

1 **Full title:** Systematic analysis of brain lactate and pH levels in 65 animal models related to
2 neuropsychiatric conditions

3 **Short title:** Brain lactate and pH in neuropsychiatric disorder models

4 **Authors:** Hideo Hagihara^{1,2}, Hirotaka Shoji^{1,2}, International Brain pH Project Consortium²,
5 and Tsuyoshi Miyakawa^{1,2*}

6 **Affiliations:**

7 ¹Division of Systems Medical Science, Institute for Comprehensive Medical Science,
8 Fujita Health University, Toyoake, Aichi 470-1192, Japan

9 ²A full list of the authors in the International Brain pH Project Consortium is provided
10 at the end of the paper along with their affiliations and contributions.

11 *Corresponding Author: Tsuyoshi Miyakawa (miyakawa@fujita-hu.ac.jp)

12 **Keywords:** lactate, pH, brain, neuropsychiatric disorders, animal models, working memory

13

14 **Abstract**

15 Altered brain energy metabolism associated with increase in lactate levels and the
16 resultant decrease in pH have been increasingly implicated in multiple neuropsychiatric
17 disorders, such as schizophrenia, bipolar disorder, autism spectrum disorder and
18 neurodegenerative disorders. Although it is controversial, change of pH/ lactate level as a
19 primary feature of these diseases, rather than a result of confounding factors such as
20 medication and agonal state, has been evidenced. Animal models that can be studied
21 without such confounding factors inherent to humans are a suitable alternative to
22 understand the controversy. However, the knowledge in animal models regarding brain
23 pH and lactate and their relation to behavioral outcomes is limited in the context of
24 neuropsychiatric disease conditions. In this study, we investigated the common
25 occurrence of changes in the pH and lactate levels in the brain in animal models by
26 analyzing 65 animal models related to neuropsychiatric and neurodegenerative diseases
27 with 1,239 animals. Additionally, we evaluated the behavioral phenotypes relative to the
28 chemical changes in the brain. Among the models, 27 and 24 had significant changes in
29 brain pH and lactate levels, respectively, including Shank2 KO mice, Clock mutant mice,
30 serotonin transporter KO mice, mice with a paternal duplication of human chromosome
31 15q11-13, Fmr1 KO mice, BTBR mice, APP-J20 Tg mice, social defeat stress-exposed mice,
32 corticosterone-treated mice, and streptozotocin-induced diabetic mice. Meta-analysis of
33 the data revealed a highly significant negative correlation between brain pH and lactate

34 levels, suggestive of increased lactate levels causing decreased brain pH. Statistical
35 learning algorithm based on the comprehensive data has revealed that the increased
36 brain lactate levels can be predominantly predicted by the indices for the percentage of
37 correct response in working memory test, with a significant simple, negative correlation.
38 Our results suggest that brain energy metabolism is commonly altered in many animal
39 models of neuropsychiatric and neurodegenerative diseases, which may be associated
40 with working memory performance. We consider our study to be an essential step
41 suggesting that the brain endophenotypes serve as a basis for the transdiagnostic
42 characterization of the biologically heterogeneous and debilitating cognitive illnesses.
43 Based on these results, we are openly accepting collaborations to extend these findings
44 and to test the hypotheses generated in this study using more animal models. We
45 welcome any mice/rat models of diseases with or without any behavioral phenotypes.
46

47 **Introduction**

48 Neuropsychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), major
49 depressive disorder (MDD), autism spectrum disorder (ASD), and Alzheimer's disease (AD),
50 are common with a prevalence of more than one-third of the population in most countries
51 being diagnosed with at least one such disorder at some point in their life (1). Although
52 these diseases clinically fall into different diagnostic categories, some biological features,
53 such as genetic mutations, molecular changes, and brain activity alterations, are common
54 among them (2–6), suggesting a common underlying biological basis. Increasing evidence
55 suggests that metabolic alterations in the brain are shared by the multiple
56 neuropsychiatric disorders. Increases in the levels of lactate, an end-product of glycolysis
57 pathway, have been observed in the brain of patients with SZ, BD, ASD, MDD, and epilepsy
58 (7–15). Increased lactate levels is considered to lead to decreased pH and are associated
59 with brain energy deficits (12). Recent large-scale meta-analyses have confirmed
60 increased brain lactate and decreased pH in SZ and BD (16,17). Such increased lactate and
61 decreased pH have also been observed in the brains of patients with AD (18–24). However,

62 the observed phenomena are potentially confounded by secondary factors inherent in
63 human studies, such as antipsychotic treatments (10). Agonal experiences associated with
64 these disorders may also complicate the interpretation of postmortem study results (25–
65 27). Although some human studies suggest that medication use is not a major factor for
66 regulating brain pH and lactate levels (7,10,11,15,28), excluding the effects of other
67 potential confounding factors in human studies especially using postmortem brain
68 samples is technically difficult. Animal models, devoid of such confounding factors, may
69 help to confirm whether increased brain lactate and decreased pH levels are associated
70 factors.

71 Recently, increased brain lactate and decreased pH levels were demonstrated to
72 be commonly found in five strains of neurodevelopmental mouse models of psychiatric
73 disorders (29). As all of the mice used in the study were drug-naïve, with equivalent
74 agonal states, postmortem intervals, and ages within each strain, those findings in mouse
75 models suggest that increased lactate and decreased pH reflect an underlying
76 pathophysiology, rather than mere artifacts, in at least a subgroup of patients with these

77 mental disorders. However, the knowledge of brain pH and lactate in the animal models is

78 limited to small numbers of models and systematic evaluations using the same platform

79 have not been conducted so far in animal models. Therefore, we have extended our

80 previous study (29) to a larger variety of animal models of neuropsychiatric disorders, as

81 well as of neurodegenerative disorder, AD, and peripheral diseases or insults that are

82 comorbid with psychiatric conditions (e.g., diabetes mellitus (DM), colitis, and peripheral

83 nerve injury). Those animal models include 65 strains or conditions of mice and rats with

84 genetic modifications, drug treatments, and other experimental manipulations (Table 1).

85 Combining the large-scale brain lactate data with behavioral data (e.g., working memory,

86 locomotor activity, anxiety-like behavior, and depression-like behavior), we also sought to

87 investigate the relations between alterations in brain lactate levels and behavioral

88 outcomes.

89

90 **Results**

91 **Altered brain pH and lactate levels in animal models**

92 The raw data of brain pH and lactate, and detailed information of animals (age, sex, and
93 treatment methods) are included in Supplementary Table 1. Among the 65
94 strains/conditions, 27 demonstrated significant changes in pH (5 increased, 22 decreased)
95 and 24 in lactate (19 increased, 5 decreased) in comparison with the corresponding
96 control animals ($P < 0.05$; Supplementary Figure 1 and Supplementary Table 2).
97 Hierarchical clustering based on effect size and direction of changes classified those 65
98 models into four groups: high lactate/low pH group, moderate high lactate/moderate low
99 pH group, low lactate/high pH group, and a group with minimal to no changes in lactate or
100 pH, consisting of 16, 6, 15, and 28 models, respectively (Figure 1), where high and low
101 mean higher and lower in mutant/experimental animals related to the corresponding wild
102 type/control animals, respectively. High lactate/low pH group included, for example, SZ
103 model Ppp3r1 KO mice and Nrgn KO mice, SZ/intellectual disability (ID) model Hivep2 (also
104 known as Shn2) KO mice, AD model APP-J20 Tg mice, and ASD model Chd8 KO mice. Low
105 lactate/high pH group included mainly mouse models for ASD or developmental delay,

106 such as Shank2 KO mice, Fmr1 KO mice, BTBR mice, Stxbp1 KO mice, Dyrk1 KO mice, Auts2

107 KO mice, and patDp mice (Figure 1).

108 The Z-score-based meta-analysis of 1,239 animals analyzed in this study

109 revealed a highly significant negative correlation between brain lactate and pH levels

110 individually (Figure 2, Supplementary Figure 2), supporting the idea that decreased pH is

111 due to increased lactate levels in the pathological conditions related to neuropsychiatric

112 disorders.

113

114 **Poorer working memory performance predicts higher brain lactate levels**

115 Most of the animal models we examined are known to show a wide range of behavioral

116 abnormalities, such as deficits in learning and memory, and increased depression-like,

117 anxiety-like behaviors or impaired sensorimotor gating. Thereafter, with our

118 comprehensive lactate data, we examined potential relation of lactate alterations to their

119 behavioral phenotypes. Therefore, we examined whether behavioral patterns could

120 predict brain lactate levels by applying a statistical learning algorithm, which could

121 discover intrinsic links between the chemical signatures in the brain and behaviors. Of the
122 65 animal models, we collected comprehensive behavioral data of 24 mouse models,
123 which were available in public source (e.g., published papers and database repository) or
124 in-house studies (see Methods and Materials; Supplementary Table 3). We constructed an
125 effect size-based model for predicting the brain lactate levels from behavioral data using
126 leave-one-out cross-validation method. Statistical evaluation of the prediction accuracy of
127 the model revealed a significant correlation between the actual and the predicted brain
128 lactate levels (Figure 3a), indicating that behavioral measures have a potential to predict
129 the brain lactate levels of individual models.

130 The prediction analysis was implemented to evaluate the behavioral measures
131 most useful to characterize the brain lactate levels of individual strains. The prediction
132 algorithm used identified behavioral signatures related to brain lactate levels by weighting
133 behavioral measures according to their individual predictive strength. Thus, we identified
134 the behavioral measures accompanying changes in brain lactate levels by examining the
135 weighted behavioral measures used for the prediction in linear regression. Three out of

136 nine behavioral measures were selected to build the successful prediction model and in
137 those measures for working memory was the most selected (Figure 3b). According to
138 simple correlation analysis, the measures for working memory were negatively correlated
139 with the brain lactate levels (Figure 3c). These results suggest that higher lactate levels in
140 the brain are related to lower performance in working memory tests in mouse models of
141 neuropsychiatric disorders.

142

143 **Effects of age and sex on the brain pH and lactate levels**

144 Ages at sampling were matched within each strain/condition, but varied among
145 strains/conditions, ranging from 5 to 103 weeks old in mice (Supplementary Table 1). No
146 significant correlation was found between pH and age in wild type/control mice. Brain
147 lactate levels had a significant negative correlation with age (Supplementary Figure 5),
148 consistent with a previous MRS study in mice (30). However, limitations need to be
149 considered in interpreting our results, such as, differences in genetic background and
150 handling conditions before sampling (some mice had received repeated intraperitoneal

151 injections or behavioral tests, and others had been kept undisturbed until sampling)

152 among strains/conditions. We further examined the effects of sex on the brain pH and

153 lactate levels. To minimize the effects of the limitations mentioned above, we used

154 Z-scores that were calculated within each strain/condition and focused on

155 strains/conditions with mixed gender. Female had significantly higher pH and lower

156 lactate levels than male in wild type/control animals (Supplementary Figure 6).

157

158 **Discussion**

159 We performed a comprehensive analysis of brain pH and lactate in 65 animal models. The

160 data suggested the diversity of brain-energy-metabolism among these model animals.

161 Some mouse strains considered to model different diseases were found to exhibit similar

162 pattern of changes in pH and lactate levels. Specifically, SZ models (Ppp3r1 KO and Nrgn

163 KO mice), SZ/ID model (Hivep2 KO mice), BD/ID model (Camk2a KO mice), ASD model

164 (Chd8 KO mice), depression models (mice exposed to social defeat stress,

165 corticosterone-treated mice and Sert KO mice), AD model (APP-J20 Tg mice), and DM

166 model (STZ-treated mice) commonly exhibited decreased brain pH and increased lactate
167 levels. A BD model Polg1 Tg mice showed no differences in pH or lactate levels. However,
168 other BD model (Clock mutant mice) and ASD models, such as Shank2 KO (31), Fmr1 KO,
169 Dyrk1 KO (32), Auts2 KO (33), and patDp mice (34), were classified into a group with
170 opposite changes, or decreased lactate and increased pH group. Animal models with
171 different patterns of changes in brain pH and lactate levels may represent subpopulations
172 of patients or specific states of the diseases (13). While increased brain lactate levels in
173 neuropsychiatric conditions are almost consistent in the literature, decreased lactate
174 levels has also been found in a cohort of patients with SZ (35) and in euthymic state of BD
175 (36). Our results from animal studies may also support the idea that the patients
176 categorized based on the symptoms to particular neuropsychiatric disorders are
177 biologically heterogeneous (37) from a brain-energy-metabolism viewpoint.

178 The present animal studies revealed an extraordinarily high negative correlation
179 between brain lactate and pH levels, strengthening our previous findings from small-scale
180 animal studies (29). Negative correlation between them has been found in human

181 postmortem study (10). These results suggest that brain lactate is a main regulator of the
182 tissue pH (12), although we could not exclude the possibility that other factors such as
183 neuronal activity-regulated production of carbon dioxide, another metabolic acid, may
184 also contribute to the changes in brain pH (38,39).

185 We observed no significant correlation between age and brain pH in wild
186 type/control mice. In human studies, inconsistent results have been obtained with regard
187 to correlation between brain pH and age. Some studies showed no significant correlation,
188 (40,41), whereas other studies showed a negative correlation (42,43). Sex effects on brain
189 pH is also inconsistent in human studies (40,41). Systematic analysis focusing on the
190 effects of age and sex on the brain pH using animal models may help explain the
191 inconsistency found in the human studies.

