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14 Abstract

15  Altered brain energy metabolism associated with increase in lactate levels and the
16  resultant decrease in pH have been increasingly implicated in multiple neuropsychiatric
17  disorders, such as schizophrenia, bipolar disorder, autism spectrum disorder and
18  neurodegenerative disorders. Although it is controversial, change of pH/ lactate level as a
19  primary feature of these diseases, rather than a result of confounding factors such as
20 medication and agonal state, has been evidenced. Animal models that can be studied
21  without such confounding factors inherent to humans are a suitable alternative to
22  understand the controversy. However, the knowledge in animal models regarding brain
23  pH and lactate and their relation to behavioral outcomes is limited in the context of
24 neuropsychiatric disease conditions. In this study, we investigated the common
25 occurrence of changes in the pH and lactate levels in the brain in animal models by
26  analyzing 65 animal models related to neuropsychiatric and neurodegenerative diseases
27  with 1,239 animals. Additionally, we evaluated the behavioral phenotypes relative to the
28 chemical changes in the brain. Among the models, 27 and 24 had significant changes in
29  brain pH and lactate levels, respectively, including Shank2 KO mice, Clock mutant mice,
30 serotonin transporter KO mice, mice with a paternal duplication of human chromosome
31 15g11-13, Fmrl KO mice, BTBR mice, APP-J20 Tg mice, social defeat stress-exposed mice,
32  corticosterone-treated mice, and streptozotocin-induced diabetic mice. Meta-analysis of

33 the data revealed a highly significant negative correlation between brain pH and lactate
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34 levels, suggestive of increased lactate levels causing decreased brain pH. Statistical
35 learning algorithm based on the comprehensive data has revealed that the increased
36  brain lactate levels can be predominantly predicted by the indices for the percentage of
37  correct response in working memory test, with a significant simple, negative correlation.
38  Our results suggest that brain energy metabolism is commonly altered in many animal
39  models of neuropsychiatric and neurodegenerative diseases, which may be associated
40  with working memory performance. We consider our study to be an essential step
41  suggesting that the brain endophenotypes serve as a basis for the transdiagnostic
42  characterization of the biologically heterogeneous and debilitating cognitive illnesses.
43 Based on these results, we are openly accepting collaborations to extend these findings
44  and to test the hypotheses generated in this study using more animal models. We

45  welcome any mice/rat models of diseases with or without any behavioral phenotypes.
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47 Introduction

48 Neuropsychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), major

49  depressive disorder (MDD), autism spectrum disorder (ASD), and Alzheimer’s disease (AD),

50 are common with a prevalence of more than one-third of the population in most countries

51 being diagnosed with at least one such disorder at some point in their life (1). Although

52  these diseases clinically fall into different diagnostic categories, some biological features,

53  such as genetic mutations, molecular changes, and brain activity alterations, are common

54  among them (2-6), suggesting a common underlying biological basis. Increasing evidence

55 suggests that metabolic alterations in the brain are shared by the multiple

56  neuropsychiatric disorders. Increases in the levels of lactate, an end-product of glycolysis

57  pathway, have been observed in the brain of patients with Sz, BD, ASD, MDD, and epilepsy

58  (7-15). Increased lactate levels is considered to lead to decreased pH and are associated

59  with brain energy deficits (12). Recent large-scale meta-analyses have confirmed

60 increased brain lactate and decreased pH in SZ and BD (16,17). Such increased lactate and

61 decreased pH have also been observed in the brains of patients with AD (18-24). However,
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62 the observed phenomena are potentially confounded by secondary factors inherent in

63 human studies, such as antipsychotic treatments (10). Agonal experiences associated with

64 these disorders may also complicate the interpretation of postmortem study results (25—

65  27). Although some human studies suggest that medication use is not a major factor for

66 regulating brain pH and lactate levels (7,10,11,15,28), excluding the effects of other

67 potential confounding factors in human studies especially using postmortem brain

68 samples is technically difficult. Animal models, devoid of such confounding factors, may

69 help to confirm whether increased brain lactate and decreased pH levels are associated

70  factors.

IA Recently, increased brain lactate and decreased pH levels were demonstrated to

72  be commonly found in five strains of neurodevelopmental mouse models of psychiatric

73  disorders (29). As all of the mice used in the study were drug-naive, with equivalent

74  agonal states, postmortem intervals, and ages within each strain, those findings in mouse

75 models suggest that increased lactate and decreased pH reflect an underlying

76 pathophysiology, rather than mere artifacts, in at least a subgroup of patients with these
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77  mental disorders. However, the knowledge of brain pH and lactate in the animal models is

78  limited to small numbers of models and systematic evaluations using the same platform

79  have not been conducted so far in animal models. Therefore, we have extended our

80  previous study (29) to a larger variety of animal models of neuropsychiatric disorders, as

81  well as of neurodegenerative disorder, AD, and peripheral diseases or insults that are

82  comorbid with psychiatric conditions (e.g., diabetes mellitus (DM), colitis, and peripheral

83  nerve injury). Those animal models include 65 strains or conditions of mice and rats with

84  genetic modifications, drug treatments, and other experimental manipulations (Table 1).

