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Abstract 14 

Altered brain energy metabolism associated with increase in lactate levels and the 15 

resultant decrease in pH have been increasingly implicated in multiple neuropsychiatric 16 

disorders, such as schizophrenia, bipolar disorder, autism spectrum disorder and 17 

neurodegenerative disorders. Although it is controversial, change of pH/ lactate level as a 18 

primary feature of these diseases, rather than a result of confounding factors such as 19 

medication and agonal state, has been evidenced. Animal models that can be studied 20 

without such confounding factors inherent to humans are a suitable alternative to 21 

understand the controversy. However, the knowledge in animal models regarding brain 22 

pH and lactate and their relation to behavioral outcomes is limited in the context of 23 

neuropsychiatric disease conditions. In this study, we investigated the common 24 

occurrence of changes in the pH and lactate levels in the brain in animal models by 25 

analyzing 65 animal models related to neuropsychiatric and neurodegenerative diseases 26 

with 1,239 animals. Additionally, we evaluated the behavioral phenotypes relative to the 27 

chemical changes in the brain. Among the models, 27 and 24 had significant changes in 28 

brain pH and lactate levels, respectively, including Shank2 KO mice, Clock mutant mice, 29 

serotonin transporter KO mice, mice with a paternal duplication of human chromosome 30 

15q11-13, Fmr1 KO mice, BTBR mice, APP-J20 Tg mice, social defeat stress-exposed mice, 31 

corticosterone-treated mice, and streptozotocin-induced diabetic mice. Meta-analysis of 32 

the data revealed a highly significant negative correlation between brain pH and lactate 33 
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levels, suggestive of increased lactate levels causing decreased brain pH. Statistical 34 

learning algorithm based on the comprehensive data has revealed that the increased 35 

brain lactate levels can be predominantly predicted by the indices for the percentage of 36 

correct response in working memory test, with a significant simple, negative correlation. 37 

Our results suggest that brain energy metabolism is commonly altered in many animal 38 

models of neuropsychiatric and neurodegenerative diseases, which may be associated 39 

with working memory performance. We consider our study to be an essential step 40 

suggesting that the brain endophenotypes serve as a basis for the transdiagnostic 41 

characterization of the biologically heterogeneous and debilitating cognitive illnesses. 42 

Based on these results, we are openly accepting collaborations to extend these findings 43 

and to test the hypotheses generated in this study using more animal models. We 44 

welcome any mice/rat models of diseases with or without any behavioral phenotypes.  45 

  46 
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Introduction 47 

Neuropsychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), major 48 

depressive disorder (MDD), autism spectrum disorder (ASD), and Alzheimer’s disease (AD), 49 

are common with a prevalence of more than one-third of the population in most countries 50 

being diagnosed with at least one such disorder at some point in their life (1). Although 51 

these diseases clinically fall into different diagnostic categories, some biological features, 52 

such as genetic mutations, molecular changes, and brain activity alterations, are common 53 

among them (2–6), suggesting a common underlying biological basis. Increasing evidence 54 

suggests that metabolic alterations in the brain are shared by the multiple 55 

neuropsychiatric disorders. Increases in the levels of lactate, an end-product of glycolysis 56 

pathway, have been observed in the brain of patients with SZ, BD, ASD, MDD, and epilepsy 57 

(7–15). Increased lactate levels is considered to lead to decreased pH and are associated 58 

with brain energy deficits (12). Recent large-scale meta-analyses have confirmed 59 

increased brain lactate and decreased pH in SZ and BD (16,17). Such increased lactate and 60 

decreased pH have also been observed in the brains of patients with AD (18–24). However, 61 
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the observed phenomena are potentially confounded by secondary factors inherent in 62 

human studies, such as antipsychotic treatments (10). Agonal experiences associated with 63 

these disorders may also complicate the interpretation of postmortem study results (25–64 

27). Although some human studies suggest that medication use is not a major factor for 65 

regulating brain pH and lactate levels (7,10,11,15,28), excluding the effects of other 66 

potential confounding factors in human studies especially using postmortem brain 67 

samples is technically difficult. Animal models, devoid of such confounding factors, may 68 

help to confirm whether increased brain lactate and decreased pH levels are associated 69 

factors. 70 

Recently, increased brain lactate and decreased pH levels were demonstrated to 71 

be commonly found in five strains of neurodevelopmental mouse models of psychiatric 72 

disorders (29). As all of the mice used in the study were drug-naïve, with equivalent 73 

agonal states, postmortem intervals, and ages within each strain, those findings in mouse 74 

models suggest that increased lactate and decreased pH reflect an underlying 75 

pathophysiology, rather than mere artifacts, in at least a subgroup of patients with these 76 
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mental disorders. However, the knowledge of brain pH and lactate in the animal models is 77 

limited to small numbers of models and systematic evaluations using the same platform 78 

have not been conducted so far in animal models. Therefore, we have extended our 79 

previous study (29) to a larger variety of animal models of neuropsychiatric disorders, as 80 

well as of neurodegenerative disorder, AD, and peripheral diseases or insults that are 81 

comorbid with psychiatric conditions (e.g., diabetes mellitus (DM), colitis, and peripheral 82 

nerve injury). Those animal models include 65 strains or conditions of mice and rats with 83 

genetic modifications, drug treatments, and other experimental manipulations (Table 1). 84 

