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Abstract

Targeted therapy and immunotherapy have revolutionized the treatment of metastatic skin
melanoma but none of the treatments are approved for patients with metastatic uveal melanoma
(UM). Here we hypothesized that the poor responses to immunotherapy of UM can be
enhanced by epigenetic modulation using HDAC or BET inhibitors (BETi). Cultured uveal
melanoma cells were treated with the HDAC inhibitor (HDACi) entinostat or BETi JQI.
Entinostat induced HLA expression and PD-L1, but JQ1 did not. A syngenic mouse model
carrying B16-F10 melanoma cells were treated with PD-1 and CTLA-4 inhibitors, which was
curative. Co-treatment with the bioavailable BETi iBET-726 impaired the immunotherapy
effect. Monotherapy of a B16-F10 mouse model with anti-PD-1 resulted in a moderate
therapeutic effect that could be enhanced by entinostat. Mice carrying PD-L1 knockout B16-
F10 cells were also sensitive to entinostat. This suggests HDAC inhibition and immunotherapy
could work in concert. Indeed, co-cultures of UM with HLA-matched melanoma-specific
tumor-infiltrating lymphocytes (TILs) resulted in higher TIL-mediated melanoma killing when
entinostat was added. Further exploration of combined immunotherapy and epigenetic therapy

in metastatic UM is warranted.
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Introduction

Uveal melanoma (UM) is a rare form of melanoma, with an incidence of approximately eight
new cases per million per year in Sweden [1]. UMs originate from choroid, ciliary body, or iris
melanocytes and are clinically and biologically different to cutaneous melanoma [2, 3]. The
primary disease can in most cases be successfully treated with radiotherapy or enucleation, but
almost one half of patients subsequently develop metastatic disease, usually to the liver [4, 5].
While targeted therapies and immune checkpoint inhibitors have revolutionized the treatment
of metastatic cutaneous melanoma [6-8], there are still no effective treatments for patients with
metastatic UM, who have a median survival of less than 12 months [9].

UM harbors oncogenic mutations in the genes encoding the G-protein-alpha proteins
GNAQ or the mutually exclusive GNAII, PLCB4 or CYSLTR2, and poor prognosis is
associated with monosomy of chromosome 3 (Chr. 3) and inactivating mutations of the BAP!
tumor suppressor gene [10-13]. Therefore, BRAF inhibitors frequently used in skin melanoma
do not work in UM. Outcomes with immune checkpoint inhibitor monotherapy have been
disappointing, with response rates typically below 5% [14, 15]. Despite this, there appears to
be some level of immunity against UM, since expanded and adoptively transferred tumor-
infiltrating lymphocytes (TILs) have therapeutic clinical effects [13, 16]. Tebentafusp, a
bispecific protein immunotherapy targeting CD3 and melanoma-specific gp100, has also
shown activity in early-phase clinical studies [17], and combined PD-1 and CTLA4 immune
checkpoint inhibition appears to be more effective than monotherapy, albeit not as effective as
in cutaneous melanoma [18].

With the notable exception of iris melanomas, which display a UV damage mutational
signature [13], most UM display low tumor mutational burden (TMB) [19]. Other factors that
could mediate poor responses to immunotherapy could be poor antigen processing and

presentation or immune suppressive tumor microenvironments [20-22], especially in the liver
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[23]. Drugs targeting epigenetic regulators such as histone deacetylases (HDACs), BET
bromodomain proteins, and methyltransferases are showing promise as cancer therapies by
reversing oncogene transcription and modifying the tumor microenvironment [24]. HDAC
inhibitors (HDACi) block the effects of myeloid-derived suppressor cells (MDSCs) and
regulatory T cells (Tregs) [25, 26]; they enhance the expression of cancer antigens silenced
during immunoediting [27]; and/or they trigger DNA damage and cell death to activate danger
signals and recruit immune cells [28, 29]. Finally, HDACi can increase HLA class I expression,
resulting in enhanced antigen presentation [30].

