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Abstract

When using fluorescent microscopy to study cellular dynamics, trade-offs typically have to be
made between light exposure and quality of recorded image to balance phototoxicity and image
signal-to-noise ratio. Image denoising is an important tool for retrieving information from dim live
cell images. Recently, deep learning based image denoising is becoming the leading method
because of its promising denoising performance, achieved by leveraging available prior knowledge
about the noise model and samples at hand. We demonstrate that incorporating temporal
information in the model can further improve the results. However, the practical application of this
method has seen challenges because of the requirement of large, task-specific training datasets. In
this work, addressed this challenge by combining self-supervised learning with transfer learning,
which eliminated the demand of task-matched training data while maintaining denoising
performance. We demonstrate its application in fluorescent imaging of different subcellular
structures.
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Introduction

Fluorescence microscopy is an indispensable technique for studying biological dynamics, or
detecting and quantifying molecules in subcellular compartments. Recent advances such as light-
sheet microscopy [1, 2] and super-resolution microscopy [3] have enabled subcellular fluorescence
imaging at a high temporal and/or spatial resolution. Photobleaching of the fluorophores limits the
total amount of signal that can be extracted from a biological sample. In addition, for live imaging,
phototoxicity, such as failure or delay of cell division or perturbation of biological processes, can
occur well before substantial photobleaching is observed [4, 5]. Therefore, a trade-off has to be
made between light exposure and quality of the recorded image. In many cases, e.g. when tracking
a very rapid process over a long period of time or when the abundance of the target molecule is
low, the resultant images could become extremely noisy. In these cases, image denoising is
important to enable extracting useful information from the data [6-8].

Deep learning based processing of microscopy images has recently emerged as a powerful
approach for a variety of tasks [9-12]. This approach has demonstrated promising denoising
performance by learning the structure and noise characteristics for a particular type of sample and
experimental condition. Content-Aware Restoration (CARE) is a typical example of this method
[8]; a convolutional neural network (CNN) is trained with a large number of noisy and clean image
pairs. With this data-driven prior knowledge, the network learns to statistically transform noisy
pixels to clean ones. Still, this strategy poses two practical challenges. First, the performance of a
deep learning system greatly depends on the amount and quality of the training dataset [6].
Typically, hundreds to thousands of noisy and clean image pairs relevant to the task are needed
for fluorescence microscopy denoising. Acquiring such training data sets requires intensive effort
and often dedicated experiments [8]. Moreover, it is not always possible to acquire clean images
due to intrinsic constraints of certain samples. Second, supervised neural networks often have
trouble generalizing to images not present or adequately represented in the training data set. They
can easily memorize the training data and be tuned to prior content [6, 8]. However, when applied
to real images acquired under different conditions or from other types of cellular structures,
hallucination artifacts can occur, producing results that appear real but are incorrect. This issue not
only signifies the burden of high quality, matched training data acquisition, but also casts doubt
on the ability for denoising by supervised learning to discover previously unknown biological
phenomena.

More recently, self-supervised deep learning image denoising methods have been developed to
address these challenges [13, 14]. These methods utilize the independence of noise among noisy
images of the same sample or pixels across the same image, so that only noisy images are needed
for training. This approach eliminates the need to acquire clean training datasets and can even rely
solely on the images to be denoised as the training data. However, compared to supervised learning
using matching training data sets, the denoising performance of these self-supervised learning
methods i1s degraded due to the absence of prior knowledge that could be learned from the training
data set [13].

Here, we first showed that incorporating additional temporal information into supervised
learning improves denoising performance, though it still suffers from intrinsic limitations of
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supervised learning. Then, we present a denoising method that leverages transfer learning to take
advantage of both supervised and self-supervised learning. The method first pre-trains a deep
neural network with generic and/or synthetic noisy/clean cellular image pairs using supervised
learning. It then re-trains this network with the noisy images from the specific task using self-
supervised learning. We demonstrate that this scheme can assimilate information regarding image
resolution, noise statistics and sample morphology from the two training steps, thus achieving
superior denoising performance and robustness than either supervised or self-supervised learning
alone, while negating the need for task-specific training datasets.