Combining the large-scale brain lactate data with behavioral data (e.g., working memory, 85 

locomotor activity, anxiety-like behavior, and depression-like behavior), we also sought to 86 

investigate the relations between alterations in brain lactate levels and behavioral 87 

outcomes. 88 

 89 

Results 90 

Altered brain pH and lactate levels in animal models 91 
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The raw data of brain pH and lactate, and detailed information of animals (age, sex, and 92 

treatment methods) are included in Supplementary Table 1. Among the 65 93 

strains/conditions, 27 demonstrated significant changes in pH (5 increased, 22 decreased) 94 

and 24 in lactate (19 increased, 5 decreased) in comparison with the corresponding 95 

control animals (P <0.05; Supplementary Figure 1 and Supplementary Table 2). 96 

Hierarchical clustering based on effect size and direction of changes classified those 65 97 

models into four groups: high lactate/low pH group, moderate high lactate/moderate low 98 

pH group, low lactate/high pH group, and a group with minimal to no changes in lactate or 99 

pH, consisting of 16, 6, 15, and 28 models, respectively (Figure 1), where high and low 100 

mean higher and lower in mutant/experimental animals related to the corresponding wild 101 

type/control animals, respectively. High lactate/low pH group included, for example, SZ 102 

model Ppp3r1 KO mice and Nrgn KO mice, SZ/intellectual disability (ID) model Hivep2 (also 103 

known as Shn2) KO mice, AD model APP-J20 Tg mice, and ASD model Chd8 KO mice. Low 104 

lactate/high pH group included mainly mouse models for ASD or developmental delay, 105 
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such as Shank2 KO mice, Fmr1 KO mice, BTBR mice, Stxbp1 KO mice, Dyrk1 KO mice, Auts2 106 

KO mice, and patDp mice (Figure 1). 107 

The Z-score-based meta-analysis of 1,239 animals analyzed in this study 108 

revealed a highly significant negative correlation between brain lactate and pH levels 109 

individually (Figure 2, Supplementary Figure 2), supporting the idea that decreased pH is 110 

due to increased lactate levels in the pathological conditions related to neuropsychiatric 111 

disorders. 112 

 113 

Poorer working memory performance predicts higher brain lactate levels 114 

Most of the animal models we examined are known to show a wide range of behavioral 115 

abnormalities, such as deficits in learning and memory, and increased depression-like, 116 

anxiety-like behaviors or impaired sensorimotor gating. Thereafter, with our 117 

comprehensive lactate data, we examined potential relation of lactate alterations to their 118 

behavioral phenotypes. Therefore, we examined whether behavioral patterns could 119 

predict brain lactate levels by applying a statistical learning algorithm, which could 120 
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discover intrinsic links between the chemical signatures in the brain and behaviors. Of the 121 

65 animal models, we collected comprehensive behavioral data of 24 mouse models, 122 

which were available in public source (e.g., published papers and database repository) or 123 

in-house studies (see Methods and Materials; Supplementary Table 3). We constructed an 124 

effect size-based model for predicting the brain lactate levels from behavioral data using 125 

leave-one-out cross-validation method. Statistical evaluation of the prediction accuracy of 126 

the model revealed a significant correlation between the actual and the predicted brain 127 

lactate levels (Figure 3a), indicating that behavioral measures have a potential to predict 128 

the brain lactate levels of individual models.  129 

The prediction analysis was implemented to evaluate the behavioral measures 130 

most useful to characterize the brain lactate levels of individual strains. The prediction 131 

algorithm used identified behavioral signatures related to brain lactate levels by weighting 132 

behavioral measures according to their individual predictive strength. Thus, we identified 133 

the behavioral measures accompanying changes in brain lactate levels by examining the 134 

weighted behavioral measures used for the prediction in linear regression. Three out of 135 
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nine behavioral measures were selected to build the successful prediction model and in 136 

those measures for working memory was the most selected (Figure 3b). According to 137 

simple correlation analysis, the measures for working memory were negatively correlated 138 

with the brain lactate levels (Figure 3c). These results suggest that higher lactate levels in 139 

the brain are related to lower performance in working memory tests in mouse models of 140 

neuropsychiatric disorders. 141 

 142 

Effects of age and sex on the brain pH and lactate levels 143 

Ages at sampling were matched within each strain/condition, but varied among 144 

strains/conditions, ranging from 5 to 103 weeks old in mice (Supplementary Table 1). No 145 

significant correlation was found between pH and age in wild type/control mice. Brain 146 

lactate levels had a significant negative correlation with age (Supplementary Figure 5), 147 

consistent with a previous MRS study in mice (30). However, limitations need to be 148 

considered in interpretating our results, such as, differences in genetic background and 149 

handling conditions before sampling (some mice had received repeated intraperitoneal 150 
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injections or behavioral tests, and others had been kept undisturbed until sampling) 151 

among strains/conditions. We further examined the effects of sex on the brain pH and 152 

lactate levels. To minimize the effects of the limitations mentioned above, we used 153 