192 Does brain lactate exert favorable or unfavorable effects on learning and
193 memory functioning? Our prediction analysis highlighted that poorer working memory
194 performance may be predominantly associated with higher lactate levels in animal models
195 of neuropsychiatric disorders (Figure 3). Additionally, in human studies, higher lactate has

196 been associated with lower cognition in the individuals with SZ (14) and mild cognitive
197 impairment (44). Given these observations, lactate production may be expected to exert
198 negative impacts on brain functions, especially memory formation. However, lactate
199 production stimulated by learning tasks has been suggested as requisite for memory
200 formation. Lactate production by the astrocytic glycogenolysis and its transport to
201 neurons serves as an energy substrate for neuronal activity, referred to as
202 astrocyte-neuron lactate shuttle (ANLS). Animal studies have demonstrated that the
203 pharmacological disruption of learning task-stimulated lactate production and transport
204 via the ANLS immediately before the testing impaired memory formation as assessed by
205 the plus-shaped maze spontaneous alteration task (testing short-term memory) (45) and
206 in the inhibitory avoidance task (testing long-term memory) (46,47). Collectively,
207 considering that brain lactate levels increase during stimulations in a temporally (and
208 spatially) restricted manner under physiological conditions (48,49), pathologically
209 persistent elevation of brain lactate levels may exert negative impact on brain functions
210 including memory processing, although the causality is unknown. Other possibility is that

211 decreased consumption of lactate for energy production due to mitochondrial dysfunction

212 in neurons may underline the impaired learning and memory functioning in the disease

213 conditions. Mitochondrial dysfunction has been thought to lead to lactate accumulation

214 because of insufficient capacity of mitochondrial metabolism to metabolize lactate that

215 was produced (16,50,51). Mitochondrial dysfunction has been consistently implicated in

216 multiple neuropsychiatric disorders, including SZ, BD, MDD, ASD, and AD (52–54), among

217 which working memory deficits are common symptoms (55). In addition, given that lactate

218 rise reflects neuronal activation (29) and multiple brain regions are abnormally activated,

219 activation in the brain regions other than frontal cortex, one of the brain regions critical

220 for working memory (56), interfere with working memory performance, as proposed that

221 activity of core brain region could be interfered with noise from the rest on cognitive tasks

222 in patients with SZ (57). There is also the possibility that increased lactate may have a

223 beneficial effect to compensate for the impaired memory and cognition, as lactate

224 administration that increases brain lactate levels has been shown to attenuate cognitive

225 deficits in human patients (58) and rodent model (59) of traumatic brain injury.

226 Additionally, lactate administration has also been shown to exert antidepressant effects in
227 depression model mice (60). We also cannot exclude the possibility that increased lactate
228 is also involved in behavioral alterations other than memory deficit per se, such as anxiety,
229 as we have found that increased brain lactate levels were associated with altered
230 anxiety-like behaviors in social defeat stress model of depression (61). Further studies are
231 required to address these issues, for example, by chronically inducing deficits of
232 mitochondria function to manipulate endogenous lactate levels in a brain-region-specific
233 manner and analyzing its effects on working memory.

234 As we used whole brain samples to measure the pH and lactate levels, we could
235 not determine whether the observed changes in pH/lactate levels occur ubiquitously in
236 the entire brain or selectively in specific brain region(s) in each strain or condition of the
237 models. Indeed, brain region-specific increase in lactate levels was observed in human
238 patients with ASD in the MRS study (8). The brain region-specific changes may occur even
239 in animal models in which significant changes were not detected in the present study and,
240 if so, such differences could be masked in the analysis using whole brain samples. Further

241 studies are required to address this issue, for example, by means of the measurements in
242 micro-dissected brain samples and in vivo analyses using pH- or lactate-sensitive biosensor
243 electrode (45,62) and MRS (63).

244 In conclusion, the present study demonstrated that altered brain pH and lactate
245 levels were commonly observed in many animal models of SZ, BD, ASD, AD and other
246 neuropsychiatric disorders. These findings provide further evidence supporting the idea
247 that altered brain pH and lactate levels are not mere artifacts such as medication
248 confounding, but rather implicated in the underlying pathophysiology of, at least
249 subpopulations of, patients with the diseases. Alteration in the brain-energy-metabolism
250 or hyper- or hypo-activity of neurons in the brain leading to abnormal lactate and pH
251 levels may serve as a potential therapeutic target of neuropsychiatric disorders (17). In
252 addition, detection of brain lactate, such as by MRS, may help to diagnose and
253 subcategorize such biologically heterogeneous diseases, as shown in mitochondrial
254 disease (64). Future studies to identify the effective treatment strategies specific to the
255 sets of animal models that could recapitulate diversity of brain-energy-metabolism in

256 human disease conditions may contribute to development of improved treatments for the

257 biologically defined subgroups of patients or disease states of the debilitating illnesses

258 beyond the clinically defined borders.

259

260 Table 1. Animal models used in this study

	Name	Description	Related diseases/conditions
1	APP Tg	Mice expressing familial Alzheimer's disease-mutant human amyloid beta precursor protein (PDGF-hAPP _{swe/Ind} , line J20) (65)	AD(66,67)
2	Arid1b KO	Mice with heterozygous knockout of the AT-rich interaction domain 1b (68)	ASD(69,70)
3	Auts2 KO	Mice with heterozygous knockout of the Autism susceptibility candidate 2 (33)	ASD(71–73), ID(74), SZ(75)
4	Barp KO	Voltage gated calcium channel beta-anchoring and -regulatory protein KO mice (76)	

5	Bdnf KO	Brain derived neurotrophic factor KO mice* (JAX, 004339)	
6	BTBR	Inbred mouse strain BTBR T+ tf/J (77,78)	ASD
7	Camk2a KO	Mice with heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha (79–81)	BD(82–84), SZ(85)
8	Camkk1 KO	Mice with forebrain-specific constitutively active form of calcium/calmodulin kinase kinase 1 (86)	
9	Ccnd2 KO	Cyclin D2 KO mice (87)	
10	CFA treatment	Mouse model of chronic inflammatory pain induced by complete Freund's adjuvant (CFA) (88,89)	Chronic pain
11	Chd8 KO	Mice with heterozygous knockout of the	ASD(91–95)

		long isoform of chromodomain helicase DNA-binding protein 8 (90)	
12	Chn1 KO	Chimerin 1 (α -chimerin) KO mice (96)	ASD(96)
13	Clock mutant	Mice with N-ethyl-N-nitrosourea-induced mutation in circadian locomotor output cycles kaput (JAX, 002923) (97,98)	BD(99,100), SZ(101)
14	Corticosterone treatment	Mice chronically treated with corticosterone (102,103)	MD(104–106)
15	Crmp2 KO	Collapsin response mediator protein 2 KO mice (107)	AD(108), SZ(109)
16	Dextran treatment	Mice treated with dextran sulfate sodium (110)	Colitis
17	Disc1-L100P mutant	Mice with N-ethyl-N-nitrosourea-induced L100P amino acid exchange mutation in	SZ(112–114)

		exon 2 of Disrupted-in-Schizophrenia 1 (111)	
18	Disc1-Q31L mutant	Mice with N-ethyl-N-nitrosourea-induced Q31L amino acid exchange mutation in exon 2 of Disrupted-in-Schizophrenia 1 (111)	SZ(112–114)
19	Dyrk1a KO	Mice with heterozygous knockout of the dual specificity tyrosine phosphorylation regulated kinase 1a (32)	ASD/ID(70,115,116)
20	ECS treatment	Mice treated with electroconvulsive stimulation (117,118)	Treatment for MDD(119,120)
21	Fmr1 KO	Fragile X mental retardation protein translational regulator 1 KO mice (121)	ASD, FMR, SZ(85)
22	Gasc1	Gene amplified in squamous cell	ASD(124)

	hypomorph	carcinoma 1 hypomorphic mutant mice (122,123)	
23	Glra4 KO	Glycine receptor alpha 4 KO mice (125)	ID(126)
24	Grin1 KO (postnatal)	GABArgic neuron-specific glutamate receptor, ionotropic, NMDA1 KO mice (Protein phosphatase 1, regulatory subunit 2-cre; Grin1 ^{loxP/loxP}) (127)	SZ(128,129)
25	Grin1 KO (adult)	GABArgic neuron-specific glutamate receptor, ionotropic, NMDA1 KO mice (Protein phosphatase 1, regulatory subunit 2-cre; Grin1 ^{loxP/loxP}) (127)	SZ(128,129)
26	Gunn rat	Gunn rats (Gunn/Slc-j/j) (130)	SZ(131)
27	Hivep2 KO	Human immunodeficiency virus type 1 enhancer binding protein 2 (Schnurri-2) KO	ID(133,134), SZ(132)

		mice (132)	
28	Hyponatremia	Mice treated with 1-deamino-8-D-arginine vasopressin and fed with a liquid formula (135–137)	DS(138,139)
29	Il18 KO	Interleukin 18 KO mice (140,141)	DM(142)
30	Ketamine treatment	Mice treated with ketamine (143)	Psychosis(144)
31	Lurasidone treatment	Mice treated with lurasidone (145)	Atypical antipsychotic(146,147)
32	Mdga1 KO	MAM domain containing glycosylphosphatidylinositol anchor 1 KO mice (148)	SZ(149–151)
33	Mdga2 KO	Mice with heterozygous knockout of the	ASD(153,154)

		MAM domain containing glycosylphosphatidylinositol anchor 2 (152)	
34	Methamphetamine treatment	Mice treated with methamphetamine (155)	Psychosis(156)
35	Nhe5 KO	Na ⁺ /H ⁺ exchanger 5 KO mice (157)	
36	Nlgn3-R451C KI	Mice with R451C amino acid exchange mutation in neuroligin 3 (77,158)	ASD(159,160)
37	Nr3c1 Tg	Mice overexpressing glucocorticoid receptor under the Camk2a promoter	MD(161)
38	Nrgn KO	Neurogranin KO mice (162–164)	SZ(165,166)
39	Oxamate treatment	Mice treated with sodium oxamate, an inhibitor of lactate dehydrogenase	
40	Pacap KO	Pituitary adenylate cyclase-activating	MD(168), SZ(169)

		polypeptide KO mice (167)	
41	patDp	Mice with a paternal duplication of human chromosome 15q11-13 (34)	ASD(170–173)
42	Phencyclidine treatment	Subchronic phencyclidine-treated mice (145,174)	SZ(175)
43	PCP+Lur	Phencyclidine (PCP)- and iluradone (Lur)-treated mice (145,174)	
44	Polg1 Tg	Forebrain-specific catalytic subunit of mitochondrial DNA polymerase KO mice (176)	BD(177)
45	Ppp3r1 KO	Forebrain-specific protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type 1) KO mice (178,179)	SZ(180)
46	Quinpirole	Mice treated with quinpirole, a dopamine	OCD(182)

	treatment	D2 receptor agonist (181)	
47	ReIn Tg	Mice lacking the C-terminal region of Reelin (183)	ASD(184–186), BD(187), SZ(188)
48	Restraint stress	Mice exposed to chronic restraint stress (189)	Chronic stress
49	Sciatic nerve cuffing	The sciatic nerve cuffing mouse model of neuropathic pain (190,191)	Chronic pain
50	Scn2a KO	Mice with heterozygous knockout of the sodium voltage-gated channel alpha subunit 2 (192)	ASD(193,194), EP(195–197), ID(198,199)
51	Sert KO	Serotonin transporter KO mice (200)	ASD(201,202)
52	Shank2 KO	SH3 and multiple ankyrin repeat domain 2 KO mice (31)	ASD(154)
53	Shank3 KO	SH3 and multiple ankyrin repeat domain	ASD(204–206)

		3b KO mice (JAX, 017688) (203)	
54	Snap25-S187A KI	Mice with S187A amino acid exchange mutation in synaptosomal-associated protein of 25 kDa	ADHD(207–212), EP(213,214), SZ(215,216)
55	Social defeat stress (acute)	Mice exposed to social defeat stress (217,218)	Acute stress
56	Social defeat stress (chronic)	Mice exposed to social defeat stress (219,220)	Chronic stress
57	Streptozotocin treatment	Mice treated with streptozotocin (221)	DM(222)
58	Streptozotocin + restraint stress	Mice treated with streptozotocin and exposed to chronic restraint stress (189,221)	DM and DS comorbidity(223)

59	Stxbp1 KO	Mice with heterozygous knockout of the syntaxin-binding protein 1 (224)	ASD/ID(116,199,225), EP(226,227)
60	Syngap1 KO	Mice with heterozygous knockout of the synaptic Ras GTPase-activating protein 1 (228,229)	ID, SZ, ASD(154), EP(226)
61	Thalidomide treatment	Rats prenatally exposed to thalidomide (230,231)	ASD(232)
62	Tnx KO	Tenascin X KO mice (233,234)	EDS(235), SZ(236–238)
63	Trx1 KO	Rats with heterozygous knockout of the thioredoxin 1	EP
64	Tsc1 KO	Astrocyte-specific tuberous sclerosis complex 1 KO mice (Glial fibrillary acidic protein-cre; Tsc1 ^{loxP/loxP}) (239)	TSC(240)

65	Valproic acid treatment	Mice prenatally exposed to valproic acid (241)	ASD(242)
----	-------------------------	--	----------

261 AD, Alzheimer's disease; ADHD, attention-deficit/hyperactivity disorder; ASD, autism

262 spectrum disorders; BD, bipolar disorder; DM, diabetes mellitus; EDS, Ehlers-Danlos

263 syndrome; DS, depression symptom; EP, epilepsy; FMR, Fragile X mental retardation; ID,

264 intellectual disability, KI, knock-in; KO, knock out; MD, major depressive disorder; OCD,

265 obsessive-compulsive disorder; SZ, schizophrenia; Tg, transgenic; TSC, tuberous sclerosis

266 complex. *Mice with off-target deletion of conditional Bdnf allele derived from $Bdnf^{2\text{lox}}$

267 mouse line.

268

269 **Materials and Methods**

270 **Experimental animals and ethical statement**

271 Mice and rats used in this study are listed in Table 1. Animal experiments were approved

272 by the Institutional Animal Care and Use Committee of Fujita Health University, based on

273 the Law for the Humane Treatment and Management of Animals and the Standards

274 Relating to the Care and Management of Laboratory Animals and Relief of Pain. Every

275 effort was made to minimize the number of animals used.

276

277 **Sampling and handling of the brain samples**

278 Upon the study, a standardized protocol regarding sampling and handling of the brain

279 samples has been established to minimize potential confounding effects because of the

280 technical differences among laboratories and performing blind studies, as follows:

281 *Animals and samples*

282 • Animals: Mouse and rat. For genetically engineered animals, mutants and their

283 wild-type littermates should be used.

