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ABSTRACT

X-ray crystallography is an invaluable technique for studying the atomic structure of macromolecules.
Much of crystallography’s success is due to the software packages developed to enable the automated
processing of diffraction data. However, the analysis of unconventional diffraction experiments can
still pose significant challenges—many existing programs are closed-source, sparsely documented, or
are challenging to integrate with modern libraries for scientific computing and machine learning. Here
we describe reciprocalspaceship, a Python library for exploring reciprocal space. It provides
a tabular representation for reflection data from diffraction experiments that extends the widely-
used pandas library with built-in methods for handling space group, unit cell, and symmetry-based
operations. As we illustrate, this library facilitates new modes of exploratory data analysis while
supporting the prototyping, development, and release of new methods.

Keywords X-ray Crystallography - Data Analysis - Python

1 Introduction

The analysis of most diffraction experiments begins with processing diffraction images and ends with refining an atomic
model that is consistent with the observed data. Numerous software suites and commandline applications address
different stages of the processing pipeline, and these diverse programs are typically combined in order to address
the challenges of a particular data set [1} 2} 3} 415,16, [7]]. However, many unconventional diffraction experiments do
not fit easily into the processing pipelines established within existing crystallography software. Such experiments
often require custom scripts and programs to analyze the resulting data. Recent examples of such experiments include
time-resolved pump-probe experiments that investigate the structural dynamics within room-temperature crystals [8} 9].
New software is needed to support custom analyses to improve the development, reproducibility, and adoption of less
routine diffraction experiments.

A software library to support such experiments must provide built-in methods to handle space group, unit cell,
and symmetry-based operations. This requirement is already met by several general-purpose libraries, such as the
Computational Crystallography Toolbox (CCTBX) and GEMMI [4}|10]. However, it is also desirable to facilitate
the exploratory inspection of reflection data and to support seamless integration with existing scientific computing
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In [1]: import reciprocalspaceship as rs
In [2]: dataset = rs.read_mtz("HEWL_ SSAD 24IDC.mtz")

In [3]: dataset.cell

Out[3]: <gemmi.UnitCell(79.3435, 79.3435, 37.8098, 90, 90, 90)>

In [4]: dataset.spacegroup

Out[4]: <gemmi.SpaceGroup("P 43 21 2")>

In [5]: dataset.sample(5)

ourer FreeR_flag IMEAN SIGIMEAN 1(+) SIGI(+) 1(-) SIGI(-) N(+) N(-)
H K L

39 14 5 5 76.448586 2.5888965 78.261024 3.6358812 74.58466 3.6871622 12 12

23 16 8 8 349.9014  5.072093 341.31744 7.1655827 358.5211 7.1804857 40 40

19 4 2 11 3038.7883 38.110188 2993.984 53.89258 3083.6042 53.899307 56 56

24 10 0 15 53.134754 1.0403585 53.134754 1.0403585 53.134754 1.0403585 46 46

29 23 1 4 47438315 11.350164 454.9555 16.014786 493.99023 16.08858 16 16

Figure 1: Screenshot demonstrating the use of reciprocalspaceship in a Jupyter Notebook [13]]. DataSet
objects can be used to represent reflection data with associated unit cell and space group information.

software. These additional requirements lower the barrier to implement and test new methods while minimizing the
duplication of code and effort.

Due to Bragg’s law, crystallography data is inherently tabular with each observed reflection described by a Miller
index. This property underlies many of the file formats for storing diffraction data; integrated intensities and any
reflection-specific metadata are stored with the associated Miller index (see Fig. [T). For data analysis in Python, tabular
data is commonly represented using the pandas software library [L1]. pandas.DataFrame objects provide support for
the arbitrary manipulation of tabular data, storage of heterogeneous data types, and easy integration with any scientific
computing or machine learning library that supports NumPy arrays [12].

Due to the tabular nature of reflection data and the widespread use of pandas in data science, we sought to develop a
library that extended the DataFrame for crystallographic data by providing built-in support for space groups, unit cells,
and symmetry operations. This library, reciprocalspaceship, can be used to inspect reflection data, develop new
crystallographic methods, and release reproducible analysis pipelines for X-ray diffraction experiments.