85 Combining the large-scale brain lactate data with behavioral data (e.g., working memory,

86  locomotor activity, anxiety-like behavior, and depression-like behavior), we also sought to

87 investigate the relations between alterations in brain lactate levels and behavioral

88 outcomes.

89

90 Results

91  Altered brain pH and lactate levels in animal models
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92 The raw data of brain pH and lactate, and detailed information of animals (age, sex, and

93 treatment methods) are included in Supplementary Table 1. Among the 65

94  strains/conditions, 27 demonstrated significant changes in pH (5 increased, 22 decreased)

95 and 24 in lactate (19 increased, 5 decreased) in comparison with the corresponding

96 control animals (P <0.05; Supplementary Figure 1 and Supplementary Table 2).

97  Hierarchical clustering based on effect size and direction of changes classified those 65

98 models into four groups: high lactate/low pH group, moderate high lactate/moderate low

99  pH group, low lactate/high pH group, and a group with minimal to no changes in lactate or

100  pH, consisting of 16, 6, 15, and 28 models, respectively (Figure 1), where high and low

101 mean higher and lower in mutant/experimental animals related to the corresponding wild

102  type/control animals, respectively. High lactate/low pH group included, for example, SZ

103  model Ppp3rl KO mice and Nrgn KO mice, SZ/intellectual disability (ID) model Hivep2 (also

104  known as Shn2) KO mice, AD model APP-J20 Tg mice, and ASD model Chd8 KO mice. Low

105  lactate/high pH group included mainly mouse models for ASD or developmental delay,


https://doi.org/10.1101/2021.02.02.428362
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.428362; this version posted February 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

106  such as Shank2 KO mice, Fmrl KO mice, BTBR mice, Stxbpl KO mice, Dyrk1l KO mice, Auts2

107 KO mice, and patDp mice (Figure 1).

108 The Z-score-based meta-analysis of 1,239 animals analyzed in this study

109 revealed a highly significant negative correlation between brain lactate and pH levels

110  individually (Figure 2, Supplementary Figure 2), supporting the idea that decreased pH is

111 due to increased lactate levels in the pathological conditions related to neuropsychiatric

112 disorders.

113

114 Poorer working memory performance predicts higher brain lactate levels

115  Most of the animal models we examined are known to show a wide range of behavioral

116 abnormalities, such as deficits in learning and memory, and increased depression-like,

117  anxiety-like behaviors or impaired sensorimotor gating. Thereafter, with our

118  comprehensive lactate data, we examined potential relation of lactate alterations to their

119  behavioral phenotypes. Therefore, we examined whether behavioral patterns could

120  predict brain lactate levels by applying a statistical learning algorithm, which could
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121 discover intrinsic links between the chemical signatures in the brain and behaviors. Of the

122 65 animal models, we collected comprehensive behavioral data of 24 mouse models,

123 which were available in public source (e.g., published papers and database repository) or

124 in-house studies (see Methods and Materials; Supplementary Table 3). We constructed an

125  effect size-based model for predicting the brain lactate levels from behavioral data using

126  leave-one-out cross-validation method. Statistical evaluation of the prediction accuracy of

127  the model revealed a significant correlation between the actual and the predicted brain

128  lactate levels (Figure 3a), indicating that behavioral measures have a potential to predict

129  the brain lactate levels of individual models.

130 The prediction analysis was implemented to evaluate the behavioral measures

131 most useful to characterize the brain lactate levels of individual strains. The prediction

132  algorithm used identified behavioral signatures related to brain lactate levels by weighting

133  behavioral measures according to their individual predictive strength. Thus, we identified

134  the behavioral measures accompanying changes in brain lactate levels by examining the

135  weighted behavioral measures used for the prediction in linear regression. Three out of
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136  nine behavioral measures were selected to build the successful prediction model and in

137  those measures for working memory was the most selected (Figure 3b). According to

138  simple correlation analysis, the measures for working memory were negatively correlated

139  with the brain lactate levels (Figure 3c). These results suggest that higher lactate levels in

140  the brain are related to lower performance in working memory tests in mouse models of

141 neuropsychiatric disorders.

