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Abstract 

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-
CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and 
combination represent practical strategies to address this urgent unmet medical need. Viruses, 
including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, 
making targeting host metabolism a promising antiviral approach. Here, we describe an 
integrated analysis of 12 published in vitro and human patient gene expression datasets on 
SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated 
host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-
based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract 
the virus-induced metabolic changes. We successfully validated these targets using published 
drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further 
generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we 
predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-
2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future 
evaluation, demonstrating host metabolism-targeting as a promising antiviral strategy. 
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Introduction 

The coronavirus disease 2019 (COVID-19), a serious respiratory disease caused by the 
coronavirus SARS-CoV-2 has evolved into a major pandemic incurring millions of deaths 
worldwide (all dates as of July 2021; WHO Coronavirus Disease Dashboard, 2021). Despite 
unprecedented global efforts in response to this serious health threat including abundant studies 
on the disease biology (e.g. Zhou et al. 2020a, Hoffmann et al. 2020, etc., reviewed in Tay et al. 
2020, etc.), preclinical antiviral drug/target screens or predictions (e.g. Riva et al. 2020, Wei et 
al. 2021, Danoliski et al. 2020, etc., with compiled resources like Kuleshov et al. 2020, etc.), and 
thousands of registered clinical trials on COVID-19 (International Clinical Trials Registry 
Platform, 2021), therapeutic options remain scarce. Remdesivir, a viral RNA-dependent RNA 
polymerase inhibitor represents the only drug approved by the drug regulatory authorities of 
several countries, including the U.S. Food and Drug Administration (FDA)  (Beigel et al. 2020), 
and confers only mild clinical benefits to a subset of COVID-19 patients (WHO Solidarity Trial 
Consortium et al. 2020). 11 different therapies, including the Janus kinase (JAK) inhibitor 
baricitinib (in combination with remdesivir), and virus-neutralizing antibodies sotrovimab, and 
casirivimab plus imdevimab have obtained Emergency Use Authorization (EUA) from the FDA 
(U.S. Food and Drug Administration, 2021a). Dexamethasone and other corticosteroids have 
been recommended by the U.S. National Institutes of Health (NIH) for hospitalized patients 
requiring supplemental oxygen (RECOVERY Collaborative Group et al. 2021; National Institutes 
of Health, 2021). Besides, several SARS-CoV-2 vaccines have been approved or authorized for 
emergency use in different countries (Dong et al. 2020; U.S. Food and Drug Administration, 
2021b). Nevertheless, there is still an urgent unmet medical need for the fast identification and 
development of highly effective anti-COVID-19 therapies. 

Viruses are known to “hijack” the host cell metabolism to complete their own intracellular 
life cycle (Mayer et al. 2019), modulating diverse pathways including carbohydrate, lipid, amino 
acid and nucleotide metabolism (Mayer et al. 2019; Sanchez et al. 2015). Coronaviruses 
including MERS-CoV rearrange cellular lipid profiles upon infection (Yan et al. 2019; Yuan et al. 
2019). Recent studies have reported that SARS-CoV-2 also induces changes in numerous 
metabolic pathways including TCA cycle, oxidative phosphorylation and lipid metabolism among 
others in human patient samples (Gardinassi et al. 2020; Ehrlich et al. 2020). Notably, 
counteracting the metabolic demands of viruses including MERS-CoV have been shown to 
abolish their ability to infect the host cells (Mayer et al. 2019; Yuan et al. 2019), and the PPARα-
agonist fenofibrate can reverse some of the SARS-CoV-2-induced metabolic changes and 
reduce the viral load (Ehrlich et al. 2020). Therefore, targeting the virus-induced metabolic 
changes can be a promising novel antiviral strategy (Mayer et al. 2019), and can be especially 
valuable in anti-SARS-CoV-2 drug repurposing to address the current urgent COVID-19 crisis 
considering that many existing drugs are metabolism-targeting. 

Genome-scale metabolic models (GEMs) are in silico constraint-based models that 
comprehensively encompass the cellular network of metabolic reactions, metabolic proteins, 
and metabolites (Baart et al. 2012). GEM analysis has been repeatedly shown to generate 
accurate predictions and informative hypotheses for metabolism research (Gu et al. 2019). 
Notably, we have previously developed numerous GEM-based algorithms including iMAT 
(Shlomi et al. 2008), which computes genome-wide metabolic fluxes from gene expression 
profiles, and the metabolic transformation algorithm (MTA; Yizhak et al. 2013), which predicts 
metabolic targets whose inhibition facilitates transformation between specified cellular metabolic 
states (e.g. from diseased to healthy states). More recently, Valcárcel et al. has described a 
variant of MTA named rMTA with improved performance (Valcárcel et al. 2019). Incorporating 
such high-performance GEM methods in the analysis of data on SARS-CoV-2 infection provides 
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us with a unique opportunity to understand the metabolic demands of SARS-CoV-2 and to 
systematically predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic 
alterations. 

Here we apply GEM algorithms in a comprehensive analysis of 12 published bulk/single-
cell RNA-sequencing (RNA-seq/scRNA-seq) and mass spectrometry (MS)-based proteomics 
datasets on SARS-CoV-2 infection, involving both in vitro and human patient samples. We find 
that metabolic reprogramming represents one of the most consistent molecular changes in 
SARS-CoV-2 infection besides immune responses, and characterize the complex patterns of 
metabolic flux alterations. Using rMTA, we predicted anti-SARS-CoV-2 targets that reverse the 
virus-induced metabolic changes, either as single targets or in combination with remdesivir (the 
latter using our new RNA-seq data on remdesivir treatment). The predictions are highly enriched 
for reported anti-SARS-CoV-2 targets identified from various experimental screens, and we 
further validated a core set of top predicted single targets with an immunofluorescence-based 
siRNA assay in Caco-2 cells. Our results demonstrate the potential of targeting host metabolism 
to inhibit viral infection. 

Results 

Integrated analysis of multiple gene expression datasets identifies coherent immune and 
metabolic changes in SARS-CoV-2 infection 

Multiple studies have characterized the gene expression changes during SARS-CoV-2 infection 
in different in vitro and in vivo settings. We collected a total of 12 published relevant datasets 
spanning a wide range of sample types (various cell lines, primary bronchial epithelial cells, 
nasopharyngeal swab and bronchoalveolar lavage fluid, i.e. BALF samples from patients) and 
assay platforms (bulk RNA-seq, scRNA-seq, and MS-based proteomics). These datasets are 
summarized in Table 1. With each of the datasets, we performed differential expression (DE) 
analysis comparing the SARS-CoV-2-infected or positive samples to the non-infected control or 
negative samples (Methods; Table EV1). For the single-cell datasets, we focused on the airway 
epithelial cell which is known as the major virus-infected cell type. Comparing the datasets with 
a principle component analysis (PCA) plot based on the inverse normal-transformed DE log 
fold-change values (Fig 1A; Methods) suggests that the cell lines tend to have distinct DE 
profiles from the patient samples, although different patient datasets exhibit considerable 
variation depending on sample type and sequencing platform. Such variation is confirmed by 
comparing the top significant DE genes (FDR<0.1) from each pair of datasets (Fig 1B; 
additional robustness analysis in Appendix Fig S1; Methods). Examining only the top DE genes 
also appears to mitigate the technical variation across datasets, with reasonable coherence 
demonstrated by odds ratio median value 1.50 and maximum 5.89 (Fisher’s exact test adjusted 
P median 4.56e-6, minimum<2.22e-16; Fig 1B). 

Table 1. Summary of the published gene expression datasets on SARS-CoV-2 infection 
analyzed in this study. 

Dataset Name* Sample Type 
Sample 
Size† Platform Reference 

Vero Vero E6 cell line 6 
bulk RNA-
seq Riva et al. 2020 

NHBE Primary normal human bronchial epithelial cell 6 
bulk RNA-
seq 

Blanco-Melo et 
al. 2020 
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A549 
A549 human lung adenocarcinoma cell line 
with exogenous ACE2 expression 6 

bulk RNA-
seq 

Blanco-Melo et 
al. 2020 

Calu-3 Calu-3 human lung adenocarcinoma cell line 6 
bulk RNA-
seq 

Blanco-Melo et 
al. 2020 

293T HEK293T human embryonic kidney cell line 12 
bulk RNA-
seq 

Weingarten-
Gabby et al. 
2021 

Caco-2 
Caco-2 human colorectal adenocarcinoma 
cell line 6 

MS-based 
proteomics 

Bojkova et al. 
2020b 

Swab.Butler NP swab samples from human individuals 580 
bulk RNA-
seq 

Butler et al. 
2021 

Swab.Lieberman NP swab samples from human individuals 484 
bulk RNA-
seq 

Lieberman et al. 
2020 

BALF BALF from human individuals 6 
bulk RNA-
seq 

Xiong et al. 
2020b 

SC.Liao 
BALF from human individuals (epithelial cells 
were used in analysis) 13 scRNA-seq Liao et al. 2020 

SC.Chua.Basal 
NP and bronchial samples from human 
individuals (basal cells were used in analysis) 24 scRNA-seq Chua et al. 2020 

SC.Chua.Ciliated 

NP and bronchial samples from human 
individuals (ciliated cells were used in 
analysis) 24 scRNA-seq Chua et al. 2020 

 
* These are the names used in figure labels throughout the text. 
† The total number of replicates (virus-infected and control combined) used for analysis in in 
vitro datasets, or the total number of human individuals (patients and controls combined) used 
for analysis in in vivo datasets. In some datasets, only a subset of all the available samples 
were analyzed. 
Abbreviations: NP, nasopharyngeal; BALF, bronchial alveolar lavage fluid; RNA-seq, RNA-
sequencing; MS, mass spectrometry; scRNA-seq, single-cell RNA-sequencing. 