The checkpoint ligand PD-L1 is usually induced when T cells meet cancer cells but HDACi
can directly induce PD-L1 to inactivate T cells [31]. This is contrary to BET inhibitors (BET1)
in some tumor types where PD-L1 is suppressed [32]. Nuclear acetylated PD-L1 was recently
shown to stimulate antigen presentation [33], providing a potential explanation for why PD-
L1-high tumors are sensitive to PD-1 inhibition. Since PD-L1 is induced by HDACi this
suggests that anti-PD-1 therapies and HDACi could synergize. Previous in vivo preclinical
studies [26, 31, 34, 35, 36-38] and phase I/II trials have shown encouraging results when
combining the HDACi [39-42]. However, it is unknown whether this combination is effective
in metastatic UM.

Here we investigate if HDACi or BETi increase UM immunogenicity (e.g., by inducing

HLA-1), induces PD-L1, and thereby synergizes with immunotherapy in animal models.

Results

Entinostat alters the transcriptome of immune-related genes in UM cells
To assess the effect of HDAC inhibition on HLA and PD-L1 expression, the human UM
cell lines 92-1 (mutations in GNAQ and EIF1AX, derived from a primary eye tumor), MEL202

(mutant GNAQ and SF3B1, primary tumor), MP41 (mutant GNA [ I, monosomy Chr. 3, primary
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91  tumor) and UM22 (mutant GNAQ and BAP 1, metastasis) were treated with the HDAC inhibitor
92  entinostat and analyzed by flow cytometry. Entinostat induced HLA-ABC in 92-1, MEL202,
93 and UM22 UM cells, but HLA-ABC was already highly expressed in MP41 cells and not
94  further induced (Fig. 1a, gating strategy shown in Supplementary Fig. 1). PD-L1 was induced
95 by entinostat in all cell lines (Fig. 1b). To gain further insight into immune-related expression
96  changes, gene expression changes following entinostat treatment were analyzed by RNA
97  sequencing. This analysis confirmed induction of HLA genes and/or CD274 (PD-L1) with
98 RNA-seq for UM22, MP41, and 92-1 (Fig. 1c, Supplementary Table 1). Entinostat also
99  induced the immune proteasome gene PSMB9 and T cell cytokine genes IL15 and CXCL12 but
100 not the ABC transporters 74P and TAP2. Expression of the immune checkpoint protein TIM3
101  ligand HM GBI was suppressed in all cell lines and the ligand CEACAM] in all except UM22
102  (Fig. 1c, Supplementary Fig. 2a,b). These effects were not seen with the BET bromodomain

103 inhibitor (BETi) JQI (Fig. 1c).

104  Entinostat increases the anti-tumoral effects of T cells in vivo and in vitro

105 To assess the immune modulatory effect of HDACi and BETi in an immune competent
106  and syngeneic mouse transplant model we used the B16-F10 murine melanoma cells. Although
107  these tumors did not originate from the uvea of the eye, B16-F10 cells resemble UM in that
108  they do not harbor classical cutaneous melanoma BRAF, NRAS, or NF 1 mutations and the TMB
109  is low [43]. Entinostat induced surface expression of MHC class I and II and PD-L1 (Fig. 2a,
110 Supplementary Table 2), similar to in human UM cells.

111 Next, we tested the in vivo efficacy of combined HDAC and PD-1 inhibition in C57/BL6
112 mice transplanted with subcutaneous B16-F10 tumors. Treatment with entinostat resulted in
113 faster tumor growth than vehicle controls and PD-1 inhibitor alone did not inhibit tumor growth
114  (Fig. 2b,c). However, combined entinostat and pembrolizumab significantly delayed tumor

115  growth and prolonged survival compared to monotherapy (Fig. 2b,c). Combination treatment
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116  also increased intra-tumoral CD8" T cells (but not CD4" cells) and decreased both tumor-
117  infiltrating myeloid cells and monocytic myeloid-derived suppressor cells (MDSCs). There
118  was also a shift in macrophage phenotype, with increased proportions of pro-tumorigenic “M2-
119  like” tumor-associated macrophages (TAMs) in combination therapy tumors (Fig. 2d,e).