2 reciprocalspaceship Library

2.1 Mission Statement

reciprocalspaceship is a free and open-source software library with the primary goal of simplifying the analysis of
crystallography data in Python. To achieve this goal, we sought to design a software library that is intuitive for both
crystallographers and Python programmers. This requires full support for common crystallographic operations, as well
as easy integration with the scientific computing and machine learning libraries that are developed and maintained by
the Python community.

2.2 Design

The DataFrame is the core abstraction in pandas. reciprocalspaceship provides a DataSet class which extends
the DataFrame, augmenting it to represent reflection data from X-ray diffraction experiments. DataSet objects store
reflection data, along with the associated space group and unit cell, and can be initialized from common reflection
file formats such as MTZ files (Fig. I). By extending the pandas DataFrame, it is possible to preserve its core
functionality while adding built-in methods to support common crystallographic operations. These operations use the
GEMMI library to represent space groups and unit cells [10], and have been vectorized to increase performance.
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To support compatibility with MTZ files, reciprocalspaceship provides custom datatypes to represent different
crystallographic observables. To ensure maximum compatibility with other Python libraries, these datatypes are all
represented internally using NumPy arrays of either 32-bit integers or floating-point values. Methods are also provided
for inferring relevant datatypes based on the column labels used to describe the data. DataSet objects can contain any
datatype supported by pandas, including generic Python objects.

2.3 Features

The primary capabilities of reciprocalspaceship are provided through the DataSet object, which builds on the
core features of the pandas DataFrame to provide crystallographic support. These objects can represent both merged
and unmerged reflection data, and provide attributes and methods that enable crystallographic data analysis. These
features are summarized in Table [T}

In addition to the DataSet object, reciprocalspaceship provides several algorithms that can be used for analysis.
These include merge (), which implements the averaging of unmerged reflection data using maximum-likelihood
weights, and scale_merged_intensities(), which implements French-Wilson scaling to account for negative
merged intensities [14]. These implementations can serve as templates for the development of new analysis methods
using reciprocalspaceship. The set of algorithms offered through this library will continue to expand as users
implement new analyses intended for broader adoption.

Table 1: Core Features of DataSet objects

reciprocalspaceship.DataSet
Attributes

cell Unit cell parameters
spacegroup Spacegroup information
merged Identifier for merged/unmerged data
acentrics Access acentric reflections in DataSet
centrics Access centric reflections in DataSet
Methods
Input/Output

from_gemmi ()
to_gemmi ()
write_mtz()

apply_symop ()
expand_anomalous ()
expand_to_p1()
hkl_to_asu()
hk1l_to_observed()

compute_dHKL ()
compute_multiplicity()
label_absences()
label_centrics()

stack_anomalous ()
to_reciprocalgrid()
unstack_anomalous ()

assign_resolution_bins()
canonicalize_phases()
infer_mtz_dtypes ()

Creates DataSet object from gemmi .Mtz

Creates gemmi . Mtz object from DataSet

Writes DataSet to MTZ file
Symmetry

Apply symmetry operation to reflections in DataSet

Expands data by applying Friedel operator (h, k, )

Generates all symmetrically equivalent reflections

Map reflections to the reciprocal space asymmetric unit

Map reflections to their observed Miller indices using M/ISYM values
Annotation

Compute the real-space resolution of each reflection
Compute the multiplicity of each reflection
Label systematically absent reflections
Label centric reflections
Reshaping
Convert anomalous data from two-column to one-column format

Convert column of reflection data to 3D array populated at Miller indices

Convert anomalous data from one-column to two-column format
Utilities
Assign reflections in DataSet to resolution bins

Canonicalize all phase data to fall between [—180, 180) degrees
Infer MTZ dtypes from column names and underlying data
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2.4 Development and Documentation

reciprocalspaceship is maintained on GitHub to foster community involvement in its maintenance, testing, and
documentation. Every change to the source code is tested using an automated suite in order to support continuous
integration [15]]. reciprocalspaceship is available through the Python Package Index (PyPI), and can be installed
on most systems using pip. Documentation is automatically generated from the reciprocalspaceship GitHub
repository to ensure up-to-date information is available for users. The website also includes a User Guide section
describing the design and features of reciprocalspaceship, and examples that use the library for crystallographic
applications. By committing to an open-source development model, it will be possible to maintain this library to meet
the needs of crystallographers.