We then performed gene set enrichment analysis (GSEA) (Subramanian et al. 2005) on 
the DE results from each dataset (Table EV2), and further compared the datasets on the 
pathway level by the significantly enriched pathways (FDR<0.1; Methods). Reassuringly, the 
level of coherence across datasets on the pathway level is even stronger, with a median odds 
ratio of 4.53 (maximum is infinity followed by 40.73) across pairs of datasets (adjusted P median 
2.88e-5, minimum<2.22e-16; Fig 1C). Examining the most consistently enriched pathways 
across the datasets while giving higher importance to the various in vivo patient datasets (Fig 
1D; Table EV3; Methods), we see many up-regulated pathways involved in innate immune 
response to viral infection, e.g. interferon signaling. Among the pathways involving coherently 
down-regulated genes upon SARS-CoV-2 infection, we find antigen presentation, as well as 
numerous pathways spanning many major categories of cellular metabolism, e.g. TCA cycle 
and the respiratory electron transport, sphingolipid metabolism, glucose metabolism, and N-
glycan biosynthesis. These may reflect the specific metabolic requirements of SARS-CoV-2 or 
underlie its pathogenic effects (see Discussion). Visualizing a more complete landscape of 
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metabolic pathway alterations across the datasets reveals further consistent, although weaker 
changes (based on GSEA normalized enrichment score, i.e. NES; Fig 1E; Table EV2; 
Methods). The major findings above are robust to the DE algorithms used (Appendix Figure S2). 
These results suggest that besides immune response, metabolic reprogramming represents one 
of the most robust changes induced by SARS-CoV-2 infection across various systems, 
consistent with the key roles of metabolism in viral infection. We next focused on characterizing 
the SARS-CoV-2-induced metabolic changes in the infected host cells on the metabolic flux 
level. 
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Figure 1. Analysis of SARS-CoV-2-induced gene expression changes with 12 published 
datasets. (A) PCA plot using the rank-based inverse normal-transformed differential expression 
(DE) log fold-change values (virus-infected compared to control samples) across all the 
datasets analyzed. (B) Visualization of the overlap of the top significant DE genes (FDR<0.1) 
between each pair of datasets analyzed using Fisher’s exact tests (Methods). The dot size 
corresponds to the effect size of the overlap as measured by odds ratio, and the color 
corresponds to the negative log10 adjusted one-sided P value (grey means below 0.05). (C) 
Visualization of the overlap of the top significantly enriched pathways (FDR<0.1) from the gene 
set enrichment analysis (GSEA) between each pair of datasets analyzed using Fisher’s exact 
tests (Methods). The meanings of dot size and color are the same as (B), dots with black 
borders correspond to infinity odds ratio. (D) A summary visualization of the GSEA result for the 
top consistently altered pathways during SARS-CoV-2 infection across the datasets, with more 
importance given to the various in vivo patient datasets (Methods). The dot color corresponds to 
the negative log10 adjusted P values from GSEA, with two sets of colors (red-orange and blue-
purple) distinguishing up-regulation from down-regulation (positive or negative normalized 
enrichment scores, i.e. NES); dot size corresponds to the absolute value of NES measuring the 
strength of enrichment. The left and right-hand side blocks represent the pathways that tend to 
be consistently up-regulated and down-regulated in infected vs control samples, respectively; 
within each block, the pathways are ordered by negative sum of log P values across datasets 
(i.e. Fisher’s method). (E) Heatmap summarizing the landscape of metabolic pathway 
alterations (based on gene expression) during SARS-CoV-2 across datasets. The heatmap 
color corresponds to the GSEA NES values (explained above) for KEGG metabolic pathways 
grouped into major categories. Only the metabolic pathways with FDR<0.1 enrichment in at 
least one dataset are included in the heatmap. The dataset labels used in this figure correspond 
to those given in Table 1. 

Genome-scale metabolic modeling (GEM) identifies SARS-CoV-2-induced patterns of metabolic 
flux changes 

 Since gene expression does not necessarily correlate with protein level or enzyme 
activity and thus may not truthfully reflect metabolic activity (Maier et al. 2009), we applied GEM 
to infer the metabolic fluxes (i.e. rates of all metabolic reactions) across the datasets. 
Specifically, for each dataset, the iMAT algorithm (Shlomi et al. 2008) was applied to the median 
expression profiles of the control and virus-infected samples to compute the refined metabolic 
models representative of the two respective groups. Briefly, iMAT uses mixed integer 
programming to optimally identify high and low-activity reactions that match the high and low 
gene expression patterns in a sample-specific manner, thus defining sample-specific model 
constraints to obtain contextualized models (Shlomi et al. 2008). For the base metabolic 
models, we mainly used the more recent Recon 3D (Brunk et al. 2018), but also used Recon 1 
(Duarte et al. 2007) for increased robustness (Methods). After obtaining the dataset and 
sample-specific constrained model with iMAT, the marginal distribution of flux values of each 
metabolic reaction was obtained by sampling. The flux distributions of the control and infected 
groups were compared and reactions with differential fluxes (DF) were identified (Methods; 
Table EV4). We again examined the consistency across the datasets, here on the flux level, by 
checking the overlap of the top DF reactions between each pair of datasets. Like on the gene 
expression level, we are assured by the overall reasonable level of coherence of the DF 
reactions (odds ratio median 2.05, maximum 2.89; adjusted P value median 1.45e-11, minimum 
<2.22e-16; Fig 2A shows the result for the positive DF reactions, the result is similar for 
negative DF reactions. We note that the sign of DF represents the direction of flux change with 
regard to the positive direction of a reaction, which can be reversible, and not the increase or 
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decrease of the absolute flux). Although no reaction shows fully consistent changes across all 
12 datasets, we identified a set of most consistently changed reactions across datasets while 
giving higher importance to the in vivo patient datasets (Table EV5A; Methods), and examined 
the metabolic pathways they are enriched in with Fisher’s exact tests (significant pathways with 
FDR<0.1 shown in Fig 2B; Table EV5B). We see that consistent flux changes are found in 
various noteworthy pathways including metabolite transport (mitochondrial and extracellular), 
pentose phosphate pathway, hyaluronan metabolism, pyrimidine synthesis, glycine, serine, 
alanine and threonine metabolism, inositol phosphate metabolism, fatty acid synthesis, among 
others. Many of these pathways have been implicated in the infection and life cycle of different 
viruses including SARS-CoV-2 (Mayer et al. 2020, Ou et al. 2020, Gardinassi et al. 2020, Li et 
al. 2020, Thomas et al. 2020, Ehrlich et al. 2020, Bojkova et al. 2020a; see Discussion). 