120 CRISPR/Cas9 inactivation of (Cd274 (PD-L1) in implanted B16-F10 cells
121  (Supplementary Fig. S2¢) did not result in a slower tumor growth but it did ameliorate the
122 faster growth induced by entinostat in parental B16-F10 cells. In fact, Cd274 knockout cells
123 grew slower than parental cells when treated with entinostat, consistent with the results from
124 the pharmacological combination treatment (Fig. 2f). To investigate whether entinostat could
125  impact on T cell killing of human UM cells, MART-1-specific T cells were isolated from an
126 UM tumor using HLA-A2-specific MART-1 tetramers, expanded, and then used in killing
127  assays. Incubation of HLA-A2-positive 92-1 and MP41 cells with MART-1-specific T cells
128  induced UM cell apoptosis as measured by cleavage of caspase-3 and deposition of granzyme
129 B (Fig. 2g,h). Addition of anti-PD-1 pembrolizumab moderately increased T cell killing.

130 Collectively, these data suggest that combined immune checkpoint blockade and HDAC
131  inhibition can stimulate T cell immunity against human UM in vitro and BRAF, NRAS, and

132 NFI wildtype melanoma in vivo.

133 BET inhibition impairs immunotherapy in vivo

134 The finding that BETi JQ1 did not induce similar transcriptional changes as did entinostat (Fig.
135  1c¢) prompted further investigation into if BET inhibition would impact immunotherapy. Flow
136  cytometry analysis of BETi-treated cells confirmed the RNAseq data and showed that HLA
137 class 1 and 2 and PD-L1 expression was unchanged in UM22 cells and MP41 following
138  treatment with JQ1 (Fig. 3a). In B16-F10 cells HLA class 1 was unchanged and PD-L1 was
139  suppressed following JQI treatment (Fig. 3b), contrary to the effects of entinostat. To assess

140  the negative impact of BET inhibition in vivo we treated B16-F10 melanoma bearing mice with
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141  anti-CTLA4 and anti-PD1 antibodies, to ensure better immunotherapy effects than by PD1
142 inhibition. Concomitant treatment with the bioavailable compound iBET726 resulted in a
143 robust early response to treatment (Fig. 3c,d). Long-term the tumors grew back resulting in a
144  worse survival of mice treated with combination BET inhibition and immunotherapy compared
145  to immunotherapy alone (Fig. 3e,f). This suggests that although BET inhibition can work in

146  monotherapy, it also inhibits immunotherapy with PD1/CTLA4 inhibitors.

147  Discussion

148 Here we tested the hypothesis that epigenetic modulation can impact immunotherapy.
149  Previous studies have shown that HDAC inhibitors modulate immune gene expression in
150  cancer, including in HLA genes [30, 44]. However, as shown in other cancer types, and here
151  in mouse melanoma in vivo and human UM in vitro, the trade-off is that entinostat monotherapy
152 also induced PD-L1 in cancer cells. This may counteract any beneficial immunotherapeutic
153  effects of HDAC inhibition. Indeed, entinostat-treated B16-F10 melanoma cells grew faster,
154  an effect reversed on Cd274 (PD-L1 gene) knockdown using CRISPR. This provided a strong
155  rationale to combine HDAC and PD-1 inhibition to leverage the positive immune stimulatory
156  effects of both drugs.

157 BETi have been deemed promising agents for treatment of cancer but a decade after the
158  disclosure of JQI, no drug has reached a phase III clinical trial. Their mechanism of action is
159  clearly defined in vitro but problems with dose-limiting toxicities, efficacy and resistance have
160  made progress slow thus far in patients. Some of these issues may also be due to the selection
161  of indication as well, since BETi in parallel to development as anti-cancer drugs also show
162  promise as anti-inflammatory drugs [45]. It may well be that the anti-tumoral effects of BETi
163 are overridden by an inhibition of anti-tumoral immunity. Without powerful elimination of the

164  BET-inhibited cancer cells by immune cells, treatment resistance may form. In the B16-F10
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165 model used herein we observed that combined anti-PD1 and anti-CTLA4 treatment could result
166  in durable responses in half of the treated mice but if they were also treated with BETi they
167  quickly relapsed. This is in line with previous studies suggesting that BETi can inhibit priming
168 by dendritic cells [46-48] as well as the proliferation [49] or function [50] of T cells. Also NK
169  cell killing is suppressed by BETi via downregulation of NK cell ligands [51].

170 The above described data, and other published data showing that HDAC inhibition
171  stimulates immunotherapy, have motivated us to initiate a clinical trial to test combined
172 entinostat and pembrolizumab in patients with metastatic UM (NCT02697630, [52]). The data
173 of this trial will be reported elsewhere.