284 • Number of animals: ≥ 6 per group (identical genetic background, littermate),

285 preferably.

286 • Sex of animals: All males, all females, or balanced among groups if mixed.

287 • Samples: Fresh-frozen whole brain.

288

289 *Blind study*

290 pH measurements were blinded: Upon sampling, the researchers were supposed to

291 randomize the animals regarding genotype and collect brain samples into tubes labeled

292 with serial numbers. The researchers were asked to provide the genotype information and

293 the corresponding serial numbers for the following statistical analyses, after the

294 measurements.

295

296 *Brain sampling procedures*

297 1. Sacrifice mouse/rat by cervical dislocation followed by decapitation, and remove

298 whole brain from the skull. Do not immerse the brain in any buffer solutions or

299 water.

300 2. Cut the brain along the longitudinal fissure of the cerebrum.

301 3. Collect the left and right hemispheres into a tube that can be tightly capped like

302 Cryotube and seal the caps with Parafilm (to minimize the effect of carbon dioxide

303 from dry ice on the tissue pH during transportation.).

304 4. Snap freeze in liquid N₂, and store at -80C until the shipment.

305 5. Transport the frozen brain on dry ice.

306

307 The protocol is also publicly available at

308 http://www.fujita-hu.ac.jp/~cgbb/en/collaborative_research/index.html.

309

310 **Measurements of tissue pH and lactate levels**

311 Whole brain was used to measure pH and lactate levels as previously described (29).

312 Briefly, snap-frozen tissues were homogenized in ice-cold distilled H₂O (5 ml per 500 mg of

313 tissue). The pH of the homogenates was measured using a pH meter (LAQUA F-72,

314 HORIBA, Ltd., Kyoto, Japan) equipped with a Micro ToupH electrode (9618S-10D, HORIBA,

315 Ltd.) after a three-point calibration at pH 4.0, pH 7.0, and pH 9.0. Subsequently, the

316 concentration of lactate in the homogenates was determined using a multi-assay analyzer

317 (GM7 MicroStat, Analox Instruments, London, UK) after calibration with 8.0 M lactate

318 standard solution (GMRD-103, Analox Instruments). A 20-μl aliquot of centrifuged

319 supernatant (14,000 rpm, 10 min) was used for the measurement.

320

321 Effect size (d) was calculated for each strain/condition and each measure (e.g., pH, lactate

322 value, and behavioral index), as followed:

323
$$d = (M_{\text{mutants}} - M_{\text{controls}})/S_{\text{pooled}}$$

324 $S_{\text{pooled}} = [(S_{\text{mutant}}^2 + S_{\text{control}}^2)/2]^{1/2}$

325 The heat map was depicted using the R (version 3.5.2) gplots package.

326 Z-score transformation, a traditional method of data normalization for direct

327 comparison between different samples and conditions, was applied for each pH or lactate

328 value using individual animal data within each of strain, according to the following

329 formula:

330 $Z\text{-score} = (\text{value}_P - \text{mean value}_{P1...Pn})/\text{standard deviation}_{P1...Pn}$,

331 where P is any pH or lactate and P1...Pn represent the aggregate measure of all pH or

332 lactate values.

333

334 **Prediction analysis**

335 We collected the comprehensive behavioral data as much as of animal models whose

336 brain pH and lactate levels were examined in this study. The following behavioral data of

337 24 animal models were obtained from published papers, Mouse Phenotype Database

338 (<http://www.mouse-phenotype.org/>), or in-house studies (Supplementary Table 3):
339 number of transitions in the light-dark transition test, percentage of immobile in the
340 forced swim test, time spent in open arm in the elevated plus maze test, prepulse
341 inhibition at 78-110 dB and 74-110 dB, startle response at 120 dB, distance traveled in the
342 open field test, and correct percentage in the T-maze, Y-maze, or other maze test from
343 APP Tg mice, Arid1b KO mice mice, Barp KO mice, BTBR mice, Camk2a KO mice, complete
344 Freund's adjuvant-treated mice, Chd8 KO mice, corticosterone-treated mice, Disc1-L100P
345 mutant mice, Disc1-Q31L mutant mice, Gasc1 hypomorphic mutant mice, Hivep2 KO mice,
346 Nhe5 KO mice, Nr3c1 Tg mice, Nrgn KO mice, Pacap KO mice, patDp mice, Ppp3r1 KO mice,
347 Reln Tg mice, Scn2a KO mice, Sert KO mice, Snap25-S187A KI mice, social defeat
348 stress-exposed mice, and Syngap1 KO mice. The literature search was conducted in
349 PubMed and Google Scholar using relevant key words: name of strain or experimental
350 condition, species (mice or rats), and name of behavioral tests. Among the top hits at the
351 search, we used the data that were presented in actual values of the mean and SD or SEM,
352 as priority. For some behavioral measures, possible mean and SD values were estimated

353 from the graph presented in the paper. In the matrix of strains/conditions and behavioral
354 measures, those with any missing values were excluded, resulting in obtaining nine
355 behavioral measures from 24 strains/conditions of mouse models. Effect size was
356 calculated for each strain/condition and each measure and used for the prediction
357 analysis.

358 Leave-one-out cross-validation was employed to determine whether behavioral
359 measures can predict brain lactate levels for individual strain of mice. From the analyzed
360 behavioral dataset of 24 mouse strains, one sample was selected and excluded to serve as
361 test data of the cross-validation. Thereafter, a multivariate linear regression model was
362 trained on the remaining 23 samples using a stepwise variable selection procedure with
363 EZR software (version 1.38; Saitama Medical Center, Jichi Medical University, Saitama,
364 Japan) (243), and the test sample was predicted. This was repeated 24 times, in which all
365 samples were chosen once as the test data. Behavioral measures selected at least one
366 time in the prediction model were considered as predictive behavioral measures. The

367 prediction performance was analyzed by evaluating correlation between the predicted

368 and actual values for the 24 mouse strains.

369

370 **Statistical analysis**

371 The pH and lactate data were analyzed using unpaired t-test, or one-way analysis of

372 variance (ANOVA) or two-way ANOVA followed by *post hoc* Tukey's multiple comparison

373 test using GraphPad Prism 8 (version 8.4.2; GraphPad Software, San Diego, CA).

374

375 **Consortium**

376 **Project conception:** Hideo Hagihara¹ and Tsuyoshi Miyakawa¹. **Preparation of animals**

377 **and tissues:** Hideo Hagihara¹, Hirotaka Shoji¹, Yoshihiro Takamiya¹, Mika Tanaka¹, Yoko

378 Hagino², Hiroko Kotajima-Murakami², Kazutaka Ikeda², Hikari Otabi^{3,4}, Atsushi Toyoda^{3,4,5},

379 Mohamed Darwish⁶, Hirofumi Nishizono⁶, Keizo Takao^{6,7}, Kei Hori⁸, Mikio Hoshino⁸, Hyopil

380 Kim⁹, Bong-Kiun Kaang⁹, Takao Kohno¹⁰, Mitsuharu Hattori¹⁰, Ken-ichi Matsumoto¹¹,

381 Shigeo Okabe¹², Michiru Ida-Eto¹³, Masaaki Narita¹³, Haruki Fujisawa¹⁴, Yoshihisa

382 Sugimura¹⁴, Tadahiro Numakawa¹⁵, Hiroshi Kunugi¹⁵, Katsuhiko Tabuchi¹⁶, Yuta

383 Katayama¹⁷, Keiichi I Nakayama¹⁷, Masayuki Matsushita¹⁸, Johji Inazawa¹⁹, Tohru

384 Yamamoto²⁰, Haruko Nakamura²¹, Yoshio Goshima²¹, Hikari Hatakama²², Nozomi Asaoka²³,

385 Shuji Kaneko²², Tetsuya Tatsukawa²⁵, Matthieu Raveau²⁵, Kazuhiro Yamakawa^{24,25},

386 Masafumi Ihara²⁶, Kyosuke Yamanishi²⁷, Kiran Sapkota²⁸, Kazutoshi Nakazawa²⁸, Isabella A

387 Graef²⁹, Shuji Wakatsuki³⁰, Toshiyuki Araki³⁰, Kota Tamada^{31,32}, Toru Takumi^{31,32}, Iori

388 Ohmori³³, Nanette Deneen Hannah³⁴, Lakshmi Rajagopal³⁴, Herbert Y Meltzer³⁴, Ikuo

389 Nobuhisa³⁵, Tetsushi Kagawa³⁵, Tetsuya Taga³⁵, Akito Nakao³⁶, Yasuo Mori³⁶, Shota

390 Katori³⁷, Takuya Sato³⁷, Takuji Iwasato³⁷, Noboru H. Komiyama³⁸, Seth G. N. Grant³⁸, Anja

391 Urbach³⁹, Léa J Becker⁴⁰, Ipek Yalcin⁴⁰, Tsuyoshi Takagi⁴¹, Takaoki Kasahara⁴², Tadafumi

392 Kato^{42,43}, Yoshio Hoshiba⁴⁵, Ryuhei Miyake⁴⁵, Kisho Obi-Nagata⁴⁴, Akiko Hayashi-Takagi^{44,45},

393 Mihiro Shibutani⁴⁶, Izuho Hatada⁴⁶, Shunsuke Ishii⁴⁷, Atsuko Hayata-Takano^{48,49}, Hitoshi

394 Hashimoto⁴⁸⁻⁵², Noriko Takahashi^{53,54}, Haruo Kasai^{53,55}, Emiko Okuda-Ashitaka⁵⁶, Freesia L

395 Huang⁵⁷, Tadayuki Shimada⁵⁸, Kanato Yamagata⁵⁸. **Biochemical and statistical analyses:**

396 Hideo Hagihara¹ and Giovanni Sala¹. **Behavioral analysis:** Hideo Hagihara¹, Hirotaka Shoji¹,

397 Giovanni Sala¹, Yoshihiro Takamiya¹. **Writing of the manuscript:** Hideo Hagihara¹ and

398 Tsuyoshi Miyakawa¹. All authors approved the final manuscript.

399

400 1. Division of Systems Medical Science, Institute for Comprehensive Medical Science,

401 Fujita Health University, Toyoake, Aichi, Japan

402 2. Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo,

403 Japan

404 3. College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan

405 4. United Graduate School of Agricultural Science, Tokyo University of Agriculture and
406 Technology, Fuchu, Tokyo, Japan

407 5. Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami,
408 Ibaraki, Japan

409 6. Department of Behavioral Physiology, Graduate School of Innovative Life Science,
410 University of Toyama, Toyama, Japan

411 7. Life Science Research Center, University of Toyama, Toyama, Toyama, Japan

412 8. Department of Biochemistry and Cellular Biology, National Institute of Neuroscience,
413 National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan

414 9. Department of Biological Sciences, College of Natural Sciences, Seoul National
415 University, Seoul, South Korea

416 10. Department of Biomedical Science, Graduate School of Pharmaceutical Sciences,
417 Nagoya City University, Nagoya, Aichi, Japan

418 11. Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for
419 Science Research, Organization for Research and Academic Information, Shimane
420 University, Izumo, Shimane, Japan

421 12. Department of Cellular Neurobiology, Graduate School of Medicine, The University of
422 Tokyo, Tokyo, Japan

423 13. Department of Developmental and Regenerative Medicine, Mie University, Graduate
424 School of Medicine, Mie, Japan

425 14. Department of Endocrinology & Metabolism, Fujita Health University School of
426 Medicine, Toyoake, Aichi, Japan

427 15. Department of Mental Disorder Research, National Institute of Neuroscience, National
428 Center of Neurology and Psychiatry, Tokyo, Japan

429 16. Department of Molecular & Cellular Physiology, Shinshu University School of Medicine,
430 Matsumoto, Nagano, Japan

431 17. Department of Molecular and Cellular Biology, Medical Institute of Bioregulation,
432 Kyushu University, Fukuoka, Japan

433 18. Department of Molecular and Cellular Physiology, Graduate School of Medicine,
434 University of the Ryukyus, Nishihara, Okinawa, Japan

435 19. Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and
436 Dental University, Tokyo, Japan

437 20. Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University,
438 Kagawa, Japan

439 21. Department of Molecular Pharmacology and Neurobiology, Yokohama City University

440 Graduate School of Medicine, Yokohama, Kanagawa, Japan

441 22. Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences,
442 Kyoto University, Kyoto, Kyoto, Japan

443 23. Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto,
444 Japan

445 24. Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences,
446 Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan

447 25. Laboratory for Neurogenetics, RIKEN, Center for Brain Science, Wako, Saitama, Japan

448 26. Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka,
449 Japan

450 27. Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo,
451 Japan

452 28. Department of Neuroscience, Southern Research, AL, USA

453 29. Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA

454 30. Department of Peripheral Nervous System Research, National Institute of
455 Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan

456 31. Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe,
457 Hyogo, Japan

458 32. RIKEN Brain Science Institute, Wako, Saitama, Japan

459 33. Department of Physiology, Okayama University Graduate School of Medicine,

460 Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan

461 34. Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg

462 School of Medicine, Chicago, IL, USA

463 35. Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and

464 Dental University, Tokyo, Japan

465 36. Department of Synthetic Chemistry and Biological Chemistry, Graduate School of

466 Engineering, Kyoto University, Kyoto, Japan

467 37. Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima,

468 Shizuoka, Japan

469 38. Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh,

470 Edinburgh, UK

471 39. Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany

472 40. Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche
473 Scientifique, Université de Strasbourg, Strasbourg, France

474 41. Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai,
475 Aichi, Japan

476 42. Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain
477 Science, Wako, Saitama, Japan

478 43. Department of Psychiatry and Behavioral Science, Juntendo University Graduate
479 School of Medicine, Tokyo, Japan

480 44. Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Wako,
481 Saitama, Japan

482 45. Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation,
483 Gunma University, Maebashi, Gunma, Japan

484 46. Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for
485 Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan

486 47. Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Japan

487 48. Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical

488 Sciences, Osaka University, Suita, Osaka, Japan

489 49. United Graduate School of Child Development, Osaka University, Kanazawa University,

