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Abstract:

Alpha activity (8-14 Hz) is the dominant rhythm in the awake brain, and thought to play an
important role in setting the brain’s internal state. Previous work has associated states of
decreased alpha power with enhanced neural excitability. However, evidence is mixed on
whether and how such excitability enhancement modulates sensory signals of interest versus
noise differently, and what, if any, the consequences are for subsequent perception. Here, human
subjects (male and female) performed a visual detection task in which we manipulated their
decision criteria in a block-wise manner. While our manipulation led to substantial criterion shifts,
these shifts were not reflected in pre-stimulus alpha-band changes. Rather, lower pre-stimulus
alpha power in occipital-parietal areas improved perceptual sensitivity and enhanced information
content decodable from neural activity patterns. Additionally, oscillatory alpha phase immediately
before stimulus presentation modulated accuracy. Together, our results suggest that alpha-band

dynamics modulate sensory signals of interest more strongly than noise.

Significance statement:

The internal state of our brain fluctuates, giving rise to variability in perception and action. Neural
oscillations, most prominently in the alpha-band, have been suggested to play a role in setting
this internal state. Here, we show that ongoing alpha-band activity in occipital-parietal regions
predicts the quality of visual information decodable in neural activity patterns, and subsequently
human observer’'s sensitivity in a visual detection task. Our results provide comprehensive
evidence that visual representation is modulated by ongoing alpha-band activity, and advance our
understanding on how, when faced with unchanging external stimuli, internal neural fluctuations

influence perception and behavior.
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INTRODUCTION
Identical stimuli may lead to variable percepts: when presented with the same threshold-level
stimulus repeatedly, an observer sometimes detects it while sometimes misses it. The brain’s
internal state, largely determined by moment-to-moment neural activity fluctuations, contributes to
this perceptual variability (for reviews, see Harris & Thiele, 2011; Samaha et al., 2020).

Alpha activity (8-14 Hz) is the dominant rhythm in the awake brain. One prevailing
hypothesis is that the alpha rhythm sets the internal state’s excitability level via functional
inhibition (Jensen & Mazaheri, 2010; Klimesch et al., 2007). Because of its tight link with internal
excitability, alpha-band oscillatory activity (and its temporal fluctuations) is a plausible key source
of perceptual variability. Indeed, extensive work reported that pre-stimulus alpha-band power
modulates perception of simple sensory stimulations (Barne et al., 2020; Haegens et al., 2011;
Hanslmayr et al., 2007; Thut et al., 2006; van Dijk et al., 2008; van Ede et al., 2011).

Only recently researchers started to investigate how internal excitability changes indexed
by alpha oscillations manifest in subjects’ behavioral outcomes (lemi et al., 2017; Samaha et al.,
2017), using Signal Detection Theory (Macmillan & Creelman 2004). In this theoretical
framework, two metrics are used to quantify the perceptual process: sensitivity (d’) — a metric of
how well the observer distinguishes sensory signals of interest from noise, and criterion (c) — a
metric of observer’s tendency for one perceptual decision over the others. Depending on
potentially differential impacts on sensory signals of interest versus noise, internal excitability
changes indexed by alpha activity may modulate different aspects of the perceptual process.

One hypothesis is that decreased alpha activity amplifies the sensory signal of interest
and noise to the same extent (e.g., the gain is additive to the response amplitude) without making
them more distinct from each other, and therefore only results in a criterion shift in the observer’'s
behavior (Figure 1). This view is mainly supported by empirical work correlating ongoing, as
opposed to experimentally-induced, alpha activity changes with perceptual reports. Several
studies showed that when pre-stimulus alpha activity was low, subjects reported higher subjective

visibility (Benwell et al., 2017) and confidence (Samaha et al., 2017), and had a higher tendency
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to see a target (i.e., more liberal criterion), but displayed no change in perceptual sensitivity (lemi
et al., 2017; Limbach & Corballis, 2016). If a low state of alpha activity indeed amplifies signal and
noise similarly and thereby shifts the observer’s criterion, a key question is whether (top-down)
changes in criterion are implemented via (and/or reflected by) shifts in the alpha state.

Another hypothesis is that decreased alpha activity amplifies the signal of interest to a
larger extent relative to the noise (e.g., the gain scales multiplicatively as a function of response
amplitude), making them more distinct from each other and hence resulting in improved
perceptual sensitivity (Figure 1). This view is largely inferred based on studies using classical
attentional-cueing paradigms, in which pre-stimulus alpha-band activity patterns (i.e., alpha
lateralization, activity difference between task-relevant and task-irrelevant regions) and
perceptual sensitivity co-vary following attentional cueing (Haegens et al., 2011; Thut et al., 2006;
van Ede et al.,, 2011). Although informative, it is unclear whether the observed correlation
between alpha lateralization and performance is mainly driven by an alpha amplitude decrease in
task-relevant or increase in task-irrelevant regions. Furthermore, if alpha oscillations indeed
modulate sensory signal of interest more strongly relative to the noise, an immediate prediction is
that decreased alpha activity leads to enhanced information coding of the task-relevant stimuli.

To differentiate between these hypotheses, we tested human subjects in a
magnetoencephalography (MEG) experiment, during which we experimentally manipulated their
decision criterion using a novel visual detection paradigm. We examined whether and how
changes in pre-stimulus alpha dynamics (i) correlate with criterion shifts, (ii) influence sensitivity
while criterion is controlled, and (iii) modulate information coding, indexed by the representational

content decodable in the neural signal.

MATERIALS AND METHODS
Data availability
All data and code for stimulus presentation and analysis are available online at the Donders

Repository at https://doi.org/10.34973/wlk5-sm41.
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Subjects

Thirty-four healthy volunteers completed the full experiment. Two of them were excluded from
analysis because of excessive head movement during the MEG recording, resulting in the
planned sample size of 32 subjects in the reported analysis (mean age = 25.8, SD = 6.0; 23
females). The study was approved by the local ethics committee (CMO Arnhem-Nijmegen). All
subjects gave informed consent prior to the experiment and received monetary compensation for

their participation.

Procedure

Subjects reported to the lab on two days within one week, for a training session on day 1 and
MEG recording session on day 2.

