bioRxiv preprint doi: https://doi.org/10.1101/2021.01.23.427928; this version posted January 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.
Bottenhornetal. 1

Intelligence and academic performance: Is it all in your head?

Katherine L. Bottenhorn'?, Jessica E. Bartley'?, Michael C. Riedel'?, Taylor Salo'?, Elsa I. Bravo?, Rosalie Odean®,
Alina Nazareth®, Robert W. Laird"3, Erica D. Musser'?, Shannon M. Pruden?, Eric Brewe®’#, Matthew T.
Sutherland’?, Angela R. Laird"**

'Center for Imaging Science, Florida International University, Miami, FL, USA

’Department of Psychology, Florida International University, Miami, FL, USA

3Department of Physics, Florida International University, Miami, FL, USA

*Department of Human Development and Family Sciences, Ohio State University, Columbus, OH, USA
*Department of Psychology, Temple University, Philadelphia, PA, USA

®Department of Physics, Drexel University, Philadelphia, PA, USA

7Department of Education, Drexel University, Philadelphia, PA, USA

8Depar’cment of Teaching and Learning, Florida International University, Miami, FL, USA

Abstract

Academic performance relies, in part, on intelligence; however, intelligence quotient (IQ) is limited in predicting
academic success. Furthermore, while the search for the biological seat of intelligence predates neuroscience itself,
its findings remain conflicting. Here, we assess the interplay between IQ, academic performance, and brain
connectivity with behavioral and functional MRI data collected from undergraduate students as they completed
an active learning or lecture-based semester-long university physics course. IQ (i.e., full-scale WAIS scores)
increased significantly pre- to post-instruction, were associated with physics knowledge and reasoning measures,
but were unrelated to overall course grade. 1Q was related to brain connectivity during physics-related cognition,
but connectivity did not mediate IQ’s association with task performance. These relations depended on students’
sex and instructional environment, providing evidence that physics classroom environment and pedagogy may
have a gendered influence on students’ performance. Discussion focuses on opportunities to improve physics
reasoning skills for all students.
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Introduction

Intelligence testing has been the subject of substantial scientific inquiry over the past century, especially with
respect to academic performance and overall success."* These lines of inquiry have a pernicious history, as
intelligence testing and IQ have been used to deny educational and employment opportunities and as a
foundation of eugenics in the United States and abroad in the 20th century, *¢ though updates to these tests have
mitigated bias with respect to racial, ethnic, and gender differences.”® Both in research and in popular discourse,
intelligence is often treated as an inherent, stable, trait-like quality, equated with an intelligence quotient (IQ).* "
While intellectual abilities are moderately heritable,* IQ and other psychometric measures of intellectual ability
are also influenced by a number of experiential factors, and the relative influences of genes and environment on
IQ change across the lifespan.'>' In general, intelligence is psychometrically assessed via a range of verbal and
nonverbal cognitive tests, capturing a general view of ability across domains. One such test is the Wechsler Adult
Intelligence Scale (WAISY), which demonstrates moderate stability across adulthood, with increasing stability for
shorter intervals and with increasing age."™* A history of research and popular discourse presupposes that IQ
predicts one’s predisposition to academic and life success,®* though in reality, the picture is much more
complicated due to a variety of sociocultural factors.***” Decades of research suggest education and psychometric
intelligence are entwined in a bidirectional relationship, as intellectual ability predicts access to and extent of
education, through a variety of socioeconomic factors,??
intellectual abilities,***

knowledge and skills.

while years of education predict modest increases in

and some educational interventions likely to improve one’s ability to acquire and apply
22,4144