490 Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan

491 50. Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka,

492 Japan

493 51. Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary

494 Research Initiatives, Osaka University, Suita, Osaka, Japan

495 52. Department of Molecular Pharmaceutical Science, Graduate School of Medicine,

496 Osaka University, Suita, Osaka, Japan

497 53. Laboratory of Structural Physiology, Center for Disease Biology and Integrative

498 Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan

499 54. Department of Physiology, Kitasato University School of Medicine, Sagamihara,

500 Kanagawa, Japan

501 55. International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University

502 of Tokyo, Tokyo, Japan

503 56. Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan

504 57. Program of Developmental Neurobiology, NICHD, NIH, Bethesda, MD, USA

505 58. Synaptic plasticity project, Tokyo Metropolitan Institute of Medical Science, Tokyo,

506 Japan

507

508 **Acknowledgements**

509 This work was supported by MEXT KAKENHI Grant Number JP16H06462, MEXT Promotion

510 of Distinctive Joint Research Center Program Grant Number JPMXP0618217663, JSPS

511 KAKENHI Grant Number JP20H00522, JP18K07378, and JP16H06276 (AdAMS), and AMED

512 Strategic Research Program for Brain Sciences Grant Number JP18dm0107101.

513

514 **Disclosures**

515 Authors declare no conflict of interest regarding this article.

516

517 **References**

- 518 1. Cross-national comparisons of the prevalences and correlates of mental disorders. WHO
519 International Consortium in Psychiatric Epidemiology. (2000): *Bull World Health Organ*
520 78: 413–426.
- 521 2. Cardno AG, Owen MJ (2014): Genetic relationships between schizophrenia, bipolar
522 disorder, and schizoaffective disorder. *Schizophr Bull* 40: 504–515.
- 523 3. Hall J, Trent S, Thomas KL, O'Donovan MC, Owen MJ (2015): Genetic risk for
524 schizophrenia: convergence on synaptic pathways involved in plasticity. *Biol Psychiatry*
525 77: 52–58.
- 526 4. Forero DA, Herteleer L, De Zutter S, Norrback K-F, Nilsson L-G, Adolfsson R, *et al.*
527 (2016): A network of synaptic genes associated with schizophrenia and bipolar disorder.
528 *Schizophr Res* 172: 68–74.
- 529 5. Douaud G, Groves AR, Tamnes CK, Westlye LT, Duff EP, Engvig A, *et al.* (2014): A
530 common brain network links development, aging, and vulnerability to disease. *Proc Natl
531 Acad Sci* 111: 17648–17653.
- 532 6. Argyelan M, Ikuta T, DeRosse P, Braga RJ, Burdick KE, John M, *et al.* (2014):
533 Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder.
534 *Schizophr Bull* 40: 100–110.

535 7. Dager SR, Friedman SD, Parow A, Demopoulos C, Stoll AL, Lyoo IK, *et al.* (2004):
536 Brain metabolic alterations in medication-free patients with bipolar disorder. *Arch Gen*
537 *Psychiatry* 61: 450–458.

538 8. Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS (2014): Brain imaging evidence that
539 mitochondrial dysfunction is a neurobiological subtype of Autism Spectrum Disorder.
540 *JAMA Psychiatry* 71: 665–671.

541 9. Greene AE, Todorova MT, Seyfried TN (2003): Perspectives on the metabolic
542 management of epilepsy through dietary reduction of glucose and elevation of ketone
543 bodies. *J Neurochem* 86: 529–537.

544 10. Halim ND, Lipska BK, Hyde TM, Deep-Soboslay A, Saylor EM, Herman M, *et al.*
545 (2008): Increased lactate levels and reduced pH in postmortem brains of schizophrenics:
546 medication confounds. *J Neurosci Methods* 169: 208–213.

547 11. Machado-Vieira R, Zanetti MV, Otaduy MC, De Sousa RT, Soeiro-de-Souza MG,
548 Costa AC, *et al.* (2017): Increased brain lactate during depressive episodes and reversal
549 effects by lithium monotherapy in drug-naive bipolar disorder: A 3T 1H-MRS study. *J Clin*
550 *Psychopharmacol* 37: 40–45.

551 12. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT-J, Griffin JL, *et al.*
552 (2004): Mitochondrial dysfunction in schizophrenia: evidence for compromised brain
553 metabolism and oxidative stress. *Mol Psychiatry* 9: 684–697, 643.

554 13. Rossignol DA, Frye RE (2012): Mitochondrial dysfunction in autism spectrum
555 disorders: a systematic review and meta-analysis. *Mol Psychiatry* 17: 290–314.

556 14. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, Barker PB
557 (2016): Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy
558 study. *Transl Psychiatry* 6: e967–e967.

559 15. Soeiro-de-Souza MG, Pastorello BF, Leite C da C, Henning A, Moreno RA, Garcia
560 Otaduy MC (2016): Dorsal anterior cingulate lactate and glutathione levels in euthymic
561 bipolar I disorder: 1H-MRS study. *Int J Neuropsychopharmacol* 19.

562 <https://doi.org/10.1093/ijnp/pyw032>

563 16. Dogan AE, Yuksel C, Du F, Chouinard V-A, Öngür D (2018): Brain lactate and pH in
564 schizophrenia and bipolar disorder: a systematic review of findings from magnetic
565 resonance studies. *Neuropsychopharmacology* 43: 1681–1690.

566 17. Pruitt BS, Meador-Woodruff JH (2020): Evidence for altered energy metabolism,
567 increased lactate, and decreased pH in schizophrenia brain: A focused review and
568 meta-analysis of human postmortem and magnetic resonance spectroscopy studies.
569 *Schizophr Res* S092099642030459X.

570 18. Lehéricy S, Marjanska M, Mesrob L, Sarazin M, Kinkingnehuizen S (2007): Magnetic
571 resonance imaging of Alzheimer's disease. *Eur Radiol* 17: 347–362.

572 19. Liguori C, Stefani A, Sancesario G, Sancesario GM, Marciani MG, Pierantozzi M
573 (2015): CSF lactate levels, τ proteins, cognitive decline: a dynamic relationship in
574 Alzheimer's disease. *J Neurol Neurosurg Psychiatry* 86: 655–659.

575 20. Liguori C, Chiaravalloti A, Sancesario G, Stefani A, Sancesario GM, Mercuri NB, *et al.*
576 (2016): Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within
577 the default mode network in Alzheimer's disease. *Eur J Nucl Med Mol Imaging* 43: 2040–
578 2049.

579 21. Lyros E, Ragoschke-Schumm A, Kostopoulos P, Sehr A, Backens M, Kalampokini S,
580 *et al.* (2019): Normal brain aging and Alzheimer's disease are associated with lower
581 cerebral pH: an in vivo histidine 1H-MR spectroscopy study. *Neurobiol Aging*.
582 <https://doi.org/10.1016/j.neurobiolaging.2019.11.012>

583 22. Mullins R, Reiter D, Kapogiannis D (2018): Magnetic resonance spectroscopy reveals
584 abnormalities of glucose metabolism in the Alzheimer's brain. *Ann Clin Transl Neurol* 5:
585 262–272.

586 23. Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT (2019): The relationship
587 between the morphological subtypes of microglia and Alzheimer's disease neuropathology.
588 *Brain Pathol* 29: 726–740.

589 24. Youssef P, Chami B, Lim J, Middleton T, Sutherland GT, Witting PK (2018): Evidence
590 supporting oxidative stress in a moderately affected area of the brain in Alzheimer's disease.
591 *Sci Rep* 8: 1–14.

592 25. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV, *et al.* (2004):
593 Systematic changes in gene expression in postmortem human brains associated with tissue
594 pH and terminal medical conditions. *Hum Mol Genet* 13: 609–616.

595 26. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, *et al.* (2004): Effect
596 of agonal and postmortem factors on gene expression profile: quality control in microarray
597 analyses of postmortem human brain. *Biol Psychiatry* 55: 346–352.

598 27. Vawter M, Tomita H, Meng F, Bolstad B, Li J, Evans S, *et al.* (2006):
599 Mitochondrial-related gene expression changes are sensitive to agonal-pH state:
600 implications for brain disorders. *Mol Psychiatry* 11: 615–679.

601 28. Kato T, Murashita J, Kamiya A, Shioiri T, Kato N, Inubushi T (1998): Decreased brain
602 intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free
603 patients and correlation with white matter hyperintensity. *Eur Arch Psychiatry Clin
604 Neurosci* 248: 301–306.

605 29. Hagiwara H, Catts VS, Katayama Y, Shoji H, Takagi T, Huang FL, *et al.* (2018):
606 Decreased brain pH as a shared endophenotype of psychiatric disorders.
607 *Neuropsychopharmacology* 43: 459–468.

608 30. Duarte JMN, Do KQ, Gruetter R (2014): Longitudinal neurochemical modifications in
609 the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy.
610 *Neurobiol Aging* 35: 1660–1668.

611 31. Won H, Lee H-R, Gee HY, Mah W, Kim J-I, Lee J, *et al.* (2012): Autistic-like social
612 behaviour in *Shank2*-mutant mice improved by restoring NMDA receptor function. *Nature*
613 486: 261–265.

614 32. Raveau M, Shimohata A, Amano K, Miyamoto H, Yamakawa K (2018):
615 DYRK1A-haploinsufficiency in mice causes autistic-like features and febrile seizures.
616 *Neurobiol Dis* 110: 180–191.

617 33. Hori K, Nagai T, Shan W, Sakamoto A, Abe M, Yamazaki M, *et al.* (2015):
618 Heterozygous disruption of autism susceptibility candidate 2 causes impaired emotional
619 control and cognitive memory. *PLOS ONE* 10: e0145979.

620 34. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, *et al.* (2009): Abnormal
621 behavior in a chromosome- engineered mouse model for human 15q11-13 duplication seen
622 in autism. *Cell* 137: 1235–1246.

623 35. Beasley CL, Dwork AJ, Rosoklja G, Mann JJ, Mancevski B, Jakovski Z, *et al.* (2009):
624 Metabolic abnormalities in fronto-striatal-thalamic white matter tracts in schizophrenia.
625 *Schizophr Res* 109: 159–166.

626 36. Brady RO, Cooper A, Jensen JE, Tandon N, Cohen B, Renshaw P, *et al.* (2012): A
627 longitudinal pilot proton MRS investigation of the manic and euthymic states of bipolar
628 disorder. *Transl Psychiatry* 2: e160–e160.

629 37. Insel TR, Cuthbert BN (2015): Brain disorders? Precisely. *Science* 348: 499–500.

630 38. Chesler M (2003): Regulation and modulation of pH in the brain. *Physiol Rev* 83:
631 1183–1221.

632 39. Zauner A, Bullock R, Di X, Young HF (1995): Brain oxygen, CO₂, pH, and
633 temperature monitoring: evaluation in the feline brain. *Neurosurgery* 37: 1168–1177.

634 40. Monoranu CM, Apfelbacher M, Grünblatt E, Puppe B, Alafuzoff I, Ferrer I, *et al.*
635 (2009): pH measurement as quality control on human post mortem brain tissue: a study of
636 the BrainNet Europe consortium. *Neuropathol Appl Neurobiol* 35: 329–337.

637 41. Preece P, Cairns NJ (2003): Quantifying mRNA in postmortem human brain: influence
638 of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA
639 variance. *Mol Brain Res* 118: 60–71.

640 42. Harrison PJ, Heath PR, Eastwood SL, Burnet PWJ, McDonald B, Pearson RCA (1995):
641 The relative importance of premortem acidosis and postmortem interval for human brain
642 gene expression studies: selective mRNA vulnerability and comparison with their encoded
643 proteins. *Neurosci Lett* 200: 151–154.

644 43. Forester BP, Berlow YA, Harper DG, Jensen JE, Lange N, Froimowitz MP, *et al.*
645 (2010): Age-related changes in brain energetics and phospholipid metabolism. *NMR*
646 *Biomed* 23: 242–250.

647 44. Weaver KE, Richards TL, Logsdon RG, McGough EL, Minoshima S, Aylward EH, *et*
648 *al.* (2015): Posterior cingulate lactate as a metabolic biomarker in amnestic mild cognitive
649 impairment. *BioMed Res Int* 2015. <https://doi.org/10.1155/2015/610605>

650 45. Newman LA, Korol DL, Gold PE (2011): Lactate produced by glycogenolysis in
651 astrocytes regulates memory processing. *PLOS ONE* 6: e28427.

652 46. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM
653 (2011): Astrocyte-neuron lactate transport is required for long-term memory formation.
654 *Cell* 144: 810–823.

655 47. Descalzi G, Gao V, Steinman MQ, Suzuki A, Alberini CM (2019): Lactate from
656 astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons.
657 *Commun Biol* 2: 1–11.

658 48. Mangia S, Tkáč I, Gruetter R, Van de Moortele P-F, Maraviglia B, Uğurbil K (2007):
659 Sustained neuronal activation raises oxidative metabolism to a new steady-state level:
660 evidence from ^1H NMR spectroscopy in the human visual cortex. *J Cereb Blood Flow
661 Metab* 27: 1055–1063.

662 49. Schaller B, Xin L, O'Brien K, Magill AW, Gruetter R (2014): Are glutamate and lactate
663 increases ubiquitous to physiological activation? A ^1H functional MR spectroscopy study
664 during motor activation in human brain at 7Tesla. *NeuroImage* 93: 138–145.

665 50. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA (2009):
666 Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and
667 schizophrenia: implications for the mitochondrial dysfunction hypothesis. *Biol Psychiatry*
668 65: 489–494.

669 51. Stork C, Renshaw PF (2005): Mitochondrial dysfunction in bipolar disorder: evidence
670 from magnetic resonance spectroscopy research. *Mol Psychiatry* 10: 900–919.

671 52. Holper L, Ben-Shachar D, Mann JJ (2019): Multivariate meta-analyses of
672 mitochondrial complex I and IV in major depressive disorder, bipolar disorder,
673 schizophrenia, Alzheimer disease, and Parkinson disease. *Neuropsychopharmacology* 44:
674 837–849.