142

143  Effects of age and sex on the brain pH and lactate levels

144  Ages at sampling were matched within each strain/condition, but varied among

145  strains/conditions, ranging from 5 to 103 weeks old in mice (Supplementary Table 1). No

146  significant correlation was found between pH and age in wild type/control mice. Brain

147  lactate levels had a significant negative correlation with age (Supplementary Figure 5),

148  consistent with a previous MRS study in mice (30). However, limitations need to be

149  considered in interpretating our results, such as, differences in genetic background and

150  handling conditions before sampling (some mice had received repeated intraperitoneal
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151 injections or behavioral tests, and others had been kept undisturbed until sampling)

152  among strains/conditions. We further examined the effects of sex on the brain pH and

153 lactate levels. To minimize the effects of the limitations mentioned above, we used

154  Z-scores that were calculated within each strain/condition and focused on

155  strains/conditions with mixed gender. Female had significantly higher pH and lower

156  lactate levels than male in wild type/control animals (Supplementary Figure 6).

157

158 Discussion

159  We performed a comprehensive analysis of brain pH and lactate in 65 animal models. The

160  data suggested the diversity of brain-energy-metabolism among these model animals.

161 Some mouse strains considered to model different diseases were found to exhibit similar

162  pattern of changes in pH and lactate levels. Specifically, SZ models (Ppp3rl KO and Nrgn

163 KO mice), SZ/ID model (Hivep2 KO mice), BD/ID model (Camk2a KO mice), ASD model

164 (Chd8 KO mice), depression models (mice exposed to social defeat stress,

165  corticosterone-treated mice and Sert KO mice), AD model (APP-J20 Tg mice), and DM
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166  model (STZ-treated mice) commonly exhibited decreased brain pH and increased lactate

167  levels. A BD model Polgl Tg mice showed no differences in pH or lactate levels. However,

168  other BD model (Clock mutant mice) and ASD models, such as Shank2 KO (31), Fmr1 KO,

169  Dyrkl KO (32), Auts2 KO (33), and patDp mice (34), were classified into a group with

170  opposite changes, or decreased lactate and increased pH group. Animal models with

171 different patterns of changes in brain pH and lactate levels may represent subpopulations

172 of patients or specific states of the diseases (13). While increased brain lactate levels in

173  neuropsychiatric conditions are almost consistent in the literature, decreased lactate

174  levels has also been found in a cohort of patients with SZ (35) and in euthymic state of BD

175  (36). Our results from animal studies may also support the idea that the patients

176  categorized based on the symptoms to particular neuropsychiatric disorders are

177  biologically heterogeneous (37) from a brain-energy-metabolism viewpoint.

178 The present animal studies revealed an extraordinarily high negative correlation

179  between brain lactate and pH levels, strengthening our previous findings from small-scale

180  animal studies (29). Negative correlation between them has been found in human
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181  postmortem study (10). These results suggest that brain lactate is a main regulator of the

182  tissue pH (12), although we could not exclude the possibility that other factors such as

183  neuronal activity-regulated production of carbon dioxide, another metabolic acid, may

184  also contribute to the changes in brain pH (38,39).

185 We observed no significant correlation between age and brain pH in wild

186  type/control mice. In human studies, inconsistent results have been obtained with regard

187  to correlation between brain pH and age. Some studies showed no significant correlation,

188  (40,41), whereas other studies showed a negative correlation (42,43). Sex effects on brain

189  pH is also inconsistent in human studies (40,41). Systematic analysis focusing on the

190 effects of age and sex on the brain pH using animal models may help explain the

191  inconsistency found in the human studies.

192 Does brain lactate exert favorable or unfavorable effects on learning and

193  memory functioning? Our prediction analysis highlighted that poorer working memory

194  performance may be predominantly associated with higher lactate levels in animal models

195  of neuropsychiatric disorders (Figure 3). Additionally, in human studies, higher lactate has
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196  been associated with lower cognition in the individuals with SZ (14) and mild cognitive

197  impairment (44). Given these observations, lactate production may be expected to exert

198  negative impacts on brain functions, especially memory formation. However, lactate

199  production stimulated by learning tasks has been suggested as requisite for memory

200 formation. Lactate production by the astrocytic glycogenolysis and its transport to

201 neurons serves as an energy substrate for neuronal activity, referred to as

202  astrocyte-neuron lactate shuttle (ANLS). Animal studies have demonstrated that the

203  pharmacological disruption of learning task-stimulated lactate production and transport

204  via the ANLS immediately before the testing impaired memory formation as assessed by

205 the plus-shaped maze spontaneous alteration task (testing short-term memory) (45) and

