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Abstract

Motivation: Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) provides new
opportunities to dissect epigenomic heterogeneity and elucidate transcriptional regulatory mechanisms. However,
computational modelling of scATAC-seq data is challenging due to its high dimension, extreme sparsity, complex
dependencies, and high sensitivity to confounding factors from various sources.

Results: Here we propose a new deep generative model framework, named SAILER, for analysing scATAC-seq data.
SAILER aims to learn a low-dimensional nonlinear latent representation of each cell that defines its intrinsic chromatin
state, invariant to extrinsic confounding factors like read depth and batch effects. SAILER adopts the conventional
encoder-decoder framework to learn the latent representation but imposes additional constraints to ensure the
independence of the learned representations from the confounding factors. Experimental results on both simulated and
real scATAC-seq datasets demonstrate that SAILER learns better and biologically more meaningful representations of
cells than other methods. Its noise-free cell embeddings bring in significant benefits in downstream analyses: Clustering
and imputation based on SAILER result in 6.9% and 18.5% improvements over existing methods, respectively. Moreover,
because no matrix factorization is involved, SAILER can easily scale to process millions of cells. We implemented SAILER
into a software package, freely available to all for large-scale scATAC-seq data analysis.

Availability: The software is publicly available at https://github.com/uci-cbcl/SAILER

Contact: jingz31@uci.edu and xhx@uci.edu

1 Introduction technology to massively probe accessible chromatin regions in individual
cells (Buenrostro, Wu, Litzenburger, ef al., 2015; Cusanovich et al., 2015;
Chen et al., 2018; Satpathy et al., 2019). These methods make it possible
to comprehensively dissect the epigenetic heterogeneity across diverse
cell states at an unprecedented resolution. Due to its easy protocols and
high-throughput capacities, many labs and big consortia (e.g., the Human
Cell Atlas, Human BioMolecular Atlas Program) have employed

Accessible chromatin regions host a network of complex interplays among
numerous cis-regulatory elements (CREs, such as enhancers and
promoters), transcription factors (TFs), cofactors, and chromatin
remodelers in the three-dimensional genome for precise spatiotemporal
gene expression control (Klemm e al., 2019; Tsompana and Buck, 2014;
Boyle e.t al., 2008). Ass.ay for tra'nsposase—accessible chromgtin using scATAC-seq for single-cell epigenetic profiling (Regev et al., 2017,
sequencing (ATAC-seq) is an efficient method to probe accessible DNA Consortium and others, 2019). Furthermore, the scientific community and
funding agencies have initiated essential data-sharing policies for

expedited translational research. Thus, there is an urgent and essential

regions in the genome, by tagging them with sequencing adapters using
the TnS transposase (Buenrostro, Wu, Chang, et al., 2015). More recently,
researchers have developed single-cell ATAC-seq (scATAC-seq)
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Fig. 1 The overall design of the SAILER method. SAILER takes scATAC-seq data from multiple batches as input. Raw data is pushed through the
encoder network to obtain a latent representation. Confounding factors for each single cell are concatenated and fed to the decoder along with the

latent representation. Batch information is indicated by a one-hot embedding, and read depth is subject to log transform and standard normalization.
To learn a latent representation invariant to changes in confounding factors, mutual information between the latent variables and confounding factors

are minimized during training.

need to develop robust, accurate, and scalable computational methods for
scATAC-seq data analysis and integration at a large scale.

Unfortunately, computational modeling of scATAC-seq data has faced
several challenges. First, scATAC-seq data tends to have very low
coverage, usually with a few thousand distinct reads representing
hundreds of thousands to even millions of accessible regions. Second,
scATAC-seq contains a high degree of dependencies because numerous
cell-type-specific CREs in accessible chromatin regions work in concert
to jointly decide cell fate. Lastly, scATAC-seq analysis is highly sensitive
to numerous confounding factors arising within and across samples (e.g.,
read depth variation and dataset-specific conditions).

Researchers have developed many computational approaches to tackle
high-dimensional and sparse scATAC-seq data (Schep et al., 2017; Fang
et al., 2019; Gonzalez-Blas et al., 2019; Xiong et al., 2019; Fu et al.,
2020), but each has its limitations. For instance, ChromVAR ignores the
impacts of individual peaks and only groups cells by the TF motif
enrichment scores from all peaks, resulting in non-optimal clustering
performance (Schep et al., 2017). SnapATAC uses Jaccard distance to
calculate cell-to-cell similarities for dimension reduction with a hidden
assumption that peaks are independent of each other and contribute
equally to the similarity measure, which is incorrect in most cases. More
recently, researchers developed the latent semantic index (LSI) for
learning the lower-dimensional cell representations (Pliner ez al., 2018;
Granja et al., 2020; Stuart et al., 2020). Despite their scalability, such
linear techniques may not fully capture the complex dependencies of
peaks. Moreover, these approaches correct for read depth effects by
removing components that highly correlate with the read depth, which is
heuristic and may lose the true cell-state-related information. Other
nonlinear approaches, such as cisTopic and SCALE, were then developed
to learn better cell representations (Gonzalez-Blas et al., 2019; Xiong et
al., 2019). However, these methods assume constant read depths across
different cells and ignore potential batch effects from multiple samples,
which compromises model performance in real applications.