675 53. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G (2012):
676 Impaired mitochondrial function in psychiatric disorders. *Nat Rev Neurosci* 13: 293–307.

677 54. Pei L, Wallace DC (2018): Mitochondrial etiology of neuropsychiatric disorders. *Biol
678 Psychiatry* 83: 722–730.

679 55. Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, *et al.* (2012):
680 Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for
681 improved therapy. *Nat Rev Drug Discov* 11: 141–168.

682 56. Andrés P (2003): Frontal cortex as the central executive of working memory: time to
683 revise our view. *Cortex* 39: 871–895.

684 57. Foucher JR, Vidailhet P, Chanraud S, Gounot D, Grucker D, Pins D, *et al.* (2005):
685 Functional integration in schizophrenia: too little or too much? Preliminary results on fMRI
686 data. *NeuroImage* 26. <https://doi.org/10.1016/j.neuroimage.2005.01.042>

687 58. Bisri T, Utomo BA, Fuadi I (2016): Exogenous lactate infusion improved
688 neurocognitive function of patients with mild traumatic brain injury. *Asian J Neurosurg* 11:
689 151–159.

690 59. Rice AC, Zsoldos R, Chen T, Wilson MS, Alessandri B, Hamm RJ, Ross Bullock M
691 (2002): Lactate administration attenuates cognitive deficits following traumatic brain injury.
692 *Brain Res* 928: 156–159.

693 60. Carrard A, Elsayed M, Margineanu M, Boury-Jamot B, Fragnière L, Meylan EM, *et al.*
694 (2016): Peripheral administration of lactate produces antidepressant-like effects. *Mol
695 Psychiatry* 23: 392–399.

696 61. Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T (2021):
697 Protein lactylation induced by neural excitation. *bioRxiv* 2021.02.02.428370.

698 62. Marunaka Y, Yoshimoto K, Aoi W, Hosogi S, Ikegaya H (2014): Low pH of interstitial
699 fluid around hippocampus of the brain in diabetic OLETF rats. *Mol Cell Ther* 2.
700 <https://doi.org/10.1186/2052-8426-2-6>

701 63. Davidovic L, Navratil V, Bonaccorso CM, Catania MV, Bardoni B, Dumas M-E
702 (2011): A metabolomic and systems biology perspective on the brain of the Fragile X
703 syndrome mouse model. *Genome Res* 21: 2190–2202.

704 64. Lin DDM, Crawford TO, Barker PB (2003): Proton MR spectroscopy in the diagnostic
705 evaluation of suspected mitochondrial disease. *Am J Neuroradiol* 24: 33–41.

706 65. Mucke L, Masliah E, Yu G-Q, Mallory M, Rockenstein EM, Tatsuno G, *et al.* (2000):
707 High-level neuronal expression of A β 1–42 in wild-type human amyloid protein precursor
708 transgenic mice: synaptotoxicity without plaque formation. *J Neurosci* 20: 4050–4058.

709 66. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L
710 (1992): A pathogenic mutation for probable Alzheimer's disease in the APP gene at the
711 N-terminus of beta-amyloid. *Nat Genet* 1: 345–347.

712 67. Murrell J, Farlow M, Ghetti B, Benson MD (1991): A mutation in the amyloid
713 precursor protein associated with hereditary Alzheimer's disease. *Science* 254: 97–99.

714 68. Shibusawa M, Horii T, Shoji H, Morita S, Kimura M, Terawaki N, *et al.* (2017): Arid1b
715 haploinsufficiency causes abnormal brain gene expression and autism-related behaviors in
716 mice. *Int J Mol Sci* 18: 1872.

717 69. D'Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE, Lam A-TN, *et al.* (2015):
718 Targeted DNA sequencing from autism spectrum disorder brains implicates multiple
719 genetic mechanisms. *Neuron* 88: 910–917.

720 70. Fitzgerald TW, Gerety SS, Jones WD, van Kogelenberg M, King DA, McRae J, *et al.*
721 (2015): Large-scale discovery of novel genetic causes of developmental disorders. *Nature*
722 519: 223–228.

723 71. Kalscheuer VM, FitzPatrick D, Tommerup N, Bugge M, Niebuhr E, Neumann LM, *et*
724 *al.* (2007): Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental
725 retardation. *Hum Genet* 121: 501–509.

726 72. Bakkaloglu B, O'Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, *et al.* (2008):
727 Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in
728 autism spectrum disorders. *Am J Hum Genet* 82: 165–173.

729 73. Sultana R, Yu C-E, Yu J, Munson J, Chen D, Hua W, *et al.* (2002): Identification of a
730 novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of
731 autistic twins. *Genomics* 80: 129–134.

732 74. Beunders G, Voorhoeve E, Golzio C, Pardo LM, Rosenfeld JA, Talkowski ME, *et al.*
733 (2013): Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and
734 suggest a critical role for the C terminus. *Am J Hum Genet* 92: 210–220.

735 75. Zhang B, Xu Y-H, Wei S-G, Zhang H-B, Fu D-K, Feng Z-F, *et al.* (2014): Association
736 study identifying a new susceptibility gene (AUTS2) for schizophrenia. *Int J Mol Sci* 15:
737 19406–19416.

738 76. Nakao A, Miki T, Shoji H, Nishi M, Takeshima H, Miyakawa T, Mori Y (2015):
739 Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and
740 -regulatory protein knockout mice. *Front Behav Neurosci* 9.
741 <https://doi.org/10.3389/fnbeh.2015.00141>

742 77. Isshiki M, Tanaka S, Kuriu T, Tabuchi K, Takumi T, Okabe S (2014): Enhanced
743 synapse remodelling as a common phenotype in mouse models of autism. *Nat Commun* 5:
744 4742.

745 78. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN (2008):
746 Autism-like behavioral phenotypes in BTBR T+tf/J mice. *Genes Brain Behav* 7: 152–163.

747 79. Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, *et al.* (2008):
748 Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate
749 endophenotype of psychiatric disorders. *Mol Brain* 1: 6.

750 80. Hagihara H, Horikawa T, Nakamura HK, Umemori J, Shoji H, Kamitani Y, Miyakawa
751 T (2016): Circadian gene circuitry predicts hyperactive behavior in a mood disorder mouse
752 model. *Cell Rep* 14: 2784–2796.

753 81. Hagihara H, Horikawa T, Irino Y, Nakamura HK, Umemori J, Shoji H, *et al.* (2019):
754 Peripheral blood metabolome predicts mood change-related activity in mouse model of
755 bipolar disorder. *Mol Brain* 12: 107.

756 82. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ, *et al.* (2009):
757 Identifying blood biomarkers for mood disorders using convergent functional genomics.
758 *Mol Psychiatry* 14: 156–174.

759 83. Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, *et al.* (2015): Rare
760 variants in neuronal excitability genes influence risk for bipolar disorder. *Proc Natl Acad
761 Sci* 112: 3576–3581.

762 84. Li H, Zhou D-S, Chang H, Wang L, Liu W, Dai S-X, *et al.* (2019): Interactome
763 analyses implicated CAMK2A in the genetic predisposition and pharmacological
764 mechanism of bipolar disorder. *J Psychiatr Res* 115: 165–175.

765 85. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, *et al.* (2014): A
766 polygenic burden of rare disruptive mutations in schizophrenia. *Nature* advance online
767 publication. <https://doi.org/10.1038/nature12975>

768 86. Kaitsuka T, Li S-T, Nakamura K, Takao K, Miyakawa T, Matsushita M (2011):
769 Forebrain-specific constitutively active CaMKK α transgenic mice show deficits in
770 hippocampus-dependent long-term memory. *Neurobiol Learn Mem* 96: 238–247.

771 87. Goyal V, Zahra SA, Hennings C, Zimmer-Bensch G, Beetz C, Schmeer CW, *et al.*
772 (n.d.): A conditional knockout mouse model to study the specific role of cyclin D2 in brain
773 development, adult neurogenesis and human brain pathologies. *Soc Neurosci Annu Meet*
774 2019 227.19.

775 88. Urban R, Scherrer G, Goulding EH, Tecott LH, Basbaum AI (2011): Behavioral indices
776 of ongoing pain are largely unchanged in male mice with tissue or nerve injury-induced
777 mechanical hypersensitivity. *PAIN* 152: 990–1000.

778 89. Wang X, Guan S, Liu A, Yue J, Hu L, Zhang K, *et al.* (2019): Anxiolytic effects of
779 Formononetin in an inflammatory pain mouse model. *Mol Brain* 12: 36.

780 90. Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, *et al.* (2016):
781 CHD8 haploinsufficiency results in autistic-like phenotypes in mice. *Nature* 537: 675–679.

782 91. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, *et al.* (2012):
783 Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum
784 disorders. *Science* 338: 1619–1622.

785 92. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, *et al.* (2012):
786 Sporadic autism exomes reveal a highly interconnected protein network of de novo
787 mutations. *Nature* 485: 246–250.

788 93. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, *et al.*
789 (2012): Sequencing chromosomal abnormalities reveals neurodevelopmental loci that
790 confer risk across diagnostic boundaries. *Cell* 149: 525–537.

791 94. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, *et al.* (2012): Patterns and
792 rates of exonic de novo mutations in autism spectrum disorders. *Nature* 485: 242–245.

793 95. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, *et al.* (2014): Disruptive
794 CHD8 mutations define a subtype of autism early in development. *Cell* 158: 263–276.

795 96. Iwata R, Ohi K, Kobayashi Y, Masuda A, Iwama M, Yasuda Y, *et al.* (2014): RacGAP
796 α 2-chimaerin function in development adjusts cognitive ability in adulthood. *Cell Rep* 8:
797 1257–1264.

798 97. Vitaterna MH, King DP, Chang A-M, Kornhauser JM, Lowrey PL, McDonald JD, *et al.*
799 (1994): Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior.
800 *Science* 264: 719–725.

801 98. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, *et al.* (2007):
802 Mania-like behavior induced by disruption of CLOCK. *Proc Natl Acad Sci* 104: 6406–
803 6411.

804 99. Shi J, Wittke-Thompson JK, Badner JA, Hattori E, Potash JB, Willour VL, *et al.*
805 (2008): Clock genes may influence bipolar disorder susceptibility and dysfunctional
806 circadian rhythm. *Am J Med Genet B Neuropsychiatr Genet* 147B: 1047–1055.

807 100. Soria V, Martínez-Amorós È, Escaramís G, Valero J, Pérez-Egea R, García C, *et al.*
808 (2010): Differential association of circadian genes with mood disorders: CRY1 and NPAS2
809 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder.
810 *Neuropsychopharmacology* 35: 1279–1289.

811 101. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, *et al.*
812 (2009): Association study of clock gene (CLOCK) and schizophrenia and mood disorders
813 in the Japanese population. *Eur Arch Psychiatry Clin Neurosci* 259: 293.

814 102. Murray F, Smith DW, Hutson PH (2008): Chronic low dose corticosterone exposure
815 decreased hippocampal cell proliferation, volume and induced anxiety and depression like
816 behaviours in mice. *Eur J Pharmacol* 583: 115–127.

817 103. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L (2008): A mouse model of depression
818 induced by repeated corticosterone injections. *Eur J Pharmacol* 581: 113–120.

819 104. Antonijevic IA, Steiger A (2003): Depression-like changes of the sleep-EEG during
820 high dose corticosteroid treatment in patients with multiple sclerosis.
821 *Psychoneuroendocrinology* 28: 780–795.

822 105. Brown ES, J. Woolston D, Frol A, Bobadilla L, Khan DA, Hanczyc M, *et al.* (2004):
823 Hippocampal volume, spectroscopy, cognition, and mood in patients receiving
824 corticosteroid therapy. *Biol Psychiatry* 55: 538–545.

825 106. Brown ES, Suppes T (1998): Mood symptoms during corticosteroid therapy: a review.
826 *Harv Rev Psychiatry* 5: 239–246.

827 107. Nakamura H, Yamashita N, Kimura A, Kimura Y, Hirano H, Makihara H, *et al.*
828 (2016): Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice.
829 *Genes Cells* 21: 1059–1079.

830 108. Yoshida H, Watanabe A, Ihara Y (1998): Collapsin response mediator protein-2 Is
831 associated with neurofibrillary tangles in Alzheimer’s disease. *J Biol Chem* 273: 9761–
832 9768.

833 109. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y, Kuroda S (2003): The
834 human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with
835 paranoid-type schizophrenia. *Biol Psychiatry* 53: 571–576.

836 110. Nyuyki KD, Cluny NL, Swain MG, Sharkey KA, Pittman QJ (2018): Altered brain
837 excitability and increased anxiety in mice with experimental colitis: consideration of
838 hyperalgesia and sex differences. *Front Behav Neurosci* 12.
839 <https://doi.org/10.3389/fnbeh.2018.00058>

840 111. Shoji H, Toyama K, Takamiya Y, Wakana S, Gondo Y, Miyakawa T (2012):
841 Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice.
842 *BMC Res Notes* 5: 108.

843 112. St Clair D, Blackwood D, Muir W, Walker M, St Clair D, Muir W, *et al.* (1990):
844 Association within a family of a balanced autosomal translocation with major mental illness.
845 *The Lancet* 336: 13–16.

846 113. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CAM, *et al.* (2000):
847 Disruption of two novel genes by a translocation co-segregating with schizophrenia.
848 *Hum Mol Genet* 9: 1415–1423.

849 114. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R, *et al.* (2001):
850 Chromosome 1 loci in Finnish schizophrenia families. *Hum Mol Genet* 10: 1611–1617.

851 115. Krumm N, O’Roak BJ, Shendure J, Eichler EE (2014): A de novo convergence of
852 autism genetics and molecular neuroscience. *Trends Neurosci* 37: 95–105.

853 116. McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, Rajan D, *et al.* (2017):
854 Prevalence and architecture of de novo mutations in developmental disorders. *Nature* 542:
855 433–438.

856 117. Imoto Y, Segi-Nishida E, Suzuki H, Kobayashi K (2017): Rapid and stable changes in
857 maturation-related phenotypes of the adult hippocampal neurons by electroconvulsive
858 treatment. *Mol Brain* 10: 8.