3 Examples

The following examples demonstrate the use of reciprocalspaceship in the analysis of crystallographic data. These
examples cover the merging of scaled observed intensities, analyzing anomalous differences from a single-wavelength
anomalous dispersion (SAD) experiment, and applying weights to a time-resolved difference map. These examples are
intended to illustrate the breadth of crystallographic problems that can be addressed using this library, as well as its
seamless integration with common scientific computing libraries. The examples are available as interactive Jupyter
notebook{] in the reciprocalspaceship documentation [13]].

3.1 Assessing Uncertainty in Merging Statistics

Merging statistics are useful for assessing the internal consistency of a data set, and many different metrics have been
proposed over the years [[L6l [17]. Although merging statistics are commonly reported by data reduction pipelines, they
are often not reported with uncertainties and do not always give access to their underlying parameters, such as the
number of resolution bins or the type of correlation coefficients to report. By facilitating inspection of the underlying
reflection data, reciprocalspaceship can be used to write quality control scripts for automating analysis pipelines,
or, as shown here, in the exploratory analysis of the properties of a single data set. By enabling crystallographers to try
new statistical routines, reciprocalspaceship may help in the development of more robust indicators of data quality.

To illustrate this, we computed CC'; /5 and C'Clypom for scaled, unmerged reflection data. The data were collected on a
tetragonal crystal of hen egg-white lysozyme at ambient temperature and 6.5 keV. The integrated intensities were scaled
in AIMLESS, and the data contains sufficient anomalous signal from the native sulfur atoms to determine experimental
phases by the SAD method [18, [1, [19, 20]]. Using reciprocalspaceship, it is possible to implement a function
that merges redundant observations using inverse-variance weights in about 10 lines of code (Fig. 2a). This code
takes advantage of the groupby () functionality inherited from Pandas in order to efficiently perform calculations
on a per-reflection basis [[L1]. By randomly splitting the observed reflections by image, this function can be used to
independently merge different sets of observations for computing CC' /2 and C'Cyporm- Due to the modularity of this
workflow, it is possible to repeat the random partitioning of observations to generate uncertainty estimates, and to repeat
these calculations using both Pearson and Spearman correlation coefficients.

As shown in Fig. @ high C'C' /5 values indicate that the data were significantly edge-limited, which is common for
data collected at low energy on strongly diffracting crystals. The CC\,0m values show that significant anomalous signal
was obtained up to the highest resolution bin. Furthermore, the Spearman correlation coefficients are systematically
higher and have smaller uncertainties in the low and intermediate resolution range suggesting the presence of outliers in
the data.

3.2 Merging Observations with a Robust Error Model

The difference observed for C'Cy 0 between the Pearson and Spearman correlation coefficients in Fig. 2b]suggests
the presence of outlier observations despite the outlier rejection applied by AIMLESS [19]. Since AIMLESS assumes a
normally distributed error model for its observations, such outliers can have a large impact on the estimate of the true
merged intensity. We can evaluate whether a normally distributed error model is appropriate based on the distribution
of residuals between the observed intensities and the estimate of the true mean. This histogram can be made in just a
few lines of Python by taking advantage of the Pandas indexing (Fig. 2c). Compared with the expected distribution
of residuals for normally distributed observations, this data set has significantly heavier tails, with many observations
several standard deviations away from the merged intensity.