Here, we aimed to overcome the limitations of existing methods by
designing an representation learning
straightforward intuition — the true epigenetic variations from a specific

invariant scheme with a

cell state should remain the same across cells and samples, while
variations arising from confounding factors may change substantially,
even for cells within similar biological groups. In other words, we can
dissect the scATAC-seq cell-to-cell variations into an invariant
component representing its hidden cell states and a varying component
due to non-biological factors, such as the number of fragments in a cell
and batch effects in the multi-sample analyses (Fig. 1). To this end, we
developed a gscalable and gccurate invariant representation learning
scheme (SAILER) via a deep generative model to learn a robust cell
representation Z that is only related to intrinsic cell states but is invariant
to changes in the confounding factor ¢ (Fig. 1). Specifically, we remove
the variations related to confounding factors from the learned latent
representation by minimizing their mutual information /(z, ¢). Compared
with previous methods, SAILER has three major advantages: i) it is
easily scalable to millions of cells in large-scale analyses via accelerated
computation on graphic processing units (GPUs); ii) it captures the
nonlinear dependencies among peaks via the expressiveness of deep
generative modeling and robustly removes confounding factors from
various sources, both within and across samples, to faithfully extract
biologically relevant information; iii) it provides a unified strategy for
scATAC-seq denoising, clustering, and imputation.

We implemented SAILER into a Python package that is freely available
to the community. To prove its effectiveness, we first benchmarked the
clustering performance of SAILER with state-of-the-art methods. We
utilized three simulated scATAC-seq datasets with ground-truth labels,
representing different application scenarios with single- and multi-sample
inputs. SAILER significantly outperformed the existing methods,
providing improved cell clustering results and successfully identifying
rare cell types. We also applied SAILER on real atlas-level and multi-
sample scCATAC-seq datasets and showed that it could efficiently learn
better biologically relevant cell latent representations, which will facilitate
various downstream analyses such as cell clustering and imputations.

2 Methods

In this section, we provide the mathematical details on our SAILER model
and describe methods for benchmarking with existing methods using both
simulated and real datasets.
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2.1 Effective invariant representation learning via a deep
generative model

Let x € {0,1}" (with n peaks or bins) denote the genome-wide chromatin
profile of a cell, with x; indicating the presence or absence of a peak in
bin i. x depends on both the intrinsic properties of the cell and
experimental confounding factors. Our goal is to derive a latent
representation of x (also called embedding) for each cell that reflects only
its intrinsic properties. Let z € R be such a latent representation.
Suppose c is the confounding variable that has statistical dependence on
x, and is observable together with x. We denote q ¢(z|x) as the encoder
probability, py, (x|, ) as the decoder probability. The decoder part of our
model aims to model the conditional probability of x on ¢ through a latent
variable z,

rxle)=E, ,,[p,(x]zc)] M
where p(z) is the prior distribution for a generative model set to be a
N(0,1,) (factorized Gaussian) in our case. q(x,c) is the empirical
distribution of the data point and confounding variable, ¢ denote the
parameters of the decoder network.

Following the variational autoencoder (VAE) model (Kingma and
Welling, 2014), we performed parameter inference by maximizing an
evidence lower bound of the log likelihood, corresponding to minimizing
the following loss function,

Ly = Ex,c»q(x,c) [_EZN([U(Z‘X)[log Dy (x]z,0)]+ Dy, (g,(z | x) |l P(Z)):I 2)
where ¢ ¢(z|x) is the posterior distribution modeled with a neural net with
parameters 6.

The distribution of the latent representation z induced by empirical data
distribution x ~ g(x) =2 g(x,¢) and the posterior probability qg(z|x)
potentially can depend on c, as c¢ is involved in the data generation
process. To derive a latent representation z independent of the
confounding variable ¢, we added an additional term to the loss function
to minimize the mutual information between the two variables (Moyer et
al., 2018),

Lyye +A1(z,¢) 3
where 1(z, ¢) is the mutual information between latent representation z
and ¢, with their joint distribution represented by gqg(z, x,¢) =
q(x,¢)qg(z|x) . Based on the properties of mutual information and
variational inequality, I(z, ¢) is upper bounded by
1(z,¢) <

Breyuo| P 02100 19,(2) =B, log py(x| 2,0)] |- H(x|©) )

where the conditional entropy H(x|c) is a constant and can be removed
from the loss function.