 Next, we closely inspect the fluxes within specific pathways by visualizing their alteration 
patterns overlaid on the metabolic network, for virus-infected vs the control group. For example, 
the pyrimidine (de novo) synthesis pathway mostly contains consistently increased fluxes 
towards the synthesis of UMP (the precursor of pyrimidines; Fig 2C), consistent with the nucleic 
acid synthesis needs of the virus. As examples of pathways with more complex flux change 
patterns, in the inositol phosphate metabolism pathway, we see increased fluxes converging to 
phosphatidylinositol 4,5-bisphosphate (pail45p_hs[c]) and inositol (inost[c]), but decreased 
fluxes to inositol 1-phosphate (mi1p_DASH_D[c]; Fig 2D); in the fatty acid synthesis pathway, 
we see that the synthesis and interconversion of different fatty acids show distinct flux changes 
(Fig 2E). These highly intricate metabolic programs revealed by the GEM analysis are 
consistent with many previous reports and possibly reflect the specific metabolic demands of 
SARS-CoV-2 during its life cycle (see Discussion), which also demonstrates the value of the 
modeling approach over gene expression-level analyses. 
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Figure 2. Genome-scale metabolic modeling (GEM)-based analysis of SARS-CoV-2-
induced metabolic alterations across datasets. GEM was used to compute the metabolic 
fluxes from the gene expression profiles, and reactions with differential fluxes (DF) between the 
SARS-CoV-2-infected and control groups were identified for each dataset (Methods). (A) 
Visualization of the overlap of the top DF reactions between each pair of datasets analyzed 
using Fisher’s exact tests (Methods). The dot size corresponds to the effect size of the overlap 
as measured by odds ratio, and the color corresponds to the negative log10 adjusted one-sided 
P value (grey means below 0.05). (B) A summary visualization of the metabolic pathway 
enrichment result for the top consistent DF reactions across the datasets, with more importance 
given to the various in vivo patient datasets (Methods). Y-axis represents the odds ratio of 
enrichment, the dot color corresponds to the adjusted P value from Fisher’s exact tests, and dot 
size corresponds to the number of enriched reactions within each pathway. Half-dots plotted on 
the top border line correspond to infinity odds ratio values. The pathways on the X-axis are 
ordered by P value and only those with FDR<0.1 are shown. (C-E) Visualization of the relatively 
consistent DF patterns in selected enriched pathways. The DF results are based on metabolic 
modeling using the human GEM Recon 3D (Brunk et al. 2018), but for clear visualization, the 
metabolic network graphs are based on the human GEM Recon 1 (Duarte et al. 2007) to reduce 
the number of metabolites and reactions displayed (Methods). Metabolites are represented by 
nodes, reactions are represented by directed (hyper) edges, with edge direction corresponding 
to the consensus reaction direction and edge color corresponding to the consensus DF direction 
across datasets (Methods). Red and blue colors correspond to increased and decreased fluxes, 
respectively; grey color corresponds to reactions not showing consistent DF changes across 
datasets, some of such reactions are not shown to increase clarity. (C) Pyrimidine synthesis. (D) 
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Inositol phosphate metabolism. (E) Fatty acid synthesis. Metabolites are labeled by their names 
in (C) or IDs in (D,E), with suffixes denoting their cellular compartments: [c] cytosol; [m] 
mitochondria. The mapping between the IDs and metabolite names in (D,E) is given in Table 
EV5C. 

Prediction of anti-SARS-CoV-2 targets that act via counteracting the virus-induced metabolic 
changes 

 We have demonstrated that SARS-CoV-2 can induce recurrent and complex alterations 
in host cell metabolism. As was proposed previously, targeting the virus-induced metabolic 
changes can be an effective antiviral strategy (Mayer et al. 2019), which we adopted here to 
predict anti-SARS-CoV-2 targets. Specifically, we applied the GEM-based rMTA algorithm 
(Valcárcel et al. 2019) to each of our collected datasets to predict metabolic reactions whose 
knockout (KO) can transform the cellular metabolism from the SARS-CoV-2-infected state to the 
non-infected normal state, based on both the Recon 3D and Recon 1 models like above for 
higher robustness (Methods; Table EV6). Recon 3D results are described below unless 
otherwise noted. MTA computes a score for each of the metabolic reactions in the cell, and 
usually the 10-20% reactions with the highest MTA score contain promising candidate targets 
(Yizhak et al. 2013). We first compared the top 10% MTA-predicted reactions across datasets 
and found that they have reasonable overlap (odds ratio median 1.83, maximum 6.90, Fisher’s 
exact test adjusted P median 6.95e-14, minimum <2.2e-16 across all pairs of datasets; Fig 3A). 
Interestingly, some strong overlaps are seen between certain cell lines and patient datasets, 
consistent with the recurrent metabolic changes across these datasets as seen above. 

 To validate these predictions, we collected multiple validation sets of reported anti-
SARS-CoV-2 gene targets or drugs identified from large-scale chemical or genetic screens. 
These include CRISPR-Cas9 genetic screens in Vero E6 cells (Wei et al. 2021) and in cells with 
exogenous ACE2 expression (A549ACE2, Daniloski et al. 2021), and additional lists of 
experimentally validated drugs reported in different in vitro studies compiled by Kuleshov et al. 
2020 (Methods). We first tested for significant overlap between our top 10% MTA-predicted 
targets from each of the datasets and the validation sets described above with Fisher’s exact 
tests (after mapping all validated target genes or drugs to the metabolic reactions; Methods). 
Strongly significant overlaps were found between our predictions from 9 out of the 12 datasets 
with the antiviral hits (i.e. those whose KO inhibits SARS-CoV-2 infection) identified in the 
CRISPR-Cas9 screens (all 9 cases have FDR<3.18e-3, the other 3 have FDR>0.1; Fig 3B; 
Table EV6B), these significant datasets include the Vero (Riva et al. 2020) and A549ACE2 data 
(Blanco-Melo et al. 2020) from the same cell types as those used in the CRISPR-Cas9 screens, 
but encouragingly also include four in vivo patient datasets (Liao et al. 2020, Butler et al. 2021, 
Lieberman et al. 2020, Xiong et al. 2020b). Further examining the experimentally validated anti-
SARS-CoV-2 drug sets from previous studies (compiled by Kuleshov et al. 2020), we also found 
a few cases of significant overlap (FDR<0.1; Fig 3C; Table EV6C). Most of these drug sets are 
relatively small, but when we pooled all validated drugs compiled by Kuleshov et al., their 
targets are also enriched in the predictions from the BALF, Vero and 293T datasets (Fig 3C). 
The top predicted reactions from some datasets are also enriched for host proteins identified to 
interact with SARS-CoV-2 proteins from Gordon et al. 2020 and Stukalov et al. 2020 (FDR<0.1; 
Fig 3D; Table EV6D). Overall, our MTA-based top predictions obtained strong validation from 
the published CRISPR-Cas9 screens, with additional support from the drug screens and host-
virus protein-protein interaction (PPI) data. 

 We further take advantage of the genome-wide CRISPR-Cas9 screens to more closely 
evaluate the performance of our MTA predictions. Unlike in many of the drug-screen datasets 
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where the screens are low-throughput or complete screen results were not available, we were 
able to confidently define positive and negative sets (i.e. genes whose KO inhibits or promotes 
the viral infection, respectively) from the CRISPR-Cas9 screen data. The positive and negative 
sets were defined in a balanced way (Methods), with which we performed ROC curve analysis 
of our MTA predictions from each of the dataset (Methods). Although the MTA prediction is only 
based on the transformation of cellular metabolic states and does not consider the possible 
effect of other anti-/pro-viral mechanisms, we see that the predictions based on 6 of the 
datasets achieved area under ROC curve (AUROC) values above 0.6 and as high as 0.72, 
although two of the other datasets apparently yielded AUROC significantly lesser than 0.5 (Fig 
3E; see Discussion). As examples, ROC curves from Vero and SC.Liao are shown in Fig 3F, 
representing the best-performing in vitro and in vivo datasets, respectively. These results testify 
that our metabolism-targeting strategy using the MTA algorithm is able to achieve reasonable 
prediction performances. 

Next, we seek to integrate our predictions from the 12 datasets into a final consensus list 
of high-confidence candidate targets for further extensive experimental validation and 
investigation. We applied a procedure to pick highly recurrent top predictions across both the in 
vitro and in vivo datasets, as well as from both the Recon 3D and Recon 1-based results 
(Methods), resulting in a final list of 36 candidate target metabolic reactions mapped to 81 
genes and 14 are targeted by known drugs (Table EV7A). This final list of candidates are also 
strongly enriched for the positive targets identified in the two anti-SARS-CoV-2 CRISPR-Cas9 
screens described above (Wei et al. 2021 and Daniloski et al. 2021; odds ratio=8.90, P=1.3e-4). 
These candidates are enriched for metabolic pathways including cellular transport and inositol 
phosphate metabolism, among others (FDR<0.1; Fig 3G; Table EV7B; Methods). These are 
consistent with the known biology of SARS-CoV-2, e.g. phosphoinositides are known to be 
critical for SARS-CoV-2 cell-entry by endocytosis, and inhibiting phosphatidylinositol-3,5-
bisphosphate with the drug apilimod has been shown to suppress SARS-CoV-2 entry (Ou et al. 
2020). 
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Figure 3. Genome-scale metabolic modeling (GEM)-based prediction of anti-SARS-CoV-2 
targets that act via reversing the virus-induced metabolic alterations. The robust metabolic 
transformation algorithm (rMTA, Valcárcel et al. 2019) was used to predict metabolic reactions 
whose knock-out can reverse the SARS-CoV-2-induced metabolic changes using each of the 
collected datasets (Methods). (A) Visualization of the overlap of the top 10% MTA-predicted 
target reactions between each pair of datasets analyzed using Fisher’s exact tests (Methods). 
The dot size corresponds to the effect size of the overlap as measured by odds ratio, and the 
color corresponds to the negative log10 adjusted one-sided P value (grey means below 0.05). 
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(B) A summary visualization of the enrichment of the top 10% MTA-predicted targets from each 
dataset for the antiviral hits (i.e. those whose KO inhibits SARS-CoV-2 infection) identified in the 
two published CRISPR-Cas9 screens (Wei et al. 2021 and Daniloski et al. 2021; Methods). Y-
axis represents the odds ratio of enrichment, the dot color corresponds to the negative log10 
adjusted one-sided P value from Fisher’s exact tests, and dot size corresponds to the number of 
enriched target reactions. The datasets are ordered by P values, the first 8 datasets have 
FDR<0.1. (C) cases of significant enrichment (FDR<0.1) of top 10% MTA-predicted targets from 
each dataset for the experimentally validated anti-SARS-CoV-2 drug sets from previous studies 
(compiled by Kuleshov et al. 2020). “Union” means the union of all drug sets. Axes and the 
meanings of dot color and size are similar to (B) but the axes are flipped and the adjusted P 
values are not log-transformed. (D) significant cases of significant enrichment (FDR<0.1) of top 
10% MTA-predicted targets from each dataset for the host proteins involved in host-SARS-CoV-
2 protein-protein interactions (combined from Stukalov et al. 2020 and Gordon et al. 2020). 
Axes and the meanings of dot color and size are similar to (C). (E) A summary of the area under 
ROC curve (AUROC) value of the MTA prediction using each dataset, based on positive and 
negative sets (i.e. genes whose KO inhibits or promotes the viral infection, respectively) from 
the two published CRISPR-Cas9 screen data (Wei et al. 2021 and Daniloski et al. 2021; 
Methods). The error bars (vertical lines through the dots) represent 95% confidence intervals. 
(F) Example ROC curves from two of the best-performing datasets, one in vitro (Vero) and one 
in vivo (SC.Liao). The curves are colored by color gradients corresponding to the threshold of 
top MTA predictions. (G) Summary of the metabolic pathways significantly enriched (FDR<0.1) 
by the final list of consensus candidate targets identified across datasets (Methods). The axes 
and the meanings of dot color and size are similar to (B) except for that the axes are flipped.  