Z-scores that were calculated within each strain/condition and focused on 154 

strains/conditions with mixed gender. Female had significantly higher pH and lower 155 

lactate levels than male in wild type/control animals (Supplementary Figure 6).  156 

 157 

Discussion 158 

We performed a comprehensive analysis of brain pH and lactate in 65 animal models. The 159 

data suggested the diversity of brain-energy-metabolism among these model animals. 160 

Some mouse strains considered to model different diseases were found to exhibit similar 161 

pattern of changes in pH and lactate levels. Specifically, SZ models (Ppp3r1 KO and Nrgn 162 

KO mice), SZ/ID model (Hivep2 KO mice), BD/ID model (Camk2a KO mice), ASD model 163 

(Chd8 KO mice), depression models (mice exposed to social defeat stress, 164 

corticosterone-treated mice and Sert KO mice), AD model (APP-J20 Tg mice), and DM 165 
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model (STZ-treated mice) commonly exhibited decreased brain pH and increased lactate 166 

levels. A BD model Polg1 Tg mice showed no differences in pH or lactate levels. However, 167 

other BD model (Clock mutant mice) and ASD models, such as Shank2 KO (31), Fmr1 KO, 168 

Dyrk1 KO (32), Auts2 KO (33), and patDp mice (34), were classified into a group with 169 

opposite changes, or decreased lactate and increased pH group. Animal models with 170 

different patterns of changes in brain pH and lactate levels may represent subpopulations 171 

of patients or specific states of the diseases (13). While increased brain lactate levels in 172 

neuropsychiatric conditions are almost consistent in the literature, decreased lactate 173 

levels has also been found in a cohort of patients with SZ (35) and in euthymic state of BD 174 

(36). Our results from animal studies may also support the idea that the patients 175 

categorized based on the symptoms to particular neuropsychiatric disorders are 176 

biologically heterogeneous (37) from a brain-energy-metabolism viewpoint. 177 

 The present animal studies revealed an extraordinarily high negative correlation 178 

between brain lactate and pH levels, strengthening our previous findings from small-scale 179 

animal studies (29). Negative correlation between them has been found in human 180 
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postmortem study (10). These results suggest that brain lactate is a main regulator of the 181 

tissue pH (12), although we could not exclude the possibility that other factors such as 182 

neuronal activity-regulated production of carbon dioxide, another metabolic acid, may 183 

also contribute to the changes in brain pH (38,39). 184 

We observed no significant correlation between age and brain pH in wild 185 

type/control mice. In human studies, inconsistent results have been obtained with regard 186 

to correlation between brain pH and age. Some studies showed no significant correlation, 187 

(40,41), whereas other studies showed a negative correlation (42,43). Sex effects on brain 188 

pH is also inconsistent in human studies (40,41). Systematic analysis focusing on the 189 

effects of age and sex on the brain pH using animal models may help explain the 190 

inconsistency found in the human studies.  191 

Does brain lactate exert favorable or unfavorable effects on learning and 192 

memory functioning? Our prediction analysis highlighted that poorer working memory 193 

performance may be predominantly associated with higher lactate levels in animal models 194 

of neuropsychiatric disorders (Figure 3). Additionally, in human studies, higher lactate has 195 
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been associated with lower cognition in the individuals with SZ (14) and mild cognitive 196 

impairment (44). Given these observations, lactate production may be expected to exert 197 

negative impacts on brain functions, especially memory formation. However, lactate 198 

production stimulated by learning tasks has been suggested as requisite for memory 199 

formation. Lactate production by the astrocytic glycogenolysis and its transport to 200 

neurons serves as an energy substrate for neuronal activity, referred to as 201 

astrocyte-neuron lactate shuttle (ANLS). Animal studies have demonstrated that the 202 

pharmacological disruption of learning task-stimulated lactate production and transport 203 

via the ANLS immediately before the testing impaired memory formation as assessed by 204 

the plus-shaped maze spontaneous alteration task (testing short-term memory) (45) and 205 

in the inhibitory avoidance task (testing long-term memory) (46,47). Collectively, 206 

considering that brain lactate levels increase during stimulations in a temporally (and 207 

spatially) restricted manner under physiological conditions (48,49), pathologically 208 