The final loss function we aimed to minimize is
L(0,8) =By [Dir (9,2 0 || p(2)) + ADy (g, (2| %) |1 g,(2))]

1+ DB, o[ By omllogp,(x|2,01] )
Here Dy, (q,(z|x)|l p(z)) is the KL-divergence between the encoder

q 6(z|x) and prior p(2). E, ,,uollog py(x]2,0)] is the reconstruction loss.

Dy, (q,(z]x)|lq,(z)) is the KL-divergence between qg(z|x) and

empirical marginal distribution q¢(z). Because q¢(z) depends on the
distribution of both x and ¢, minimizing the above KL-divergence will
reduce the effect of ¢ on z. In the implementation, this extra term is
approximated by pairwise KL-divergences between all data points in a

training batch, ZDKL(%(ZIX)H%(ZIX')) . Since latent variable z is

parameterized by an isotropic Gaussian, the pairwise KL has a nice

analytical form, and can be efficiently computed with matrix algebra.

2.2 Model architecture and training

Considering the close to binary nature of scATAC-seq data, we use
binomial likelihood to parameterize the reconstruction loss. To tackle the
extreme sparsity issue, we add a positive weight w to non-zero entries of
binary cross-entropy loss /=m-x-logX+(1-x)-log(1-X) with w
determined by the empirical 0/1 ratio of the input data.

The encoder and decoder are parameterized by two symmetric fully
connected feedforward neural networks (with 1000-100-10 units). A
sigmoid activation is used for the final output layer. For confounding
factors, we use one-hot batch embedding and normalized log-transformed
sequencing depth for each cell. During training, input data is pushed
through the encoder network to generate the latent variable. Confounding
factors are then concatenated together with latent variables and fed into
the conditional decoder for reconstruction. As suggested in (Fu et al.,
2019), when training our model, we adopt a deterministic warmup and
cyclical annealing schedule to tackle the KL vanishing problem. Adam
optimizer (Kingma and Ba, 2017) with weight decay 5e-4 and minibatch
training are used to optimize the model. The model is built with PyTorch
library (Paszke et al., 2019).

2.3 Dimension reduction and clustering

We project the raw high-dimensional sparse scATAC-seq data to a low-
dimensional space that reflects the hidden cell states rather than noise in
the sequencing experiment. Specifically, we used the raw scATAC-seq
matrix x as the input to our SAILER encoder and extracted the mean of
the invariant component z as the cell representation. We set the default
dimension d for z to 10 in our analysis. We then acquired 2D
visualizations by running t-distributed stochastic neighbor embedding (t-
SNE) (Maaten and Hinton, 2008) or uniform manifold approximation and
projection (UMAP) (Mclnnes ez al., 2018) on the latent mean. We further
constructed a k-nearest neighbor (KNN) graph from the lower-
dimensional representations, and then applied the Louvain algorithm
(Blondel et al., 2008) to assign cells to different clusters.

2.4 scATAC-seq imputation

We generated the imputation data via a reconstruction conditioned on the
invariant representation z and fixed confounding factor c. Specifically, we
first pushed the raw data through the encoder network, and obtained the
mean parameters for z. Unlike the training process, where we calculated
the depth of the raw data and loaded the one-hot embedding according to
the real batch information, here we fixed the depth and batch indicator as
the mean depth and the indicator of the batch with the highest data quality.
Finally, we concatenated the fixed confounding values with the latent
representation z and fed them into the conditional decoder to obtain the
imputed data. As a result, we used only the invariant component z to
reconstruct the chromatin landscape during the imputation process, while
keeping the other confounding factors at a fixed level.

2.5 Performance benchmarking using multiple simulated
datasets

We applied SAILER on three simulated scATAC-seq datasets with known
cell type labels generated by SCAN-ATAC-Sim (Chen et al., 2020) to
represent three major application scenarios. We used the peripheral blood
mononuclear cell bulk ATAC-seq dataset provided on the SCAN-ATAC-
Sim website using all default parameter settings. Each simulation includes
three major parameters: p represents the signal-to-noise ratio (percentage
of reads in the true peak regions); u and o denote the mean and standard
deviation of the fragment count per cell, respectively. SCAN-ATAC-Sim
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Fig. 2 Visualization of confounding factors. (A) Scatter plots of a 10X
mouse brain dataset (10X) and a mouse secondary cortex MOs-M1
dataset (MOs-M1). For all the cells in each dataset, we kept those with
log10(UMI) between 0.3 and 0.5 and promoter ratio between 0.2 and
0.6. (B) Boxplots of read depth and promoter ratio comparison between
selected cells from each dataset.