University students who pursue science, technology, engineering, and mathematics (STEM) disciplines are
exposed to a rigorous curriculum designed to transform their problem-solving skills,** which engages students’
perceptual and verbal abilities.**™" The fourth edition of the WAIS (WAIS-IV) provides a full-scale measure of
intellectual ability (FSIQ) and four component index scores: Processing Speed, Perceptual Reasoning, Working
Memory, and Verbal Comprehension.”” The WAIS is widely used as an extensively validated and researched
clinical tool, but less often applied in educational research, though it may be particularly well-suited for exploring
associations between education and skill development. Introductory physics presents a prime opportunity for
such study, as a gateway course for STEM majors with a relatively standard curriculum across universities,
including instruction on classical Newtonian mechanics and emphasizing the development of quantitative,
visuospatial reasoning and problem-solving skills likely captured by WAIS-IV index scores. Unfortunately,
female students often perform worse on specific conceptual evaluations in these courses, though not necessarily
on overall course grades, due to a host of socioaffective and -cultural factors present in education and physics
classrooms, specifically.”*® Female students also constitute a smaller proportion of the student body, compared
to their male counterparts®>****® and ultimately, such disparities can propagate across courses, leading to
higher rates of STEM degrees among male students as compared to female students (64% male vs. 36% female in
2015-2016).°" Recently, institutions have sought to improve STEM student success using active learning
628 and impact socioemotional
aspects of university education, including self-efficacy, science-related anxiety, and identity.”** Together, these
effects may mitigate existing sex differences in performance,”® though this is contradicted by some findings.**

instructional approaches that yield improved student performance outcomes

Altogether, there is a need to better understand sex differences in physics education and potential avenues for
mitigating these differences, to ensure all students have the opportunity to succeed.

For as long as we have been trying to understand intelligence, we have been searching for its biological
substrates. Recently, neuroscience research has studied the underlying neurobiology of intelligence using
neuroimaging techniques such as functional magnetic resonance imaging (fMRI).®* Task-based fMRI research
has focused on understanding how differences in brain activation during cognition differs relates to intelligence,
yielding two theories of the neurobiology of intelligence: the parieto-frontal integration theory (P-FIT”’) and the
neural efficiency hypothesis (NEH"'). The PFIT suggests that interactions between frontal and parietal regions
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underlie intelligence, while the NEH suggests that higher intelligence is reflected by more “efficient” brain
activation during cognitively demanding tasks. An alternative view on “neural efficiency” comes from the
application of network science to functional connectivity, to show that more intelligent individuals exhibit greater
topological efficiency, which describes ease of information transfer across the brain,* 7> rather than activation
efficiency. Much of this work has focused on functional brain connectivity during the resting state, i.e., in the
absence of a task or externally-directed cognition,”” often referred to as “intrinsic” connectivity,’*”” mirroring
the notion of intelligence as an inherent trait. However, recent work shows that individual differences in
intelligence are better predicted by task-evoked connectivity,” presenting an opportunity to merge these two
lines of research to better understand individual differences in the neurobiology of intellectual abilities.