persistent elevation of brain lactate levels may exert negative impact on brain functions 209 

including memory processing, although the causality is unknown. Other possibility is that 210 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2021.02.02.428362doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428362
http://creativecommons.org/licenses/by-nc-nd/4.0/


decreased consumption of lactate for energy production due to mitochondrial dysfunction 211 

in neurons may underline the impaired learning and memory functioning in the disease 212 

conditions. Mitochondrial dysfunction has been thought to lead to lactate accumulation 213 

because of insufficient capacity of mitochondrial metabolism to metabolize lactate that 214 

was produced (16,50,51). Mitochondrial dysfunction has been consistently implicated in 215 

multiple neuropsychiatric disorders, including SZ, BD, MDD, ASD, and AD (52–54), among 216 

which working memory deficits are common symptoms (55). In addition, given that lactate 217 

rise reflects neuronal activation (29) and multiple brain regions are abnormally activated, 218 

activation in the brain regions other than frontal cortex, one of the brain regions critical 219 

for working memory (56), interfere with working memory performance, as proposed that 220 

activity of core brain region could be interfered with noise from the rest on cognitive tasks 221 

in patients with SZ (57). There is also the possibility that increased lactate may have a 222 

beneficial effect to compensate for the impaired memory and cognition, as lactate 223 

administration that increases brain lactate levels has been shown to attenuate cognitive 224 

deficits in human patients (58) and rodent model (59) of traumatic brain injury. 225 
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Additionally, lactate administration has also been shown to exert antidepressant effects in 226 

depression model mice (60). We also cannot exclude the possibility that increased lactate 227 

is also involved in behavioral alterations other than memory deficit per se, such as anxiety, 228 

as we have found that increased brain lactate levels were associated with altered 229 

anxiety-like behaviors in social defeat stress model of depression (61). Further studies are 230 

required to address these issues, for example, by chronically inducing deficits of 231 

mitochondria function to manipulate endogenous lactate levels in a brain-region-specific 232 

manner and analyzing its effects on working memory. 233 

As we used whole brain samples to measure the pH and lactate levels, we could 234 

not determine whether the observed changes in pH/lactate levels occur ubiquitously in 235 

the entire brain or selectively in specific brain region(s) in each strain or condition of the 236 

models. Indeed, brain region-specific increase in lactate levels was observed in human 237 

patients with ASD in the MRS study (8). The brain region-specific changes may occur even 238 

in animal models in which significant changes were not detected in the present study and, 239 

if so, such differences could be masked in the analysis using whole brain samples. Further 240 
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studies are required to address this issue, for example, by means of the measurements in 241 

micro-dissected brain samples and in vivo analyses using pH- or lactate-sensitive biosensor 242 

electrode (45,62) and MRS (63). 243 

In conclusion, the present study demonstrated that altered brain pH and lactate 244 

levels were commonly observed in many animal models of SZ, BD, ASD, AD and other 245 

neuropsychiatric disorders. These findings provide further evidence supporting the idea 246 

that altered brain pH and lactate levels are not mere artifacts such as medication 247 

confounding, but rather implicated in the underlying pathophysiology of, at least 248 

subpopulations of, patients with the diseases. Alteration in the brain-energy-metabolism 249 

or hyper- or hypo-activity of neurons in the brain leading to abnormal lactate and pH 250 

levels may serve as a potential therapeutic target of neuropsychiatric disorders (17). In 251 

addition, detection of brain lactate, such as by MRS, may help to diagnose and 252 

subcategorize such biologically heterogeneous diseases, as shown in mitochondrial 253 

disease (64). Future studies to identify the effective treatment strategies specific to the 254 

sets of animal models that could recapitulate diversity of brain-energy-metabolism in 255 
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human disease conditions may contribute to development of improved treatments for the 256 

biologically defined subgroups of patients or disease states of the debilitating illnesses 257 

beyond the clinically defined borders.  258 

  259 
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Table 1. Animal models used in this study 260 

 Name Description Related 

diseases/conditions 

1 APP Tg Mice expressing familial Alzheimer’s 

disease-mutant human amyloid beta 

precursor protein (PDGF-hAPPswe/Ind, line 

J20) (65) 

AD(66,67) 

2 Arid1b KO Mice with heterozygous knockout of the 

AT-rich interaction domain 1b (68) 

ASD(69,70) 

3 Auts2 KO Mice with heterozygous knockout of the 

Autism susceptibility candidate 2 (33) 

ASD(71–73), ID(74), 

SZ(75) 

4 Barp KO Voltage gated calcium channel 

beta-anchoring and -regulatory protein KO 

mice (76) 
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5 Bdnf KO Brain derived neurotrophic factor KO 

mice* (JAX, 004339) 

 

6 BTBR Inbred mouse strain BTBR T+ tf/J (77,78) ASD 

7 Camk2a KO Mice with heterozygous knockout of the 

calcium/calmodulin-dependent protein 

kinase II alpha (79–81) 