randomly selects read counts for each cell from a log-normal distribution,
and then samples reads from both peak and background regions
accordingly. We first simulated a deeply sequenced scATAC-seq dataset
(Sim1) with 5,000 fragments per cell (u = 5,000,0 = 1.5, and p = 0.4),
representing a scenario in which we are looking for rare cell types.
Specifically, we generated 10,000 cells from five cell types, with 100 cells
from a rare cell type accounting for 1% of the total population. Then, we
generated one shallowly sequenced sample with nine cell types, with u =
3,000,0 = 1.5, and p = 0.4 (Sim2). Lastly, we simulated a two-sample
dataset with slightly mismatched cell types to represent scATAC-seq data
integration applications with noticeable batch effects — one shallowly
sequenced sample (u = 2,500) along with another deep-sequenced
sample (1 = 5,000) with different signal-to-noise ratios (p = 0.4 and 0.5,
respectively) (Sim3). In addition, we introduced one sample-specific rare
cell type in Sim3 to mimic a situation in which rare cell types (e.g., tumor
cells) may only exist in some samples. We benchmarked SAILER’s
clustering performance with the linear dimension reduction method LSI
and another deep learning method, SCALE, on all three simulated
datasets. Specifically, we projected the raw input matrix x to a ten-
dimensional latent space, and further used UMAP to reduce the dimension
to 2 for 2D visualization of the cell state landscape. We plotted colored
labels according to the ground-truth cell type for visual inspection of
clustering performance.

We also used the mutual information to quantify the impacts of
confounding factors on the lower-dimensional representations learned by
different methods. Specifically, we used a non-parametric mutual
information estimation approach (Kraskov et al., 2004) to estimate the
mutual information between the confounding factors and each dimension
of the latent representation, and calculated their mean values for
comparison.

2.6 Imputation performance on simulated datasets

We also benchmarked the imputation performance of SAILER against
SCALE (Xiong et al., 2019) and MAGIC (van Dijk et al., 2018) on the
Sim3 dataset. SCALE is the only current method designated for imputing
scATAC-seq data, and MAGIC, originally designed to impute scRNA-seq
data, has been incorporated into many scATAC-seq computational

pipelines (Fang et al., 2019; Granja et al., 2020) for imputation purposes.

For SCALE, we directly used the binary imputation output generated by
thresholding at mean values of each row and column. For MAGIC, we
followed the standard pipeline by applying the recommended [1
normalization and square root transformation before imputing the data.
Due to the extreme dimension, we used an approximate solver for
efficiency. For SAILER, we performed imputation as described in 2.3.

To evaluate the result quantitatively, we calculated the Dice similarity
coefficient (DSC) of imputed data X generated by the three methods
against the bulk ATAC-seq data x,,,;;, of the corresponding cell type used
to generate the simulated data. We calculated the DSC of the raw input
against the bulk data to provide a baseline.

DSC = 2-xbu,,{~ff _ 2TP 6)
[ X | +|X| 2TP+FP+FN
We also generated a 2D visualization to evaluate the landscape of the
imputed data. We directly applied a randomized principal component
analysis (PCA) (Halko et al., 2011) to the imputed data, and used UMAP
to visualize the top ten principal components. We also provided the raw

input as a baseline.

2.7 Performance benchmarking on the mouse atlas dataset

We then demonstrated the performance of our method on a mouse atlas
dataset containing 81,173 adult mouse cells from 13 tissues and 40 cell
types (Cusanovich ez al., 2018). Each cell type is annotated by borrowing
label information, inferred by marker genes, from the RNA-seq data. A
previous effort applied the mouse atlas dataset to benchmark multiple
computational methods on scATAC-seq data (Chen et al., 2019). The
leading method in that study, SnapATAC, was the only method that could
process the entire mouse atlas dataset within a reasonable time (~12 h).
Given that both SAILER and SCALE are deep learning methods that can
train and evaluate data in mini batches, they are capable of handling the
scale of the mouse atlas dataset. Thus, we benchmarked SAILER against
SnapATAC and SCALE on this dataset.

For SCALE and SAILER, we added a filtering process before loading
the data. The filtering involved reducing the bin numbers according to the
procedure for filtering peaks used in SCALE. For each cell, we removed
bins with read counts of over 90% cells and less than 1% cells.

We used normalized mutual information (NMI) and the adjusted Rand
index (ARI) to compare each method’s clustering results with the given
labels.

For clustering, we constructed a KNN graph and applied the Louvain
algorithm (Blondel er al., 2008) to assign clusters to each cell. We
compared the clustering results with ground-truth labels to generate the
ARI and NMI metrics. We also calculated mutual information between
latent representation and confounding factors for comparison.