859 118. Kobayashi K, Imoto Y, Yamamoto F, Kawasaki M, Ueno M, Segi-Nishida E, Suzuki
860 H (2016): Rapid and lasting enhancement of dopaminergic modulation at the hippocampal
861 mossy fiber synapse by electroconvulsive treatment. *J Neurophysiol* 117: 284–289.

862 119. Husain MM, Rush AJ, Fink M, Knapp R, Petrides G, Rummans T, *et al.* (2004):
863 Speed of response and remission in major depressive disorder with acute Electroconvulsive
864 therapy (ECT): A consortium for research in ECT (CORE) report. *J Clin Psychiatry* 65:
865 485–491.

866 120. Pagnin D, de Queiroz V, Pini S, Cassano GB (2004): Efficacy of ECT in depression: a
867 meta-analytic review. *J ECT* 20: 13–20.

868 121. Consortium TD-BFX, Bakker CE, Verheij C, Willemsen R, Helm R van der,
869 Oerlemans F, *et al.* (1994): Fmr1 knockout mice: a model to study fragile X mental
870 retardation. *Cell* 78: 23–33.

871 122. Taga T, Yamaguchi Y, Kokubo Y, Hattori S, Takao K, Inazawa J, *et al.* (2011):
872 Establishment of a new mouse model of neurodevelopmental disorder. *J Pharmacol Sci*
873 115: 35–35.

874 123. Sudo G, Kagawa T, Kokubo Y, Inazawa J, Taga T (2016): Increase in GFAP-positive
875 astrocytes in histone demethylase GASC1/KDM4C/JMJD2C hypomorphic mutant mice.
876 *Genes Cells* 21: 218–225.

877 124. Kantojärvi K, Onkamo P, Vanhala R, Alen R, Hedman M, Sajantila A, *et al.* (2010):
878 Analysis of 9p24 and 11p12-13 regions in autism spectrum disorders: rs1340513 in the
879 JMJD2C gene is associated with ASDs in Finnish sample. *Psychiatr Genet* 20: 102–108.

880 125. Nishizono H, Darwish M, Endo TA, Uno K, Abe H, Yasuda R (2020): Glycine
881 receptor α 4 subunit facilitates the early embryonic development in mice. *Reproduction* 159:
882 41.

883 126. Labonne JDJ, Graves TD, Shen Y, Jones JR, Kong I-K, Layman LC, Kim H-G
884 (2016): A microdeletion at Xq22.2 implicates a glycine receptor GLRA4 involved in

885 intellectual disability, behavioral problems and craniofacial anomalies. *BMC Neurol* 16:
886 132.

887 127. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, *et al.* (2010): Postnatal NMDA
888 receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. *Nat
889 Neurosci* 13: 76–83.

890 128. Begni S, Moraschi S, Bignotti S, Fumagalli F, Rilloi L, Perez J, Gennarelli M (2003):
891 Association between the G1001C polymorphism in the GRIN1 gene promoter region and
892 schizophrenia. *Biol Psychiatry* 53: 617–619.

893 129. Zhao X, Li H, Shi Y, Tang R, Chen W, Liu J, *et al.* (2006): Significant association
894 between the genetic variations in the 5' end of the N-Methyl-D-Aspartate receptor subunit
895 gene GRIN1 and schizophrenia. *Biol Psychiatry* 59: 747–753.

896 130. Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, Nishida A, *et al.* (2009):
897 Hyperbilirubinemia-related behavioral and neuropathological changes in rats: A possible
898 schizophrenia animal model. *Prog Neuropsychopharmacol Biol Psychiatry* 33: 581–588.

899 131. Müller N, Schiller P, Ackenheil M (1991): Coincidence of schizophrenia and
900 hyperbilirubinemia. *Pharmacopsychiatry* 24: 225–228.

901 132. Takao K, Kobayashi K, Hagihara H, Ohira K, Shoji H, Hattori S, *et al.* (2013):
902 Deficiency of Schnurri-2, an MHC enhancer binding protein, induces mild chronic
903 inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes
904 related to schizophrenia. *Neuropsychopharmacology* 38: 1409–1425.

905 133. Srivastava S, Engels H, Schanze I, Cremer K, Wieland T, Menzel M, *et al.* (2016):
906 Loss-of-function variants in *HIVEP2* are a cause of intellectual disability. *Eur J Hum Genet*
907 24: 556.

908 134. Steinfeld H, Cho MT, Rettner K, Person R, Schaefer GB, Danylchuk N, *et al.* (2016):
909 Mutations in *HIVEP2* are associated with developmental delay, intellectual disability, and
910 dysmorphic features. *Neurogenetics* 17: 159–164.

911 135. Fujisawa H, Sugimura Y, Takagi H, Mizoguchi H, Takeuchi H, Izumida H, *et al.*
912 (2015): Chronic hyponatremia causes neurologic and psychologic impairments. *J Am Soc
913 Nephrol* ASN.2014121196.

914 136. Izumida H, Takagi H, Fujisawa H, Iwata N, Nakashima K, Takeuchi S, *et al.* (2017):
915 NMDA receptor antagonist prevents cell death in the hippocampal dentate gyrus induced
916 by hyponatremia accompanying adrenal insufficiency in rats. *Exp Neurol* 287, Part 1: 65–
917 74.

918 137. Kawakami T, Fujisawa H, Nakayama S, Yoshino Y, Hattori S, Seino Y, *et al.* (2020):
919 Vasopressin escape and memory impairment in a model of chronic syndrome of
920 inappropriate secretion of antidiuretic hormone in mice. *Endocr J.*
921 <https://doi.org/10.1507/endocrj.EJ20-0289>

922 138. Fan S-S, Lin L-F, Chen VC-H, Hsieh C-W, Hsiao H-P, McIntyre RS, *et al.* (2020):
923 Effects of lower past-year serum sodium and hyponatremia on depression symptoms and
924 cognitive impairments in patients with hemodialysis. *Ther Apher Dial* 24: 169–177.

925 139. Fujisawa C, Umegaki H, Sugimoto T, Samizo S, Huang CH, Fujisawa H, *et al.* (2021):
926 Mild hyponatremia is associated with low skeletal muscle mass, physical function
927 impairment, and depressive mood in the elderly. *BMC Geriatr* 21: 15.

928 140. Yamanishi K, Doe N, Mukai K, Ikubo K, Hashimoto T, Uwa N, *et al.* (2019):
929 Interleukin-18-deficient mice develop hippocampal abnormalities related to possible
930 depressive-like behaviors. *Neuroscience* 408: 147–160.

931 141. Yamanishi K, Hashimoto T, Miyauchi M, Mukai K, Ikubo K, Uwa N, *et al.* (2020):
932 Analysis of genes linked to depressive-like behaviors in interleukin-18-deficient mice:
933 Gene expression profiles in the brain. *Biomed Rep* 12: 3–10.

934 142. Kretowski A, Mironczuk K, Karpinska A, Bojaryn U, Kinalski M, Puchalski Z,
935 Kinalski I (2002): Interleukin-18 promoter polymorphisms in type 1 diabetes. *Diabetes* 51:
936 3347–3349.

937 143. Chatterjee M, Ganguly S, Srivastava M, Palit G (2011): Effect of ‘chronic’ versus
938 ‘acute’ ketamine administration and its ‘withdrawal’ effect on behavioural alterations in
939 mice: Implications for experimental psychosis. *Behav Brain Res* 216: 247–254.

940 144. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001):
941 Effects of ketamine in normal and schizophrenic volunteers. *Neuropsychopharmacology*
942 25: 455–467.

943 145. Huang M, Kwon S, Rajagopal L, He W, Meltzer HY (2018): 5-HT1A parital agonism
944 and 5-HT7 antagonism restore episodic memory in subchronic phencyclidine-treated mice:
945 role of brain glutamate, dopamine, acetylcholine and GABA. *Psychopharmacology (Berl)*
946 235: 2795–2808.

947 146. Meltzer HY, Cucchiaro J, Silva R, Ogasa M, Phillips D, Xu J, *et al.* (2011):
948 Lurasidone in the treatment of schizophrenia: a randomized, double-blind, placebo- and
949 olanzapine-controlled study. *Am J Psychiatry* 168: 957–967.

950 147. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, *et al.* (2010):
951 Pharmacological profile of lurasidone, a novel antipsychotic agent with potent
952 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. *J Pharmacol Exp Ther* 334:
953 171–181.

954 148. Connor SA, Ammendrup-Johnsen I, Kishimoto Y, Karimi Tari P, Cvetkovska V,
955 Harada T, *et al.* (2017): Loss of synapse repressor MDGA1 enhances perisomatic inhibition,
956 confers resistance to network excitation, and impairs cognitive function. *Cell Rep* 21:
957 3637–3645.

958 149. Kähler AK, Djurovic S, Kulle B, Jönsson EG, Agartz I, Hall H, *et al.* (2008):
959 Association analysis of schizophrenia on 18 genes involved in neuronal migration:
960 MDGA1 as a new susceptibility gene. *Am J Med Genet B Neuropsychiatr Genet* 147B:
961 1089–1100.

962 150. Li J, Liu J, Feng G, Li T, Zhao Q, Li Y, *et al.* (2011): The MDGA1 gene confers risk
963 to schizophrenia and bipolar disorder. *Schizophr Res* 125: 194–200.

964 151. Hossain MR, Jamal M, Tanoue Y, Ojima D, Takahashi H, Kubota T, *et al.* (2020):
965 MDGA1-deficiency attenuates prepulse inhibition with alterations of dopamine and
966 serotonin metabolism: An ex vivo HPLC-ECD analysis. *Neurosci Lett* 716: 134677.

967 152. Connor SA, Ammendrup-Johnsen I, Chan AW, Kishimoto Y, Murayama C, Kurihara
968 N, *et al.* (2016): Altered cortical dynamics and cognitive function upon haploinsufficiency
969 of the autism-linked excitatory synaptic suppressor MDGA2. *Neuron* 91: 1052–1068.

970 153. Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI, Sonnenblick LI, *et al.*
971 (2009): Genome-wide analyses of exonic copy number variants in a family-based study
972 point to novel autism susceptibility genes. *PLOS Genet* 5: e1000536.

973 154. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, *et al.* (2010):
974 Functional impact of global rare copy number variation in autism spectrum disorders.
975 *Nature* 466: 368–372.

976 155. McClay JL, Adkins DE, Vunck SA, Batman AM, Vann RE, Clark SL, *et al.* (2013):
977 Large-scale neurochemical metabolomics analysis identifies multiple compounds
978 associated with methamphetamine exposure. *Metabolomics* 9: 392–402.

979 156. Glasner-Edwards S, Mooney LJ (2014): Methamphetamine psychosis: epidemiology
980 and management. *CNS Drugs* 28: 1115–1126.

981 157. Togashi K, Wakatsuki S, Furuno A, Tokunaga S, Nagai Y, Araki T (2013): Na+/H+
982 exchangers induce autophagy in neurons and inhibit polyglutamine-induced aggregate
983 formation. *PLOS ONE* 8: e81313.

984 158. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC
985 (2007): A neuroligin-3 mutation implicated in autism increases inhibitory synaptic
986 transmission in mice. *Science* 318: 71–76.

987 159. Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, *et al.* (2003):
988 Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated
989 with autism. *Nat Genet* 34: 27–29.

990 160. Südhof TC (2008): Neuroligins and neurexins link synaptic function to cognitive
991 disease. *Nature* 455: 903–911.

992 161. van West D, Van Den Eede F, Del-Favero J, Souery D, Norrback K-F, Van Duijn C,
993 *et al.* (2006): Glucocorticoid receptor gene-based SNP analysis in patients with recurrent
994 major depression. *Neuropsychopharmacology* 31: 620–627.

995 162. Huang FL, Huang K-P (2012): Methylphenidate improves the behavioral and
996 cognitive deficits of neurogranin knockout mice. *Genes Brain Behav* 11: 794–805.

997 163. Huang FL, Huang K-P, Wu J, Boucheron C (2006): Environmental enrichment
998 enhances neurogranin expression and hippocampal learning and memory but fails to rescue
999 the impairments of neurogranin null mutant mice. *J Neurosci* 26: 6230–6237.

1000 164. Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, *et al.* (2000):
1001 Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein

1002 kinase II, synaptic plasticity, and spatial learning: A study with knockout mice. *Proc Natl*
1003 *Acad Sci* 97: 11232–11237.

1004 165. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, *et al.*
1005 (2009): Common variants conferring risk of schizophrenia. *Nature* 460: 744–747.

1006 166. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014):
1007 Biological insights from 108 schizophrenia-associated genetic loci. *Nature* 511: 421–427.

1008 167. Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, *et al.* (2001):
1009 Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating
1010 polypeptide (PACAP). *Proc Natl Acad Sci* 98: 13355–13360.

1011 168. Hashimoto R, Hashimoto H, Shintani N, Ohi K, Hori H, Saitoh O, *et al.* (2010):
1012 Possible association between the pituitary adenylate cyclase-activating polypeptide
1013 (PACAP) gene and major depressive disorder. *Neurosci Lett* 468: 300–302.

1014 169. Hashimoto R, Hashimoto H, Shintani N, Chiba S, Hattori S, Okada T, *et al.* (2007):
1015 Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. *Mol*
1016 *Psychiatry* 12: 1026–1032.

1017 170. Bolton PF, Veltman MWM, Weisblatt E, Holmes JR, Thomas NS, Youings SA, *et al.*
1018 (2004): Chromosome 15q11-13 abnormalities and other medical conditions in individuals
1019 with autism spectrum disorders. *Psychiatr Genet* 14: 131–137.

1020 171. Cook Jr EH, Scherer SW (2008): Copy-number variations associated with
1021 neuropsychiatric conditions. *Nature* 455: 919–923.

1022 172. Dykens EM, Sutcliffe JS, Levitt P (2004): Autism and 15q11-q13 disorders:
1023 Behavioral, genetic, and pathophysiological issues. *Ment Retard Dev Disabil Res Rev* 10:
1024 284–291.

