319—
7331. https://doi.org/10.1007/s00253-018-9187-y

Timmers H. T. M., and L. Tora, 2018 Transcript Buffering: A Balancing Act between
MRNA Synthesis and mRNA Degradation. Mol. Cell 72: 10-17.
https://doi.org/10.1016/j.molcel.2018.08.023

Tripathi V., J. D. Ellis, Z. Shen, D. Y. Song, Q. Pan, et al., 2010 The Nuclear-
Retained Noncoding RNA MALAT1 Regulates Alternative Splicing by Modulating
SR Splicing Factor Phosphorylation. Mol. Cell 39: 925-938.
https://doi.org/10.1016/j.molcel.2010.08.011

Wang K. C., and H. Y. Chang, 2011 Molecular Mechanisms of Long Noncoding
RNAs. Mol. Cell 43: 904-914. https://doi.org/10.1016/j.molcel.2011.08.018

Woudstra E. C., C. Gilbert, J. Fellows, L. Jansen, J. Brouwer, et al., 2002 A Rad26-
Def1 complex coordinates repair and RNA pol Il proteolysis in response to DNA
damage. Nature 415: 929-33. https://doi.org/10.1038/415929a

Wu T. D., and C. K. Watanabe, 2005 GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics 21: 1859-1875.
https://doi.org/10.1093/bioinformatics/bti310

25


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Yamashita A., Y. Shichino, and M. Yamamoto, 2016 The long non-coding RNA world
in yeasts. Biochim. Biophys. Acta - Gene Regul. Mech. 1859: 147-154.
https://doi.org/10.1016/j.bbagrm.2015.08.003

Yang T.-H., C.-C. Wang, Y.-C. Wang, and W.-S. Wu, 2014 YTRP: a repository for
yeast transcriptional regulatory pathways. Database (Oxford). 2014: bau014.
https://doi.org/10.1093/database/bau014

Yoshikawa K., T. Tanaka, Y. Ida, C. Furusawa, T. Hirasawa, et al., 2011
Comprehensive phenotypic analysis of single-gene deletion and overexpression
strains of Saccharomyces cerevisiae. Yeast 28: 349-61.
https://doi.org/10.1002/yea.1843

Zerbino D. R., and E. Birney, 2008 Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18: 821-829.
https://doi.org/10.1101/gr.074492.107

Ziman M., J. S. Chuang, and R. W. Schekman, 1996 Chs1p and Chs3p, two proteins
involved in chitin synthesis, populate a compartment of the Saccharomyces
cerevisiae endocytic pathway. Mol. Biol. Cell 7: 1909-1919.
https://doi.org/10.1091/mbc.7.12.1909

26


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430053; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Financial Support

Sao Paulo Research Foundation (FAPESP) numbers 2015/12093-9,
2017/08463-0, 2015/19211-7, and 2017/14764-3. National Council for Scientific and
Technological Development (CNPq) number 401041/2016-6.

27


https://doi.org/10.1101/2021.02.07.430053
http://creativecommons.org/licenses/by-nc-nd/4.0/