2.8 Performance benchmarking on multi-sample scATAC-
seq datasets for mouse brain

To evaluate the ability of SAILER to deal with batch effects, we combined
two mouse brain datasets: a mouse brain dataset from the 10X Genomics
website and a mouse secondary motor cortex dataset (i.e., the MOs-M1
dataset) (Fang ez al., 2019). We first selected cells based on barcodes from
the 10X mouse brain dataset. Then, we set a threshold and selected
scATAC-seq profiles with a promoter ratio between 0.2 and 0.6 and a
logl0-transformed unique molecular identifier count [loglO(UMI)]
between 3 and 5. This process resulted in 4,100 cells selected from the
10X mouse brain dataset and 15,136 cells selected from the MOs-M1
dataset. Using the same filtering criteria to remove low-quality cells, we
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Fig. 3 Results on simulation datasets. (A) 2D visualization of learned latent representations of LSI (top), SCALE (middle), and SAILER (bottom) on
the Siml dataset. The left column shows the distribution of cell types. The right column shows the distribution of read depth indicated by color depth.
(B) 2D visualization of learned latent representations of LSI (top), SCALE (middle), and SAILER (bottom) on the Sim2 dataset. The left column shows
the distribution of cell types. The right column shows the distribution of read depth indicated by color depth. (C) 2D visualization of learned latent
representations of LSI (top), SCALE (middle), and SAILER (bottom) on the Sim3 dataset. The left column shows the distribution of cell types. The

right column shows the distribution of cells from different batches.

selected 9,646 cells from the MOs-M1 dataset for further analysis.

We then performed clustering on the lower-dimension representation
learned by SAILER with a Louvain algorithm on a KNN graph. We
applied t-SNE to generate a 2D visualization of the landscape. As cell
labels are not available, we next visualized the activity scores of several
marker genes to justify the clustering results. We selected several marker
genes from the gene annotation file to obtain gene read counts within each
cell. To avoid extreme sparsity and discontinued values, we adopted
MAGIC to smooth the gene-cell matrix to obtain the final gene-level
expression matrix. For each cell and each marker gene of interest, we
applied gene expression values corresponding to each cell and denoted
them by color in the t-SNE plot.

3 Results

We applied SAILER on both simulated and real datasets and carried out
comprehensive performance benchmarking with existing methods, as
discussed in the following sections below.

3.1 Extensive cell-to-cell variations in scATAC-seq data arise
from confounding factors rather than biological heterogeneity

We found that, in addition to the underlying cell states, confounding
factors from various sources significantly contribute to the cellular
heterogeneity in scATAC-seq experiments. For instance, we extracted two
mouse brain scATAC-seq datasets — one from the 10X genomics website
(10X) and one from the SnapATAC website (MOs-M1) (see details in the
Methods section). We uniformly processed these two datasets and found
that the number of fragments within the same dataset varied significantly.
For example, the uniquely mapped read counts per cell ranged from 1,500

to 6,000 for the MOs-M1 dataset (Fig. 2). Moreover, datasets generated
from different labs showed distinct signatures. Specifically, the MOs-M1
dataset sample had fewer reads per cell but was highly enriched in
promoter regions (median read count 3.506 vs. 4.236, promoter ratio 0.337
vs. 0.290). Most existing methods ignore such confounding factors,
resulting in biased latent cell representations in dimensional reduction.

3.2 SAILER learns robust latent cell representations
invariant to various confounding factors in simulated data

Here, we extensively benchmarked SAILER with existing methods using
simulated data representing various application scenarios.

First, we simulated a deeply sequenced scATAC-seq dataset from five
cell types, with varying mapping reads per cell. We learned the latent cell
representations using SAILER, SCALE, and LSI as the input for the same
clustering process. As shown in Fig. 3A, linear methods like LSI could
not capture the complex dependencies among the peaks and hence failed
to distinguish the rare cell type from the major cell types (red dots in the
gray cluster). In contrast, both SAILER and SCALE used a nonlinear
dimension reduction via fully connected neural networks and were able to
report five clearly separable clusters. Furthermore, LSI and SCALE have
a limited or no explicit module for correcting read depth effects. As a
result, their L-shaped cell clusters are severely confounded by fragment
counts, as reflected by the smooth transition from shallowly sequenced
cells to densely sequenced ones within each cluster (the yellow to red
pattern in Fig. 3A, Sim1). Such artifacts would be further amplified in the
downstream imputation analysis, because cells with more mapped reads
will exhibit even larger read counts after incorporating information from
their similarly deeply sequenced neighbors. On the contrary, SAILER
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Fig. 4 Results on the mouse atlas dataset. t-SNE visualization of lower-
dimensional representation generated by SAILER (left), Snap-ATAC
(middle), and SCALE (right). The first row shows the distribution of cell
types. The second row shows the distribution of read depth indicated by
color depth.

penalizes such depth effects by introducing an extra penalty term to force
the latent cell representations to be as independent as possible to fragment
counts per cell, resulting in compact round-shaped clusters with almost
random read count distributions (Fig. 3A, Siml). This observation is
consistent with the quantitative measure of the mutual information I(z, ¢)
between read counts and cell embeddings, where SAILER reported the
lowest I(z,c¢) at 0.107 among all three methods (0.290 and 0.610 for
SCALE and LSI, respectively, Table 1, Sim1). Thus, SAILER effectively
removes confounding factors and learns robust cell representations.

