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Abstract 
 

When using fluorescent microscopy to study cellular dynamics, trade-offs typically have to be 

made between light exposure and quality of recorded image to balance phototoxicity and image 

signal-to-noise ratio. Image denoising is an important tool for retrieving information from dim live 

cell images. Recently, deep learning based image denoising is becoming the leading method 

because of its promising denoising performance, achieved by leveraging available prior knowledge 

about the noise model and samples at hand. We demonstrate that incorporating temporal 

information in the model can further improve the results. However, the practical application of this 

method has seen challenges because of the requirement of large, task-specific training datasets. In 

this work, addressed this challenge by combining self-supervised learning with transfer learning, 

which eliminated the demand of task-matched training data while maintaining denoising 

performance. We demonstrate its application in fluorescent imaging of different subcellular 

structures.  
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Introduction 

Fluorescence microscopy is an indispensable technique for studying biological dynamics, or 

detecting and quantifying molecules in subcellular compartments. Recent advances such as light-

sheet microscopy [1, 2] and super-resolution microscopy [3] have enabled subcellular fluorescence 

imaging at a high temporal and/or spatial resolution. Photobleaching of the fluorophores limits the 

total amount of signal that can be extracted from a biological sample. In addition, for live imaging, 

phototoxicity, such as failure or delay of cell division or perturbation of biological processes, can 

occur well before substantial photobleaching is observed [4, 5]. Therefore, a trade-off has to be 

made between light exposure and quality of the recorded image. In many cases, e.g. when tracking 

a very rapid process over a long period of time or when the abundance of the target molecule is 

low, the resultant images could become extremely noisy. In these cases, image denoising is 

important to enable extracting useful information from the data [6-8]. 

Deep learning based processing of microscopy images has recently emerged as a powerful 

approach for a variety of tasks [9-12]. This approach has demonstrated promising denoising 

performance by learning the structure and noise characteristics for a particular type of sample and 

experimental condition. Content-Aware Restoration (CARE) is a typical example of this method 

[8]; a convolutional neural network (CNN) is trained with a large number of noisy and clean image 

pairs. With this data-driven prior knowledge, the network learns to statistically transform noisy 

pixels to clean ones. Still, this strategy poses two practical challenges. First, the performance of a 

deep learning system greatly depends on the amount and quality of the training dataset [6]. 

Typically, hundreds to thousands of noisy and clean image pairs relevant to the task are needed 

for fluorescence microscopy denoising. Acquiring such training data sets requires intensive effort 

and often dedicated experiments [8]. Moreover, it is not always possible to acquire clean images 

due to intrinsic constraints of certain samples. Second, supervised neural networks often have 

trouble generalizing to images not present or adequately represented in the training data set. They 

can easily memorize the training data and be tuned to prior content [6, 8]. However, when applied 

to real images acquired under different conditions or from other types of cellular structures, 

hallucination artifacts can occur, producing results that appear real but are incorrect. This issue not 

only signifies the burden of high quality, matched training data acquisition, but also casts doubt 

on the ability for denoising by supervised learning to discover previously unknown biological 

phenomena.  

More recently, self-supervised deep learning image denoising methods have been developed to 

address these challenges [13, 14]. These methods utilize the independence of noise among noisy 

images of the same sample or pixels across the same image, so that only noisy images are needed 

for training. This approach eliminates the need to acquire clean training datasets and can even rely 

solely on the images to be denoised as the training data. However, compared to supervised learning 

using matching training data sets, the denoising performance of these self-supervised learning 

methods is degraded due to the absence of prior knowledge that could be learned from the training 

data set [13]. 

Here, we first showed that incorporating additional temporal information into supervised 

learning improves denoising performance, though it still suffers from intrinsic limitations of 
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supervised learning. Then, we present a denoising method that leverages transfer learning to take 

advantage of both supervised and self-supervised learning. The method first pre-trains a deep 

neural network with generic and/or synthetic noisy/clean cellular image pairs using supervised 

learning. It then re-trains this network with the noisy images from the specific task using self-

supervised learning. We demonstrate that this scheme can assimilate information regarding image 

resolution, noise statistics and sample morphology from the two training steps, thus achieving 

superior denoising performance and robustness than either supervised or self-supervised learning 

alone, while negating the need for task-specific training datasets.  