206 in the inhibitory avoidance task (testing long-term memory) (46,47). Collectively,

207  considering that brain lactate levels increase during stimulations in a temporally (and

208  spatially) restricted manner under physiological conditions (48,49), pathologically

209 persistent elevation of brain lactate levels may exert negative impact on brain functions

210  including memory processing, although the causality is unknown. Other possibility is that
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211 decreased consumption of lactate for energy production due to mitochondrial dysfunction

212  in neurons may underline the impaired learning and memory functioning in the disease

213  conditions. Mitochondrial dysfunction has been thought to lead to lactate accumulation

214  because of insufficient capacity of mitochondrial metabolism to metabolize lactate that

215  was produced (16,50,51). Mitochondrial dysfunction has been consistently implicated in

216  multiple neuropsychiatric disorders, including SZ, BD, MDD, ASD, and AD (52-54), among

217  which working memory deficits are common symptoms (55). In addition, given that lactate

218  rise reflects neuronal activation (29) and multiple brain regions are abnormally activated,

219  activation in the brain regions other than frontal cortex, one of the brain regions critical

220  for working memory (56), interfere with working memory performance, as proposed that

221  activity of core brain region could be interfered with noise from the rest on cognitive tasks

222  in patients with SZ (57). There is also the possibility that increased lactate may have a

223  beneficial effect to compensate for the impaired memory and cognition, as lactate

224  administration that increases brain lactate levels has been shown to attenuate cognitive

225  deficits in human patients (58) and rodent model (59) of traumatic brain injury.
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226  Additionally, lactate administration has also been shown to exert antidepressant effects in

227  depression model mice (60). We also cannot exclude the possibility that increased lactate

228 isalsoinvolved in behavioral alterations other than memory deficit per se, such as anxiety,

229 as we have found that increased brain lactate levels were associated with altered

230 anxiety-like behaviors in social defeat stress model of depression (61). Further studies are

231 required to address these issues, for example, by chronically inducing deficits of

232  mitochondria function to manipulate endogenous lactate levels in a brain-region-specific

233  manner and analyzing its effects on working memory.

234 As we used whole brain samples to measure the pH and lactate levels, we could

235 not determine whether the observed changes in pH/lactate levels occur ubiquitously in

236  the entire brain or selectively in specific brain region(s) in each strain or condition of the

237 models. Indeed, brain region-specific increase in lactate levels was observed in human

238  patients with ASD in the MRS study (8). The brain region-specific changes may occur even

239 in animal models in which significant changes were not detected in the present study and,

240  if so, such differences could be masked in the analysis using whole brain samples. Further
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241  studies are required to address this issue, for example, by means of the measurements in

242  micro-dissected brain samples and in vivo analyses using pH- or lactate-sensitive biosensor

243  electrode (45,62) and MRS (63).

244 In conclusion, the present study demonstrated that altered brain pH and lactate

245  levels were commonly observed in many animal models of SZ, BD, ASD, AD and other

246  neuropsychiatric disorders. These findings provide further evidence supporting the idea

247  that altered brain pH and lactate levels are not mere artifacts such as medication

248  confounding, but rather implicated in the underlying pathophysiology of, at least

249  subpopulations of, patients with the diseases. Alteration in the brain-energy-metabolism

250 or hyper- or hypo-activity of neurons in the brain leading to abnormal lactate and pH

251 levels may serve as a potential therapeutic target of neuropsychiatric disorders (17). In

252  addition, detection of brain lactate, such as by MRS, may help to diagnhose and

253  subcategorize such biologically heterogeneous diseases, as shown in mitochondrial

254  disease (64). Future studies to identify the effective treatment strategies specific to the

255  sets of animal models that could recapitulate diversity of brain-energy-metabolism in
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256  human disease conditions may contribute to development of improved treatments for the

257 Dbiologically defined subgroups of patients or disease states of the debilitating illnesses

258  beyond the clinically defined borders.

259
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260 Table 1. Animal models used in this study

Name Description Related

diseases/conditions

1 APP Tg Mice expressing familial Alzheimer’s | AD(66,67)

disease-mutant human amyloid beta

precursor protein (PDGF-hAPPsye/ing, line

J20) (65)

2 Arid1b KO Mice with heterozygous knockout of the | ASD(69,70)

AT-rich interaction domain 1b (68)

3 Auts2 KO Mice with heterozygous knockout of the | ASD(71-73), ID(74),
Autism susceptibility candidate 2 (33) SZ(75)
4 Barp KO Voltage gated calcium channel

beta-anchoring and -regulatory protein KO

mice (76)
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5 Bdnf KO Brain derived neurotrophic factor KO

mice* (JAX, 004339)