"https://mybinder.org/v2/gh/Hekstra-Lab/reciprocalspaceship/master?filepath=docs%2Fexamples
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(a) Example Function for Merging Observations (b) Correlation Coefficients for Merging

def merge(dataset, anomalous=False): 1.0 A -~
mnn -
c
Merge dataset using inverse-variance weights. -g 0.8
wnn :10:) —— CCyj, (Pearson)
ds ; fliataset.h%{l_toTasu(anomalous—anomalous) 8 0.6 “1\\ CCap, (Spearman)
ds["w"] = ds['SIGI']**-2 c A N L
n n - nn ([ o § "II * —*:\ F CCanom (Pearson)
dsf*wI"] = ds["I"] + ds["w"] B 04 "* : *\ --k- CC, (Spearman)
g = ds.groupby(["H", "K", "L"]) % L\Y,/ ‘I\{ anom (SP
o N
S 0.2
result = g[["w", "wI"]].sum() S \‘
result["I"] = result["wI"] / result["w"]
result["SIGI"] = np.sqrt(l / result["w"]) OA WA ,'-,),'\,,1\,;/'\ ~O
result = result.loc[:, ["I", "SIGI"]] v“-',;y,\,‘?,\,"-’r\',f’,\,%“-',\,&?’\?fQ
result.merged = True s&b&b%@b@&éé’

if anomalous:
result =
return result

result.unstack_anomalous() Resolution Bin (4)

(c) Residuals from Normal Error Model (d) Impact of Error Model on CCanom

Error Model

2 Student-T (d.f. =4)

3 —— Expected —— Student-T (d.f. =8)

© B Residuals —— Student-T (d.f. = 16)

g —— Student-T (d. . =32)
—}— Student-T (d.f. = 64)
—— Normal

-50 -25 00 25 5.0
ML
Ih,i - Ih

Oly,;

Resolution Bin (4)

Figure 2: Merging statistics for a hen egg-white lysozyme sulfur SAD data set. @ Python function for applying
inverse-variance weights to obtain maximum-likelihood merged intensity estimates using reciprocalspaceship.

Correlation coefficients, CC'y /5 and C'Clpom, from repeated two-fold cross-validation. The Pearson C'Cpom 18
more impacted by outlier measurements in low- and intermediate resolution bins than the Spearman CCl, 07, -
The distribution of residuals from observed intensities differs from the expected distribution of residuals for normally
distributed observations. @) CCynom from two-fold cross-validation using Student’s ¢-distributed error models with
varying degrees of freedom. Error models with heavier tails show improvements in C'Cly,on,. Error bars depict the
mean = standard deviation from 15 repeats of two-fold cross-validation.

The residuals in Fig. [2c|suggest that merging may be improved by a more robust error model that can tolerate outliers.
One popular choice of robust error model is the Student’s ¢-distribution. This distribution is parameterized by a location,
scale, and number of degrees of freedom, v, which controls the robustness of the distribution to outliers. Importantly,
the distribution approaches the normal distribution as v approaches infinity. Unlike the normal distribution, there
is not an analytical expression for the maximum-likelihood estimator of the true mean given a set of observations
under a Student’s ¢-distributed error model. However, we can construct a simple optimization problem to recover
maximum-likelihood estimates of the merged intensity for each miller index. To begin with, we write the likelihood
function, which is the probability of the data as a function of the mean intensity for each miller index:

P(datalmodel) = H P(Inilpn, o1, ;)
hi

(D

The error model P can be any suitable location-scale family distribution. This likelihood function asserts that the
observed intensity is drawn from a distribution centered at the merged intensity, up, with a scale determined by the
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empirical standard deviation of the observation, oy, ;:
Ih,i ~ P(N’hv O-Ih,,i,) @)

In order to recover maximum-likelihood estimates, we need only maximize equation |1| with respect to the merged
intensities which are the optimization variables in this problem. Equivalently, we may minimize the negative logarithm
of the likelihood:

L = —log P(data|model)
= — Z log P(Ip,ilpn, o1, ;)
- (3)
[t = argmin — Zlog P(Ih,i|/ih><71h,,1)
K h,i

which has the advantage of converting a numerically unstable product into a sum.

This optimization was implemented in PyTorch in a general form that could flexibly accept a location-scale family
distribution to use as an error model [21]]. The data was merged using Student’s ¢-distributions with varying degrees of
freedom as error models, and the resulting C'C,, o, Were compared with the normally distributed error model. The
error models for fewer degrees of freedom outperformed the error models for more degrees of freedom (larger v/), with
their performance trending towards that of the normally distributed error model (Fig. 2d).