BD(82–84), SZ(85) 

8 Camkk1 KO Mice with forebrain-specific constitutively 

active form of calcium/calmodulin kinase 

kinase 1 (86) 

 

9 Ccnd2 KO Cyclin D2 KO mice (87)  

10 CFA treatment Mouse model of chronic inflammatory 

pain induced by complete Freund’s 

adjuvant (CFA) (88,89) 

Chronic pain 

11 Chd8 KO Mice with heterozygous knockout of the ASD(91–95) 
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long isoform of chromodomain helicase 

DNA-binding protein 8 (90) 

12 Chn1 KO Chimerin 1 (α-chimerin) KO mice (96) ASD(96) 

13 Clock mutant Mice with N-ethyl-N-nitrosourea-induced 

mutation in circadian locomotor output 

cycles kaput (JAX, 002923) (97,98) 

BD(99,100), SZ(101) 

14 Corticosterone 

treatment 

Mice chronically treated with 

corticosterone (102,103) 

MD(104–106) 

15 Crmp2 KO Collapsin response mediator protein 2 KO 

mice (107) 

AD(108), SZ(109) 

16 Dextran 

treatment 

Mice treated with dextran sulfate sodium 

(110) 

Colitis 

17 Disc1-L100P 

mutant 

Mice with N-ethyl-N-nitrosourea-induced 

L100P amino acid exchange mutation in 

SZ(112–114) 
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exon 2 of Disrupted-in-Schizophrenia 1 

(111) 

18 Disc1-Q31L 

mutant 

Mice with N-ethyl-N-nitrosourea-induced 

Q31L amino acid exchange mutation in 

exon 2 of Disrupted-in-Schizophrenia 1 

(111) 

SZ(112–114) 

19 Dyrk1a KO Mice with heterozygous knockout of the 

dual specificity tyrosine phosphorylation 

regulated kinase 1a (32) 

ASD/ID(70,115,116) 

20 ECS treatment Mice treated with electroconvulsive 

stimulation (117,118) 

Treatment for 

MDD(119,120) 

21 Fmr1 KO Fragile X mental retardation protein 

translational regulator 1 KO mice (121) 

ASD, FMR, SZ(85) 

22 Gasc1 Gene amplified in squamous cell ASD(124) 
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hypomorph carcinoma 1 hypomorphic mutant mice 

(122,123) 

23 Glra4 KO Glycine receptor alpha 4 KO mice (125) ID(126) 

24 Grin1 KO 

(postnatal) 

GABArgic neuron-specific glutamate 

receptor, ionotropic, NMDA1 KO mice 

(Protein phosphatase 1, regulatory subunit 

2-cre; Grin1loxP/loxP) (127) 

SZ(128,129) 

25 Grin1 KO 

(adult) 

GABArgic neuron-specific glutamate 

receptor, ionotropic, NMDA1 KO mice 

(Protein phosphatase 1, regulatory subunit 

2-cre; Grin1loxP/loxP) (127) 

SZ(128,129) 

26 Gunn rat Gunn rats (Gunn/Slc-j/j) (130) SZ(131) 

27 Hivep2 KO Human immunodeficiency virus type 1 

enhancer binding protein 2 (Schnurri-2) KO 

ID(133,134), SZ(132) 
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mice (132) 

28 Hyponatremia Mice treated with 1-deamino-8-D-arginine 

vasopressin and fed with a liquid formula 

(135–137) 

DS(138,139) 

29 Il18 KO Interleukin 18 KO mice (140,141) DM(142) 

30 Ketamine 

treatment 

Mice treated with ketamine (143) Psychosis(144) 

31 Lurasidone 

treatment 

Mice treated with lurasidone (145) Atypical 

antipsychotic(146,14

7) 

32 Mdga1 KO MAM domain containing 

glycosylphospatidylinositol anchor 1 KO 

mice (148) 

SZ(149–151) 

33 Mdga2 KO Mice with heterozygous knockout of the ASD(153,154) 
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MAM domain containing 

glycosylphospatidylinositol anchor 2 (152) 

34 Methampheta

mine 

treatment 

Mice treated with methamphetamine 

(155) 

Psychosis(156) 

35 Nhe5 KO Na+/H+ exchanger 5 KO mice (157)  

36 Nlgn3-R451C 

KI 

Mice with R451C amino acid exchange 

mutation in neuroligin 3 (77,158) 

ASD(159,160) 

37 Nr3c1 Tg Mice overexpressing glucocorticoid 

receptor under the Camk2a promoter 

MD(161) 

38 Nrgn KO Neurogranin KO mice (162–164) SZ(165,166) 

39 Oxamate 

treatment 

Mice treated with sodium oxamate, an 

inhibitor of lactate dehydrogenase 

 