Training session on day 1. The training session on day 1 served to familiarize subjects with the
task and to prepare them for the MEG recording session on day 2. We introduced the task with
10 “slow” trials, in which we set the ISI between the target and the backward mask to 100 ms and
provided feedback at the end of each trial. Before starting the up-down staircase, subjects
practiced 20 “normal-speed” trials with feedback, to get familiar with the task. This introduction
phase was repeated if necessary. Two runs of 3-down-1-up staircases were then used to titrate
the contrast of the backward mask, one run for each target orientation (clockwise and
counterclockwise gratings; order counter-balanced across subjects). Subjects were explicitly
informed about the orientation and grating presence rate (50%) at the start of each staircase run.
No feedback was provided during the staircase. After the staircase procedure, subjects
completed four experimental blocks. Notably, to maximize the priming effect (for the MEG
session), gratings were presented 80% (20%) of the time in both the priming and main task
phase, and feedback was provided at the end of each block (i.e., accuracy and mean reaction
time). We aimed to convince subjects that utilizing the provided target-presence rate in their

decisions was beneficial for task performance.
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MEG testing session on day 2. On day 2, similar to the training session, subjects first
completed two runs of 3-down-1-up staircases inside the MEG, to determine the contrast level of
the backward mask that resulted in ~80% detection accuracy when an equal number of target-
present and absent trials was presented. The staircases were done after a brief recap of the task,
in which subjects completed 10 “slow” trials and 20 “normal-speed” trials with trial-by-trial
feedback (i.e., same as the introduction phase of the training session on day 1). They then
performed eight main experimental blocks and three grating localizer blocks, during which

neurophysiological data were recorded.

Experimental paradigm

Main experimental block. Two stimuli, a target and a mask, were presented sequentially in each
trial, and the subject’s task was to report as accurately as possible whether a grating was present
or not in the trial (see Figure 2A for trial schematic). To introduce criterion shift in the subject’s
perceptual decisions, we designed a paradigm inspired by Crapse and colleagues (Crapse et al.,
2018). Each main experimental block started with an instruction screen, informing subjects of the
orientation (CW or CCW) and grating presence rate (20% or 80%) in the upcoming block. Every
block consisted of 40 priming trials and 80 main task trials. For the first 40 priming trials, gratings
were presented either 20% or 80% of the time, consistent with the block instruction. The
backward masks were of 5% Michelson contrast, which had little masking effect on the target
grating. We purposely presented the targets in a clearly discriminable way during the priming
phase, to encourage subjects to shift their decision criteria accordingly. Before starting the 80
main task trials, a reminder was presented on the screen for three seconds, highlighting the
current block’s target orientation and presence rate again. From the subject’s point of view, other
than a contrast increase in the backward mask (titrated for each subject), everything remained
the same between priming and main task trials. However, unbeknownst to the subjects, gratings
were presented 50% of the time irrespective of the instructed target-presence rate (and contrary

to the priming part of the block). Critically, the increased perceptual ambiguity due to strong
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backward masks allowed us to keep the grating presence rate the same between conservative
and liberal priming blocks, while introducing a bias in the subject’s perceptual decisions.

Grating localizer block. Interleaved with the main task blocks, subjects performed three blocks
of a grating localizer task (see Figure 2A for trial schematic). Each block consisted of 120 trials,
among which 18 trials contained a brief fixation blink (i.e., the central fixation dot turned from
black to white for 50 ms). The subject’s task was to detect these occasional fixation blinks and to
press a button as soon as possible when they saw them. Clockwise and counterclockwise
gratings identical to those presented during the main task were presented in a pseudorandom
order for 250 ms, followed by a uniformly jittered ITI of 1 to 1.5 s. We used a longer presentation
duration (relative to that used in the main task trials) to increase the signal-to-noise ratio in the
stimulus-driven response. These trials enabled us to identify brain regions most responsive to the
bottom-up stimulation by grating stimuli. Trials containing fixation blinks—which served
exclusively to maintain the subject’'s attention on the fixation point—were excluded from later

analyses.

Stimuli

A bull’'s eye (outer black ring = 0.5° x 0.5° degree of visual angle (dva), innermost black dot =
0.25° x 0.25° dva) was presented at the center of the screen throughout each block as the
fixation point. Subjects were instructed to always maintain fixation, and not to blink during the
presentation of the stimuli. A 2-s fixation window was presented before the start of the first
priming and the first main task trial in each block. Each trial started with a brief presentation of the
target (16.67 ms), within which either an oriented grating (Michelson contrast: 40%, spatial
frequency: 1 cycle per °, orientation: 45° clockwise (CW) or counterclockwise (CCW) relative to
vertical, randomized spatial phase) or a bandpass-filtered noise patch (Michelson contrast: 40%;
spatial frequency: 1 cycle per °; randomly generated in each trial) was shown in an annulus (inner
radius = 1.5°, outer radius = 7.5°, contrast of the stimuli decreased linearly to 0 over the outer and

inner 0.5° radius of the annulus) around the central fixation (see Figure 2A for an example). After
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a brief (16.67 ms) ISI window, a backward mask consisting of a bandpass-filtered noise patch
(Michelson contrast: titrated for each subject; spatial frequency: 1 cycle per °; randomly
generated in each trial) was presented for 100 ms (see Figure 2A for an example). After another
ISI window of 800 ms, the letters “P” (for grating present) and “A” (for grating absent) were
presented on each side of the screen respectively, indicating the response mapping of the current
trial, which changed pseudo-randomly and unpredictably across trials to avoid motor preparation
confounds. Subjects had a maximum of two seconds to provide their response (i.e., grating
present vs. absent). The inter-trial interval (ITl) started as soon as subjects committed a
response. The ITI duration was jittered across trials between 1.8 and 2.4 seconds for the main
task trials, and between 1.5 and 2.0 seconds for the priming trials. Note that we titrated the
contrast of the backward mask via a 3-down-1-up staircase procedure at the beginning of each
session, such that overall accuracy in a detection task with 50% target presentation rate was

comparable across subjects and across sessions.