Results

Limited improvement of supervised learning denoising with additional temporal
information

In our initial efforts to improve image denoising performance of supervised deep learning, we took
advantage of the temporal consistency of structures in living cells. To capture the redundant
information across images in a sequence, we used the classical U-Net architecture [15] similar to
that in CARE [8] and expanded the network to include time as an additional dimension. We
referred to this architecture as timeUnet. (Supplementary Fig. 1. See Supplementary Note for
details of the implementation). In timeUnet, a 2D image sequence is treated as a 3D data set, with
the network predicting one denoised image from a sliding window of 11 images in the sequence.
To benchmark the performance, we generated synthetic noisy image sequences by adding Poisson
shot noise and calibrated sSCMOS camera noise to experimental high signal-to-noise ratio (SNR)
confocal movies of mitochondria in cells. Synthetic images with various SNR, achieved by linearly
scaling the image peak intensity to a desired value, were used to test the denoising performance
across a range of SNRs. We demonstrate that, rather unsurprisingly, timeUnet out-performed
CARE, which denoises individual images (Supplementary Fig. 2). In the entire range of input SNR
tested, timeUnet consistently produced lower Mean Averaged Error (MAE) and higher Structural
Similarity Index Measurement (SSIM) [16] values when comparing the denoised images to the
ground truths (Supplementary Fig. 3). In particular, the addition of time-domain information
clearly helped reducing denoising artifacts, correctly recovering images of discrete mitochondria
that were connected in the CARE result (Supplementary Fig. 2). Such artifacts could be highly
detrimental in the study of certain biological processes such as mitochondria fission and fusion.

Despite the improved performance, timeUnet retains the drawbacks of supervised learning. A
large library of paired noisy and clean movies is still needed. Moreover, this library must match
the condition of the actual denoising task. For example, any difference between the SNR of the
training and test input data leads to a degradation of denoising performance for both CARE and
timeUnet (Supplementary Fig. 4a). Particularly, applying the model to test data with higher SNR
than the training data actually produced quantitatively worse denoising results than those from test
data with matching (and lower) SNR (Supplementary Fig. 4c). This phenomenon is highly
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concerning for practical applications because it means any variabilities in sample or experimental
conditions are detrimental even if they improve input data quality. In contrast, self-supervised
learning using noise2self [13] performs more consistently over the SNR range of input data,
although in the case when the SNR of training and test data sets are matched, supervised learning
clearly yields better results (Supplementary Fig. 4c).

Image denoising by combining self-supervised learning and transfer learning

In order to combine the benefits of both supervised and self-supervised learning, we connected
them using transfer learning. For this purpose, we took advantage of the fact that an identical U-
Net architecture can be used for supervised learning [8] as well as self-supervised learning by
noise2self [13]. The only difference is that the input and output of supervised training are a pair of
noisy and clean images, whereas those of noise2self come from the same noisy image split by a
pixel mask. To enable transfer learning, we first trained a network by supervised learning using
generic cellular microscopy images. Then, for each denoising task, we retrain this network by
noise2self using the task image set (Fig. 1a). We compared the performance to the previous
noise2self method, which initializes network parameters with random values for self-supervised
training.

Specifically, we still used the U-Net architecture. For training at the supervised learning stage,
we chose a publicly available dataset, FMD [17], which contains pairs of noisy and clean images
from various sample features (subcellular structures of nuclei, F-actin, mitochondria; brain slices
and zebrafish) and image acquisition settings (confocal, two-photon, wide-field) (Supplementary
Fig. 5). The FMD dataset effectively contains 60,000 noisy image realizations from 240 fields-of-
view. For the self-supervised learning stage, we retrained the network by noise2self [13] on a test
data set of 10 synthetic noisy images generated from high SNR experimental images in a similar
way as described earlier. The retrained network generated denoised images for the same test data
set (Fig. 1(b)). Compared to self-supervised learning alone (random initialization of parameters)
and using the original high-SNR images as ground truth, transfer learning decreased the Mean
Square Error (MSE) loss and provided a higher (Fig.1(c)). This indicates that prior information
embedded in the pretrained network contributes to inferring lost information in the noisy
measurements. The most prominent visual difference, though, is that denoising results by transfer
learning clearly had much better effective spatial resolution (Fig. 1(b)), i.e., more recovery of high
spatial frequency components. This visual impression was confirmed by quantifying the average
Fourier Ring Correlation (FRC) between the denoised images and the ground truth, which
quantifies the effective image resolution [ 18] (Fig. 1(c)). To further test the tolerance on pretraining
data, we generated a set of simulated fluorescence microscopy images containing curve lines
resembling microtubules (Supplementary Fig. 6) as the pre-training dataset before self-supervised
retraining. Although the resulted denoising performance was slightly worse than FMD-pretrained
model, it still out-performed the no-pretraining model in all three metrics (Fig. 1(c)).
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Fig. 1 Diagram and performance of transfer learning denoising. (a) Schematic of the transfer learning method. (b)
Synthetic noisy images from microtubule confocal images and corresponding denoised images with transfer learning
denoising from pre-training using the FMD dataset, compared to self-supervised denoising without pre-training. (c)