This example demonstrates the use of reciprocalspaceship to construct a flexible merging function using a machine
learning library. This greatly reduces the overhead required to prototype a new analysis method by making it easy to use
existing and well-supported libraries. Furthermore, the benefits of using robust statistical estimators, as demonstrated
by the improved C'Cly,om values in figures [2b]and 2d] suggest new avenues for improving the existing crystallographic
analysis infrastructure. One such project, careless, is combining reciprocalspaceship and TensorFlow to use
approximate Bayesian inference in order to develop new scaling and merging routines [22} 23].

3.3 Revisiting French-Wilson Scaling

In the previous example, we identified anomalous differences from a room-temperature sulfur SAD experiment. Here,
we will examine this anomalous signal in real space by making an anomalous difference map. Before we can make a
map, it is necessary to scale the merged intensities to account for any negative values that may result from background
subtraction during integration. This is commonly handled using a Bayesian approach first proposed by French and
Wilson [[14]]. Briefly, this algorithm works by solving an integral:

() = / TN (I T 01, )P () d T @)
0

where the likelihood, N (I},|.Jp,, o1, ), is taken to be normally distributed with the empirical standard deviation. The
prior distribution, P(J}), is the Wilson distribution:

Y lexp(=Jn /%) J >=0, h € acentric
P(Jn) = 272J,) " Y2 exp(—J,/28) J >=0, h € centric %)
0 J <0

which is parameterized by X, the mean intensity of reflections at the appropriate resolution. In order to estimate > for
each reflection, the classic French-Wilson scaling algorithm computes the mean intensity of reflections in resolution
shells, and interpolates the mean values from shells adjacent to the particular reflection. Since the functional form
of the prior distribution has strictly positive support [24], the expectations computed from equation ] are necessarily
positive. Furthermore, the posterior structure factor amplitudes can be estimated as part of the same subroutine using
the following integral:

(Fn) =/ VIN (In| I, o1,)P(J3)dJ, (6)
0

This scaling method is implemented in reciprocalspaceship as scale_merged_intensities(), though this
implementation differs significantly from the classical one in several regards. Notably, rather than computing mean
values in shells, we use a Gaussian smoother [25, chapter 14.7.4-5] to regress the mean of the intensity distributions, X2,
against resolution. This regression model is quite flexible and offers an anisotropic mode which estimates the mean
intensity locally as a function of the Miller indices. Whereas the original paper computed the posterior by interpolating
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a table of cached results [[14], our implementation uses Chebyshev-Gauss quadrature to evaluate the integrals on the
fly. We generate quadrature points and weights with NumPy [[12]] and compute the relevant log probabilities using the
distribution classes implemented in SciPy [26]]. Our implementation is tested for consistency with the original paper
[14] and with CCTBX[4].

The merged intensities from the sulfur SAD experiment were rescaled and converted to structure factors using
scale_merged_intensities(). This operation leaves large intensities relatively unchanged, while ensuring that
any negative values become strictly positive (Fig. [3a). Anomalous differences of the structure factor amplitudes were
computed between Friedel pairs. The anomalous difference map shown in Fig. [3b| was then constructed using phases
derived from the refined model (PDB: 7L.84). The map shows significant anomalous peaks at a 50 contour, with the
density localized to each of the 10 sulfur atoms in the lysozyme structure.

3.4 Identifying Anomalous Scattering Atoms in Real Space

The anomalous difference map shown in Fig. [3b] was rendered in PyMOL (Schrédinger, LLC) from the anomalous
difference amplitudes and phases. It is also possible to compute a real-space map using reciprocalspaceship and
NumPy, which enables one to use image processing software to automate the identification of anomalous scattering
atoms. This process is illustrated in Fig. This code snippet arranges the complex anomalous structure factors on a
reciprocal space grid, and then computes the real-space anomalous difference map using the Fast Fourier transform [27]
function in NumPy [12]]. scikit-image, an image processing library [28]], can be used to identify peaks in the map.
This procedure successfully identifies the 80 sulfur sites in the tetragonal lysozyme unit cell (10 sulfurs per copy, 8
copies). The automatically identified sites are overlaid with the anomalous difference map in Fig. [3d|

This example illustrates the use of reciprocalspaceship to produce real-space maps from structure factors. Impor-
tantly, due to the seamless integration with NumPsy, it is possible to take advantage of Python image processing libraries
for identifying peaks in the real-space density. Due to the wealth of libraries and tools written by the Python community,
this feature of reciprocalspaceship can provide the opportunity to develop and test new algorithms rapidly. In this
manner, the use of reciprocalspaceship could simplify existing data processing pipelines, and perhaps be useful in
the development of new methods in crystallographic data analysis or structural bioinformatics.