174

175  Methods

176 Cell culture

177  B16-F10, a murine melanoma cell line, was obtained from Cell Lines Services (Eppelheim,
178  Germany), while 92-1, MEL202 and MP-41, three human uveal cell lines, were obtained from
179  the EACC and ATCC, respectively. UM22, a human UM cell line derived from a patient with
180 UM [13], was grown in culture and used for further experiments. All cells were maintained in
181  complete medium (RPMI-1640 supplemented with 10% FBS, glutamine, and gentamycin) and
182  cultured at 37°C with 5% COa. Cell line validation was performed by RNAseq where known
183  and unique combinations of GNAQ/GNA11/SF3BI/EIF1AX/BAP1 driver mutations were
184  confirmed.

185 To generate a Cd274 (PD-L1) CRISPR/Cas9 knockout B16-F10 cell line,
186  Cas9:crRNA:tracrRNA ribonucleoprotein complex was assembled according to the
187  manufacturer's recommendations (Integrated DNA Technologies, Coralville, IA) and
188  transfected into cells using Neon electroporation (Thermo Fisher Scientific, Waltham, MA).

189  Negative cells were sorted for the absence of PD-L1 by staining with a PE-labeled anti-mouse
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190  PD-L1 antibody (clone MIHS, BD Biosciences, Franklin Lakes, NJ) using a FACSAria III (BD
191  Biosciences). Absence of PD-L1 expression in the PD-L1 knockout cells was confirmed in
192 cells treated with entinostat (Selleck Chemicals, Houston, TX) to induce PD-L1.

193 Generation of MART-1 specific T cells

194  MART-1-specific T cells from uveal melanoma biopsies were identified as previously
195  described (13) and sorted using FACSAria IIT (BD Biosciences). Sorted MART1-specific T
196  cells were co-cultured with irradiated allogenic peripheral blood leukocytes at a 1:200 ratio in
197 AIM-V cell culture medium (Invitrogen, Carlsbad, CA) supplemented with 6000 IU
198  recombinant IL-2 (PeproTech, Rocky Hill, NJ), 10% human AB serum (Sigma Aldrich, St
199  Louis, MO), and 30 ng/ml CD3 antibody (clone OKT3, Miltenyi Biotech, Bergisch Gladbach,
200  Germany) for 14 days with regular media changes. After completion of the expansion protocol,
201  MARTI1 specificity was confirmed using MARTI1-specific dextramers (Immudex,
202  Copenhagen, Denmark).

203 Animal experiments

204  All animal experiments were performed in accordance with EU Directives (regional animal
205  ethics committee of Gothenburg #2021/19). Tumor models of parental B16-F10-luciferase or
206  PD-L1-knockout B16-F10-luciferase cells were established by injecting 7.5 x 10* cells per
207  mouse mixed with an equal volume of Matrigel (Corning Inc., Corning, NY) subcutaneously
208 into the flanks of four-to-six-week-old C57BL6 mice. Tumors were measured with calipers at
209  regular intervals and tumor volumes calculated using the formula: tumor volume (mm?®) =
210  (length (mm)) % (width (mm) x width (mm))/2. Three days after transplantation, sedated mice
211  were injected with 100 pl (30 mg/ml D-luciferin) in an isoflurane administrating chamber and
212 then placed in an IVIS Lumina III XR machine (Perkin Elmer, Norwalk, CT). IVIS values on
213 day three post tumor implantation were taken to allocate mice into balanced treatment groups

214  of PBS-injected, 200 ng PD-1-blocking antibody-injected (clone RMP1-14, BioXCell,
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215  Lebanon, NH) intraperitoneally twice per week for three weeks, entinostat-treated (food
216  containing 50 mg/kg entinostat), or a combination of PD-1-injected and entinostat-treated
217  mice. For iBET immunotherapy combination, mice were treated with vehicle or iBET726
218  orally (10mg/kg) once daily for seven days, 250 ug PD-1 and CTLA-4 blocking (clone 9H10,
219  BioXCell, Lebanon, NH) antibodies were injected intraperitoneally thrice per week for four
220  weeks or a combination of PD-1 CTLA-4 antibodies with iBET762 were used.