6 BTBR Inbred mouse strain BTBR T+ tf/J (77,78) ASD

7 Camk2a KO Mice with heterozygous knockout of the | BD(82—-84), SZ(85)

calcium/calmodulin-dependent protein

kinase Il alpha (79-81)

8 Camkk1 KO Mice with forebrain-specific constitutively

active form of calcium/calmodulin kinase

kinase 1 (86)

9 Ccnd2 KO Cyclin D2 KO mice (87)

10 | CFA treatment | Mouse model of chronic inflammatory | Chronic pain

pain induced by complete Freund’s

adjuvant (CFA) (88,89)

11 | Chd8 KO Mice with heterozygous knockout of the | ASD(91-95)
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long isoform of chromodomain helicase

DNA-binding protein 8 (90)

12 | Chnl1 KO Chimerin 1 (a-chimerin) KO mice (96) ASD(96)

13 | Clock mutant Mice with N-ethyl-N-nitrosourea-induced | BD(99,100), SZ(101)

mutation in circadian locomotor output

cycles kaput (JAX, 002923) (97,98)

14 | Corticosterone | Mice chronically treated with | MD(104-106)

treatment corticosterone (102,103)
15 | Crmp2 KO Collapsin response mediator protein 2 KO | AD(108), SZ(109)
mice (107)
16 | Dextran Mice treated with dextran sulfate sodium | Colitis
treatment (110)

17 | Disc1-L100P Mice with N-ethyl-N-nitrosourea-induced | SZ(112-114)

mutant L100P amino acid exchange mutation in
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exon 2 of Disrupted-in-Schizophrenia 1

(1112)
18 | Disc1-Q31L Mice with N-ethyl-N-nitrosourea-induced | SZ(112-114)
mutant Q31L amino acid exchange mutation in

exon 2 of Disrupted-in-Schizophrenia 1

(111)

19 | Dyrkla KO Mice with heterozygous knockout of the | ASD/ID(70,115,116)

dual specificity tyrosine phosphorylation

regulated kinase 1a (32)

20 | ECS treatment | Mice treated with electroconvulsive | Treatment for
stimulation (117,118) MDD(119,120)
21 | Fmrl1 KO Fragile X mental retardation protein | ASD, FMR, SZ(85)

translational regulator 1 KO mice (121)

22 | Gascl Gene amplified in squamous cell | ASD(124)
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hypomorph carcinoma 1 hypomorphic mutant mice
(122,123)
23 | Glra4 KO Glycine receptor alpha 4 KO mice (125) ID(126)
24 | Grinl KO | GABArgic neuron-specific  glutamate | $2(128,129)
(postnatal) receptor, ionotropic, NMDA1 KO mice

(Protein phosphatase 1, regulatory subunit

2-cre; Grin1'oxP/loxP) (127)

25 | Grinl KO | GABArgic  neuron-specific ~ glutamate | SZ(128,129)

(adult) receptor, ionotropicc, NMDA1 KO mice

(Protein phosphatase 1, regulatory subunit

2-cre; Grin1'oxP/loxP) (127)

26 | Gunnrat Gunn rats (Gunn/Slc-j/j) (130) SZ(131)

27 | Hivep2 KO Human immunodeficiency virus type 1 |ID(133,134), SZ(132)

enhancer binding protein 2 (Schnurri-2) KO
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mice (132)

28 | Hyponatremia | Mice treated with 1-deamino-8-D-arginine | DS(138,139)

vasopressin and fed with a liquid formula

(135-137)
29 | ll118 KO Interleukin 18 KO mice (140,141) DM(142)
30 | Ketamine Mice treated with ketamine (143) Psychosis(144)
treatment
31 | Lurasidone Mice treated with lurasidone (145) Atypical
treatment antipsychotic(146,14
7)
32 | Mdgal KO MAM domain containing | SZ(149-151)

glycosylphospatidylinositol anchor 1 KO

mice (148)

33 | Mdga2 KO Mice with heterozygous knockout of the | ASD(153,154)
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MAM domain containing

glycosylphospatidylinositol anchor 2 (152)

34 | Methampheta | Mice treated with methamphetamine | Psychosis(156)

mine (155)
treatment
35 | Nhe5 KO Na*/H* exchanger 5 KO mice (157)

36 | Nlgn3-R451C Mice with R451C amino acid exchange | ASD(159,160)

Kl mutation in neuroligin 3 (77,158)

37 | Nr3clTg Mice overexpressing glucocorticoid | MD(161)

receptor under the Camk2a promoter

38 | Nrgn KO Neurogranin KO mice (162—-164) S7(165,166)
39 | Oxamate Mice treated with sodium oxamate, an
treatment inhibitor of lactate dehydrogenase