Validation of the predicted anti-SARS-CoV-2 targets with an in vitro siRNA assay 

 We next seek to experimentally validate the consensus predictions using an in vitro 
siRNA-based target knock-down assay. We have previously conducted a genome-wide siRNA 
screen to identify host factors that are essential for SARS-CoV-2 replication (Methods). To 
further prioritize targets for validation, we applied our computational predictions to this dataset 
and selected a small subset of 39 genes among the 81 consensus predicted targets (Methods; 
target list given in Table EV7C). siRNAs targeting each of these 39 genes were individually 
transfected into Caco-2 cells (n=4), which were then infected with SARS-CoV-2. Viral replication 
at 48 hours post-infection was assayed with immunofluorescence labeling of the viral 
nucleoprotein (N) protein, and siRNA-mediated toxicity was evaluated with DAPI staining 
(illustrated in Fig 4A; Methods). Overall, compared to negative control non-targeting siRNAs 
(scrambled), we observed that siRNAs targeting the 39 consensus targets significantly reduced 
viral replication (Wilcoxon rank-sum test P=1.7e-9, Fig 4B; raw data in Table EV7D; Methods). 
Inspected individually, knocking down 34 of the 39 targets significantly reduced SARS-CoV-2 
replication (adjusted P<0.05, Table EV7E). Notably, we also evaluated 4 randomly selected 
metabolic genes that were not predicted to revert SARS-CoV-2-induced metabolic changes 
using our analyses (negative controls), which showed much weaker viral inhibition effects (blue 
dots in Fig 4B). ACE2 and TMPRSS2, two genes known to be essential for SARS-CoV-2 
cellular entry (Hoffmann et al. 2020), were included as positive controls for comparison (red dots 
in Fig 4B). Overall, knock-down of the predicted consensus targets did not significantly reduce 
cell number (P=0.73, Fig 4C), indicating that their impact on viral replication is likely not due to 
siRNA-mediated cytotoxic effects. Representative fluorescence microscopy images for the 
siRNA targeting the top three predicted targets (together with the scrambled non-targeting 
control and ACE2 as positive control) are shown in Fig 4D. These results experimentally 
validate the efficacy of our predicted targets in vitro. 
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Figure 4. Validation of the predicted anti-SARS-CoV-2 targets with an 
immunofluorescence-based in vitro siRNA assay. (A) A schematic illustration of the siRNA 
assay in Caco-2 cells infected with SARS-CoV-2 to validate the antiviral efficacies of the 
consensus predicted metabolic targets. Caco-2 cells were transfected with siRNAs for 48 h prior 
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to infection with SARS-CoV-2 (MOI=0.1). Four replicates were performed for each target. At 48 
h post-infection, cells were subjected to staining with SARS-CoV-2 nucleoprotein (N) antibody 
and DAPI, and then imaged to determine the percentage of infected cells after each target 
knockdown (Methods). (B) Quantification of SARS-CoV-2 infection. After the siRNA knockdown 
of each target, viral infection was quantified as mean log2 fold-change (log2FC) of the 
percentage of SARS-CoV-2+ cells relative to the mean of scrambled non-targeting siRNAs 
(“SCRAMBLED”, green dots; accordingly the mean log2FC value of scrambled non-targeting 
siRNAs was normalized to zero). Predicted positive targets (“TARGETING”, grey dots), 
predicted negative targets (“NEG”, blue dots) and positive controls (“POS”, red dots, including 
ACE2 and TMPRSS2) are all shown. Wilcoxon rank-sum test P value comparing the predicted 
positive targets to scrambled non-targeting siRNAs is given. (C) Quantification of cell number 
after each target knockdown, calculated as the mean fraction of DAPI+ cells relative to the 
scrambled non-targeting siRNAs (i.e. the latter was normalized to 1). Colors of dots and P value 
are interpreted in the same way as in (B). (D) Representative fluorescence images from the 
siRNA assay showing SARS-CoV-2 infection (green channel, top row), cell number (blue 
channel, middle row) and merged (bottom row). Results for scrambled non-targeting siRNA as 
negative control (left column), knockdown of three predicted top metabolic targets (PIKFYVE, 
SLC16A10, and PIP5K1C, middle columns), and knockdown of positive control (ACE2, right 
column) are shown. Scale bar=10 μm. 

Prediction of metabolic targets for anti-SARS-CoV-2 in combination with remdesivir 

 Given that our MTA-based prediction of single anti-SARS-CoV-2 metabolic targets has 
yielded promising results, we proceed to extend the same strategy for the prediction of targets 
that can be combined with remdesivir to achieve higher antiviral efficacy. To this aim, we 
cultured Vero E6 cells infected by SARS-CoV-2, with or without remdesivir treatment. A control 
group (no viral infection or remdesivir treatment) a remdesivir-only group (no viral infection) 
were also included (Methods). Bulk RNA-seq was performed to obtain the gene expression 
profiles of these samples (Methods). Visualizing the gene expression data with a PCA plot, we 
see that remdesivir can indeed effectively reverse the virus-associated expression changes 
(mostly along the first PC axis), but also results in additional orthogonal changes along the 
second PC axis (Fig 5A). Performing a GSEA analysis comparing the virus+remdesivir group to 
the normal control group, we see that many pathways show significant differences in their 
expression, including some metabolic pathways, e.g. cholesterol and steroid biosynthesis (Fig 
5B; Table EV8; Methods). Some of these differences can be attributed to the incomplete 
reversion of virus-induced expression changes by remdesivir, while others may arise from 
remdesivir-specific effects (Fig 5B). Further computing the metabolic flux profiles representative 
of each group of samples with iMAT (Shlomi et al. 2008) then inspecting the flux-level PCA plot 
(Fig 5C; Methods), we observe a similar pattern from that seen on the gene expression level. 
The differential fluxes between the virus+remdesivir and the control group are enriched for 
various metabolic pathways (FDR<0.1; Fig 5D; Table EV9; Methods), many also have 
differential fluxes comparing virus-infected samples to control (see Fig 2B), suggesting that 
these metabolic changes are not fully reversed to normal by remdesivir. We hypothesize that 
further reversing the cellular state in the virus+remdesivir group towards the healthy control 
state may be an effective combinatory targeting strategy to improve the antiviral efficacy of 
remdesivir. 