221  Cell staining and in vitro assays

222 Tumor cells were seeded and treated with entinostat (1 uM) or JQ1 (1 uM) for 48 hours and
223 thereafter stained for 30 min at 4°C with specific antibodies for flow cytometry. The following
224 anti-human antibodies were used for surface staining: FITC-labeled mouse anti-human HLA-
225 DR, -DP, -DQ (Clone Tu39, BD Biosciences); PE-labeled mouse anti-human HLA-
226  ABC (Clone G46-2.6, BD Biosciences); and APC-labeled mouse anti-human PD-L1 (clone
227  29E2A3, Biolegend, San Diego, CA). The following anti-mouse antibodies we used for surface
228  staining: Alexa Fluor 647-labeled H-2Kb/H-2Db - MHC Class I (clone 28-8-6, Biolegend);
229  PE-labeled I-A/I-E — MHC Class II (Clone M5/114.15.2, BD Biosciences), and PE-labeled
230  PD-L1 (clone MIHS, BD Biosciences). Dead cells were excluded from the analysis by applying
231  gating strategies.

232 Tumor cells were seeded in 24-well plates and treated with entinostat (1 pM), MART-1"
233  REP TILs in a 1:5 ratio with tumor cells, and 30 pg/ml pembrolizumab. 48 hours later, all cells
234  were fixed and permeabilized using the Fixation/Permeabilization Solution Kit (554714, BD
235 Biosciences) and then incubated with FITC-labeled rabbit anti-active caspase-3 (clone C92-
236 605, BD Biosciences) and PE-labeled mouse anti-human granzyme B (clone GB11, BD
237  Biosciences) antibodies for 30 minutes at 4°C. Flow cytometry data were acquired using BD

238  Accuri C6 and BD Accuri C6 plus (BD Biosciences).

10
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239 Tumor-bearing mice were sacrificed and single-cell suspensions were generated from
240  tumors and spleens using mechanical dissociation before being passed through a 70 pm filter.
241  Tumor suspensions were stained with 7-AAD live/dead stain (Miltenyi Biotec, Woking, UK),
242 FITC-labeled CD3e (clone-145-2C11, BD Biosciences), PE-labeled CD4 (clone GKI.5,
243  Biolegend), and APC-labeled CD8a (clone 53-6.7, BD Biosciences) for analysis of TILs. A
244  seven-color myeloid panel with BUV395-labeled CD45 (clone 30-F11, BD Biosciences),
245  Alexa Fluor 700-labeled F4/80 (clone BM8, BD Biosciences), brilliant violet 421-labeled Ly-
246  6G (clone 1A8, Biolegend), PE/cyanine7-labeled Ly-6C (clone HK1.4, Biolegend), brilliant
247  violet 605-labeled CD206 (MMR) (clone C068C2, Biolegend), BUV737-labeled
248  CDI11b (clone M1/70, BD Biosciences), and live/dead yellow stain (Thermo Fisher Scientific)
249  was created for analysis of tumor samples. The proportions of tumor-infiltrating myeloid cells
250 (CD45°CDI11b"), monocytic MDSCs (CD45'CDI11b'Ly6c"), “M2-like” TAMs
251 (CD45'CD11b*CD206"), non ‘“M2-like” TAMs (CD45°CD11b"CD2067), and Mo-MDSC
252 *M2-like TAMs" (CD45°CD11b'Ly6c"CD206") were acquired on a BD LSRII flow cytometer
253  using FACSDiva software (BD Biosciences) for acquisition and compensation and then

254  analyzed using FlowJo software.

255  Statistical analysis

256  For flow cytometry measurements of HLA genes and PD-L1 in 92-1, MEL202, and MP41
257  cells, and independently for H-2Kb/H-2Db and I-A/I-E, unpaired two-tailed t-tests were carried
258  out to assess effects of treatment with entinostat with the t.test function in R (v. 3.6.0, default
259  parameters). Normality was assessed with Shapiro-Wilk tests, using the shapiro.test function
260 inR. For differences in cell type proportions estimated by flow cytometry, as well as regarding
261  proportions of cells with cleaved caspase 3 or granzyme B, unpaired two-sample t-tests were
262  used. For analysis of tumor growth in in vivo experiments, the compareGrowthCurves function