40 | Pacap KO Pituitary  adenylate  cyclase-activating | MD(168), SZ(169)
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polypeptide KO mice (167)

41 | patDp Mice with a paternal duplication of human | ASD(170-173)

chromosome 15q11-13 (34)

42 | Phencyclidine | Subchronic phencyclidine-treated mice | SZ(175)

treatment (145,174)

43 | PCP+Lur Phencyclidine (PCP)- and lurasidone

(Lur)-treated mice (145,174)

44 | Polgl Tg Forebrain-specific catalytic subunit of | BD(177)

mitochondrial DNA polymerase KO mice

(176)

45 | Ppp3r1 KO Forebrain-specific protein phosphatase 3, | SZ(180)

regulatory subunit B, alpha isoform

(calcineurin B, type 1) KO mice (178,179)

46 | Quinpirole Mice treated with quinpirole, a dopamine | OCD(182)
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treatment D2 receptor agonist (181)
47 | RelnTg Mice lacking the C-terminal region of | ASD(184-186),
Reelin (183) BD(187), SZ(188)
48 | Restraint Mice exposed to chronic restraint stress | Chronic stress
stress (189)
49 | Sciatic nerve | The sciatic nerve cuffing mouse model of | Chronic pain
cuffing neuropathic pain (190,191)
50 | Scn2a KO Mice with heterozygous knockout of the | ASD(193,194),
sodium voltage-gated channel alpha | EP(195-197),
subunit 2 (192) ID(198,199)
51 | Sert KO Serotonin transporter KO mice (200) ASD(201,202)
52 | Shank2 KO SH3 and multiple ankyrin repeat domain 2 | ASD(154)
KO mice (31)
53 | Shank3 KO SH3 and multiple ankyrin repeat domain | ASD(204-206)
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3b KO mice (JAX, 017688) (203)
54 | Snap25-S187A | Mice with S187A amino acid exchange | ADHD(207-212),
Kl mutation in  synaptosomal-associated | EP(213,214),
protein of 25 kDa S$7(215,216)
55 | Social defeat | Mice exposed to social defeat stress | Acute stress
stress (acute) (217,218)
56 | Social defeat | Mice exposed to social defeat stress | Chronic stress
stress (219,220)
(chronic)
57 | Streptozotocin | Mice treated with streptozotocin (221) DM(222)
treatment
58 | Streptozotocin | Mice treated with streptozotocin and | DM and DS
+ restraint | exposed to chronic restraint stress | comorbidity(223)
stress (189,221)
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59 | Stxbpl KO Mice with heterozygous knockout of the | ASD/ID(116,199,225
syntaxin-binding protein 1 (224) ), EP(226,227)

60 | Syngapl KO Mice with heterozygous knockout of the | ID, SZ, ASD(154),
synaptic Ras GTPase-activating protein 1 | EP(226)
(228,229)

61 | Thalidomide Rats prenatally exposed to thalidomide | ASD(232)

treatment (230,231)
62 | Tnx KO Tenascin X KO mice (233,234) EDS(235), SZ(236—
238)

63 | Trx1 KO Rats with heterozygous knockout of the | EP
thioredoxin 1

64 | Tscl KO Astrocyte-specific ~ tuberous  sclerosis | TSC(240)
complex 1 KO mice (Glial fibrillary acidic
protein-cre; Tsc1'oxP/lxP) (239
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65 | Valproic acid | Mice prenatally exposed to valproic acid | ASD(242)

treatment (241)

261 AD, Alzheimer’s disease; ADHD, attention-deficit/hyperactivity disorder; ASD, autism

262  spectrum disorders; BD, bipolar disorder; DM, diabetes mellitus; EDS, Ehlers-Danlos

263 syndrome; DS, depression symptom; EP, epilepsy; FMR, Fragile X mental retardation; ID,

264  intellectual disability, KI, knock-in; KO, knock out; MD, major depressive disorder; OCD,

265 obsessive-compulsive disorder; SZ, schizophrenia; Tg, transgenic; TSC, tuberous sclerosis

266 complex. *Mice with off-target deletion of conditional Bdnf allele derived from BdnfZ

267 mouse line.

268
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269 Materials and Methods

270  Experimental animals and ethical statement

271 Mice and rats used in this study are listed in Table 1. Animal experiments were approved

272 by the Institutional Animal Care and Use Committee of Fujita Health University, based on

273  the Law for the Humane Treatment and Management of Animals and the Standards

274  Relating to the Care and Management of Laboratory Animals and Relief of Pain. Every

275 effort was made to minimize the number of animals used.