The denoising performance, in terms of Mean Squared Error (MSE, lower value for less deviation from ground
truth), Structure Similarity Index Measurement (SSIM, high value for better similarity with ground truth) and mean
Fourier Ring Correlation (FRC, higher value for better resolution of the output image), as a function of the peak
signal of synthetic noisy image. Error bars represent standard deviations from 10 test images. The cell and tissue
cartoons in (a) were created at BioRender.com.
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We performed similar tests on synthetic images based on confocal images of lysosome
structures, which are also absent in the FMD dataset. Our results showed the same trends as those
from microtubule images, with transfer learning clearly outperforming self-supervised learning
without pretraining in all three metrics (Fig. 2). It is also evident that, in the case of pre-training
using simulated images of curved lines, self-supervised retraining on noisy lysosome images can
allow the model to correctly restore the punctate appearance of lysosomes despite their drastic
morphology difference from the curved lines used in pretraining. Another benefit of pretraining is
the stability of performance in repetitive tests on the same set of synthetic noisy lysosome images.
For transfer learning self-supervision, each self-supervised training rerun gave almost exactly the
same output (indicated by the almost invisible error bar in Fig. 2(b)); meanwhile the output from
the no-pretraining model is not stable at all due to the random initialization. Thus, transfer learning
also acts as a stabilization of the denoising performance.
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Fig.2 Performance of self-supervised deep denoising with transfer learning on lysosome images. (a) Synthetic noisy
images from ground truth lysosome confocal images and denoising results from transfer-learning models pretrained
with either the FMD dataset or simulated curved-line dataset, compared to denoising by self-supervised learning along
without pre-training. Noisy images with three different levels of peak signal (photons) are shown. (b) The denoising
performance, in terms of MSE, SSIM and mean FRC, as a function of the peak signal of the input noisy image. Error
bars represent standard deviations from 10 repeated re-runs of the self-supervised training.
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To identify what was learned by the model during the pretraining and retraining stages, we
applied the FMD- and simulated-pretrained model directly to the denoising of microtubule and
lysosome images without self-supervised retraining. The denoised images clearly had numerous
morphological artifacts (Supplementary Fig. 7). The FMD-pretrained model output did not display
well-defined structures, whereas the simulation-pretrained model generates short segments of
curved lines (despite that lysosomes should appear as small spots). Such artifacts are
understandable because neither microtubule nor lysosome were present in the images we used
from FMD for training, and the simulated pretraining data were curved lines. Compared to the
transfer learning results, the retraining using self-supervised learning effectively adapted the
pretraining models to the morphology and noise statistics of unseen application data. On the other
hand, the major difference between self-supervised denoising with or without transfer learning is
the image resolution as measured by FRC. It suggests that self-supervised training implicitly
learned a lower image resolution than the actual image resolution because of the corruption of
high-frequency information in the images by the noise, while supervised learning on clean images
correctly learns the image resolution. This knowledge on image resolution can be effectively
transferred to the re-trained model.
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Fig.3 The MSE, SSIM and mean FRC denoising performance as a function of training data size used during the self-
supervised training phase. Error bars represent standard deviations from 10 test images.
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Fig.4 The MSE, SSIM and mean FRC denoising performance as a function of peak signal in synthetic noisy images
when L1 is used as loss function instead of L2. Error bars represent standard deviations from 10 test images.
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Robustness of transfer learning denoising

To characterize the robustness our approach, we tested the effect of self-supervised training data
sizes on denoising performance of microtubule images (Fig. 3). Surprisingly the denoising
performance does not show an obvious increase with the increase of training data size in the ranges
of 1 to 50 test images, which indicates single-shot self-supervised denoising is possible. We also
evaluated the denoising performance when L1 loss is used for the self-supervised training.
Generally, L1 loss can better restore sharp features from noisy data compared to L2 loss. In this
case, the denoising performance from transfer learning self-supervised model is still much better
than the no-pretraining model (Fig. 4), indicating that the source of performance improvement is
not in the loss function but because of transfer learning. To appreciate the limits of our proposed
training strategy (Fig. 1(a)), we note that our method has limited denoising performance for images
with extremely low SNRs. At extremely low SNR conditions, very little useful information is in
the image and there is not an adequate prior encoded in the pretrained network parameters. This
problem potentially can be solved by including more low-SNR images in the pretraining dataset.