Data acquisition

Stimuli were displayed on an LCD screen during the training session and on a semitranslucent
screen (1920 x 1080 pixel resolution, 120-Hz refresh rate) back-projected by a PROpixx projector
(VPixx Technologies) during MEG recordings. The experiment was programmed with
Psychtoolbox (Brainard, 1997) in Matlab (The Mathworks, Inc.) and ran in a Linux environment.
Brain activity was recorded using a 275-channel axial gradiometer MEG system (CTF MEG
Systems, VSM MedTech Ltd) at 1200 Hz in a magnetically shielded room. Six permanently faulty
channels were disabled during the recordings, leaving 269 recorded MEG channels. Three
fiducial coils were placed at the subject’s nasion and both ear canals, to provide online monitoring
of the subject’s head position (Stolk et al., 2013) and to serve as anatomical landmarks for offline
co-registration with structural MRI scans. Eye position and pupil size were recorded using an
infrared eye tracker (EyeLink, SR Research Ltd., Mississauga, Ontario, Canada) during the MEG

recordings. Upon completion of the MEG session, the subject’s head shape and the location of
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the three fiducial coils were digitized using a Polhemus 3D tracking device (Polhemus,
Colchester, Vermont, United States). T1-weighted MRI scans were acquired using a 3T MRI
system (Siemens, Erlangen, Germany). Earplugs with a drop of vitamin E were placed at the

subject’s ear canals during MRI acquisition, to facilitate co-registration with MEG data.

Behavioral data analysis
We focused our analysis on main task trials (i.e., trials with high-contrast backward masks)
recorded during the MEG session. Besides accuracy and reaction times (RT), our main
behavioral variables of interest were sensitivity (d’) and criterion (c), which were estimated
following Signal Detection Theory (SDT), assuming the internal signal and noise distributions
shared the same variance (Macmillan & Creelman 2004) as follows:
d' = z(H) — z(F) (Equation 1)

c= —%(Z(H) + z(F)) (Equation 2)

where H and F are the hit and false alarm rates, and z(X) denotes the inverse of the normal

cumulative function evaluated at X. Moreover, the variances of these estimates are defined as:

H(1-H)
Ns|¢p(H)]

F(1-F)

var(d) = Nl bR 2

>+ (Equation 3)

var(c) = 0.25var(d") (Equation 4)
where Ns and Ny are the number of signal (S) and noise (N) trials, and ¢ (X) is the height of the
normal density function at z(X).

To compare d’ and ¢ between priming conditions at the group-level, we first computed for
each condition the pooled d’ and c estimates as well as their corresponding variances, using the
averaged hit rate (H) and false alarm rate (F) across subjects. This method results in more
robust and unbiased group-level d’ and ¢ estimates compared to that estimated by averaging
across subjects (Macmillan & Kaplan, 1985). We then calculated the difference in pooled d’ (and
c) between conditions as well as the confidence interval of the difference. If zero falls outside the

95% confidence interval of the pooled d’ (or c¢) difference, then the conditions are considered
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significantly different from each other in d’ (or c). Additionally, to assess the effects of priming and
target orientation on accuracy and correct RTs, we used within-subject repeated-measures
ANOVA (priming type: conservative vs. liberal; grating orientation: clockwise vs. counter-
clockwise).

To capitalize on trial-by-trial fluctuations and to capture the relationship between pre-
stimulus state and behavioral outcomes, we adapted and extended the Generalized Linear Model
(GLM) formulation of Signal Detection Theory (DeCarlo, 1998).

For each subject, we defined their responses (target presence/absence) as determined
by a combination of factors (stimulus presence, the oscillatory state of interest, and the interaction
between them) via a probit link function:

probit p(Y = 1) = By + B1.S + B, P + 35 + P (Equation 5)
with Y the subject’'s “target absence” and “target presence” responses (coded as zeros and
ones), S the grating absence or presence (coded as zeros and ones), and P the trial-by-trial
continuous measure of oscillatory power. Before feeding the oscillatory power of interest into the
model, we first log-transformed it to reduce the skewness of the observed data, and then Z-
transformed the corresponding output to ensure that the dynamic range is comparable across
subjects. In this model, Z-transformed hit rate can be expressed as:

z(Hit) = probitp(Y =1|S =1) = B, + 1 + B.P + B3P (Equation 6)
and the Z-transformed false alarm rate can be expressed as:

z(FA) = probitp(Y = 1| S = 0) = B, + ,P (Equation 7)

Replacing z(Hit) and z(FA) in Equation 1 with Equation 6 and 7 results in:

d' = B, + 3P (Equation 8)

in which ﬁs describes how changes in oscillatory power of interest contribute to changes in

sensitivity. Similarly, replacing z(Hit) and z(FA) in Equation 2 results in:

c=—Po— 231 + (—ﬁz - %B3) P (Equation 9)
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in which (—/32 —%/33) describes how changes in oscillatory power of interest contribute to

changes in criterion. For convenience, we defined the effect of oscillatory power on sensitivity as
B, = Bs (Equation 10)

and the effect of oscillatory power on criterion as

B, = (—/32 -1 /33) (Equation 11)
in later analysis and data visualization.

At the group-level, we extended the above model and constructed a generalized linear
mixed model (GLMM) to better account for between-subject variation. Specifically, we fitted the
model with “subjects” as the only random grouping factor, and included for each fixed effect its
corresponding random slope coefficient and intercept. This was done using Matlab’s fitgime

function with quasinewton optimizer. We reported results of the estimated coefficients 8, and 5,
and the corresponding statistical significance. Intuitively, a negative value of g (or ) indicates

that d’ (or c) decreases as oscillatory power of interest increases. To obtain a null distribution of

the F-values corresponding to f_ and f,, we fit the GLMM for all parcels, 100 times using

dar’
shuffled data, in which the oscillatory alpha power time courses across trials were randomized
and thus the temporal (autocorrelation) structure within a trial was preserved. We then used

cluster-based permutation tests to evaluate the statistical significance of the fitted f_and 3 ,,.

MEG data analysis

MEG preprocessing. MEG data were preprocessed offline and analyzed using the FieldTrip
toolbox (Oostenveld et al., 2011) and custom-built Matlab scripts. Trials of the main task blocks
and grating localizer blocks were segmented and processed separately. All data were down-
sampled to 400 Hz, after applying a notch filter to remove line noise and harmonics (at 50, 100,
and 150 Hz). Trials with excessive noise were rejected via visual inspection before independent
component analysis (ICA). ICA components were visually inspected and those representing eye

and heart artifacts were then projected out of the data (Jung et al., 2000). Finally, outlier trials

10
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with extreme variance were removed, leaving on average 297 out of 320 (SD = 14.6) priming
trials, 595 out of 640 (SD = 33.5) main task trials, and 331 out of 360 (SD = 18.0) localizer trials
per subject.