We further simulated another shallowly sequenced dataset with fewer
fragments per cell but more cell types, in order to conduct clustering
performance benchmarking under more complicated (and realistic)
scenarios. As shown in Fig. 3B, SCALE and LSI failed to separate two
major cell types by reporting completely overlapped clusters (yellow and
purple dots in Fig. 3B). Similar to the previous simulation, we observed
clear low-to-high read count transitions within their reported clustering,
indicating severe read depth artifacts. By contrast, SAILER distinguished
cell types from distinct cell states into clear groups and demonstrated
homogeneous read counts within each cluster (bottom row, Fig. 3B),
indicating effective read depth bias removal. As expected, SAILER also
showed the smallest amount of mutual information between fragment
counts and latent cell representations (0.100 vs. 0.224 for SCALE and
0.500 for LSI, Table 1, Sim2), confirming the efficacy of its invariant
representation learning scheme.

Lastly, we designed a third simulation dataset to mimic the scATAC-
seq integration scenario with obvious batch effects for all three methods.
We used latent representations to generate 2D visualizations with UMAP,
as shown in Fig. 3C. We applied both batch information (right column)
and cell-type information (left column) to annotate the plots. As shown in
the right column, even though LSI and SCALE can marginally cluster the
same type of cells, there are still clear boundaries between these batches.
However, SAILER merges different batches very well, indicating that this

method can remove batch information and retrieve the true distribution of
cell biological states via the invariant latent representations. In order to
quantitively measure how well these two batches are merged using
different methods, we also calculated the mutual information between the
batch information and each dimension of the latent representations (i.e.,
1(z, ¢)), as shown in Table 1. SAILER still had the lowest value of mutual
information (0.005, compared to 0.130 and 0.087). Note this dataset
contains two sample-specific rare cell types (red and green dots, Fig. 3C),
representing a potentially common situation in which certain rare cell
types only appear in a few batches. LSI and SCALE completely merged
the rare cell types together; however, SAILER was able to distinguish
these two cell types after removing depth variation and batch effects from
the latent representation.

Table 1 Mutual Information between the latent representation and

confounding factors on simulation datasets.

1(z,c) Siml Sim2 Sim3
Method
LSI 0.610 0.500 0.130
SCALE 0.290 0.224 0.087
SAILER 0.107 0.100 0.005

3.3 SAILER outperforms existing methods in atlas-scale data
analysis by reporting clearly separable clusters

To test the efficiency and accuracy of SAILER in a large-scale analysis,
we benchmarked our method on a mouse atlas scATAC-seq dataset with
~80k cells from 40 cell types with substantial read depth variations, as
shown in Fig. 4. We benchmarked SAILER with the GMM VAE in
SCALE, and SnapATAC, the leading and only algorithm that was able to
perform large-scale scATAC-seq analysis in a previous benchmarking
study (Chen et al., 2019). As shown in Fig. 4, SAILER can learn robust
cell representations that generate tight and clearly separable clusters, as
compared to other methods.

Besides, due to the lack of effective read depth removal, clustering
results from SCALE are significantly confounded by the total number of
fragments per cell. Specifically, the direct neighbors of deeply sequenced
cells in SCALE’s reports are mostly those with higher read counts in each
cluster (light dots in the bottom line, Fig. 4). This read depth effect will
severely impact the subsequent imputation analysis, as depth imbalance
among cells will be amplified when considering the neighbors.
SnapATAC tends to remove such depth effects by regressing out fragment
counts per cell in the cell-to-cell similarity calculation. As a result, its
identified clusters are less affected by read depth. However, several
internal groups were mixed together without clear separation, probably
due to its independence and the equal contribution assumption among
various genomic regions in the Jaccard distance calculations. Unlike
SnapATAC, which requires a separate process for depth variation
removal, SAILER integrates depth removal into the learning process — the
fully connected neural network layers in SAILER allow nonlinear
interactions among different genomic regions to better separate cells from
different biological states, while the extra mutual information penalty term
effectively removes read depth effects. This unified framework of
SAILER makes each task aware of the other tasks, resulting in noticeably
improved clustering results. This noticeable improvement can also be seen
in the resulting NMI and ARI scores (Table 2). For instance, SCALE and
SnapATAC reported NMI scores of 0.557 and 0.748, respectively, using
known cell type-level labels, whereas SAILER showed a significantly
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Fig. 5 Results on mixed mouse brain datasets. (A) Clustering result
comparison of SCALE and SAILER on two batches of mouse brain cell
samples. Clustering result (a) using SCALE, (b) using SAILER, and (c)
using SAILER but colored and labeled with numbers calculated using
the Louvain method based on the KNN graph. (B) Clustering result of
SAILER on two batches of datasets but colored with four marker gene
scores, namely sst, pvalb, gad2, and pipl. The brighter the color, the
higher the gene score shown for those cells.

higher NMI of 0.799. Moreover, SAILER reported lower mutual
information (0.04), compared with 0.127 in SnapATAC and 0.279 in
SCALE, suggesting successful depth effect removal for this method.