276

277  Sampling and handling of the brain samples

278 Upon the study, a standardized protocol regarding sampling and handling of the brain

279 samples has been established to minimize potential confounding effects because of the

280 technical differences among laboratories and performing blind studies, as follows:

281  Animals and samples
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e Animals: Mouse and rat. For genetically engineered animals, mutants and their

wild-type littermates should be used.

e Number of animals: 26 per group (identical genetic background, littermate),

preferably.

e Sex of animals: All males, all females, or balanced among groups if mixed.

e Samples: Fresh-frozen whole brain.

Blind study

pH measurements were blinded: Upon sampling, the researchers were supposed to

randomize the animals regarding genotype and collect brain samples into tubes labeled

with serial numbers. The researchers were asked to provide the genotype information and

the corresponding serial numbers for the following statistical analyses, after the

measurements.
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296  Brain sampling procedures

297 1. Sacrifice mouse/rat by cervical dislocation followed by decapitation, and remove
298 whole brain from the skull. Do not immerse the brain in any buffer solutions or
299 water.

300 2. Cut the brain along the longitudinal fissure of the cerebrum.

301 3. Collect the left and right hemispheres into a tube that can be tightly capped like
302 Cryotube and seal the caps with Parafilm (to minimize the effect of carbon dioxide
303 from dry ice on the tissue pH during transportation.).

304 4. Snap freeze in liquid N2, and store at -80C until the shipment.

305 5. Transport the frozen brain on dry ice.

306

307 The protocol is also publicly available at

308  http://www.fujita-hu.ac.jp/~cgbb/en/collaborative_research/index.html.

309
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310  Measurements of tissue pH and lactate levels

311 Whole brain was used to measure pH and lactate levels as previously described (29).

312  Briefly, snap-frozen tissues were homogenized in ice-cold distilled H,0 (5 ml per 500 mg of

313  tissue). The pH of the homogenates was measured using a pH meter (LAQUA F-72,

314  HORIBA, Ltd., Kyoto, Japan) equipped with a Micro ToupH electrode (9618S-10D, HORIBA,

315  Ltd.) after a three-point calibration at pH 4.0, pH 7.0, and pH 9.0. Subsequently, the

316  concentration of lactate in the homogenates was determined using a multi-assay analyzer

317  (GM7 MicroStat, Analox Instruments, London, UK) after calibration with 8.0 M lactate

318 standard solution (GMRD-103, Analox Instruments). A 20-ul aliquot of centrifuged

319  supernatant (14,000 rpm, 10 min) was used for the measurement.

320

321 Effect size (d) was calculated for each strain/condition and each measure (e.g., pH, lactate

322  value, and behavioral index), as followed:

323 d= (Mmutants - Mcontrols)/spooled
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324 Spooled = [(Szmutant + Szcontrol)/z]l/2

325 The heat map was depicted using the R (version 3.5.2) gplots package.

326 Z-score transformation, a traditional method of data normalization for direct

327 comparison between different samples and conditions, was applied for each pH or lactate

328 value using individual animal data within each of strain, according to the following

329 formula:

330 Z-score = (valuep — mean valuepi._pn)/standard deviationp:._pn

331  where P is any pH or lactate and P1...P, represent the aggregate measure of all pH or

332 lactate values.

333

334  Prediction analysis

335 We collected the comprehensive behavioral data as much as of animal models whose

336  brain pH and lactate levels were examined in this study. The following behavioral data of

337 24 animal models were obtained from published papers, Mouse Phenotype Database
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338  (http://www.mouse-phenotype.org/), or in-house studies (Supplementary Table 3):

339  number of transitions in the light-dark transition test, percentage of immobile in the

340 forced swim test, time spent in open arm in the elevated plus maze test, prepulse

341 inhibition at 78-110 dB and 74-110 dB, startle response at 120 dB, distance traveled in the

342  open field test, and correct percentage in the T-maze, Y-maze, or other maze test from

343  APP Tg mice, Arid1b KO mice mice, Barp KO mice, BTBR mice, Camk2a KO mice, complete

344  Freund's adjuvant-treated mice, Chd8 KO mice, corticosterone-treated mice, Disc1-L100P

345  mutant mice, Disc1-Q31L mutant mice, Gascl hypomorphic mutant mice, Hivep2 KO mice,

346  Nhe5 KO mice, Nr3cl Tg mice, Nrgn KO mice, Pacap KO mice, patDp mice, Ppp3rl KO mice,

347 Reln Tg mice, Scn2a KO mice, Sert KO mice, Snap25-S187A Kl mice, social defeat

348  stress-exposed mice, and Syngapl KO mice. The literature search was conducted in

349  PubMed and Google Scholar using relevant key words: name of strain or experimental

350 condition, species (mice or rats), and name of behavioral tests. Among the top hits at the

351 search, we used the data that were presented in actual values of the mean and SD or SEM,

352  as priority. For some behavioral measures, possible mean and SD values were estimated
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353  from the graph presented in the paper. In the matrix of strains/conditions and behavioral

354  measures, those with any missing values were excluded, resulting in obtaining nine

355  behavioral measures from 24 strains/conditions of mouse models. Effect size was

356 calculated for each strain/condition and each measure and used for the prediction

357  analysis.