MRI processing. MRI data were co-registered to the CTF coordinate system using the fiducial
coils and the digitized scalp surface. Volume conduction models were constructed based on
single-shell models of individual subjects’ anatomical MRIs (Nolte, 2003). Dipole positions were
defined using a cortical surface-based mesh with 15784 vertices created using Freesurfer v6.0
(RRID: SCR_001847) and HCP workbench v1.3.2 (RRID: SCR_008750). The vertices were
grouped into 374 parcels based on a refined version of the Conte69 atlas (Van Essen et al.,
2012), allowing us to reduce the dimensionality of the data (similar to (Schoffelen et al., 2017).
For each dipole position, lead fields were computed with a reduced rank, which accommodates

the fact that MEG is blind to radial sources.

Event-related fields. Before calculating the event-related fields (ERFs), singe-trial data were

baseline-corrected using a time window of [-0.5, 0] s for the priming and main task trials, and

[-0.2, 0] s for the grating localizer trials. To avoid the confounding influence of noise (in the planar

transformation) due to unequal trial numbers across conditions, trial numbers were equated via

subsampling. Specifically, we subsampled an equal number of trials from each condition before

averaging over ftrials, such that the number of trials per condition matched that in the condition of

the fewest trials. Planar gradients of the MEG field distribution were then calculated, which makes

spatial interpretation of the sensor-level data easier and facilitates comparison of ERF

topographies across subjects. We repeated the above-mentioned procedure 10 times per

11
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condition, to ensure every trial was used at least once. We then averaged across all

corresponding planar-combined averages to obtain ERFs per condition.

Spectral Analysis. Time-frequency representations (TFRs) of power were calculated for each
trial by applying a fast Fourier transform to short sliding time windows. We applied Hanning
tapers of 4-cycles length in time steps of 50 ms to single-trial data, prior to computing the spectra
(4-30 Hz). For sensor-level analyses, spectral decomposition was applied to synthetic planar
gradient data, and combined into single spectra per sensor. For visualization purposes, condition-
average TFRs were expressed relative to a frequency-specific baseline window, which started 4
cycles and ended 2 cycles before stimulus onset (e.g., for 10-Hz activity, a 400 to 200 ms pre-
stimulus time window was used as baseline window) to prevent leakage of post-stimulus activity
into the baseline window. Note that for all statistical analyses, non-corrected TFR data were used.
To compute TFRs of an anatomical parcel (source-level), spectral decomposition was performed
on the parcel's response time series (see Source reconstruction). To account for intra- and inter-
individual variability in alpha peak frequency (Haegens et al., 2014), we defined the individual
alpha peak frequency for each brain area (parcel) and each subject separately. This was done
with the priming trials by computing the Fourier spectrum of each parcel's pre-stimulus 1-s time
series and finding the local maximum within the 7-14 Hz band of the resulting Fourier spectrum.
We computed the oscillatory alpha power within each parcel by averaging the above-mentioned
power estimate within a +1 Hz band centered at the individual alpha peak frequency. We
checked the prevalence of alpha oscillatory activity by counting the numbers of subjects
exhibiting prominent alpha oscillatory activity identified using the above-mentioned method
(Figure 3A). To estimate the time courses of oscillatory alpha phase, we used Hanning tapers of
200 ms length (zero-pad to one second) at the individual alpha peak frequency, to slide over each
anatomical parcel’s response time series in steps of 5 ms. The phase was computed as the angle
of the resulting Fourier coefficients. Unless otherwise specified, analyses linking alpha oscillatory

power/phase to behavior are all based on that of individualized alpha peak frequencies.
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Phasic modulation of accuracy. We assessed whether behavioral accuracy, both that of the
subjects and the neural decoder (see Multivariate pattern analysis), changed as a function of
oscillatory alpha phase. We grouped the trials based on their corresponding phase estimates of a
specific time window and parcel into 16 equidistant phase bins (bin centers = [0, 22.5, ..., 337.5]
degree, bin width = 45 degree), and computed the average accuracy for each bin. We combined
all trials (conservative and liberal) in this analysis because it is unlikely that subjects
endogenously aligned their instantaneous alpha phase with respect to the stimulus onset, as
onset was randomly jittered and hence unpredictable to the subjects. We used accuracy as an
index of interest for the current analysis because accuracy, compared to d’, is a more robust
measure of performance when trial number is limited (in this case, less than 80 trials per phase
bin). We then fitted a cosine function of one cycle and unknown amplitude and phase to the
resulting 16 accuracy scores. The amount of phasic modulation of accuracy was defined as the
fitted amplitude of the cosine function. Intuitively, an estimated amplitude of 3% suggested that
the model predicted an accuracy difference of 6% between trials of the optimal phase and those
of the suboptimal phase. This procedure was applied to every time window and parcel of interest.
To obtain a null distribution of the fitted amplitudes for statistical inference, we circularly shifted
the phase time course of every trial with a random value between -360 to 360 degrees before
phase binning the data, which allows randomization without breaking the temporal
(autocorrelation) structure within a trial.

Source reconstruction. Source-level analyses reported in the results section are based on a
sample of 29 subjects, whose T1-weighted anatomical images were available. The linearly
constrained maximum variance beamformer approach (Van Veen et al., 1997) was used to obtain
the source reconstruction of the event-related response to the localizer gratings. The data
covariance matrix was computed over a window of [-1.0, 1.0] s for priming and main trials and [-
0.5, 0.5] s for localizer trials, time-locked to stimulus onset, and was subsequently used to
construct common spatial filters. To estimate the amplitude of the single-trial stimulus evoked

response, we projected the trial data computed over [0, 0.2] s through the spatial filters, and then
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normalized the resulting amplitude by that of a baseline window of [-0.2, 0] s time-locked to
stimulus onset. Neural response time series of an anatomical parcel were computed by taking the
first principal component of the time series over all dipole positions within the parcel.

We used the partial canonical coherence beamformer approach (Schoffelen et al., 2008)
to localize the sources of oscillatory alpha-band activity in response to the main task trials. To
estimate the spatial distribution of alpha-band power, we first extracted 500-ms data segments
(time window = [-0.5 0], time locked to stimulus onset), then computed cross-spectral density
(CSD) matrices using Slepian tapers (Mitra & Pesaran, 1999) centered at a frequency of 10 (+4)
Hz. With the CSD matrices and the lead fields, a common spatial filter (for all trials across both
conditions) was constructed for each dipole position for each subject. By projecting sensor-level
CSD through the common spatial filter, the spatial distribution of power was then estimated for
each trial. To reduce data dimensionality, we took the mean estimated power of all dipoles within
each parcel as the single-trial power estimate of the parcel.