 As before, we focused on the domain of cell metabolism and applied rMTA on our data 
from Vero E6 cells to predict targets for reversing the metabolic flux profile in the 
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virus+remdesivir group towards normal using both Recon 3D and Recon 1 models (Methods; 
Table EV10A). Trying to validate these predictions, we obtained a list of 20 experimentally 
tested drugs showing synergistic anti-SARS-CoV-2 effects with remdesivir in the Calu-3 cell line 
(Nguyenla et al. 2020). Despite the cell type difference, we observed that the targets of these 
drugs are significantly enriched by our top 20% MTA predictions when using Recon 1 as the 
human metabolic model (Fisher’s exact test P=0.011, odds ratio 4.83; there is also a trend of 
enrichment by the top 10% MTA predictions with odds ratio 2.01, but it failed to achieve 
statistical significance at P=0.30; the enrichment was not significant when using the Recon 3D 
model). The top 20% Recon 1-based predictions recovered 6 of the 11 metabolic reaction 
targets from Nguyenla et al., corresponding to drugs including cilostazol, ezetimibe, ivosidenib 
and valdecoxib. Some of the top predicted targets overlap with our predicted single anti-SARS-
CoV-2 targets as described above, e.g. various inositol phosphate metabolism reactions. This is 
consistent with the observation that the virus-induced metabolic changes in these pathways are 
not effectively reversed to normal by remdesivir (as seen from Fig 2B and 5D). Performing a 
pathway enrichment analysis, we see that the top predictions from both Recon 1 and Recon 3D 
are enriched in heparan sulfate and hyaluronan metabolism pathways, among others (Fig 5E; 
Table EV10B); steroid metabolism pathway, which was seen to be different on the gene 
expression level between the virus+remdesivir and control samples (see Fig 5B), is also 
enriched for the top predicted targets (Fig 5E). We provide a list of 87 consensus gene targets 
common to the top 20% predictions from both Recon 1 and Recon 3D (Table EV10A; Methods). 
These predictions represent candidate targets that can potentially improve the antiviral efficacy 
of remdesivir in combination and warrant further testing in future studies. 
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Figure 5. Analysis of the gene expression and metabolic flux profile of remdesivir 
treatment and prediction of metabolic targets for anti-SARS-CoV-2 in combination with 
remdesivir. (A) PCA plot of the gene expression profiles for the Vero E6 samples from all 
experimental groups: control (no virus or remdesivir treatment), virus (SARS-CoV-2-infected), 
virus+remdesivir (SARS-CoV-2-infected treated by remdesivir), remdesivir (remdesivir treatment 
alone without virus). There are 3 replicates in each group. (B) A visualization of selected 
differentially expressed pathways comparing the virus+remdesivir group to the control group 
using gene set enrichment analysis (GSEA). Y-axis represents normalized enrichment score 
(NES), positive value means higher expression in the virus+remdesivir group compared to 
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control, vice versa. Pathways on the X-axis are ordered by their NES values, all pathways 
displayed have adjusted P<0.05; pathways with names in red are those that are not significantly 
different (adjusted P>0.2) when comparing the virus group to the control group using GSEA, i.e. 
changes in these pathways may arise from remdesivir-specific effects. The dot color 
corresponds to the negative log10 adjusted GSEA P value, and dot size corresponds to the 
number of enriched genes (i.e. “leading edge” genes in GSEA). (C) PCA plot of the average 
metabolic flux profile computed using the iMAT algorithm (Shlomi et al. 2008; Methods) 
representative of each of the experimental groups, the labels are the same as (A). (D) A 
visualization of metabolic pathway enrichment results of the differential metabolic fluxes in the 
virus+remdesivir group vs the control group, using Fisher’s exact tests (Methods). Y-axis 
represents the odds ratio of enrichment, the horizontal dashed line corresponds to odds ratio of 
1. The dot color corresponds to the negative log10 adjusted one-sided P value from Fisher’s 
exact tests, and dot size corresponds to the number of enriched target reactions. The datasets 
are ordered by P values, all pathways displayed have FDR<0.1. (E) The robust metabolic 
transformation algorithm (rMTA, Valcárcel et al. 2019) was used to predict metabolic reactions 
whose knock-out can further transform the metabolic state of the remdesivir-treated SARS-CoV-
2-infected cells back to the normal control state, using the Vero E6 cell samples (Methods). The 
significant metabolic pathways (FDR<0.1) enriched by the top 10% MTA-predicted targets are 
shown. Axes and the meanings of dot color and size are similar to (D). 

Discussion 

In this study, we provide a comprehensive GEM analysis integrating 12 published gene 
expression datasets on SARS-CoV-2 infection, spanning multiple in vitro and in vivo sample 
types and expression profiling platforms. We revealed the complexity of host metabolic 
reprogramming by SARS-CoV2, and further predicted anti-SARS-CoV-2 single or combinatory 
(with remdesivir) targets that act via counteracting the virus-induced metabolic changes. Our 
GEM-based prediction algorithm showed good performance based on validation with published 
targets from in vitro screens, and the predicted targets represent highly promising candidates for 
further experimental testing. 

To date, a large number of studies have been published that contributed to our fast 
understanding of the host molecular changes associated with SARS-CoV-2 infection. These 
studies involve a variety of different experimental models and/or sample types, making it 
necessary to perform a systematic analysis across datasets and evaluate the robustness and 
clinical relevance of the findings in human patients. Although we do not aim to (and cannot) 
include all relevant published data, we tried to cover datasets on both popular in vitro models of 
SARS-CoV-2 infection as well as human patients (nasopharyngeal swab and BALF samples), 
aiming to increase the robustness and clinical relevance of our findings. This strategy may also 
facilitate the testing of our predicted targets and bridge pre-clinical and potential future clinical 
drug development. While many other studies have shed light on the systemic and immune cell-
specific response characteristic of SARS-CoV-2 infection (e.g. Zheng et al. 2020 and many of 
the patient studies we collected in Table 1), our focus is specifically on the virus-infected host 
cells, i.e. primarily the airway epithelial cells in vivo. Therefore, for human samples, in addition 
to bulk RNA-seq, we analyzed scRNA-seq data to separate the distinctive changes within the 
epithelial cells from, e.g. various types of immune cells. In terms of methodology, our complex 
collection of data from a wide range of platforms with large technical variations (bulk RNA-seq, 
scRNA-seq, MS-based proteomics) poses a challenge to a formal effect size-based meta-
analysis. Despite the progress in multi-omic data integration (Pierre-Jean et al. 2020), to the 
best of our knowledge there is currently no method specifically for integrating the data types we 
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used in this study that are also compatible with our downstream metabolic modeling. Therefore, 
we instead relied mostly on P values, and made subjective decisions that give higher 
importance to the various patient datasets when defining consistent findings, aiming to obtain 
results of higher clinical relevance. By integrated analysis of all these data, we found that 
metabolism is one of the cellular domains that exhibit the most coherent changes across 
datasets in SARS-CoV-2 infection (besides immune responses; Fig 1D). This finding is 
consistent with our prior knowledge on the need of a wide spectrum of viruses to manipulate 
host metabolism for viral proliferation (Mayer et al. 2019). Specific findings from the pathway 
analysis are also consistent with previous reports, e.g. Both TCA cycle and OXPHOS have 
been shown to decrease based on gene expression during the virus infection (Ehrlich et al. 
2020, Gardinassi et al. 2020), and have been implicated in the systemic syndromes of the virus 
(Li et al. 2020). Factors involved in sphingolipid metabolism have been found to inhibit the 
replication of SARS-CoV-2 (Martin-Sancho et al. 2021). These set a solid basis for our GEM-
based metabolic flux analysis and antiviral target prediction. 

The application of GEM in complement to gene expression-level analysis is a central 
part of our study. It is known that gene expression does not always perfectly correlate with 
protein level or enzyme activity (Maier et al. 2009). Besides, many metabolic reactions are 
reversible, while the directions of reactions are important biologically, such information is 
missing on the gene level. By taking advantage of the additional information in the topological 
constraints of the metabolic network, GEM allows us to infer the actual metabolic fluxes, thus 
revealing extra complexity in SARS-CoV-2-induced metabolic reprogramming, as is evident 
from Fig 2C-E. Many of these inferred metabolic changes are consistent with what’s known 
about SARS-CoV-2 and other related viruses. For example, the highly coherent increase in 
pyrimidine biosynthesis (Fig 2C) corresponds to the increased need of viral genome replication 
and gene expression (Bojkova et al. 2020b), and pyrimidine de novo synthesis inhibitors have 
been shown to have anti-SARS-CoV-2 effects (Xiong et al. 2020a). Inositol phosphate 
metabolism (Fig 2D) is important for the life cycle of many viruses due to the structural or 
signaling roles of different phosphoinositides (Beziau et al. 2020), with the inhibition of certain 
phosphoinositides disrupting endocytosis and blocking SARS-CoV-2 cell-entry (Ou et al. 2020). 
Fatty acid synthesis was reported to increase in SARS-CoV-2 infection (Ehrlich et al. 2020), 
whereas our results suggest a more complex pattern for different fatty acid species (Fig 2E), 
which echoes the results of several metabolomics studies (Shen et al. 2020, Barberis et al. 
2020, Thomas et al. 2020). Despite that GEM can help to suggest such intricate flux-level 
patterns, these computed fluxes should be verified with isotope labeling experiments, and their 
biological significance in the virus infection needs to be further investigated. 