358 Leave-one-out cross-validation was employed to determine whether behavioral

359  measures can predict brain lactate levels for individual strain of mice. From the analyzed

360 behavioral dataset of 24 mouse strains, one sample was selected and excluded to serve as

361  test data of the cross-validation. Thereafter, a multivariate linear regression model was

362 trained on the remaining 23 samples using a stepwise variable selection procedure with

363 EZR software (version 1.38; Saitama Medical Center, Jichi Medical University, Saitama,

364  Japan) (243), and the test sample was predicted. This was repeated 24 times, in which all

365 samples were chosen once as the test data. Behavioral measures selected at least one

366 time in the prediction model were considered as predictive behavioral measures. The
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prediction performance was analyzed by evaluating correlation between the predicted

and actual values for the 24 mouse strains.

Statistical analysis

The pH and lactate data were analyzed using unpaired t-test, or one-way analysis of

variance (ANOVA) or two-way ANOVA followed by post hoc Tukey’s multiple comparison

test using GraphPad Prism 8 (version 8.4.2; GraphPad Software, San Diego, CA).
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1223

1224  Figure legends

1225  Figure 1. Hierarchical clustering of 65 strains/conditions of animals regarding brain pH

1226  and lactate levels. Effect size was calculated for each strain/condition and was used in this

1227  analysis. *The data of these mice have been reported previously (29).
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1228  Figure 2. Highly significant negative correlations between brain pH and lactate levels.

1229  Scatter plot showing correlations between pH and lactate levels of 1,239 animals. A

1230  Z-score was calculated for each animal within the strain/condition and used in this study.

1231  Figure 3. Poorer working memory predict higher brain lactate levels. (a) Prediction of

1232 brain lactate levels from behavioral outcomes in the 24 mouse models related to

1233  neuropsychiatric disorders. The scatter plot shows significant correlations between

1234  predicted and actual lactate levels. (b) Feature preference for constructing the model to

1235  predict brain lactate levels. (c) Scatter plot showing correlations between working

1236 memory measures and actual brain lactate levels.

1237  Supplementary Figure 1. Bar graphs showing the raw mean (x* sem) of brain pH. Each plot

1238  represents individual value. Asterisks indicate significant effects of the genotype/condition.

1239  *p < 0.05, **p < 0.01; unpaired t-test, or one-way or two-way ANOVA followed by post

1240  hoc Tukey’s multiple comparison test. Detailed statistics are presented in Supplementary

1241 Table 2. *The data of these mice have been reported previously (29).
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1242  Supplementary Figure 2. Bar graphs showing the raw mean (x sem) of brain lactate levels.

1243  Each plot represents an individual value. Asterisks indicate significant effects of the

1244  genotype/condition. *p < 0.05, **p < 0.01; unpaired t-test, or one-way or two-way ANOVA

1245  followed by post hoc Tukey’s multiple comparison test. Detailed statistics are presented in

1246  Supplementary Table 2. *The data of these mice have been reported previously (29).

1247  Supplementary Figure 3. Normal distribution of effect size values of 65 animal models (a,

1248 pH: D =0.12, p=0.30; b, lactate: D = 0.15, p = 0.093)

1249  Supplementary Figure 4. No significant correlations between the number of transitions in

1250 the light/dark transition test (a), immobility in the forced swim test (b) and actual brain

1251  lactate levels of 24 mouse strains used for prediction analysis

1252  Supplementary Figure 5. Scatter plots showing correlations between age at sampling and

1253  pH (a), and lactate levels (b) in wild type/control mice

1254  Supplementary Figure 6. Dot plots showing pH (a) and lactate levels (b) of female and

1255 male animals in 17 mixed gender strains/conditions. Bars indicate means
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Table 1. Animal models used in this study

Supplementary Table 1. Raw data of brain pH and lactate, and detailed information of the

animals (age, sex, and treatment methods)

Supplementary Table 2. Detailed statistics of pH and lactate measurements in 65 animal

models

Supplementary Table 3. Source of behavioral data used for prediction analysis
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