40 Pacap KO Pituitary adenylate cyclase-activating MD(168), SZ(169) 
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polypeptide KO mice (167) 

41 patDp Mice with a paternal duplication of human 

chromosome 15q11-13 (34) 

ASD(170–173) 

42 Phencyclidine 

treatment 

Subchronic phencyclidine-treated mice 

(145,174) 

SZ(175) 

43 PCP+Lur Phencyclidine (PCP)- and lurasidone 

(Lur)-treated mice (145,174) 

 

44 Polg1 Tg Forebrain-specific catalytic subunit of 

mitochondrial DNA polymerase KO mice 

(176) 

BD(177) 

45 Ppp3r1 KO Forebrain-specific protein phosphatase 3, 

regulatory subunit B, alpha isoform 

(calcineurin B, type 1) KO mice (178,179) 

SZ(180) 

46 Quinpirole Mice treated with quinpirole, a dopamine OCD(182) 
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treatment D2 receptor agonist (181) 

47 Reln Tg Mice lacking the C-terminal region of 

Reelin (183) 

ASD(184–186), 

BD(187), SZ(188) 

48 Restraint 

stress 

Mice exposed to chronic restraint stress 

(189) 

Chronic stress 

49 Sciatic nerve 

cuffing 

The sciatic nerve cuffing mouse model of 

neuropathic pain (190,191) 

Chronic pain 

50 Scn2a KO Mice with heterozygous knockout of the 

sodium voltage-gated channel alpha 

subunit 2 (192) 

ASD(193,194), 

EP(195–197), 

ID(198,199) 

51 Sert KO Serotonin transporter KO mice (200) ASD(201,202) 

52 Shank2 KO SH3 and multiple ankyrin repeat domain 2 

KO mice (31) 

ASD(154) 

53 Shank3 KO SH3 and multiple ankyrin repeat domain ASD(204–206) 
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3b KO mice (JAX, 017688) (203) 

54 Snap25-S187A 

KI 

Mice with S187A amino acid exchange 

mutation in synaptosomal-associated 

protein of 25 kDa  

ADHD(207–212), 

EP(213,214), 

SZ(215,216) 

55 Social defeat 

stress (acute) 

Mice exposed to social defeat stress 

(217,218) 

Acute stress 

56 Social defeat 

stress 

(chronic) 

Mice exposed to social defeat stress 

(219,220) 

Chronic stress 

57 Streptozotocin 

treatment 

Mice treated with streptozotocin (221) DM(222) 

58 Streptozotocin 

+ restraint 

stress 

Mice treated with streptozotocin and 

exposed to chronic restraint stress 

(189,221) 

DM and DS 

comorbidity(223) 
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59 Stxbp1 KO Mice with heterozygous knockout of the 

syntaxin-binding protein 1 (224) 

ASD/ID(116,199,225

), EP(226,227) 

60 Syngap1 KO Mice with heterozygous knockout of the 

synaptic Ras GTPase-activating protein 1 

(228,229) 

ID, SZ, ASD(154), 

EP(226) 

61 Thalidomide 

treatment 

Rats prenatally exposed to thalidomide 

(230,231) 

ASD(232) 

62 Tnx KO Tenascin X KO mice (233,234) EDS(235), SZ(236–

238) 

63 Trx1 KO Rats with heterozygous knockout of the 

thioredoxin 1 

EP 

64 Tsc1 KO Astrocyte-specific tuberous sclerosis 

complex 1 KO mice (Glial fibrillary acidic 

protein-cre; Tsc1loxP/loxP) (239) 

TSC(240) 
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65 Valproic acid 

treatment 

Mice prenatally exposed to valproic acid 

(241) 

ASD(242) 

AD, Alzheimer’s disease; ADHD, attention-deficit/hyperactivity disorder; ASD, autism 261 

spectrum disorders; BD, bipolar disorder; DM, diabetes mellitus; EDS, Ehlers-Danlos 262 

syndrome; DS, depression symptom; EP, epilepsy; FMR, Fragile X mental retardation; ID, 263 

intellectual disability, KI, knock-in; KO, knock out; MD, major depressive disorder; OCD, 264 

obsessive-compulsive disorder; SZ, schizophrenia; Tg, transgenic; TSC, tuberous sclerosis 265 

complex. *Mice with off-target deletion of conditional Bdnf allele derived from Bdnf2lox 266 

mouse line. 267 

  268 
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Materials and Methods 269 

Experimental animals and ethical statement 270 

Mice and rats used in this study are listed in Table 1. Animal experiments were approved 271 

by the Institutional Animal Care and Use Committee of Fujita Health University, based on 272 

the Law for the Humane Treatment and Management of Animals and the Standards 273 

Relating to the Care and Management of Laboratory Animals and Relief of Pain. Every 274 

effort was made to minimize the number of animals used. 275 

 276 

Sampling and handling of the brain samples 277 

Upon the study, a standardized protocol regarding sampling and handling of the brain 278 

samples has been established to minimize potential confounding effects because of the 279 

technical differences among laboratories and performing blind studies, as follows: 280 