Multivariate pattern analysis. To probe the representational content of neural activity, we
performed multivariate pattern analysis using the MVPA-light toolbox (Treder, 2020). Before
running the classification analysis, we first applied a low-pass filter at 30 Hz and down-sampled
the data to 100 Hz. Multivariate logistic regression (L2 regularized) was then applied to predict
the grating’s presence (present vs. absent), based on the sensor-level spatial distribution of
neural activity at each time point. To avoid overfitting, we trained the classifier with priming trials,
and tested on the main task trials. This procedure was done within-subject in a time-resolved
manner, resulting in a temporal generalization matrix (King & Dehaene, 2014).

Cluster-based permutation tests. Statistical significance was evaluated using cluster-based
permutation tests (Maris & Oostenveld, 2007) at the sensor-level. The time interval of interest
was [-0.8, 0] (i.e., the 800-ms window before stimulus onset). For ERFs, data of different pre-
selected sensors were first combined, resulting in a single time series per subject. These time
series data were then compared univariately at each time point. Neighboring time points for which

a two-tailed paired t-test (or a repeated-measures ANOVA) resulted in a nominal p-value smaller
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than 0.05 (uncorrected) were clustered. A similar procedure was applied to the time-frequency
representations (TFRs), with clustering across spectral, temporal and spatial dimensions. The
sum of the T-values (or F-values) within a cluster was then computed as cluster-level statistics.
The cluster with the maximum sum was subsequently used as test statistic. By randomly
permuting the condition labels (or by shuffling the predictor variable of interest across trials) and
recalculating the test statistic 10,000 times (or 100 times, for computationally expensive
operations such as the GLMM and phasic modulation analysis), we obtained a reference
distribution of maximum cluster T-values (or F-values) to evaluate the statistic of the actual data
(alpha = 0.05). For reference, we also report the smallest p-value obtained for cluster-based

permutation tests that failed to reject the null hypothesis.

RESULTS

Priming leads to criterion shifts
Subjects finished eight blocks of the main experimental task and three blocks of a localizer task
during the MEG session. For the localizer task, they had to detect and report as fast as possible
occasional fixation changes, which occurred in 15% of all trials. Subjects correctly reported
fixation changes on 99.5% (between-subjects SD = 0.5 %) of all trials with mean median reaction
time (RT) of 406 ms (between-subjects SD = 49 ms), confirming close engagement in the task.

For the main experimental blocks, subjects’ task was to report the presence (or absence)
of an oriented grating as accurately as possible. They consistently performed at ceiling during the
priming phase when the masking effect was minimal (mean accuracy = 95.2%, with a between-
subjects SD of 5.1%; mean median RT = 421 ms, with a between-subjects SD of 73 ms). For the
main task trials, in which the mask was presented at a contrast level titrated for each subject,
overall accuracy dropped to around 75% as aimed for. Note the mean accuracy was lower than
that expected from a 3-down-1-up staircase procedure (i.e., about 80%), likely because the
instructed target-presence rate was different from the actual target-presence rate. Two-way

(priming type x grating orientation) repeated-measures ANOVA showed no significant differences
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across conditions in RT or accuracy (Fs < 1; Figure 2B). Results of the SDT analysis (Figure 2C)
showed that subjects were significantly more liberal in reporting “target present” in the liberal
priming blocks than in the conservative priming blocks (p < 10'6), validating our experimental
manipulation. Critically, their sensitivity (d’) was comparable between the liberal and conservative
blocks (p = 0.082). Taken together, our behavioral results show that the current paradigm

successfully introduces criterion shifts in subjects’ detection responses.

Priming does not lead to modulation of pre-stimulus oscillatory power or stimulus-evoked
activity

According to the additive hypothesis, pre-stimulus alpha power modulates the decision criterion.
Therefore, one may expect (top-down) changes in criterion induced by different priming
conditions to be reflected in alpha power differences. We first compared pre-stimulus time-
frequency representations (TFRs) between the conservative vs. liberal trials, without making any
assumptions about the frequency range of potential effects. We observed no significant
differences in pre-stimulus TFRs (p = 0.366, cluster-based permutation test with frequencies from
1 to 30 Hz, time points from 800 ms pre-stimulus to stimulus onset, including all sensors)
between the two priming conditions. We then repeated our statistical tests by constraining our
frequencies of interest to around the alpha range (6 — 14 Hz), or by constraining the channels of
interest to 20 subject-specific channels with strongest evoked response to the localizer gratings
(in a time window of [0.1, 0.2], relative to baseline). We found no significant pre-stimulus TFR
differences between the two priming conditions in either analysis (Figure 3C).

In addition to pre-stimulus activity, we also examined whether priming modulates the
sensory response amplitude to the stimuli. We constrained these analyses to the above-
mentioned 20 subject-specific channels, which primarily reflect the stimulus-evoked responses.
We did not observe any significant differences in the average event-related fields (ERF)
amplitude (averaged across all selected sensors within each subject) between different priming

conditions for the main task trials (Figure 3B). Interestingly, when the same contrasts were
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repeated for the priming trials, we found that for target-present trials, conservative priming led to
larger ERF amplitude 400 to 650 ms after stimulus onset (p < 10 Figure 3A solid lines)
compared to liberal priming; and this pattern was reversed for target-absent trials (p < 10 Figure
3A dotted lines). These observations may reflect a general P3 surprise effect (Mars et al., 2008)
to the less frequently presented stimuli, given that target-present and target-absent trials were
rare events (i.e., 20% of trials) in the conservative and liberal priming blocks respectively. These
ERF results also suggest that subjects incorporated the different probabilistic information in
sensory processing during the priming phase.

Taken together, we show for the main task trials that neither the pre-stimulus oscillatory
activity nor the stimulus-evoked activity reflects the (top-down) criterion changes introduced by

priming.