263  in the statmod R package (v. 1.4.32) with the parameter nsim=10° was used. For survival

11
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264  analysis of in vivo experiments, log-rank tests were performed with the survdiff function from
265  thesurvival R package (v.3.2-7) with the parameter tho=0. p-values were adjusted for multiple
266  testing with the Benjamini-Hochberg method. All statistical tests in this study were two-sided,
267  and all error bars represent standard error of the mean, unless otherwise stated. A complete set
268  of statistical tests in the study are present in Supplementary Table 2.
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416  Figure legends

417

418  Fig. 1. Entinostat regulates expression of immune-associated genes in human UM cell
419  lines. (a-b) Human UM cell lines 92-1, MEL202, MP41, and UM22 were treated with DMSO
420 or 1 puM entinostat for 48 h. Flow cytometry of (a) human HLA-ABC expression (mean
421  fluorescence intensity (b) and human PD-L1 expression (% positive cells compared to
422  unstained control). n = 3 biological replicates per cell line and condition were used, except for
423  UM22, where n =5 and n = 1 replicates were used. Significance was assessed with #-tests and
424  adjusted p-values <0.05 were considered statistically significant, as indicated with asterisks. (c)
425  Differentially expressed immune-associated genes in the human UM cell lines 92-1, MP41, and
426 ~ UM22 after treatment with entinostat for 48 h compared to DMSO (n =3 biological replicates
427  per condition). Genes with FDR-adjusted p-values <0.05 were considered statistically
428  significant. Statistical tests were carried out using DESeq2. Asterisks indicate genes significant
429  inall three cell lines, whereas individual cell line-specific significance is indicated in gray next
430  to each heatmap. (d) Enriched Reactome pathways among genes with adjusted p-values < 0.05
431  and absolute log> fold change > 2 in all three cell lines, assessed with the MSigDB gene set
432 enrichment analysis tool.

433

434  Fig. 2. Entinostat enhances immunotherapy in vitro and in vivo. (a) Flow cytometry analysis
435  showing HLA class 1, class 2 and PD-L1 expression in B16-F10 melanoma cells treated with
436  entinostat. The experiment was repeated twice with n = 3 biological replicates each time.
437  Asterisks indicate significance between vehicle and control. (b-¢) Eighteen C57BL6 mice with
438  subcutaneous B16-F10-luciferase tumors were allocated to groups to receive treatment with
439  vehicle (n=4), entinostat (n=4), PD-1 inhibitor (#=5), or the combination of entinostat and PD-

440 1 inhibitor (n=5). Tumors were measured with calipers and are plotted as mean volumes (bold
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441  lines) and individual volumes (light colored lines) (b). Asterisks indicate p < 0.05 as assessed
442 with the “compareGrowthCurves* function in the statzmod R package. Survival was plotted as
443  a Kaplan-Meier curve (c). (d-e) End of study tumor samples from mice treated with indicated
444  treatments were analyzed by flow cytometry to assess the distribution of tumor-infiltrating
445  lymphocytes (d) and myeloid cells (e). For (d), n = 4 biological replicates were used per
446  condition, except for the combination treatment, where n = 5 replicates were used. For (e), n =
447 4 biological replicates were used per condition, except for all treatments with pembrolizumab,
448  treatments with entinostat in the experiment measuring CD45"CD11b" cells, and treatment with
449  entinostat + pembrolizumab in the experiment measuring CD45°CD11b"Ly6¢c"CD206" cells,
450  where n = 5 replicates were used. (f) Sixteen C57BL6 mice were injected subcutaneously with
451  B16-F10-luciferase cells (n=6) or PD-L1-deficient CRISPR B16-F10-luciferase cells (n=10).
452  Half of the animals in both groups received food containing entinostat. Tumors were measured
453  with calipers and are plotted as mean volume (bold lines) and individual volumes (light colored
454  lines). (g-h) HLA-A2:01-positive human UM cell lines 92-1 and MP41 were treated with
455 DMSO, 1 uM entinostat, and 30 pg/ml pembrolizumab for 48 h with or without MART1-
456  specific T cells for the last 24 h. Cells were fixed, permeabilized, and stained with antibodies
457  targeting cleaved caspase-3 and granzyme B followed by flow cytometric analysis. Shown are
458  the proportions of double-positive and single-positive melanoma cells. n» = 4 biological
459  replicates used per cell line and condition, except for assays with the combinations entinostat +
460  TILs and entinostat + pembrolizumab + TILs, where n = 5 replicates were used. Significance
461  of differences relative to vehicle (DMSO) were assessed with the two-tailed #-test and adjusted
462  (Benjamini-Hochberg correction) p-values < 0.05 are indicated with an asterisk.