Animals and samples 281 
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• Animals: Mouse and rat. For genetically engineered animals, mutants and their 282 

wild-type littermates should be used. 283 

• Number of animals: ≧6 per group (identical genetic background, littermate), 284 

preferably. 285 

• Sex of animals: All males, all females, or balanced among groups if mixed. 286 

• Samples: Fresh-frozen whole brain. 287 

 288 

Blind study 289 

pH measurements were blinded: Upon sampling, the researchers were supposed to 290 

randomize the animals regarding genotype and collect brain samples into tubes labeled 291 

with serial numbers. The researchers were asked to provide the genotype information and 292 

the corresponding serial numbers for the following statistical analyses, after the 293 

measurements. 294 

 295 
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Brain sampling procedures 296 

1. Sacrifice mouse/rat by cervical dislocation followed by decapitation, and remove 297 

whole brain from the skull. Do not immerse the brain in any buffer solutions or 298 

water. 299 

2. Cut the brain along the longitudinal fissure of the cerebrum. 300 

3. Collect the left and right hemispheres into a tube that can be tightly capped like 301 

Cryotube and seal the caps with Parafilm (to minimize the effect of carbon dioxide 302 

from dry ice on the tissue pH during transportation.). 303 

4. Snap freeze in liquid N2, and store at -80C until the shipment.  304 

5. Transport the frozen brain on dry ice.  305 

 306 

The protocol is also publicly available at 307 

http://www.fujita-hu.ac.jp/~cgbb/en/collaborative_research/index.html. 308 

 309 
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Measurements of tissue pH and lactate levels 310 

Whole brain was used to measure pH and lactate levels as previously described (29). 311 

Briefly, snap-frozen tissues were homogenized in ice-cold distilled H2O (5 ml per 500 mg of 312 

tissue). The pH of the homogenates was measured using a pH meter (LAQUA F-72, 313 

HORIBA, Ltd., Kyoto, Japan) equipped with a Micro ToupH electrode (9618S-10D, HORIBA, 314 

Ltd.) after a three-point calibration at pH 4.0, pH 7.0, and pH 9.0. Subsequently, the 315 

concentration of lactate in the homogenates was determined using a multi-assay analyzer 316 

(GM7 MicroStat, Analox Instruments, London, UK) after calibration with 8.0 M lactate 317 

standard solution (GMRD-103, Analox Instruments). A 20-µl aliquot of centrifuged 318 

supernatant (14,000 rpm, 10 min) was used for the measurement.  319 

 320 

Effect size (d) was calculated for each strain/condition and each measure (e.g., pH, lactate 321 

value, and behavioral index), as followed: 322 

 d = (Mmutants – Mcontrols)/Spooled 323 
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 Spooled = [(S2
mutant + S2

control)/2]1/2 324 

The heat map was depicted using the R (version 3.5.2) gplots package. 325 

Z-score transformation, a traditional method of data normalization for direct 326 

comparison between different samples and conditions, was applied for each pH or lactate 327 

value using individual animal data within each of strain, according to the following 328 

formula: 329 

Z-score = (valueP – mean valueP1…Pn)/standard deviationP1…Pn , 330 

where P is any pH or lactate and P1…Pn represent the aggregate measure of all pH or 331 

lactate values. 332 

 333 

Prediction analysis 334 

We collected the comprehensive behavioral data as much as of animal models whose 335 

brain pH and lactate levels were examined in this study. The following behavioral data of 336 

24 animal models were obtained from published papers, Mouse Phenotype Database 337 
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(http://www.mouse-phenotype.org/), or in-house studies (Supplementary Table 3): 338 

number of transitions in the light-dark transition test, percentage of immobile in the 339 

forced swim test, time spent in open arm in the elevated plus maze test, prepulse 340 

inhibition at 78-110 dB and 74-110 dB, startle response at 120 dB, distance traveled in the 341 

open field test, and correct percentage in the T-maze, Y-maze, or other maze test from 342 

APP Tg mice, Arid1b KO mice mice, Barp KO mice, BTBR mice, Camk2a KO mice, complete 343 

Freund's adjuvant-treated mice, Chd8 KO mice, corticosterone-treated mice, Disc1-L100P 344 

mutant mice, Disc1-Q31L mutant mice, Gasc1 hypomorphic mutant mice, Hivep2 KO mice, 345 

Nhe5 KO mice, Nr3c1 Tg mice, Nrgn KO mice, Pacap KO mice, patDp mice, Ppp3r1 KO mice, 346 

Reln Tg mice, Scn2a KO mice, Sert KO mice, Snap25-S187A KI mice, social defeat 347 

stress-exposed mice, and Syngap1 KO mice. The literature search was conducted in 348 