 

 

Results 

Limited improvement of supervised learning denoising with additional temporal 

information 

In our initial efforts to improve image denoising performance of supervised deep learning, we took 

advantage of the temporal consistency of structures in living cells. To capture the redundant 

information across images in a sequence, we used the classical U-Net architecture [15] similar to 

that in CARE [8] and expanded the network to include time as an additional dimension. We 

referred to this architecture as timeUnet. (Supplementary Fig. 1. See Supplementary Note for 

details of the implementation). In timeUnet, a 2D image sequence is treated as a 3D data set, with 

the network predicting one denoised image from a sliding window of 11 images in the sequence. 

To benchmark the performance, we generated synthetic noisy image sequences by adding Poisson 

shot noise and calibrated sCMOS camera noise to experimental high signal-to-noise ratio (SNR) 

confocal movies of mitochondria in cells. Synthetic images with various SNR, achieved by linearly 

scaling the image peak intensity to a desired value, were used to test the denoising performance 

across a range of SNRs. We demonstrate that, rather unsurprisingly, timeUnet out-performed 

CARE, which denoises individual images (Supplementary Fig. 2). In the entire range of input SNR 

tested, timeUnet consistently produced lower Mean Averaged Error (MAE) and higher Structural 

Similarity Index Measurement (SSIM) [16] values when comparing the denoised images to the 

ground truths (Supplementary Fig. 3). In particular, the addition of time-domain information 

clearly helped reducing denoising artifacts, correctly recovering images of discrete mitochondria 

that were connected in the CARE result (Supplementary Fig. 2). Such artifacts could be highly 

detrimental in the study of certain biological processes such as mitochondria fission and fusion. 

Despite the improved performance, timeUnet retains the drawbacks of supervised learning. A 

large library of paired noisy and clean movies is still needed. Moreover, this library must match 

the condition of the actual denoising task. For example, any difference between the SNR of the 

training and test input data leads to a degradation of denoising performance for both CARE and 

timeUnet (Supplementary Fig. 4a). Particularly, applying the model to test data with higher SNR 

than the training data actually produced quantitatively worse denoising results than those from test 

data with matching (and lower) SNR (Supplementary Fig. 4c). This phenomenon is highly 
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concerning for practical applications because it means any variabilities in sample or experimental 

conditions are detrimental even if they improve input data quality. In contrast, self-supervised 

learning using noise2self [13] performs more consistently over the SNR range of input data, 

although in the case when the SNR of training and test data sets are matched, supervised learning 

clearly yields better results (Supplementary Fig. 4c).  

 

Image denoising by combining self-supervised learning and transfer learning 

In order to combine the benefits of both supervised and self-supervised learning, we connected 

them using transfer learning. For this purpose, we took advantage of the fact that an identical U-

Net architecture can be used for supervised learning [8] as well as self-supervised learning by 

noise2self [13]. The only difference is that the input and output of supervised training are a pair of 

noisy and clean images, whereas those of noise2self come from the same noisy image split by a 

pixel mask. To enable transfer learning, we first trained a network by supervised learning using 

generic cellular microscopy images. Then, for each denoising task, we retrain this network by 

noise2self using the task image set (Fig. 1a). We compared the performance to the previous 

noise2self method, which initializes network parameters with random values for self-supervised 

training.  