Given the importance of metabolism during virus infection, targeting host metabolism 
has already been proposed as a promising novel antiviral strategy (Mayer et al. 2019). For this, 
the MTA algorithm we previously developed (Yizhak et al. 2013), again a method under the 
GEM framework, can be particularly valuable for the metabolic target discovery. MTA has been 
successfully applied to predict lifespan extending interventions in yeast (Yizhak et al. 2013), a 
metabolic cancer driver gene (Auslander et al. 2017), and a novel therapeutic target for 
intractable epilepsy (Styr et al. 2019). A recent variant of MTA named rMTA was shown to 
deliver better performance (Valcárcel et al. 2019), and here we used an optimized 
implementation of rMTA in our study. MTA/rMTA are not based on supervised machine learning 
techniques, and do not use any of the validation datasets for target prediction. Yet, we were 
able to achieve decent performance during the validation (Fig 3B-F). It is particularly 
encouraging to see that in several cases, the validation data (which mostly originated from in 
vitro experiments) correlated well with the predictions based on in vivo human data. In some 
datasets, however, our predictions were not successfully validated by the genetic screen data 
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(Fig 2B,E). One reason could be that MTA can only consider the metabolism-related effects and 
ignores other potential mechanisms that determine the antiviral efficacy of a target. 
Nevertheless, it could also be due to biological differences between the datasets used for 
prediction and those used for validation. To avoid overdependence on the limited validation sets 
available in defining the final consensus candidate target list, we did not explicitly exclude any 
dataset used for prediction but enforced the inclusion of the human patient data to achieve 
higher clinical relevance. With such an approach, we were able to identify a set of high-
confidence consensus targets, which were then successfully validated with an 
immunofluorescence-based siRNA assay using SARS-CoV-2 infected Caco-2 cell line. Our 
assay has the advantage of directly measuring the number of SARS-CoV-2 infected cells via 
staining of its N protein, while monitoring cytotoxicity (reduction in cell number) via DAPI 
staining. Reassuringly, knocking-down the predicted targets did not exhibit any significant 
cytotoxicity. These in vitro findings should be further validated in vivo in future studies. The 
prediction for combinatory targets with remdesivir also showed promising preliminary results, 
although our validation is more limited in this case. Our GEM-based pipeline thus complements 
other computational methods in predicting anti-SARS-CoV-2 targets and drugs, including those 
based on network analysis (Zhou et al. 2020b) or artificial intelligence (Zhou et al. 2020c). 
Follow-up studies are warranted to solidly test and validate these predicted targets for potential 
further antiviral therapy development. 

This study has several limitations that should be more thoroughly addressed in future 
studies incorporating the GEM modeling approach. First, as we aimed to identify targets in 
airway epithelial cells, we did not fully characterize cell type and tissue-specific metabolism 
associated with SARS-CoV-2 infection. Notably, future studies should analyze single-cell 
datasets to construct cell type-specific GEMs to identify cell type-specific antiviral targets and 
virus-induced alterations, e.g, immunometabolic changes (O'Carroll  et al. 2021). Second, it’s 
known that people with different sexes and ages respond differently to SARS-CoV-2 infection 
(Peckham et al. 2020; Canas et al. 2021), and that the infection can result in a wide spectrum of 
disease severity (Sandoval et al. 2021), which may be associated with metabolic underpinnings 
that can in turn be studied in the future with sex, age and clinical outcome-specific GEMs, given 
sufficient pertaining preclinical and clinical data. Third, while we predicted combinations of 
targets based on the principle of restoring cellular homeostasis, it is also feasible to predict 
synergistic target combinations under the GEM framework via modeling of synthetic lethality, 
which has also been proposed as a viable antiviral approach (Mast et al. 2020). 

In summary, we identified prevalent and intricate metabolic reprogramming in the host 
cell as a feature of SARS-CoV-2 infection, and further predicted single and combinatory antiviral 
targets with promising performance seen in preliminary validations. These targets should be 
rigorously validated experimentally. Since our predictions are in part based on human patient 
data, they are likely to have high clinical relevance and may ultimately help to achieve better 
efficacy in COVID-19 treatment. Our study demonstrates the targeting of host metabolism as a 
promising antiviral strategy and highlights the power of GEM analysis to advance the 
understanding of cell metabolism during viral infection and antiviral target prediction. 

Materials and Methods 

Differential gene expression analysis 

We obtained each of the gene expression datasets on SARS-CoV-2 infection from the sources 
listed in Table 1. For the bulk RNA-sequencing (RNA-seq) datasets whose read count data is 
available at the time of analysis, we performed differential expression (DE) analysis comparing 
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the SARS-CoV-2-infected or positive samples to the non-infected control or negative samples 
with DESeq2 (Love et al. 2014). For Butler et al. 2021 and Xiong et al. 2020b, we obtained the 
DE results provided from the supplementary materials of the respective publication. For Butler 
et al. 2021, among their multiple versions of DE results we used the one from limma-voom with 
sva correction “Voom:Positive_vs_Negative:10M_samples:sva_correction_2sv”. To test whether 
the mixed use of multiple DE methods could introduce bias to the results, we also used limma-
voom (Law et al. 2014) on all of the bulk RNA-seq datasets (for results in Appendix Figure S2), 
and found that the major conclusions were not affected by the change of DE methods. We also 
took the DE results of the proteomic data from Bojkova et al. 2020b as provided by the authors, 
and used the 24 hours post-infection data which is the latest time point available with the largest 
number of DE proteins). For the single-cell RNA-sequencing (scRNA-seq) datasets, The 
“FindMarkers” function in the R package Seurat (Stuart et al. 2019) was used to call the MAST 
method (Finak et al. 2015) for DE analysis in each annotated cell type, with “logfc.threshold” set 
to 0 to obtain full results across genes. We focused on the airway epithelial cells since our major 
aim in this study is to investigate the changes in the cell types infected by the SARS-CoV-2 
virus, these include the “Epithelial” cell type from Liao et al. 2020 and the “Ciliated” and “Basal” 
cell types from Chua et al. 2020 (other epithelial subtypes from these datasets yielded no 
significant DE genes). All DE results are given in Table EV1. 

Gene set enrichment analysis of the differential expression results 

Using the DE log fold-change values from each dataset, gene set enrichment analysis 
(GSEA) (Subramanian et al. 2005) was performed using the implementation in the R package 
fgsea (Korotkevich et al. 2019). The gene set/pathway annotations used were the Reactome 
(Jassal et al. 2020) and KEGG (Kanehisa et al. 2021) subsets from the “Canonical Pathway” 
category in version 7.0 MSigDB database (Liberzon et al. 2011). For metabolic pathways (in Fig 
1E), those under the category “Metabolism” from KEGG (Kanehisa et al. 2021) were used. All 
GSEA results are given in Table EV2. 

Comparison of the differentially expressed genes and pathways across datasets 

The DE results across datasets were compared in a descriptive manner. As a first 
approach, the DE log fold-change values were inverse normal-transformed across all genes 
within each dataset, which preserves only the order (i.e. rank) of DE effect sizes, and then PCA 
was applied to the transformed data. As a second approach, top significantly DE genes or 
enriched pathways with FDR<0.1 from each pair of datasets were tested for significant overlap 
using Fisher’s exact tests. To identify the consistent DE changes across datasets, a formal 
meta-analysis of all 12 datasets is challenging given the wide range of assay platforms and DE 
algorithms used. So instead, we adopted a subjective criteria that give high importance to the 
various in vivo patient datasets, such that the results may be more clinically relevant: we 
identified pathways that are significantly (FDR<0.1) enriched in the consistent direction 
(up/down-regulation) in at least one of the bulk RNA-seq patient datasets and also at least one 
of the scRNA-seq datasets, while never showing significant enrichment (FDR<0.1) in the 
opposite direction in any of the datasets (for the results in Fig 1D; Table EV3). 

Computation of metabolic fluxes from gene expression data with genome-scale metabolic 
modeling 

For each dataset, we used the genome-scale metabolic modeling (GEM) algorithm iMAT 
(Shlomi et al. 2008) to compute the metabolic flux profile from gene expression data. iMAT 
requires gene-length normalized expression values in the bulk RNA-seq datasets, for this we 
computed TPM values with Salmon (Patro et al. 2017) from the raw fastq files for datasets 
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where TPM data is not provided. Then for each dataset, we took the median expression values 
of the control and virus-infected samples respectively as the representative expression profile 
for each group, and used it as input to iMAT. The human genome-scale metabolic model (GEM) 
Recon 3D (Brunk et al. 2018) was used as the base model for iMAT. Since Recon 3D is a large 
model that in some cases may pose difficulty to the mixed integer programming (MIP) solver 
used in iMAT, we also used an older and smaller version of the human GEM, i.e. Recon 1 
(Duarte et al. 2007) to double check the numerical stability and robustness of results. The 
output of iMAT is a refined GEM for the each of the virus-infected and control groups in each 
dataset, with metabolic reaction bounds adjusted to achieve maximal concordance with the 
gene expression data while satisfying the stoichiometric constraints of the cellular metabolic 
network (Shlomi et al. 2008). Each output model defines a space rather than a single unique 
solution of the global metabolic flux profile, and artificial centering hit-and-run (ACHR) was used 
to sample the metabolic space and obtain the distribution of flux values for each metabolic 
reaction in each condition (control or virus-infected) and dataset. Although not a single value 
representing a unique solution, we were able to determine reactions with differential fluxes by 
comparing the flux distributions of a reaction in control and virus-infected conditions (see next 
section). We did not apply flux balance analysis (FBA) on the iMAT-derived constrained models, 
as maximal biomass production may not be appropriate especially for the in vivo patient 
samples, and tissue type-specific objective functions for these samples are not trivial to define. 
All GEM analyses were performed using our in-house R package named gembox, with the 
academic version of IBM ILOG CPLEX Optimization Studio 12.10 as the optimization solver on 
a high-performance computing cluster. 