1025 173. Takumi T, Tamada K (2018): CNV biology in neurodevelopmental disorders. *Curr*
1026 *Opin Neurobiol* 48: 183–192.

1027 174. Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M (2013):
1028 Translating the N-methyl-d-aspartate receptor antagonist model of schizophrenia to
1029 treatments for cognitive impairment in schizophrenia. *Int J Neuropsychopharmacol* 16:
1030 2181–2194.

1031 175. Peterson RC, Stillman RC (1978): Phencyclidine: An overview. Phencyclidine Abuse:
1032 An Appraisal (ed. by Petersen, R.C., Stillman, R.C.). *NIDA Res Monogr 21 US Gov Print*
1033 *Off Wash DC* 1–17.

1034 176. Kasahara T, Takata A, Kato TM, Kubota-Sakashita M, Sawada T, Kakita A, *et al.* (2016): Depression-like episodes in mice harboring mtDNA deletions in paraventricular
1035 thalamus. *Mol Psychiatry* 21: 39–48.

1036 177. Kasahara T, Ishiwata M, Kakiuchi C, Fuke S, Iwata N, Ozaki N, *et al.* (2017):
1037 Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in
1038 bipolar disorder. *Psychiatry Clin Neurosci* 71: 518–529.

1039 178. Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T, *et al.*
1040 (2001): Forebrain-Specific Calcineurin Knockout Selectively Impairs Bidirectional
1041 Synaptic Plasticity and Working/Episodic-like Memory. *Cell* 107: 617–629.

1042 179. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, *et al.*
1043 (2003): Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related
1044 to schizophrenia. *Proc Natl Acad Sci* 100: 8987–8992.

1045 180. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, Tonegawa S
1046 (2003): Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene,
1047 PPP3CC, encoding the calcineurin gamma subunit. *Proc Natl Acad Sci* 100: 8993–8998.

1048 181. Asaoka N, Nishitani N, Kinoshita H, Nagai Y, Hataiama H, Nagayasu K, *et al.*
1049 (2019): An adenosine A2A receptor antagonist improves multiple symptoms of repeated
1050 quinpirole-induced psychosis. *eNeuro* 6. <https://doi.org/10.1523/ENEURO.0366-18.2019>

1051 182. Stuchlik A, Radostová D, Hatalova H, Vales K, Nekovarova T, Koprivova J, *et al.*
1052 (2016): Validity of quinpirole sensitization rat model of OCD: linking evidence from
1053 animal and clinical studies. *Front Behav Neurosci* 10: 209.

1054 183. Sakai K, Shoji H, Kohno T, Miyakawa T, Hattori M (2016): Mice that lack the
1055 C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric
1056 disorders. *Sci Rep* 6: 28636.

1057 184. Persico AM, D'Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C, *et al.*
1058 (2001): Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. *Mol*
1059 *Psychiatry* 6: 150–159.

1060

1061 185. Serajee FJ, Zhong H, Mahbubul Huq AHM (2006): Association of Reelin gene
1062 polymorphisms with autism. *Genomics* 87: 75–83.

1063 186. Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR, *et al.* (2002): Reelin
1064 gene alleles and susceptibility to autism spectrum disorders. *Mol Psychiatry* 7: 1012–1017.

1065 187. Goes FS, Willour VL, Zandi PP, Belmonte PL, MacKinnon DF, Mondimore FM, *et al.*
1066 (2010): Sex-specific association of the reelin gene with bipolar disorder. *Am J Med Genet B*
1067 *Neuropsychiatr Genet* 153B: 549–553.

1068 188. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, *et al.*
1069 (2008): Genome-wide association identifies a common variant in the Reelin gene that
1070 increases the risk of schizophrenia only in women. *PLOS Genet* 4: e28.

1071 189. Shoji H, Miyakawa T (2020): Differential effects of stress exposure via two types of
1072 restraint apparatuses on behavior and plasma corticosterone level in inbred male
1073 BALB/cAJcl mice. *Neuropsychopharmacol Rep* 40: 73–84.

1074 190. Sellmeijer J, Mathis V, Hugel S, Li X-H, Song Q, Chen Q-Y, *et al.* (2018):
1075 Hyperactivity of anterior cingulate cortex areas 24a/24b drives chronic pain-induced
1076 anxiodepressive-like consequences. *J Neurosci* 38: 3102–3115.

1077 191. Yalcin I, Megat S, Barthas F, Waltisperger E, Kremer M, Salvat E, Barrot M (2014):
1078 The sciatic nerve cuffing model of neuropathic pain in mice. *J Vis Exp JoVE*.
1079 <https://doi.org/10.3791/51608>

1080 192. Tatsukawa T, Raveau M, Ogiwara I, Hattori S, Miyamoto H, Mazaki E, *et al.* (2019):
1081 Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety,
1082 sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. *Mol*
1083 *Autism* 10: 15.

1084 193. Buxbaum JD, Daly MJ, Devlin B, Lehner T, Roeder K, State MW (2012): The autism
1085 sequencing consortium: large-scale, high-throughput sequencing in autism spectrum
1086 disorders. *Neuron* 76: 1052–1056.

1087 194. Tavassoli T, Kolevzon A, Wang AT, Curchack-Lichtin J, Halpern D, Schwartz L, *et al.*
1088 (2014): De novo SCN2A splice site mutation in a boy with Autism spectrum disorder. *BMC*
1089 *Med Genet* 15: 35.

1090 195. Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, *et al.* (2013):
1091 De novo mutations in epileptic encephalopathies. *Nature* 501: 217–221.

1092 196. Heron SE, Crossland KM, Andermann E, Phillips HA, Hall AJ, Bleasel A, *et al.*
1093 (2002): Sodium-channel defects in benign familial neonatal-infantile seizures. *The Lancet*
1094 360: 851–852.

1095 197. Sugawara T, Tsurubuchi Y, Agarwala KL, Ito M, Fukuma G, Mazaki-Miyazaki E, *et*
1096 *al.* (2001): A missense mutation of the Na⁺ channel α II subunit gene Nav1.2 in a patient
1097 with febrile and afebrile seizures causes channel dysfunction. *Proc Natl Acad Sci* 98: 6384–
1098 6389.

1099 198. de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, *et al.*
1100 (2012): Diagnostic exome sequencing in persons with severe intellectual disability. *N Engl*
1101 *J Med* 367: 1921–1929.

1102 199. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, *et al.* (2012):
1103 Range of genetic mutations associated with severe non-syndromic sporadic intellectual
1104 disability: an exome sequencing study. *The Lancet* 380: 1674–1682.

1105 200. Tanaka M, Sato A, Kasai S, Hagino Y, Kotajima-Murakami H, Kashii H, *et al.* (2018):
1106 Brain hyperserotonemia causes autism-relevant social deficits in mice. *Mol Autism* 9: 60.

1107 201. Bacchelli E, Maestrini E (2006): Autism spectrum disorders: Molecular genetic
1108 advances. *Am J Med Genet C Semin Med Genet* 142C: 13–23.

1109 202. Wiggins JL, Swartz JR, Martin DM, Lord C, Monk CS (2014): Serotonin transporter
1110 genotype impacts amygdala habituation in youth with autism spectrum disorders. *Soc Cogn*
1111 *Affect Neurosci* 9: 832–838.

1112 203. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, *et al.* (2011):
1113 Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. *Nature* 472:
1114 437–442.

1115 204. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, *et al.*
1116 (2007): Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are
1117 associated with autism spectrum disorders. *Nat Genet* 39: 25–27.

1118 205. Gauthier J, Spiegelman D, Piton A, Lafrenière RG, Laurent S, St-Onge J, *et al.* (2009):
1119 Novel de novo SHANK3 mutation in autistic patients. *Am J Med Genet B Neuropsychiatr*
1120 *Genet* 150B: 421–424.

1121 206. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, *et al.* (2007):
1122 Contribution of SHANK3 mutations to autism spectrum disorder. *Am J Hum Genet* 81:
1123 1289–1297.

1124 207. Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, *et al.* (2000):
1125 Identification of DNA variants in the SNAP-25 gene and linkage study of these
1126 polymorphisms and attention-deficit hyperactivity disorder. *Mol Psychiatry* 5: 405–409.

1127 208. Brophy K, Hawi Z, Kirley A, Fitzgerald M, Gill M (2002): Synaptosomal-associated
1128 protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of
1129 linkage and association in the Irish population. *Mol Psychiatry* 7: 913–917.

1130 209. Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S, *et al.* (2002): Association
1131 study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. *Am J Med*
1132 *Genet* 114: 269–271.

1133 210. Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF
1134 (2003): Biased paternal transmission of SNAP-25 risk alleles in attention-deficit
1135 hyperactivity disorder. *Mol Psychiatry* 8: 309–315.

1136 211. Mill J, Richards S, Knight J, Curran S, Taylor E, Asherson P (2004): Haplotype
1137 analysis of SNAP-25 suggests a role in the aetiology of ADHD. *Mol Psychiatry* 9: 801–
1138 810.

1139 212. Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R, *et al.* (2005): The
1140 SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity
1141 disorder. *Mol Psychiatry* 10: 998–1005.

1142 213. Hamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, *et al.*
1143 (2017): High rate of recurrent de novo mutations in developmental and epileptic
1144 encephalopathies. *Am J Hum Genet* 101: 664–685.

1145 214. Heyne HO, Singh T, Stamberger H, Abou Jamra R, Caglayan H, Craiu D, *et al.*
1146 (2018): De novo variants in neurodevelopmental disorders with epilepsy. *Nat Genet* 50:
1147 1048–1053.

1148 215. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, *et al.* (2012):
1149 Convergent functional genomics of schizophrenia: from comprehensive understanding to
1150 genetic risk prediction. *Mol Psychiatry* 17: 887–905.

1151 216. Houenou J, Boisgontier J, Henrion A, d'Albis M-A, Dumaine A, Linke J, *et al.*
1152 (2017): A multilevel functional study of a SNAP25 at-risk variant for bipolar disorder and
1153 schizophrenia. *J Neurosci* 37: 10389–10397.

1154 217. Kollack-Walker, Don, Watson, Akil (1999): Differential Expression of c-*fos* mRNA
1155 Within Neurocircuits of Male Hamsters Exposed to Acute or Chronic Defeat. *J*
1156 *Neuroendocrinol* 11: 547–559.

1157 218. Martinez M, Phillips PJ, Herbert J (1998): Adaptation in patterns of c-*fos* expression
1158 in the brain associated with exposure to either single or repeated social stress in male rats.
1159 *Eur J Neurosci* 10: 20–33.

1160 219. Golden SA, Covington HE, Berton O, Russo SJ (2011): A standardized protocol for
1161 repeated social defeat stress in mice. *Nat Protoc* 6: 1183–1191.

1162 220. Toyoda A (2017): Social defeat models in animal science: What we have learned from
1163 rodent models. *Anim Sci J* 88: 944–952.

1164 221. Furman BL (2015): Streptozotocin-induced diabetic models in mice and rats. *Curr*
1165 *Protoc Pharmacol* 70: 5.47.1-5.47.20.

1166 222. Lenzen S (2008): The mechanisms of alloxan- and streptozotocin-induced diabetes.
1167 *Diabetologia* 51: 216–226.

1168 223. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001): The prevalence of
1169 comorbid depression in adults with diabetes: a meta-analysis. *Diabetes Care* 24: 1069–
1170 1078.

1171 224. Miyamoto H, Shimohata A, Abe M, Abe T, Mazaki E, Amano K, *et al.* (2017):
1172 Potentiation of excitatory synaptic transmission ameliorates aggression in mice with Stxbp1
1173 haploinsufficiency. *Hum Mol Genet* 26: 4961–4974.

1174 225. Hoischen A, Krumm N, Eichler EE (2014): Prioritization of neurodevelopmental
1175 disease genes by discovery of new mutations. *Nat Neurosci* 17: 764–772.

1176 226. Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ, Cook J, *et al.* (2013):
1177 Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2
1178 and SYNGAP1. *Nat Genet* 45: 825–830.

1179 227. Saito H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, *et al.* (2008): De
1180 novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic
1181 encephalopathy. *Nat Genet* 40: 782–788.

1182 228. Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, *et al.*
1183 (2002): SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the
1184 complex with postsynaptic density 95 and NMDA receptor. *J Neurosci* 22: 9721–9732.

1185 229. Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T
1186 (2019): Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice.
1187 *Neuropsychopharmacol Rep* 39: 223–237.

1188 230. Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N (2002): Increased
1189 monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-
1190 exposed rat: Putative animal models for autism. *Pediatr Res* 52: 576–579.

1191 231. Tsugiyama LE, Ida-Eto M, Ohkawara T, Noro Y, Narita M (2020): Altered neuronal
1192 activity in the auditory brainstem following sound stimulation in thalidomide-induced
1193 autism model rats. *Congenit Anom* 60: 82–86.

1194 232. Strömlund K, Nordin V, Miller M, Akerström B, Gillberg C (1994): Autism in
1195 thalidomide embryopathy: a population study. *Dev Med Child Neurol* 36: 351–356.

1196 233. Okuda-Ashitaka E, Kakuchi Y, Kakimoto H, Yamanishi S, Kamada H, Yoshida T, *et*
1197 *al.* (2020): Mechanical allodynia in mice with tenascin-X deficiency associated with
1198 Ehlers-Danlos syndrome. *Sci Rep* 10: 6569.

1199 234. Kawakami K, Matsumoto K (2011): Behavioral alterations in mice lacking the gene
1200 for tenascin-X. *Biol Pharm Bull* 34: 590–593.

1201 235. Burch GH, Gong Y, Liu W, Dettman RW, Curry CJ, Smith L, *et al.* (1997): Tenascin-
1202 X deficiency is associated with Ehlers–Danlos syndrome. *Nat Genet* 17: 104–108.

1203 236. Tochigi M, Zhang X, Ohashi J, Hibino H, Otowa T, Rogers M, *et al.* (2007):
1204 Association study between the TNXB locus and schizophrenia in a Japanese population.
1205 *Am J Med Genet B Neuropsychiatr Genet* 144B: 305–309.