Specifically, we still used the U-Net architecture. For training at the supervised learning stage, 

we chose a publicly available dataset, FMD [17], which contains pairs of noisy and clean images 

from various sample features (subcellular structures of nuclei, F-actin, mitochondria; brain slices 

and zebrafish) and image acquisition settings (confocal, two-photon, wide-field) (Supplementary 

Fig. 5). The FMD dataset effectively contains 60,000 noisy image realizations from 240 fields-of-

view. For the self-supervised learning stage, we retrained the network by noise2self [13] on a test 

data set of 10 synthetic noisy images generated from high SNR experimental images in a similar 

way as described earlier. The retrained network generated denoised images for the same test data 

set (Fig. 1(b)). Compared to self-supervised learning alone (random initialization of parameters) 

and using the original high-SNR images as ground truth, transfer learning decreased the Mean 

Square Error (MSE) loss and provided a higher (Fig.1(c)). This indicates that prior information 

embedded in the pretrained network contributes to inferring lost information in the noisy 

measurements. The most prominent visual difference, though, is that denoising results by transfer 

learning clearly had much better effective spatial resolution (Fig. 1(b)), i.e., more recovery of high 

spatial frequency components. This visual impression was confirmed by quantifying the average 

Fourier Ring Correlation (FRC) between the denoised images and the ground truth, which 

quantifies the effective image resolution [18] (Fig. 1(c)). To further test the tolerance on pretraining 

data, we generated a set of simulated fluorescence microscopy images containing curve lines 

resembling microtubules (Supplementary Fig. 6) as the pre-training dataset before self-supervised 

retraining. Although the resulted denoising performance was slightly worse than FMD-pretrained 

model, it still out-performed the no-pretraining model in all three metrics (Fig. 1(c)). 
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Fig. 1 Diagram and performance of transfer learning denoising. (a) Schematic of the transfer learning method. (b) 

Synthetic noisy images from microtubule confocal images and corresponding denoised images with transfer learning 

denoising from pre-training using the FMD dataset, compared to self-supervised denoising without pre-training. (c) 

The denoising performance, in terms of Mean Squared Error (MSE, lower value for less deviation from ground 

truth), Structure Similarity Index Measurement (SSIM, high value for better similarity with ground truth) and mean 

Fourier Ring Correlation (FRC, higher value for better resolution of the output image), as a function of the peak 

signal of synthetic noisy image. Error bars represent standard deviations from 10 test images. The cell and tissue 

cartoons in (a) were created at BioRender.com. 
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We performed similar tests on synthetic images based on confocal images of lysosome 

structures, which are also absent in the FMD dataset. Our results showed the same trends as those 

from microtubule images, with transfer learning clearly outperforming self-supervised learning 

without pretraining in all three metrics (Fig. 2). It is also evident that, in the case of pre-training 

using simulated images of curved lines, self-supervised retraining on noisy lysosome images can 

allow the model to correctly restore the punctate appearance of lysosomes despite their drastic 

morphology difference from the curved lines used in pretraining. Another benefit of pretraining is 

the stability of performance in repetitive tests on the same set of synthetic noisy lysosome images. 

For transfer learning self-supervision, each self-supervised training rerun gave almost exactly the 

same output (indicated by the almost invisible error bar in Fig. 2(b)); meanwhile the output from 

the no-pretraining model is not stable at all due to the random initialization. Thus, transfer learning 

also acts as a stabilization of the denoising performance. 

 

Fig.2 Performance of self-supervised deep denoising with transfer learning on lysosome images. (a) Synthetic noisy 

images from ground truth lysosome confocal images and denoising results from transfer-learning models pretrained 

with either the FMD dataset or simulated curved-line dataset, compared to denoising by self-supervised learning along 

without pre-training. Noisy images with three different levels of peak signal (photons) are shown. (b) The denoising 

performance, in terms of MSE, SSIM and mean FRC, as a function of the peak signal of the input noisy image. Error 

bars represent standard deviations from 10 repeated re-runs of the self-supervised training. 