It is worth mentioning that the complexity of the batch-based training
process increases linearly with the size of the input dataset, resulting in
better scalability of SAILER to efficiently process millions of cells in
multi-sample analyses. However, the polynomial regression approach
used in SnapATAC increases quadratically as the number of cells
increases. Chen et al. reported that Snap-ATAC takes nearly 12 hours to
process the entire mouse atlas dataset (Chen et al., 2019), while SAILER
can complete this process within 6 hours trained for 400 epochs. This
further demonstrates the advantage of the deep learning method when
scaling to very large datasets.

Moreover, we also followed the preprocessing procedures for
subsampling by 10k cells for performance benchmarking with 17 other
methods, as most methods cannot handle an atlas-scale dataset. Instead of
cell-type labels, we used the same tissue-level cell labels for
comprehensive clustering benchmarking. When applied to the subsampled
dataset, SAILER still achieved the highest ARI (0.397) among all methods
(with the 17 other methods ranging from 0.009 to 0.363). This further
demonstrates the effectiveness of our method.

Table 2 Evaluation results on the mouse atlas dataset

Method ARI NMI I(z,¢)
SAILER 0.575 0.799 0.040
SnapATAC 0.538 0.748 0.127
SCALE 0315 0.557 0.279

3.4 SAILER can effectively remove batch effects in multi-
sample scATAC-seq integration

Another common source of confounding factors are batch effects in multi-
sample scATAC-seq analysis, where samples may be processed and
sequenced from different labs or even sequencing platforms with distinct
sample-specific signatures. To evaluate the performance of our method in
such scenarios, we applied SAILER on two mouse brain scATAC-seq

samples from two sources — one mouse brain dataset from the 10x
Genomics website (10X) and one generated from mouse secondary cortex
brains (Fang et al., 2019).

For fair performance benchmarking, we uniformly processed these two
datasets to identify cells from random barcodes using the default
parameters in SnapATAC (Fang et al., 2019). Specifically, after removing
barcodes with less than 1,000 fragments and keeping the remaining ones
with promoter ratios between 0.2 and 0.6, we identified 4,100 and 9,646
cells from these two samples (see details in the Methods section). Starting
from the same tissue, we found that these two samples generated from
different labs showed distinct fragment signatures. For instance, the
dataset from the 10X Genomics website demonstrated a higher mean read
coverage per cell (log(UMI) = 4.149 vs. 3.547, P-value = 10e-15 using the
two-sided Wilcoxon test) and a lower mean promoter ratio (0.320 vs.
0.367, P-value = 2.48e-87 using the two-sided Wilcoxon test). After pre-
processing, we projected the remaining cells into a ten-dimensional space
using SAILER and SCALE, and then generated a KNN graph (k=16) and
performed clustering via the Louvain algorithm. We also used t-SNE to
map the ten-dimensional cell representations onto a 2D space for
visualization and labeled the sample IDs using different colors in Fig. 5.
In the ideal case, a good computational method should overcome batch
effects by reporting cell clusters with homogenous sample ID
distributions. However, due to the lack of an appropriate batch effect
removal module, we found that clusters reported by SCALE were
predominantly driven by sample effects rather than the true biological
states of the cells (Fig. 5A). In contrast, SAILER effectively removed
batch effects by introducing an additional penalty to reduce the mutual
information 1(z,¢) between the variant component and the batch
component in the objective function. As a result, the different samples
were homogeneously mingled in the clearly separated clusters reported by
SAILER (yellow and grey dots in Fig. 5A).

To test whether these SAILER-reported clusters represent distinct
biological cell states, we calculated the overall chromatin accessibility
scores of well-known marker genes (Fang et al., 2019) and labeled cells
using the activity scores of the marker genes. As shown in Fig. 5B,
SAILER identified clearly separable cell clusters that correspond well
with the activities of the marker genes (sst, pvalb, gad2, and pipl). For
instance, sst is a well-known marker gene widely expressed in inhibitory
neurons. SAILER homogeneously grouped together sstz-enriched cells
from different batches, demonstrating its ability to appropriately remove
batch effects while retaining the true cell-cell variability.