Discussion

Despite tremendous successes, there are two major barriers for employing deep learning in
biological investigations. First, current deep learning approaches typically do not generalize well
to data obtained from different samples (Supplementary Fig. 7), different microscopes or under
different image acquisition conditions (Supplementary Fig. 4) [6]. While large, diverse training
datasets can help solve many of these issues, they are often unavailable for biological studies. On
the other hand, the transfer learning approach [11, 19] can practically enable cross-study
generalization and information sharing. Second, generating noisy and ground truth image pairs for
supervised training is not always practical. For example, for live sample imaging, it is impossible
to acquire such image pairs without system hardware modifications. For this reason, self-
supervised learning becomes very attractive in eliminating the need for ground truth images. As a
result, we took the approach of transfer learning to blend supervised training and self-supervised
training to make our method practical and robust. We demonstrated that knowledge of the image
high-frequency components are transferrable from the supervised to self-supervised learning
phase. With this transferred information, we achieve blind denoising for new tasks just using a few
snapshots of noisy images.
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Methods

Dataset for supervised pretraining

We used Fluorescence Microscopy Dataset (FMD) data set to perform the supervised
pretraining. The dataset is downloaded from [17]. We choose this dataset because: (1) the dataset
consists of representing images of multiple commonly imaged types of samples (cells, zebrafish,
and mouse brain tissues) and multiple commonly used imaging modalities (commercial confocal,
two-photon, and wide-field microscopes); (2) the dataset has multiple signal-to-noise ratio
realizations of the same imaged scenes. The dataset composes of images from 240 field-of-views
(FOV). For each FOV, 50 noisy camera frames were taken, and then image averaging was used to
effectively generate the ground truth image and noisy images with various SNR.

In addition to the FMD dataset, we also generated simulation images of curved lines to test the
capability of transferring sharp features of our framework. In the simulation, each image is
generated by firstly convolving a normalized Gaussian point spread function (standard deviation
of 1 pixel) with an object image that consists of random 10 curved lines with various lengths. Then
the peak intensity in the image is linearly scaled to a desired value, and Poisson noise and calibrated
sCMOS readout and gain noise is added to the image.

Generating synthetic subcellular structure images for self-supervised training and testing

In order to evaluate the performance of our framework, we first acquired high SNR confocal
images of subcellular structures of mitochondria and lysosome. We seeded human HEK 293T cells
on an 8-well glass bottom chamber (LabTek). In order to achieve better cell attachment, 8-well
chamber was coated with Poly-L-Lysine (Sigma-Aldrich) for 20 mins before seeding cells. For
microtubule staining, SiR-tubulin dye (Cytoskeleton) was added directly to the culture medium
(100 nM final concentration) and incubate overnight before imaging. For lysosome staining,
LysoTracker Blue DND-22 (Thermo Fisher Scientific) was added directly to the culture medium
(50 nM final concentration) and incubate for 30 mins before imaging. Live-cell imaging was
acquired on an inverted Nikon Ti-E microscope (UCSF Nikon Imaging Center), a Yokogawa
CSU-WI confocal scanner unit, a PlanApo VC 100x/1.4NA oil immersion objective, a stage
incubator, an Andor Zyla 4.2 sCMOS camera and MicroManager software.

Then we synthesized noisy images from high SNR clean images to perform the self-supervised
training and evaluate the results. The peak intensity in the image is again linearly scaled to a desired
peak signal value, and Poisson shot noise and calibrated sSCMOS readout and gain noise (based on
the camera specifications) was added to the image using a Gaussian random number generator.

Neural network architecture and training

We used an U-Net architecture implemented in noise2self paper [13, 15]. Each convolutional
block consisted of two convolutional layers with 3x3 filters followed by an InstanceNorm. The
number of channels was [32, 64, 128, 256]. Down-sampling used strided convolutions and up-
sampling used transposed convolutions. The network was implemented in PyTorch. For
supervised training, the loss is mean square error. Learning rate was set to 0.001. We trained with
a batch size of 32 and 50 epochs.
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We used the noise2self self-supervised training strategy. In practice, a masked image, in which
a selected subset of pixels was set to zeros, was output to the neural network. The loss was only
evaluated on the coordinates of that subset of pixels that are set to zeros. During training, the
masked pixels were cycled to make sure a heterogeneous denoising performance over the whole
image. In this way, the training process avoids identical map of the input and only relies on the
independence between pixels. In this self-supervised training, the loss can be in a different form
with supervised training if necessary. The learning rate was 0.0001, an order of magnitude smaller
than supervised learning for network parameters fine-tuning. Because the self-supervised training
was done use a few snapshots of noisy images alone, these images were processed in a single batch
and early stopping with a patience number of 8 used.

Data and code availability

Python codes for timeUnet, generation of the simulated training data, transfer learning and
quantification of model performances, together with test data, are available at
https://github.com/BoHuangl.ab/Transfer-Learning-Denoising/.
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