0.00025

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0.00075

0.00050

0.00125

0.00175

0.00100

0.00150

0.00200

0.80

0.85

0.90

0.95

0.4

0.5

0.6

0.7

b
Self-supervised learning alone

Transfer learning from FMD data

Transfer learning from simulated data

Peak signal (photon) Peak signal (photon) Peak signal (photon)

M
e

a
n

 F
R

C

S
S

IM

M
S

E

Noisy Groundtruth

P
e

a
k
 p

h
o

to
n

 1
0

P
e

a
k
 p

h
o

to
n
 2

0
P

e
a
k
 p

h
o

to
n
 5

0

a

4 µm

Transfer learning

from FMD data

Transfer learning

from simulated data

Self-supervised

learning alone

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.01.429188doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429188
http://creativecommons.org/licenses/by-nc/4.0/


To identify what was learned by the model during the pretraining and retraining stages, we 

applied the FMD- and simulated-pretrained model directly to the denoising of microtubule and 

lysosome images without self-supervised retraining. The denoised images clearly had numerous 

morphological artifacts (Supplementary Fig. 7). The FMD-pretrained model output did not display 

well-defined structures, whereas the simulation-pretrained model generates short segments of 

curved lines (despite that lysosomes should appear as small spots). Such artifacts are 

understandable because neither microtubule nor lysosome were present in the images we used 

from FMD for training, and the simulated pretraining data were curved lines. Compared to the 

transfer learning results, the retraining using self-supervised learning effectively adapted the 

pretraining models to the morphology and noise statistics of unseen application data. On the other 

hand, the major difference between self-supervised denoising with or without transfer learning is 

the image resolution as measured by FRC. It suggests that self-supervised training implicitly 

learned a lower image resolution than the actual image resolution because of the corruption of 

high-frequency information in the images by the noise, while supervised learning on clean images 

correctly learns the image resolution. This knowledge on image resolution can be effectively 

transferred to the re-trained model.  

 

Fig.3 The MSE, SSIM and mean FRC denoising performance as a function of training data size used during the self-

supervised training phase. Error bars represent standard deviations from 10 test images. 

 

 

Fig.4 The MSE, SSIM and mean FRC denoising performance as a function of peak signal in synthetic noisy images 

when L1 is used as loss function instead of L2. Error bars represent standard deviations from 10 test images. 
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Robustness of transfer learning denoising 

To characterize the robustness our approach, we tested the effect of self-supervised training data 

sizes on denoising performance of microtubule images (Fig. 3). Surprisingly the denoising 

performance does not show an obvious increase with the increase of training data size in the ranges 

of 1 to 50 test images, which indicates single-shot self-supervised denoising is possible. We also 

evaluated the denoising performance when L1 loss is used for the self-supervised training. 

Generally, L1 loss can better restore sharp features from noisy data compared to L2 loss. In this 

case, the denoising performance from transfer learning self-supervised model is still much better 

than the no-pretraining model (Fig. 4), indicating that the source of performance improvement is 

not in the loss function but because of transfer learning. To appreciate the limits of our proposed 

training strategy (Fig. 1(a)), we note that our method has limited denoising performance for images 

with extremely low SNRs. At extremely low SNR conditions, very little useful information is in 

the image and there is not an adequate prior encoded in the pretrained network parameters. This 

problem potentially can be solved by including more low-SNR images in the pretraining dataset. 

 

Discussion 

Despite tremendous successes, there are two major barriers for employing deep learning in 

biological investigations. First, current deep learning approaches typically do not generalize well 

to data obtained from different samples (Supplementary Fig. 7), different microscopes or under 

different image acquisition conditions (Supplementary Fig. 4) [6]. While large, diverse training 

datasets can help solve many of these issues, they are often unavailable for biological studies. On 

the other hand, the transfer learning approach [11, 19] can practically enable cross-study 

generalization and information sharing. Second, generating noisy and ground truth image pairs for 

supervised training is not always practical. For example, for live sample imaging, it is impossible 

to acquire such image pairs without system hardware modifications. For this reason, self-

supervised learning becomes very attractive in eliminating the need for ground truth images. As a 

result, we took the approach of transfer learning to blend supervised training and self-supervised 

training to make our method practical and robust. We demonstrated that knowledge of the image 

high-frequency components are transferrable from the supervised to self-supervised learning 

phase. With this transferred information, we achieve blind denoising for new tasks just using a few 

snapshots of noisy images.  