Differential flux analysis of virus-infected vs control group in each dataset 

The flux distributions of the control and infected groups were compared to identify 
reactions with differential fluxes (DF). Since an arbitrarily large number of sample points can be 
sampled from the metabolic space of each group, resulting in statistical tests with arbitrarily 
small P values, we adopted the following effect size-based criterion for DF reactions: absolute 
rank biserial correlation (an effect size measure of the difference between the two flux 
distributions in the control and virus-infected groups) >0.5, and absolute relative flux change 
(i.e. the absolute difference of the mean fluxes between the two groups over the absolute mean 
flux in the control group) >50%. Positive DF reactions have flux value difference in infected vs 
control group >0, and vice versa for negative DF reactions. Note that for non-reversible 
reactions, flux values are non-negative and the sign of DF can be interpreted similarly to 
differential gene expression; for reversible reactions, flux values can be negative, representing 
reactions happening in the reverse direction, thus the sign of DF needs to be interpreted 
differently, e.g. negative DF represents flux shift towards the reverse direction and not 
necessarily decrease in absolute flux. The DF results are given in Table EV4, these are based 
on modeling results with Recon 3D. 

Analysis of reactions with consistent differential fluxes across datasets and their pathway 
enrichment analysis 

To compare the DF results across datasets, the DF reactions from each pair of datasets 
were tested for significant overlap using Fisher’s exact tests (separately for positive and 
negative DF). Since no reaction shows fully consistent DF across all 12 datasets analyzed, 
similarly as with the DE analysis, we identified the DF reactions with high level of consistency 
especially in the in vivo patient datasets, such that the results may be more clinically relevant: 
we identified DF reactions in the consistent direction (positive/negative) in at least one of the 
bulk RNA-seq patient datasets and also at least one of the scRNA-seq datasets, while showing 
DF in the opposite direction in no more than 3 datasets (Table EV5A). The metabolic pathway 
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enrichment of these DF reactions was analyzed with Fisher’s exact tests (results in Table 
EV5B), with the “subSystems” slot in the Recon 3D metabolic model used as pathway 
annotation. However, we also performed the enrichment analysis with the Recon 1 modeling 
results and the corresponding “subSystems” annotation, and we removed pathways that show 
inconsistent enrichment results between Recon 3D and Recon 1. Note that due to the special 
interpretation of the sign of DF values as explained above, the GSEA used for gene expression-
level analysis is not appropriate for pathway enrichment analysis on the flux level. 

 

Analysis of the consistent flux alteration patterns in different metabolic pathways 

For each of the significantly enriched metabolic pathways identified in the consistent DF 
reaction analysis described above, we defined the “consensus” direction of each reaction as 
represented by those shown in the virus-infected group from the majority (>6 out of 12) of the 
datasets, and also similarly for the “consensus” direction of DF for each reaction. The 
consensus directions of reactions and their DF were overlaid onto network diagrams of the 
pathways and visualized, where metabolites are represented by nodes, reactions are 
represented by directed (hyper) edges with edge direction corresponding to the consensus 
reaction direction and edge color corresponding to the consensus DF direction. Parts of the 
metabolic pathways where reactions are not consistently altered across datasets are greyed out 
or removed to increase the clarity. The DF results from the Recon 3D model (Brunk et al. 2018) 
was used, but for clear visualization, the network diagrams of the metabolic pathways are based 
on the smaller Recon 1 model (Duarte et al. 2007) to reduce the number of metabolites and 
reactions displayed. Common reactions shared by Recon 3D and Recon 1 were mapped by 
their IDs when the IDs are the same, or were manually mapped according to the metabolite 
interconversion relationship when the IDs are different. Further, upon visual inspection, potential 
futile loops in the network are also removed from the visualizations.  

Prediction of anti-SARS-CoV-2 target metabolic reactions with metabolic transformation 
algorithm 

For each of the collected datasets, the DE result of virus-infected vs control samples as 
well as the representative flux distribution of the virus-infected group computed with iMAT 
(Shlomi et al. 2008) followed by ACHR sampling were used as inputs for the GEM-based 
metabolic transformation algorithm (MTA; Yizhak et al. 2013; a variant called rMTA was used; 
Valcárcel et al. 2019) to predict metabolic reactions whose knock-out can transform cellular 
metabolic state from that of the virus-infected to that of the control samples (full prediction 
results from all datasets in Table EV6A). The output of rMTA is a score (rMTA score) for each 
metabolic reaction, with higher scores corresponding to better candidates for achieving the 
metabolic transformation as specified above. From our previous experience (Yizhak et al. 2013), 
the top 10-20% MTA predictions contain promising targets. The human Recon 3D (Brunk et al. 
2018) GEM was used for the MTA analysis, and we also used Recon 1 GEM (Duarte et al. 
2007) to confirm the robust predictions. The rMTA algorithm implemented in our in-house R 
package named gembox was used, with the academic version of IBM ILOG CPLEX 
Optimization Studio 12.10 as the optimization solver on a high-performance computing cluster. 
To compare the MTA predictions across datasets, the top 10% predictions from each pair of 
datasets were tested for significant overlap using Fisher’s exact tests. 

Computational validation of the MTA-predicted anti-SARS-CoV-2 metabolic targets 
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Multiple datasets of reported anti-SARS-CoV-2 gene targets or drugs identified from 
large-scale chemical or genetic screens were collected to validate our predictions. Gene-level 
results of two published CRISPR-Cas9 genetic screens (Wei et al. 2021 and Daniloski et al. 
2021) were obtained from the supplementary materials of the respective publication. For Wei et 
al., gene hits with FDR<0.1 and mean z score>0 (i.e. KO inhibits the viral infection) were taken; 
Daniloski et al. reported two screens with different multiplicities of infections (MOIs) and 
provided only single-sided FDR, so gene hits with FDR<0.1 from either screen were taken. The 
union set of hits from both studies were used. Lists of experimentally validated drugs reported in 
different studies compiled by Kuleshov et al. 2020 were downloaded from 
https://maayanlab.cloud/covid19/, which are then mapped to the genes they inhibit using data 
from DrugBank v5.1.7 (Wishart et al. 2018). Additionally, host proteins identified to interact with 
SARS-CoV-2 proteins were obtained from the supplementary materials of Gordon et al. 2020 
and Stukalov et al. 2020. The genes from these validation datasets are mapped to metabolic 
reactions wherever applicable based on the human GEM Recon 3D (Brunk et al. 2018) data. 
Then, the significant overlap between the top 10% MTA-predicted targets from each dataset 
and each of the validation sets described above was tested with Fisher’s exact tests on the 
reaction level (full results in Table EV6B-D). Reaction-level test is performed because multiple 
reactions can be mapped to the same gene, and performing Fisher’s exact test on the gene-
level fails to consider such multiple mapping and is thus inappropriate. 

For ROC analysis, negative sets (i.e. genes whose KO promotes SARS-CoV-2 infection) 
were defined based on the two CRISPR-Cas9 screens described above. For Wei et al., gene 
with FDR<0.1 and mean z score<0 were taken; since Daniloski et al. provided only single-sided 
FDR, the log fold-change threshold corresponding to the FDR<0.1 cutoff was identified, and 
genes with more extreme log fold-changes in the opposite direction were taken. The union of 
the negative sets from both studies was used. Both the positive (described in the previous 
paragraph) and negative sets of genes are then mapped to metabolic reactions as described 
above. The negative set defined as such contains a relatively balanced number of reactions 
compared to the positive set (306 vs 238). The rMTA score for the reactions produced by MTA 
was used as the predicted value for ROC analysis. The R package pROC (Robin et al. 2011) 
was used to compute the AUROC values and their 95% confidence intervals (the latter 
computed with bootstrapping). 

Defining and analyzing the consensus set of candidate anti-SARS-CoV-2 metabolic targets 
across datasets 

Based on top 10% MTA predictions from the 12 datasets (6 in vitro and 6 in vivo) using 
Recon 3D, the metabolic reaction targets that are recurrent in at least 2 of the in vitro datasets, 
and also in 2 of the in vivo datasets (i.e. the intersection of the two) were taken, and were then 
mapped to genes based on the model data. This procedure was repeated for the Recon 1-
based predictions, and the intersection between the Recon 3D predictions and Recon 1 
predictions were taken to be the final consensus candidate gene targets with high-confidence 
support across datasets. These target genes were further mapped to known drugs inhibiting the 
gene targets using data from DrugBank v5.1.7 (Wishart et al. 2018; target list given in Table 
EV7A; the reaction and rMTA score information in this table was based on the Recon 3D 
results). The metabolic pathway enrichment of these targets was analyzed with Fisher’s exact 
tests, with the “subSystems” slot in the metabolic model used as pathway annotation. For our 
siRNA assay-based experimental validation of the predictions, we focused on a further subset of 
those consensus candidate gene targets with negative log fold-change regardless of P value in 
a previous genome-wide siRNA screen we performed (data will be deposited), namely, our 
computational predictions were used to prioritize the targets for focused replicated validation 
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assays from the much more noisy results of genome-wide screens. This list of targets for 
experimental validation are given in Table EV7C. 