3.5 SAILER can precisely
accessibility landscape free of various confounding factors

reconstruct a chromatin

Despite high throughput in revealing epigenetic heterogeneity, scATAC-
seq experiments suffer from severe missingness by reporting only a few
thousand fragments in the entire genome. Therefore, accurate chromatin
landscape reconstruction and imputation are essential to uncovering the
full regulatory potential within a cell. However, very few computational
methods are designed explicitly for chromatin accessibility imputation.

Here, we took advantage of the deep generative model and its invariant
representation to reconstruct a full chromatin accessibility landscape that
is independent of sequencing depth and batch effects. During imputation,
we fixed the values of the confounding variables, such that the variations
of the reconstructed scATAC-seq data only depend on the invariant
representation z, which reflects the intrinsic variation of biological states.

To further demonstrate this, we performed imputation on the third
simulation dataset (Sim3) with two simulated samples. SCALE is
currently the only available method designated for imputing scATAC-seq
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data. LSI has no direct imputation module, we added MAGIC as suggested
for benchmarking (Granja et al., 2020). First, SAILER, MAGIC, and
SCALE generated the imputed data. These data, along with the raw data,
were then processed by PCA and visualized with UMAP in 2D. From the
PCA embeddings shown in Fig. 6, we found that the imputation data of
SCALE were severely affected by depth variation and batch effects. We
observed similar results with MAGIC, where after imputation, the same
types of cells from different batches were divided into separate clusters in
the PCA embedding. However, the imputed data by SAILER did not show
separate clusters from different batches. Moreover, the rare cell types
(shown in green and red, Fig. 6) were separable in the PCA embedding,
which was not the case for SCALE or MAGIC. The results indicate that,
without proper removal of confounding factors during imputation, the
imputed data show clear variations that correlate with confounding factors.
In addition, the data diffusion strategy used in MAGIC is not friendly to
rare cell types, as the rare cells can be easily overwhelmed by the major
cell types. Thus, compared with SCALE and MAGIC, SAILER is the only
method capable of removing confounding factors from imputation data,
while preserving unique information from rare cell types.

As the bulk ATAC-seq data used to simulate the single-cell data is
available, we used the bulk data as the ground truth and calculated the
DSC for each imputation method. The DSC (also known as the F1 Score)
is a harmonic mean of the precision and recall. Because scATAC-seq is
imbalanced in 0/1 entries, we used DSC as a balanced metric to evaluate
the imputation performance. We generated a violin plot to show the DSC
distributions of raw single-cell data, SAILER, and SCALE. As shown in
Fig. 6, SAILER and SCALE both achieved higher DSC scores compared
to the raw data, indicating that both methods generate reasonable
imputation results. SAILER achieved a higher mean DSC compared with
SCALE (0.64 vs. 0.54), further demonstrating the effectiveness of
invariant representation learning.

4 Discussion

In this work, we developed a scalable and accurate single-cell ATAC-seq
processing and integration method called SAILER via efficient invariant
representation learning. As compared with previous methods, SAILER
has three distinct characteristics designed explicitly for single-cell data
analysis — 1) it utilizes nonlinear dimension reduction via fully connected
neural networks in a deep generative framework to handle complex
dependencies among various peaks; 2) it dissociates cell-state-related
biological variations from those arising from confounding factors (e.g.,

read depth and batch effects) to faithfully embed the cells into a low-
dimensional latent space to facilitate various downstream analyses, such
as cell clustering and imputation; 3) it is easily scalable to large-scale
single-cell data analysis accelerated using GPU parallelism.

We applied SAILER to various simulated and real scATAC-seq datasets
and comprehensively compared its performance with state-of-the-art
analysis pipelines. We showed that SAILER’s robust cell embeddings can
effectively remove noise impacts from different sources and improve
clustering and imputation results on all of the benchmark datasets. We
should note that the invariant representation learning framework presented
here is general and can be applied to other types of high-throughput
genomic data like sScRNA-seq and single-cell DNA methylation, or to joint
analysis of multi-modality single-cell genomics data. Specifically, several
single-cell multi-omics technologies have recently emerged for measuring
multiple types of molecules in the same cell (Jin et al., 2020). To achieve
this, we could apply a multi-modal VAE to encode a variational posterior
jointly from single-cell multimodal omics inputs using deep neural
networks, where the resultant latent space factors into a shared subspace
to profile cell states or functions for individual cells and private subspaces
could be used to solve specific technical issues for each modality.

In summary, we developed a deep generative model, SAILER, for
learning robust latent cell representations invariant to changes in various
noise factors, which has not been possible with most current sScATAC-seq
analysis tools. Given the fast-expanding collection of publicly available
single-cell sequencing data, we envision that the SAILER framework can
serve as a powerful tool to remove impacts from confounding factors and
uncover cellular heterogeneity across diverse cell states and conditions in
large-scale single-cell omics data analysis.
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