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.01.429188doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429188
http://creativecommons.org/licenses/by-nc/4.0/


Methods 

Dataset for supervised pretraining 

We used Fluorescence Microscopy Dataset (FMD) data set to perform the supervised 

pretraining. The dataset is downloaded from [17]. We choose this dataset because: (1) the dataset 

consists of representing images of multiple commonly imaged types of samples (cells, zebrafish, 

and mouse brain tissues) and multiple commonly used imaging modalities (commercial confocal, 

two-photon, and wide-field microscopes); (2) the dataset has multiple signal-to-noise ratio 

realizations of the same imaged scenes. The dataset composes of images from 240 field-of-views 

(FOV). For each FOV, 50 noisy camera frames were taken, and then image averaging was used to 

effectively generate the ground truth image and noisy images with various SNR.   

In addition to the FMD dataset, we also generated simulation images of curved lines to test the 

capability of transferring sharp features of our framework. In the simulation, each image is 

generated by firstly convolving a normalized Gaussian point spread function (standard deviation 

of 1 pixel) with an object image that consists of random 10 curved lines with various lengths. Then 

the peak intensity in the image is linearly scaled to a desired value, and Poisson noise and calibrated 

sCMOS readout and gain noise is added to the image. 

Generating synthetic subcellular structure images for self-supervised training and testing 

In order to evaluate the performance of our framework, we first acquired high SNR confocal 

images of subcellular structures of mitochondria and lysosome. We seeded human HEK 293T cells 

on an 8-well glass bottom chamber (LabTek). In order to achieve better cell attachment, 8-well 

chamber was coated with Poly-L-Lysine (Sigma-Aldrich) for 20 mins before seeding cells. For 

microtubule staining, SiR-tubulin dye (Cytoskeleton) was added directly to the culture medium 

(100 nM final concentration) and incubate overnight before imaging. For lysosome staining, 

LysoTracker Blue DND-22 (Thermo Fisher Scientific) was added directly to the culture medium 

(50 nM final concentration) and incubate for 30 mins before imaging. Live-cell imaging was 

acquired on an inverted Nikon Ti-E microscope (UCSF Nikon Imaging Center), a Yokogawa 

CSU-W1 confocal scanner unit, a PlanApo VC 100x/1.4NA oil immersion objective, a stage 

incubator, an Andor Zyla 4.2 sCMOS camera and MicroManager software. 

Then we synthesized noisy images from high SNR clean images to perform the self-supervised 

training and evaluate the results. The peak intensity in the image is again linearly scaled to a desired 

peak signal value, and Poisson shot noise and calibrated sCMOS readout and gain noise (based on 

the camera specifications) was added to the image using a Gaussian random number generator. 

Neural network architecture and training 

We used an U-Net architecture implemented in noise2self paper [13, 15]. Each convolutional 

block consisted of two convolutional layers with 3x3 filters followed by an InstanceNorm. The 

number of channels was [32, 64, 128, 256]. Down-sampling used strided convolutions and up-

sampling used transposed convolutions. The network was implemented in PyTorch. For 

supervised training, the loss is mean square error. Learning rate was set to 0.001. We trained with 

a batch size of 32 and 50 epochs. 
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We used the noise2self self-supervised training strategy. In practice, a masked image, in which 

a selected subset of pixels was set to zeros, was output to the neural network. The loss was only 

evaluated on the coordinates of that subset of pixels that are set to zeros. During training, the 

masked pixels were cycled to make sure a heterogeneous denoising performance over the whole 

image. In this way, the training process avoids identical map of the input and only relies on the 

independence between pixels. In this self-supervised training, the loss can be in a different form 

with supervised training if necessary. The learning rate was 0.0001, an order of magnitude smaller 

than supervised learning for network parameters fine-tuning. Because the self-supervised training 

was done use a few snapshots of noisy images alone, these images were processed in a single batch 

and early stopping with a patience number of 8 used. 

Data and code availability 

Python codes for timeUnet, generation of the simulated training data, transfer learning and 

quantification of model performances, together with test data, are available at 

https://github.com/BoHuangLab/Transfer-Learning-Denoising/. 
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