Validation of the consensus set of predicted anti-SARS-CoV-2 targets with siRNA assay 

A targeted small-scale siRNA screen was carried out in human Caco-2 cells to evaluate 
if the predicted metabolic targets affect the replication of SARS-CoV-2. The siRNAs (ON-
TARGETplus SMARTpool, Dharmacon) were individually arrayed in 384-well plates at a 
concentration of 12.5 nM per well. In addition, non-targeting siRNAs (scrambled) were added to 
each plate as negative controls, and siRNAs targeting SARS-CoV-2 entry factors ACE2 and 
TMPRSS2 were included as positive controls. siRNAs were mixed with 0.1 μL Lipofectamine 
RNAiMAX transfection reagent diluted in 9.90 μl Opti-MEM media (both reagents from Thermo 
Fisher Scientific) to enable the formation of siRNA-transfection reagent complexes. Following a 
20 min incubation period at room temperature, 3,000 Caco-2 cells diluted in 40 μL DMEM media 
(Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco), and 50 U/mL 
penicillin - 50 µg/mL streptomycin (Fisher Scientific) were seeded on top of the complexes and 
incubated for 48 h at 37°C, 5% CO2. Cells were then infected with SARS-CoV-2 (USA-
WA1/2020) at a multiplicity of infection (MOI=0.1) for 48 h at 37°C, 5% CO2, and then fixed with 
4% PFA (Boston BioProducts) for 4 h at room temperature. Cells were then washed twice with 
PBS, permeabilized with 0.5% Triton X-100 for 20 min, followed by blocking with 3% BSA 
(Sigma) for 1 h at room temperature. Primary anti-SARS-CoV-2 N protein rabbit polyclonal 
antibody (gift from Dr. Adolfo Garcia-Sastre) was added for 2 h at room temperature, followed 
by three washes with PBS and 1 h incubation with Alexa Fluor 488-conjugated anti-rabbit 
secondary antibody (Thermo Fisher Scientific) diluted in 3% BSA. Following three washes with 
PBS, cells were stained with DAPI (4,6-diamidine-2-phenylindole, KPL), and plates were sealed 
and stored at 4°C until imaging. SARS-CoV-2 replication after each individual target knockdown 
was quantified using high-content imaging. The assay plates were imaged with the IC200 
imaging system (Vala Sciences) at the Conrad Prebys Center for Chemical Genomics (CPCCG) 
and analyzed using the analysis software Columbus v2.5 (Perkin Elmer). Based on the number 
of Alexa 488+ objects and the number of DAPI+ objects, the percentage of infected cells was 
quantified. The log2FC infection was calculated relative to the negative control scrambled 
siRNA-treated wells. Cytotoxicity resulting from siRNA transfection was evaluated by 
normalizing the percentage of DAPI+ objects to that of the negative control scrambled siRNA. 

Preparation of Vero E6 cell samples with SARS-CoV-2 infection and remdesivir treatment, RNA-
sequencing, and gene expression data analysis 

Vero E6 cells (ATCC® CRL-1586™) were maintained in Dulbecco’s modified eagle 

medium (DMEM, Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS, 

Gibco), 50 U ml−1 penicillin, 50 μg ml−1 streptomycin, 1 mM sodium pyruvate (Gibco), 10 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Gibco), and 1× MEM non-essential 

amino acids solution (Gibco). The SARS-CoV-2 USA-WA1/2020 strain was obtained from BEI 

Resources (NR-52281). The virus was inoculated on Vero E6 cells and the cell supernatant was 

collected at 72 h post-inoculation (hpi), when extensive cytopathic effects were observed. The 

supernatant, after clarification by centrifugation 15 min at 4 °C at 5,000x g, was aliquoted and 

stored at −80 °C until use. 500,000 Vero E6 cells were seeded in 6-well plates. The following 
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day, the cell medium was replaced with fresh medium supplemented with either DMSO or 1 µM 

remdesivir (Adooq Bioscience), and cells were either mock-infected or infected with SARS-CoV-

2 USA-WA1/2020 (MOI=0.3). Twenty-four hours after infection, cells were collected, and total 

intracellular RNA was extracted using the Qiagen® RNeasy® Plus Mini Kit. Three replicates 

were performed for each group, resulting in a total of six samples. The quality of the extracted 

RNA was assessed with Agilent® 2100 Bioanalyzer. Libraries were prepared on total RNA 

following ribosome RNA depletion with standard protocol according to Illumina®. Total RNA 

sequencing was then performed on the Illumina® NextSeq system, 150bp paired-end runs were 

performed and 100 million raw reads per sample were generated. STAR (Dobin et al. 2013) was 

used to align the reads to reference genome of the African green monkey (Chlorocebus 

sabaeus, https://useast.ensembl.org/Chlorocebus_sabaeus/Info/Annotation), with the SARS-

CoV-2 genome (https://www.ncbi.nlm.nih.gov/nuccore/NC_045512) added to the reference 

genome. DESeq2 (Love et al. 2014) was used for DE analysis between pairs of experimental 

groups (including virus+remdesivir vs control and virus vs control; DE results in Table EV8A). 

GSEA (Subramanian et al. 2005) was performed using the implementation in the R package 

fgsea (Korotkevich et al. 2019), results are provided in Table EV8B. The gene set/pathway 

annotations used were the Reactome (Jassal et al. 2020) and KEGG (Kanehisa et al. 2021) 

subsets from the <Canonical Pathway= category in version 7.0 MSigDB database (Liberzon et al. 

2011). 

Genome-scale metabolic modeling of the remdesivir-treated Vero E6 cell samples and 
prediction of anti-SARS-CoV-2 metabolic targets in combination with remdesivir 

As with the metabolic modeling of the other datasets on SARS-CoV-2 infection, iMAT 
(Shlomi et al. 2008) together with ACHR was used to compute the metabolic flux distribution for 
each of the experimental groups, using the median expression TPM values of each group as the 
input to iMAT. Reactions with differential fluxes (DF) between groups (including virus+remdesivir 
vs control and virus vs control) were identified as described above, and their significant 
metabolic pathway enrichment was tested with Fisher’s exact tests, with pathways defined by 
the “subSystems” from the Recon 3D model (Brunk et al. 2018; results in Table EV9). Like 
above, the smaller Recon 1 model (Duarte et al. 2007) was also used to identify robust findings, 
and non-robust pathway-level results were discarded similarly as above and not considered in 
the main text. The DE result of virus+remdesivir vs control group and the mean flux distribution 
of the virus+remdesivir group computed with iMAT were used as inputs for rMTA to predict 
metabolic reactions whose knock-out can further transform the virus+remdesivir metabolic state 
to the normal control state. The top 10% and 20% MTA-predicted targets from either Recon 3D 
or Recon 1 were tested for significant enrichment for the targets of a list of experimentally 
validated synergistic drugs with remdesivir (Nguyenla et al. 2020) using Fisher’s exact test 
(performed on the metabolic reaction level as described above). Metabolic pathway enrichment 
analysis of the top rMTA-predicted targets was performed as described above (results in Table 
EV10B). The top 20% reactions in Recon 1 and Recon 3D-based predictions were mapped to 
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genes, and the intersection between the two sets of predicted genes were taken as a final 
consensus list of candidate gene targets. Like above, these target genes were also further 
mapped to known drugs inhibiting the gene targets using data from DrugBank v5.1.7 (Wishart et 
al. 2018; target list given in Table EV10A; the reaction and rMTA score information in this table 
was based on the Recon 3D results). 

Notes on statistical analysis and visualization 

R version 3.6.3 was used for all statistical tests. P values lesser than 2.22e-16 may not 
be computed accurately and are reported as “P<2.22e-16” throughout the text. The Benjamini-
Hochberg (BH) method was used for P value adjustment throughout the text. The R packages 
ggplot2 (Wickham 2016), ComplexHeatmap (Gu et al. 2016) and visNetwork (https://cran.r-
project.org/web/packages/visNetwork/index.html) were used to create the visualizations. 

Data and code availability 

The gene expression data analyzed in this study are from published studies, with 
detailed information given in Table 1. The bulk RNA-seq data for SARS-CoV-2 infection in Vero 
E6 cells with remdesivir treatment has been deposited to the GEO database (accession ID: 
GSE165955). The code used for the analyses can be found in the GitHub repository: 
https://github.com/ruppinlab/covid_metabolism. Our in-house R package named gembox used 
for all the GEM analysis in this study can be found on GitHub: 
https://github.com/ruppinlab/gembox. 
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