3.5 Applying Weights to a Time-Resolved Difference Map

Time-resolved crystallography experiments make use of X-ray diffraction to monitor structural changes in a crystalline
sample. Commonly, structural changes are initially evaluated on the basis of isomorphous difference maps. Such maps
are computed by estimating the difference in structure factor amplitudes of the sample before and after a perturbation,
such as a laser pulse. Combining these |F,,,| — |F, | differences with ground state phases from a reference structure
yields an estimate of the differences between the electron density of the sample before and after the perturbation.
Difference maps are often noisy due to systematic errors or scaling artifacts, and are frequently weighted by the
magnitude of the difference signal and/or the error estimates associated with the empirical differences in structure
factor amplitudes. In this example we will visualize the effects of applying weights to a time-resolved difference map
of photoactive yellow protein (PYP). PYP is a model system in time-resolved crystallography due to the trans-to-cis
isomerization of its 4-hydroxycinnamyl chromophore which occurs upon absorption of blue light [29]. This data set
was collected at the BioCARS Laue beamline APS-14-ID, and is composed of matched images collected in the dark
and 2ms after illumination with blue light. This data was collected and provided by Marius Schmidt and Vukica Srajer.

Several schemes have been used to apply weights to time-resolved difference maps. Many of them take the form of
Equation[7} involving a term based on the uncertainty in the difference structure factor amplitude (oA ) and optionally,
a scale term based on the the magnitude of the observed difference structure factor amplitude (JAF):

o2 N
w= |1+ # +a— (7)
OAp |AF

With av = 0, these weights take the form derived by Ursby and Bourgeois [30]. The A F'-dependent term downweights
the influence of outliers in the data set resulting from poorly measured differences by assigning lower weights to their
map coefficients. The degree of skepticism about large differences is controlled by the a parameter. « values of 1.0
[31] and 0.05 [8] have been reported in the literature.

The weighting function given by Equation[7]can be expressed in a few lines of Python that apply weights based on the
values of |AF| and oA in an rs.DataSet object (Fig. . The weights computed for the PYP data set are illustrated
in Fig. Difference structure factors with low signal-to-noise ratios (large o a  relative to |AF|) or large difference
structure factor amplitudes are assigned lower weight. The unweighted and weighted difference maps were then made
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(a) French-Wilson Scaling of Merged Intensities (b) Anomalous Difference Map from S-SAD
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(c) Example Code to Identify Anomalous Sites

import numpy as np
from skimage.feature import peak_local_max e

# Create grid of anomalous structure factors ® G @
ds["DF"] = ds.to_structurefactor ("ANOM", "PHANOM") ®
gridsize = (144, 144, 72) @ ® -

grid = ds.to_reciprocalgrid("DF", gridsize) 5 @

# Compute and standardize real-space map %
realmap = np.real(np.fft.fftn(grid)) ©
mean = realmap.mean()

std = realmap.std()

realmap = (realmap - mean) / std

# Find peaks in unit cell
peaks = peak_local_max(asu, threshold_abs=13.2)

Figure 3: Analysis of anomalous differences from a sulfur SAD experiment. @) French-Wilson scaling of merged
intensities. Large intensities are relatively unchanged, while small and negative intensities are rescaled to be strictly
positive. The red dashed line shows y = x, and the inset highlights the small and negative merged intensities. (b))
Anomalous difference map using difference structure factor amplitudes derived from room-temperature sulfur SAD
data set and phases from the refined model (PDB: 71.84). Map is contoured at 5¢0. (c) Example code for identifying
anomalous scattering sites in an anomalous difference map. (d) Unit cell containing sulfur sites identified using the
code snippet (yellow spheres), overlaid with the anomalous difference map (contoured at 100). The protein molecule
from one asymmetric unit of PDB: 7L.84 is shown in gray.