463

464  Fig. 3. BET inhibition inhibits the expression of MHC class 1 and PD-L1 and the effect of

465 immune checkpoint inhibition in vive. (a) Flow cytometry of MHC class 1, MHC Class 2
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466 and PD-L1 expression, in the uveal melanoma cell lines UM22 and MP41 treated with the
467  vehicle DMSO or 1 uM of the BET inhibitor JQ1 for 48 hours. (b) Flow cytometry of MHC
468  class 1 expression and PD-L1 expression in the mouse melanoma cell line B16-F10 treated with
469  the vehicle DMSO or 1 uM of the BET inhibitor JQ1 for 48 hours. The experiments were
470  repeated twice with n = 3 biological replicates for B16-F10, MP41 and for UM22, n=4 and n=2
471  replicates were analyzed. Asterisks indicate p < 0.05 with two-tailed t-tests. (c-f) Twenty
472  C57BL6 mice with subcutaneous B16-F10-luciferase tumors were allocated in groups to
473  receive treatment with vehicle (n = 5), CTLA4 + PD1 inhibitors (n = 5), iBET762 or combined
474  iBET762 and CTLA4 + PD1 inhibitor. One week after treatment initiation, mice were imaged
475  and luciferase activity was plotted (c¢). Tumors were also measured three weeks after treatment
476 initiation (d) and followed until reaching ethics limit or up to 80 days post transplantation (e).
477  In (e), asterisks indicate p < 0.05 with two-tailed t-tests. Survival was plotted as the time until
478  the mice reached the ethics limit and were sacrificed (f). In (e) and (f) asterisks indicate adjusted
479  p-values <0.05, as assessed with the compareGrowthCurves function of the statrmod R package
480  in (e) and log-rank tests in (f).

481

482  Supplementary Figure Legends

483

484  Supplementary Fig. 1. Gating strategy for flow cytometry analyses. (a) A gating strategy
485  for excluding debris and choosing tumor cells based on high forward scatter (FSC) was
486  employed and used for estimating levels of HLA-A, -B, and -C, PD-L1 and HLA-DP, -DQ and
487  -DR in different cell lines. Experiments from entinostat-treated UM22 cells are shown as
488  representative examples. (b) Granzyme B and cleaved caspase 3 measurements in cell lines co-
489  cultured with MART-1-reactive TILs. Experiments from MP41 are shown as representative

490  examples. (¢) Within the in vivo B16-F10 tumor suspension, leukocytes were identified by a
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491  low side scatter (SSC) and low forward scatter (FSC) with gates for estimating levels of live
492  CD3+ cells for CD4+ and CD8+ TILs, as well as (d) gates for estimating levels of live CD45
493  cells for CD11b+, Ly6c+, Ly6g+, CD206+ myeloid infiltrating cells.

494

495  Supplementary Fig. 2. Entinostat increases HLA expression in human UM cell lines and
496 mouse B16-F10 melanomas. (a) HLA class 2 expression as assessed by flow cytometry in
497  human UM cell lines 92-1, MP41 and UM22 treated with DMSO or entinostat. The experiment
498  was repeated twice with n = 3 biological replicates per cell line and condition, except in the
499  case of UM22, where n =5 and n = 1 replicates were used for the first and second experiments,
500 respectively (excluded from statistical tests due to nearly absent expression in all cases).
501  Significance was assessed by t-tests and adjusted p-values <0.05 (Benjamini-Hochberg
502  correction) were considered statistically significant, as indicated by asterisks. (b) Immune-
503  associated gene expression levels inferred from RNA sequencing data after entinostat treatment,
504  relative to DMSO controls, as shown in Figure 1c. (¢) Flow cytometry analysis of parental B16-
505  F10 cells and CRISPR/Cas9-generated PD-L1 knockout B16-F10 cells after treatment with

506  entinostat for 24 h.
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