PubMed and Google Scholar using relevant key words: name of strain or experimental 349 

condition, species (mice or rats), and name of behavioral tests. Among the top hits at the 350 

search, we used the data that were presented in actual values of the mean and SD or SEM, 351 

as priority. For some behavioral measures, possible mean and SD values were estimated 352 
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from the graph presented in the paper. In the matrix of strains/conditions and behavioral 353 

measures, those with any missing values were excluded, resulting in obtaining nine 354 

behavioral measures from 24 strains/conditions of mouse models. Effect size was 355 

calculated for each strain/condition and each measure and used for the prediction 356 

analysis.  357 

 Leave-one-out cross-validation was employed to determine whether behavioral 358 

measures can predict brain lactate levels for individual strain of mice. From the analyzed 359 

behavioral dataset of 24 mouse strains, one sample was selected and excluded to serve as 360 

test data of the cross-validation. Thereafter, a multivariate linear regression model was 361 

trained on the remaining 23 samples using a stepwise variable selection procedure with 362 

EZR software (version 1.38; Saitama Medical Center, Jichi Medical University, Saitama, 363 

Japan) (243), and the test sample was predicted. This was repeated 24 times, in which all 364 

samples were chosen once as the test data. Behavioral measures selected at least one 365 

time in the prediction model were considered as predictive behavioral measures. The 366 
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prediction performance was analyzed by evaluating correlation between the predicted 367 

and actual values for the 24 mouse strains. 368 

 369 

Statistical analysis 370 

The pH and lactate data were analyzed using unpaired t-test, or one-way analysis of 371 

variance (ANOVA) or two-way ANOVA followed by post hoc Tukey’s multiple comparison 372 

test using GraphPad Prism 8 (version 8.4.2; GraphPad Software, San Diego, CA).  373 

  374 
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analysis. $The data of these mice have been reported previously (29). 1227 
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Figure 2. Highly significant negative correlations between brain pH and lactate levels.  1228 

Scatter plot showing correlations between pH and lactate levels of 1,239 animals. A 1229 

Z-score was calculated for each animal within the strain/condition and used in this study. 1230 

Figure 3. Poorer working memory predict higher brain lactate levels. (a) Prediction of 1231 

brain lactate levels from behavioral outcomes in the 24 mouse models related to 1232 

neuropsychiatric disorders. The scatter plot shows significant correlations between 1233 

predicted and actual lactate levels. (b) Feature preference for constructing the model to 1234 

predict brain lactate levels. (c) Scatter plot showing correlations between working 1235 

memory measures and actual brain lactate levels. 1236 

Supplementary Figure 1. Bar graphs showing the raw mean (± sem) of brain pH. Each plot 1237 

represents individual value. Asterisks indicate significant effects of the genotype/condition. 1238 

*p < 0.05, **p < 0.01; unpaired t-test, or one-way or two-way ANOVA followed by post 1239 

hoc Tukey’s multiple comparison test. Detailed statistics are presented in Supplementary 1240 

Table 2. $The data of these mice have been reported previously (29). 1241 
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Supplementary Figure 2. Bar graphs showing the raw mean (± sem) of brain lactate levels. 1242 

Each plot represents an individual value. Asterisks indicate significant effects of the 1243 

genotype/condition. *p < 0.05, **p < 0.01; unpaired t-test, or one-way or two-way ANOVA 1244 

followed by post hoc Tukey’s multiple comparison test. Detailed statistics are presented in 1245 

Supplementary Table 2. $The data of these mice have been reported previously (29). 1246 

Supplementary Figure 3. Normal distribution of effect size values of 65 animal models (a, 1247 

pH: D = 0.12, p = 0.30; b, lactate: D = 0.15, p = 0.093) 1248 

Supplementary Figure 4. No significant correlations between the number of transitions in 1249 

the light/dark transition test (a), immobility in the forced swim test (b) and actual brain 1250 

lactate levels of 24 mouse strains used for prediction analysis 1251 

Supplementary Figure 5. Scatter plots showing correlations between age at sampling and 1252 

pH (a), and lactate levels (b) in wild type/control mice 1253 

Supplementary Figure 6. Dot plots showing pH (a) and lactate levels (b) of female and 1254 

male animals in 17 mixed gender strains/conditions. Bars indicate means 1255 
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 1256 

Table 1. Animal models used in this study 1257 

Supplementary Table 1. Raw data of brain pH and lactate, and detailed information of the 1258 

animals (age, sex, and treatment methods) 1259 

Supplementary Table 2. Detailed statistics of pH and lactate measurements in 65 animal 1260 

models 1261 

Supplementary Table 3. Source of behavioral data used for prediction analysis 1262 

  1263 
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Figure 1 1264 
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Figure 2 1267 
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Figure 3 1270 
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