using phases derived from the ground-state model (PDB: 2PHY). The side-by-side comparison of these difference
maps shows that the weights greatly improve the interpretation of the structural changes—emphasizing the trans-to-cis
isomerization of the chromophore as well as concerted changes in the nearby Arg52 and Phe96 sidechains (Fig. 4c|and

Bd).
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(a) Example Weighting Function (b) Weights for PYP |F,,,| — | Fors| Map
1000 ® 20
def compute_weights(dataset, alpha=0.05): 0.8
mwnn 800 10 '
Compute weights for structure factors based on -
their magnitudes, DF, and uncertainties, SigDF. 600 ° 0 0.6 &
P I |3 225 0 25 oy
=S ° ‘O
= n n (J
df. - dataset[”Dl?‘ ] ) 400- . s ., o 043
sigdf = dataset["SigDF"] °e o o’
w =1+ (sigdf**2 / (sigdf**2).mean()) 2004 "’ o %,
w += alpha*(df**2 / (df**2).mean()) .ﬁ‘ . 0.2
return wxx-1 ® .
0_ °
-100 -50 0 50 100
AF
(c) Unweighted PYP | Fy,,, | — |Fozs| Map (d) Weighted PYP | Fy,,,| — |EFofs| Map

Figure 4: Weighting a time-resolved difference map. (a) Python function for applying weights to arrays of difference
structure factor amplitudes and uncertainties. (b) Scatter plot showing the weights assigned to each observed difference
structure factor amplitude with o = 0.05. (c) Unweighted PYP |F,,,| — | F,,s | difference map in the vicinity of the
PYP chromophore. (d) Weighted PYP |F,,,| — |F,s | difference map with oo = 0.05. The trans (ground state) PYP
structure (tan) is taken from PDB: 2PHY, and the cis (excited, pB state) PYP structure (blue) is taken from PDB: 3UME.
The difference maps are contoured at +30.

This example illustrates the use of reciprocalspaceship for creating custom maps. Importantly, it demonstrates
both the exploratory analysis of different weighting schemes, as well as writing MTZ files including different weight
columns. These can be used to visualize the impact of the different weights in a molecular visualization suite.

4 Discussion

reciprocalspaceship is a Python library that can form the foundation for the development of new methods in
crystallographic data analysis. This library provides a DataSet object that can conveniently represent tabular reflection
data while adhering to common practices in Python data analysis. This empowers crystallographers to write idiomatic
Python code to analyze their experiments while having full support for the necessary features of crystallographic
analysis, such as symmetry operations, unit cells, and spacegroups. Example applications were presented which use this
library for merging scaled reflections, analyzing anomalous differences from a SAD experiment, and for observing the
impact of weights on a time-resolved difference map. These examples illustrate how reciprocalspaceship could be
used in several different contexts, producing useful analyses with relatively short scripts and functions that can take full
advantage of the existing Python ecosystem.


https://doi.org/10.1101/2021.02.03.429617
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429617; this version posted February 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A PREPRINT - FEBRUARY 3, 2021

reciprocalspaceship can be used for exploratory data analysis — allowing one to inspect interesting properties of an
important data set. Or it can be used to prototype, develop and ship new methods and algorithms for analyzing data sets
[22]. Furthermore, this library can be useful in teaching crystallography by allowing students to familiarize themselves
with reflection data, space groups and symmetry, and the implementation of commonly-used algorithms. This library
lowers the barrier to entry for crystallographic software development by using a framework familiar to Python data
scientists.

5 Data and Code Availability

reciprocalspaceship and worked-out examples are available on GitHub athttps://github.com/Hekstra-Lab/
reciprocalspaceship, and can be installed directly from the Python Package Index (PyPI). The code used in these
examples are available in the reciprocalspaceship documentation, and the interactive Jupyter notebooks and all
supporting data can be downloaded directly from the Examples directory of the GitHub repository.
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