Pre-stimulus alpha power modulates d’: region of interest analysis
If excitability modulation by alpha oscillatory power has any behavioral consequence, its
maghnitude immediately prior to stimulus onset, within the neuronal populations most responsive
to the stimuli, should be most relevant for subsequent detection responses. Following this
rationale, we zoomed in on the anatomical parcel most responsive to localizer gratings (defined
for each subject, see Figure 4B for spatial topography of the selected parcels), and asked
whether and how alpha power immediately before the stimulus onset in these functionally defined
visual regions of interest (ROIs) predicts the subject’s response. While we observed prominent
oscillatory activity within the alpha-band during the pre-stimulus time window (Figure 4B, right
panel), we found no significant difference between the two conditions (i.e., conservative vs.
liberal) in the pre-stimulus TFR (cluster-based permutation test with frequencies from 1 to 30 Hz,
time points from 800 ms pre-stimulus to stimulus onset: p = 0.257) nor in the power spectrum
(cluster-based permutation test with all frequencies: p = 0.078).

Next, we asked: do trial-by-trial changes of pre-stimulus oscillatory alpha power influence

the subject’s detection responses? We applied generalized linear mixed models (GLMMs; see
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Methods) which account for both between-subjects and within-subject trial-by-trial response
variability to address this question. Our modeling results (Figure 4C) showed a significant
negative effect of pre-stimulus alpha power on d’, which was exclusively driven by conservative
trials (conservative: 8, =-0.096 (bootstrap SD = 0.030), p = 0.021; liberal 8, = -0.003 (bootstrap
SD = 0.031), p = 0.939). Specifically, subjects’ d’ decreased as alpha power increased under the
conservative priming condition. The effects of pre-stimulus alpha power on criterion were not

statistically significant (conservative: ﬁc = 0.005 (bootstrap SD = 0.017), p = 0.798; liberal ﬁc =

0.023 (bootstrap SD = 0.017), p = 0.197). Collectively, our results indicate that pre-stimulus alpha
power in visual regions most responsive to the target stimuli modulated perceptual sensitivity, not

criterion.

Pre-stimulus alpha power enhances sensory representation
To evaluate the quality of visual information coding, we used multivariate pattern analysis
(MVPA), operationalizing the quality of visual representation as the neural classifier's
classification performance. We first confirmed that classifiers trained on priming trials (classifying
target-present vs. target-absent trials) are generalizable (i.e., performed significantly above
chance) to the main task trials (Figure 3D). Zooming in to the diagonal of the matrix, we found
that classification accuracy did not differ significantly between priming type (p = 0.092, cluster-
based permutation test on time window [0, 1.0] s, Figure 3E). Moreover, we found the subjects’
responses can be predicted by the classifier's decision evidence (i.e., distance to the hyperplane)
at the time classification accuracy peaked (Figure 3E). Hence, the neural classifiers trained on
priming trials not only generalizes to main task trials but also tracks subjects’ responses
guantitatively and qualitatively.

We examined whether pre-stimulus alpha power modulates the quality of visual
information coding by first focusing on the neural classifier's response at the time when
classification accuracy peaked (trained and tested at the time point 120 ms after stimulus onset).

Similar to the above-mentioned analyses linking pre-stimulus alpha power with the subject’s
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behavior, we applied the GLMM to the classifier's responses. We found a negative correlation
between pre-stimulus alpha power and the classifier's d’ for the conservative trials (Figure 4D,
conservative: §, =-0.077 (bootstrap SD = 0.029), p = 0.009, _ = 0.012 (bootstrap SD = 0.017),
p = 0.495; liberal: §, = 0.017 (bootstrap SD = 0.031), p = 0.587, f, = 0.004 (bootstrap SD =
0.017), p = 0.823), suggesting that under the conservative priming condition lower pre-stimulus
alpha power leads to enhanced task-relevant information coding.

We next asked whether the modulatory effect on classification accuracy by pre-stimulus
alpha power manifested at time points other than when classification accuracy peaked. For each
priming condition, we divided trials into low, medium, and high alpha power bins (with about 100
trials per bin, allowing for robust estimates of classification performance), using the pre-stimulus
alpha power within our visual ROIls. We then compared the classification accuracy time course
across the three bins using cluster-based permutation test (on the diagonal of the temporal
generalization matrix, time window = [0, 0.5] s). This analysis showed that lower pre-stimulus
alpha power in the visual ROIs was associated with higher classification accuracy about 120 ms
after target onset, and that this modulation was present only for the conservative trials (p = 0.038,
Figure 4E), not the liberal ones (p = 0.159).

Together, our classification results show that a state of decreased pre-stimulus alpha

power leads to enhanced visual representation, which likely results in better detection sensitivity.

Pre-stimulus alpha power modulates d’ predominantly in occipital-parietal areas: whole-
brain analysis

While the above ROI analysis enabled us to maximize statistical power to address our research
guestions, it may have precluded us from observing interesting effects taking place outside our
visual ROIs. To explore whether and how pre-stimulus alpha power fluctuations in different brain
regions modulated subjects’ detection responses, we applied the GLMM analysis to all
anatomical parcels, and asked whether alpha power changes in any of them modulated the

subject’s d’' or criterion. We applied cluster-based permutation tests to correct for multiple
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comparisons across time (from 600 to 200 ms pre-stimulus) and space (374 anatomically-defined
parcels, whole brain). Under the conservative priming condition, five parcels along the left ventral
visual pathway showed significant negative alpha power modulation on d’ (p < 0.01; Figure 5A),
whose effect was most pronounced at time points immediately before stimulus onset. Under the
liberal priming condition, a cluster of about 20 parcels extending bilaterally from the
somatosensory cortex to superior parietal lobule showed significant negative alpha power
modulation on d’ (p < 0.01; Figure 5B). In contrast, we observed a positive criterion modulation by
alpha power for brain regions overlapping with this cluster, now for the conservative priming
condition (p < 0.01; Figure 5C); though this modulation disappeared for time points immediately
preceding the stimulus presentation. There was no significant criterion modulation by alpha power

under the liberal priming condition.

Pre-stimulus alpha phase modulates accuracy in a phasic manner
Finally, we asked how detection accuracy fluctuated as a function of oscillatory alpha phase. We
estimated the extent of phasic modulation of accuracy by taking the amplitude of the fitted cosine
function that best described accuracy changes as a function of oscillatory alpha phase. We first
examined the fitted cosine’s amplitude over time during the pre-stimulus time window in the
functionally-defined visual ROIs. The estimated amplitudes were significantly above chance
around 200 ms before the stimulus onset, suggesting significant phasic modulation of detection
accuracy (Figure 6AB). Interestingly, such a phasic modulation of the subject’s accuracy
seemingly faded out immediately before the stimulus onset. In contrast, the phasic modulation of
the neural classifier's responses peaked at around 100 ms immediately before stimulus onset,
suggesting that oscillatory alpha phase in these visual ROIs may have different impacts on the
sensory representation and the subject’s detection responses.