1206 237. Wang J, Sun S, Zhang L, Wang Z, Ye L, Liu L, *et al.* (2011): Further study of genetic
1207 association between the TNXB locus and schizophrenia. *Psychiatr Genet* 21: 216.

1208 238. Wei J, Hemmings GP (2004): TNXB locus may be a candidate gene predisposing to
1209 schizophrenia. *Am J Med Genet B Neuropsychiatr Genet* 125B: 43–49.

1210 239. Shimada T, Sugiura H, Yamagata K (n.d.): Inhibition of Rheb improved abnormal
1211 social behavior in astrocyte-specific Tsc1 knockout mice. *NEURO2019 42nd Annu Meet*
1212 *Jpn Neurosci Soc 62nd Annu Meet Jpn Soc Neurochem* PB-126.

1213 240. Crino PB, Nathanson KL, Henske EP (2006): The tuberous sclerosis complex. *N Engl*
1214 *J Med* 355: 1345–1356.

1215 241. Kotajima-Murakami H, Kobayashi T, Kashii H, Sato A, Hagino Y, Tanaka M, *et al.*
1216 (2019): Effects of rapamycin on social interaction deficits and gene expression in mice
1217 exposed to valproic acid in utero. *Mol Brain* 12: 3.

1218 242. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH,
1219 Vestergaard M (2013): Prenatal valproate exposure and risk of autism spectrum disorders
1220 and childhood autism. *JAMA* 309: 1696.

1221 243. Kanda Y (2013): Investigation of the freely available easy-to-use software “EZR” for
1222 medical statistics. *Bone Marrow Transplant* 48: 452–458.

1223

1224 **Figure legends**

1225 **Figure 1. Hierarchical clustering of 65 strains/conditions of animals regarding brain pH**
1226 **and lactate levels.** Effect size was calculated for each strain/condition and was used in this
1227 analysis. §The data of these mice have been reported previously (29).

1228 **Figure 2. Highly significant negative correlations between brain pH and lactate levels.**

1229 Scatter plot showing correlations between pH and lactate levels of 1,239 animals. A

1230 Z-score was calculated for each animal within the strain/condition and used in this study.

1231 **Figure 3. Poorer working memory predict higher brain lactate levels.** (a) Prediction of

1232 brain lactate levels from behavioral outcomes in the 24 mouse models related to

1233 neuropsychiatric disorders. The scatter plot shows significant correlations between

1234 predicted and actual lactate levels. (b) Feature preference for constructing the model to

1235 predict brain lactate levels. (c) Scatter plot showing correlations between working

1236 memory measures and actual brain lactate levels.

1237 **Supplementary Figure 1.** Bar graphs showing the raw mean (\pm sem) of brain pH. Each plot

1238 represents individual value. Asterisks indicate significant effects of the genotype/condition.

1239 * $p < 0.05$, ** $p < 0.01$; unpaired t-test, or one-way or two-way ANOVA followed by *post*

1240 *hoc* Tukey's multiple comparison test. Detailed statistics are presented in Supplementary

1241 Table 2. [§]The data of these mice have been reported previously (29).

1242 **Supplementary Figure 2.** Bar graphs showing the raw mean (\pm sem) of brain lactate levels.

1243 Each plot represents an individual value. Asterisks indicate significant effects of the

1244 genotype/condition. * $p < 0.05$, ** $p < 0.01$; unpaired t-test, or one-way or two-way ANOVA

1245 followed by *post hoc* Tukey's multiple comparison test. Detailed statistics are presented in

1246 Supplementary Table 2. [§]The data of these mice have been reported previously (29).

1247 **Supplementary Figure 3.** Normal distribution of effect size values of 65 animal models (a,

1248 pH: D = 0.12, p = 0.30; b, lactate: D = 0.15, p = 0.093)

1249 **Supplementary Figure 4.** No significant correlations between the number of transitions in

1250 the light/dark transition test (a), immobility in the forced swim test (b) and actual brain

1251 lactate levels of 24 mouse strains used for prediction analysis

1252 **Supplementary Figure 5.** Scatter plots showing correlations between age at sampling and

1253 pH (a), and lactate levels (b) in wild type/control mice

1254 **Supplementary Figure 6.** Dot plots showing pH (a) and lactate levels (b) of female and

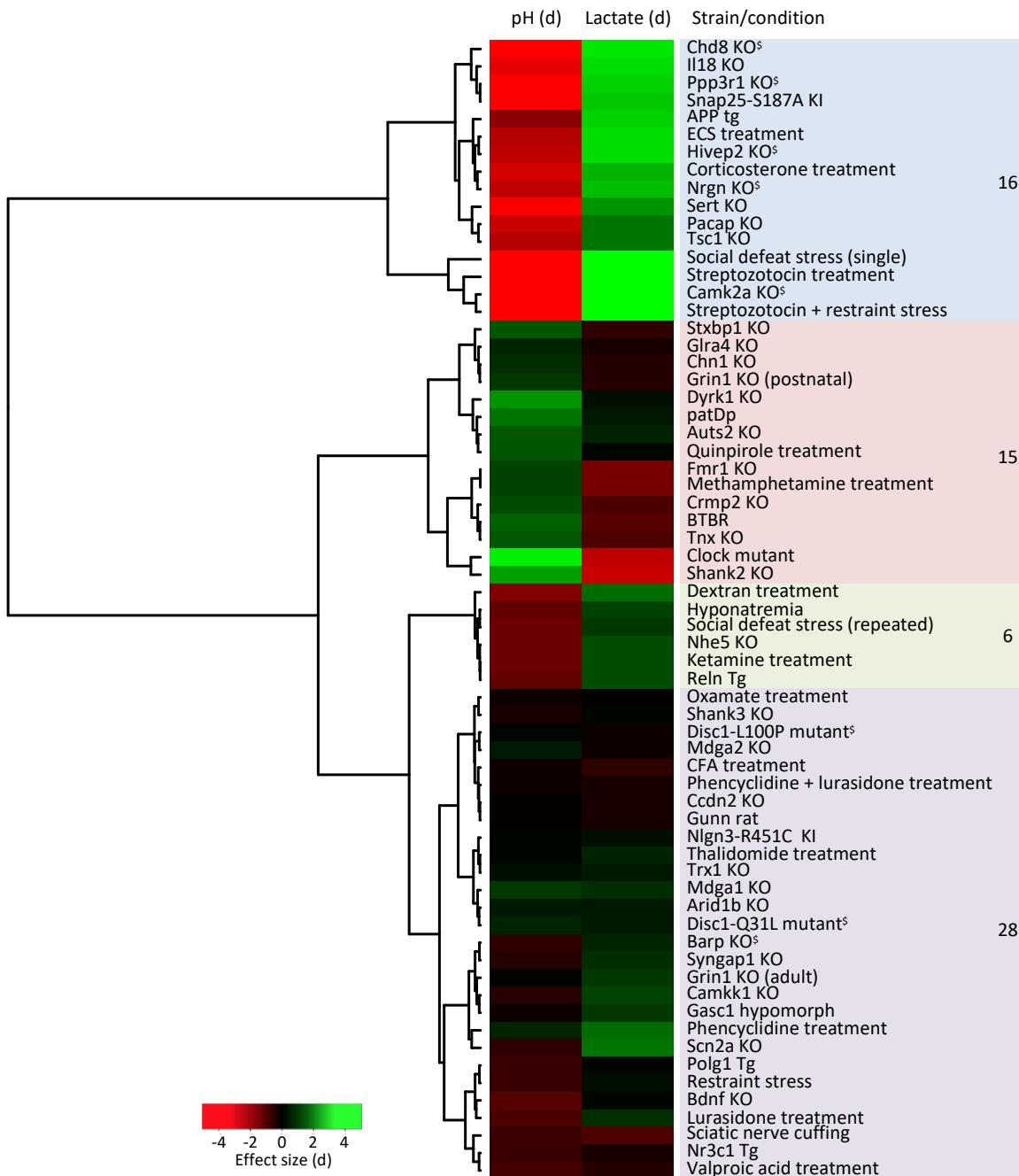
1255 male animals in 17 mixed gender strains/conditions. Bars indicate means

1256

1257 **Table 1.** Animal models used in this study

1258 **Supplementary Table 1.** Raw data of brain pH and lactate, and detailed information of the

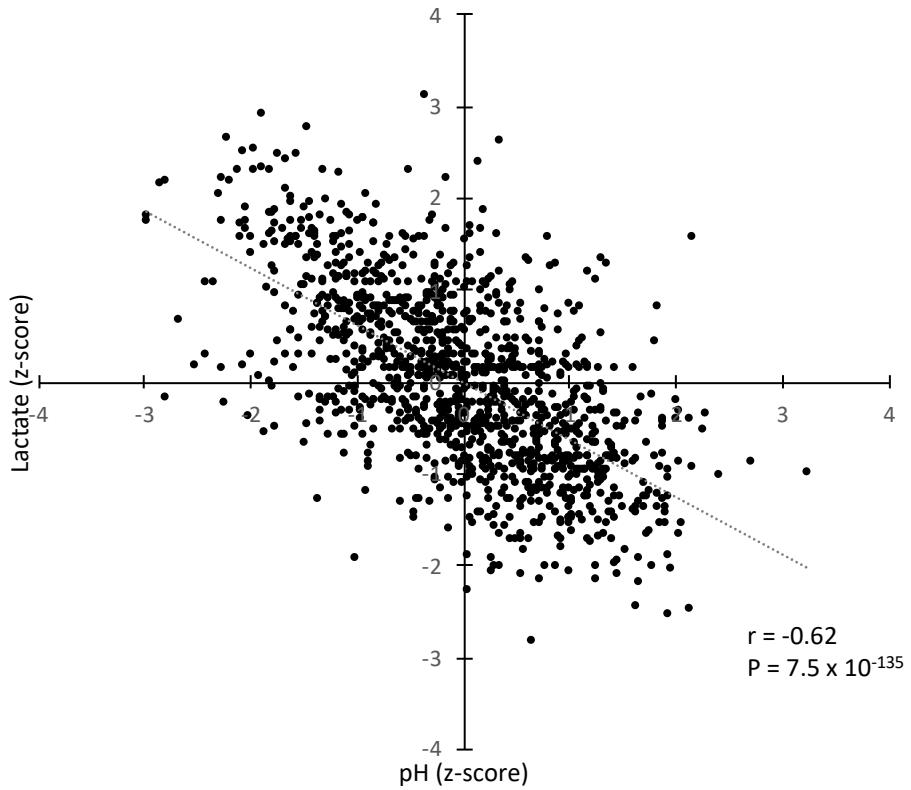
1259 animals (age, sex, and treatment methods)


1260 **Supplementary Table 2.** Detailed statistics of pH and lactate measurements in 65 animal

1261 models

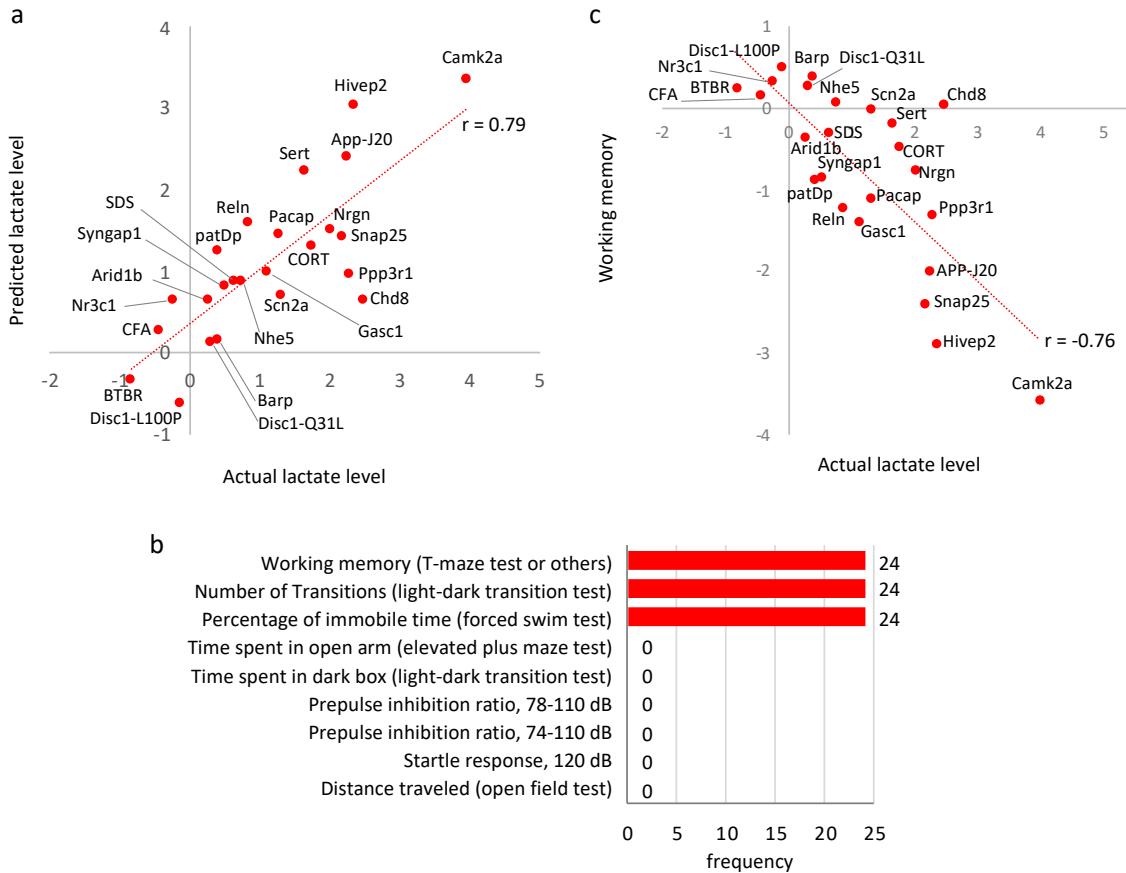
1262 **Supplementary Table 3.** Source of behavioral data used for prediction analysis

1263


1264 Figure 1

1265

1266


1267 Figure 2

1268

1269

1270 Figure 3

1271

1272