Next, we asked whether any anatomical parcels exhibited significant phasic accuracy
modulation by oscillatory alpha-band activity. We focused on the fitted cosine’s amplitude

corresponding to the time window immediately before stimulus onset whose phase estimates
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were unaffected by post-stimulus responses ([-0.2, -0.1] s). After correcting for multiple
comparisons (false discovery rate 5%), two occipital parcels in the dorsal visual stream displayed
significant phasic modulation of the subject’s detection response, while several parcels along the
dorsal visual stream extending towards the superior parietal lobe (Figure 6C) displayed significant
phasic modulation of the classifier's peak response (i.e., classifier trained and tested at 120 ms
post-stimulus).

These analyses of oscillatory alpha phase suggest that accuracy was modulated in a
phasic manner, and that such phasic modulations are most likely driven by occipital-parietal alpha

phase along the dorsal visual pathway.

DISCUSSION
To understand how alpha oscillations modulate perception, we recorded MEG in human subjects
while they performed a visual detection task. We found that criterion shifts induced by our priming
manipulation were not reflected in a modulation of pre-stimulus alpha activity. Rather, we found
that trial-by-trial changes of pre-stimulus alpha power modulate perceptual sensitivity, and that
alpha phase in regions along the dorsal visual pathway modulates behavioral accuracy.

By providing the target-presence rate and presenting clearly visible targets at the start of
each block (i.e., the priming trials), we successfully changed subjects’ perceptual expectations
and thereby introduced criterion shifts in their decisions. While recent work has demonstrated that
the human brain implements perceptual expectations by potentiating neural activity representing
the expected stimuli (Ekman et al, 2017; Kok et al.,, 2017), we did not observe such a
potentiation, nor did we observe any neural activity difference between the two priming
conditions. Unlike a previous study where criterion was manipulated via changing the stimulus-
response reward contingencies (Kloosterman et al., 2019), our current paradigm minimized the
effect of reward contingency on neural activity and arguably allowed a cleaner reconstruction of
sensory responses. Moreover, we manipulated subjects’ perceptual expectations in a block-wise

manner, therefore our null finding cannot be explained by the brain not having enough time to
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flexibly adjust its internal state. As indicated by the significant and sustained priming effect on
behavior, subjects incorporated different perceptual expectations consistently throughout the
recording session. However, the endogenous shift of decision criterion based on different
perceptual expectations does not seem to require or rely on pre-stimulus alpha modulations.

Next, we asked whether trial-by-trial fluctuations of pre-stimulus alpha oscillations lead to
changes in criterion or sensitivity. By focusing first on the visual regions most responsive to our
grating stimuli, we showed that both the subject’s perceptual sensitivity and information content
decodable from the neural activity patterns are enhanced when pre-stimulus alpha power in early
visual areas is low. Interestingly, the time window during which information content was
modulated by pre-stimulus alpha power (i.e., about 120-160 ms post stimulus onset) overlaps
with that during which local (as opposed to top-down) recurrent processes dominate (Wyatte et
al., 2014), suggesting that lower pre-stimulus alpha power may lead to enhanced local recurrent
processing. In line with a large body of spatial attention literature (e.g., Haegens et al., 2011; Thut
et al., 2006; van Ede et al., 2011) showing that the extent of cue-induced alpha power
lateralization correlates with behavioral performance, our current results extend previous work
and reveal that ongoing trial-by-trial alpha power fluctuations predict sensitivity changes.
Collectively, these findings support the multiplicative hypothesis, namely, that lower pre-stimulus
alpha power amplifies the neural response such that the signal of interest becomes more distinct
from noise, thereby improving perceptual sensitivity.

We also asked whether and how alpha oscillations in different brain areas may have
different modulatory effects on behavior. We showed that trial-by-trial changes of alpha power
within the ventral visual pathway predicted behavioral sensitivity when subjects were primed to
adopt a more conservative detection criterion, and that fluctuations within the parietal and
somatosensory regions predicted behavioral sensitivity when subjects were primed to adopt a
more liberal criterion. These different spatial distributions may reflect that when subjects adopt
different detection criteria, the processing bottleneck lies at different processing stages. When

sensory information travels downstream, task-irrelevant information (i.e., noise) accumulates and
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scales to a larger extent compared to task-relevant information (i.e., signal), resulting in
decreased signal-to-noise ratio of task-relevant information. If gating of sensory noise is
ineffective at the start of sensory processing (e.g., in V1), the internal response used for
perceptual decision-making is unlikely to reach the criterion later on, regardless of the
effectiveness of gating of downstream noise. Therefore, when subjects adopt a more
conservative criterion, alpha power fluctuations indexing the extent of effective gating in early
visual areas become more determinant of perceptual sensitivity. Conceivably, while effective
gating of upstream and downstream noise indexed by spontaneous alpha power fluctuations
jointly determine perceptual decisions, it is possible that their respective importance is dependent
on subjects’ decision strategy (i.e., criterion). This proposal is speculative, however, and in need
of further empirical evidence.

Our whole-brain exploratory analysis further revealed that, under the conservative
priming condition, trial-by-trial changes of pre-stimulus alpha power within the somatosensory
regions predicted the subject’s detection criterion. Curiously, this relationship was most
pronounced for alpha activity 500 ms preceding the stimulus onset, and disappeared for time
points closer to the stimulus onset. The current observation appears to mirror previous reports
showing that subjects adopt a more conservative criterion when alpha power increases (lemi et
al.,, 2017; Limbach & Corballis, 2016; Samaha et al., 2017), and it further suggests that pre-
stimulus alpha power modulation on d’ and criterion have different time courses. The current
findings also highlight a methodological challenge faced by studies using conventional detection
paradigms with variable pre-stimulus windows (lemi et al., 2017; Limbach & Corballis, 2016), in
that the definition of the “pre-stimulus” time window in such designs is arbitrary, as no stimulus is
presented on target-absent trials and consequently no stimulus onset to reference to. Arguably,
this can be reconciled if the stimulus onset is made predictable to the subject (e.g., by using
temporal cues and fixed pre-stimulus windows). However, the immediate question is to what
extent top-down processes contribute to pre-stimulus alpha fluctuations recorded using

paradigms with predictable stimulus onsets. Such paradigms probably capture different neural
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dynamics than ours (i.e., ongoing fluctuations vs. top-down modulation), as previous work found
that human subjects endogenously adjust their oscillatory alpha state (both in terms of power
(Rohenkohl & Nobre, 2011) and phase (Samaha et al., 2015)) prior to the predictable onset of
relevant stimuli to optimize sensory processing.

Finally, having demonstrated the relationship between alpha power and perception, we
asked whether pre-stimulus alpha activity modulates behavioral accuracy in a phasic manner, as
predicted by the inhibition hypothesis (Jensen & Mazaheri, 2010; Klimesch et al., 2007). We
found that the alpha phase along the dorsal visual pathway immediately prior to stimulus onset
modulated the subject’s and the classifier's response accuracy. While one may expect the alpha
phase effect to be dependent on and additive to the alpha power effect (Mathewson et al., 2009),
our findings are consistent with previous work showing that alpha phase and power effects have
different spatial topographies (Busch & VanRullen, 2010). Further research is needed to
understand how the interplay between oscillatory alpha power and phase modulates perception.

To summarize, the current study shows with complementary univariate and multivariate
results that changes of pre-stimulus alpha-band power modulate the quality of visual information
coding at the neural level and perceptual sensitivity at the behavioral level. These findings
provide important insights into how ongoing neural activity sets the internal state and

subsequently influences perception.
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defined gain as gggna = L2291 for the signal distributions, and g, = “telez—tnoiser for
the noise distributions. We set g, = g, here for simplicity. (B) Both models assume that response
gain decreases as alpha power increases. The additive hypothesis predicts that the difference in
response gain between signal and noise distributions remains constant across different alpha
power levels, and therefore predicts a criterion shift when comparing two states of different alpha
power (denoted by the triangles in the left panel). In contrast, the multiplicative hypothesis
predicts that the difference in response gain scales as a function of alpha power, and therefore
predicts a d’ change when comparing two states of different alpha power.
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Figure 2. Experimental paradigm and behavioral results. (A) Schematic of the task trials
(upper panel) and localizer trials (lower panel). Example grating and noise stimuli are shown for
illustration purposes. (B) Accuracy and reaction times and (C) sensitivity and criterion for the
main task trials during the MEG recording, and the corresponding hit and false alarm rates (mean
and between-subjects standard deviations). Shaded areas denote within-subject standard errors
in (B), and the variance of the group-level pooled d’ and c in (C). Dots represent individual

subjects (N=32). Asterisk denotes statistical significance (p < 0.05).
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Figure 3. Event-related fields (ERF) and time-frequency representation (TFR) of selected
sensors and classification results. (A) ERFs for the priming trials (showing data for of the 20
selected sensors most responsive to the localizer gratings). Black and grey lines at the bottom
indicate statistically significant time points identified by cluster-based permutation tests. (B) Same
as (A) for main task trials. (C) TFR of the main task trials (left panel) and the TFR of the
difference between conservative and liberal trials (right). (D) Temporal generalization matrix of
classification accuracy. (E) Time courses showing the diagonal of the temporal generalization
matrices. The right panels show subjects’ response to grating-present and absent trials as a
function of the amount of evidence in the classifier trained and tested at time point 0.12 s (marked

by a triangle above the time series). Dots represent group averages of each bin.
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Figure 4. ROIl-based analysis of relationship between alpha and performance. (A) The
prevalence (indexed by the number of subjects) of alpha oscillatory activity across brain regions.
(B) Spatial topography of the visual regions of interest most responsive to grating stimuli, and the
corresponding alpha peak frequencies and the pre-stimulus power spectrum. (C) Left: GLMM
results: estimated coefficients and the corresponding 95% confidence intervals, and the
distribution of bootstrap estimates for the parameters. Middle: visualization of the fitted
coefficients, for the conservative priming trials. Dots represent group-level average estimates and
the corresponding within-subject standard errors. The line shows the fitted model. Right: same as
the middle panel, but for the liberal trials. (D) GLMM results: estimated coefficients and the
corresponding 95% confidence intervals, and the distribution of bootstrap estimates for the
parameters. (E) Decoding accuracy (diagonal of the temporal generalization matrix) as a function
of pre-stimulus alpha power for conservative (left) and liberal (right) trials. Gray shaded area
marks the time window during which pre-stimulus alpha power significantly modulated decoding
accuracy indicated by the corresponding cluster-based permutation test. Shaded area around the
time series denotes within-subject standard error. Bar graphs show mean decoding accuracy
(within the gray shaded area) as a function of pre-stimulus alpha power. Error bars denote within-

subject standard error.
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Figure 5. Whole-brain GLMM analysis of relationship between alpha and performance. (A)
Estimated 3, for the conservative trials (masked by statistical significance after the correction of

multiple comparisons) across pre-stimulus time points, and the zoomed-in visualization of the
fitted coefficients of the highlighted parcel at t = -250 ms. (B) Similar to (A), but for the liberal
trials. (C) Similar to (A), but for estimated 8 for the conservative trials. The highlighted parcel's

fitted coefficients at both t = -550 ms and t = -250 ms are shown.
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Figure 6. Phasic modulation of accuracy. (A) Estimated amplitude of the phasic modulation of
subjects’ and neural classifier's accuracy over time. Shaded areas around the curve denote
between-subjects standard deviations, and dots at the bottom denote statistical significance, of
which the lighter ones correspond to p < 0.05 uncorrected, and the darker ones correspond to
those corrected (FDR = 0.05) for multiple comparisons. (B) Estimated amplitude of the phasic
modulation of subjects’ and neural classifier's accuracy at the time point 100 ms before stimulus
onset in the functionally-defined ROIs. Thinner lines denote data from individual subjects, with the
gray ones denoting cases where the estimated amplitude failed to exceed that of the null
distribution. Thick black lines denote the group average amplitudes. (C) Left: Parcels showing
significant phasic modulation on the subjects’ accuracy and classifier's accuracy (when trained
and tested at 0.12 s post-stimulus onset). Right: of the highlighted (circled) parcels in the left
panel, the corresponding time courses of the estimated amplitude. Same conventions as in (A).
Grey shaded area denotes the [-0.2, -0.1] time window used by the left spatial topography.
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