A Physics Reasoning Task

Force Concept Inventory Control Question
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Figure 1. fMRI tasks performed by students at both pre- and post-instruction time points. During MRI scanning sessions,
students completed tasks that probed students” physics-related cognition. The physics reasoning task (A) included questions
from the Force Concept Inventory (FCI) and engaged students’ conceptual understanding of Newtonian mechanics (left),
with perceptually similar control questions (right). The physics knowledge task (B) included questions about definitions and
equations that students learn in class (left), with perceptually matched general knowledge control questions (right).
Here, we build on the knowledge that the WAIS measures cognitive abilities that are subject to influence by
educational interventions, and leverage the WAIS to study individual differences across student performance in
an introductory physics course, and potential roles of sex and pedagogy therein. Then, we build on prior
neuroimaging research suggesting task-evoked brain organization can explain individual differences in
intellectual abilities, to search for a biological substrate for associations between ability and student performance.
To do so, we collected data from undergraduate students enrolled in either a lecture-based or active learning
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section of an introductory physics course. Both pre- and post-instruction, students completed the WAIS-IV
alongside a robust fMRI protocol, including two physics-related tasks (Figure 1) with different demands on
cognition. The first task engaged students’ reasoning skills and conceptions about forces at work in the natural
world (Figure 1A), based on the Force Concept Inventory (FCI”; see Bartley et al.*’ for detailed FCI task results).
In this physics reasoning task, students viewed questions about forces on and the movement of objects, along
with answer choices that included the correct (e.g., Newtonian) explanation, and choices that reflect common but
incorrect (e.g., non-Newtonian) conceptions about forces and motion. The second task required students to recall
concepts and equations taught in an introductory physics course (Figure 1B). In this physics knowledge task,
students engage semantic memory to recognize equations or definitions of physics concepts learned in the course
from a list of possible answer choices presented. Here, we used these data to, first, assess changes in WAIS-IV
scores (both FSIQ and index scores) over the course of the semester, then applied a series of linear regressions to
assess associations between post-instruction and pre- to post-instruction changes in WAIS-IV scores and
post-instruction student performance (i.e., task accuracy and final course grade). Finally, we assessed associations
between WAIS-IV scores, and changes therein, and post-instruction functional brain organization during the two
tasks, and the degree to which these associations provide a common neural substrate supporting the role of
cognitive abilities in student performance. We hypothesized that, while FSIQ itself is stable, different WAIS-IV
index scores are differentially associated with performance on physics-related assessments with different
cognitive demands. Further, we hypothesized these differences would be reflected in brain organization during
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Figure 2. Change in WAIS scores pre- to post-instruction. Full-scale WAIS Pre- to post-instruction changes in WAIS-IV scores
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increases in three of the four index scores of the WAIS (Table 1; Figure 2B), greatest in Processing Speed (PSI) and
Perceptual Reasoning (PRI). Importantly, however, there were no significant differences in the change in
WAIS-IV scores with respect to sex and only PSI changes varied with respect to classroom (i.e., active learning,
lecture), evidenced by a significant time by class interaction (Supplementary Table 1). The changes in WAIS-IV
scores were commensurate with previously reported retest gains among college students across a similar time
period.”!

Table 1. Average change in WAIS scores pre- to post-instruction

WAIS Score Pre- Post- PretoPost  Estevisetal, Change - Estevis
instruction instruction Change 2012 t-test (p)

Full score 103.9 £7.6 110.8 £ 9.4 7.0+73 6.7+52 -0.12 (0.90)

WAIS-IV

Score

Perceptual 105.0 £9.6 1115+ 111 6.0+95 3.6 +5.6 2.39 (0.02)

Reasoning

Index

Processing 98.3 +13.3 110.6 + 14.5 12.6 +17.5 10.5+9.5 0.71 (0.48)

Speed Index

Verbal 106.0 = 13.0 108.5 + 10.6 25+9.0 42+76 -1.28 (0.20)

Comprehens

ion Index

Working 102.3 +10.8 103.2 +10.5 20+91 32+438 -2.36 (0.02)

Memory

Index

Note. Bolded changes indicate significant Wilcoxon Signed Rank tests at pryp.cy, < 0.05 (@ gjusied =
0.014), after controlling for familywise error using the Siddk correction.®' The Change - Estevis t-test
(p) column (far right) provides the results of a Student’s t-test for independent samples,
comparing the changes in WAIS scores seen in this sample with those reported by Estevis et al.
(2012) to determine whether the changes in our sample are comparable with those reported
elsewhere.

Physics task accuracy, but not course grade, is related to WAIS-IV scores differently for male
and female students.

To assess associations between course performance and intellectual ability, we separately regressed each
WAIS-IV score (both post-instruction and pre- to post-instruction changes) on post-instruction course grade and
physics-related task accuracies (denoted “performance” below), controlling for students’ sex, classroom
environment, and other demographics, for a total of 30 separate regressions (controlling for familywise error rate
with the Sidak correction).

Equation 1

performance = B,1Q + B,IQ x Sex + BJQ x Class + B,/Q x Class x Sex + PsSex + PClass + p,Sex x Class
+ Pgdge + BoYears in Univ.
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Figure 3. Physics task performance is related to WAIS scores.
Post-instruction accuracy on the physics reasoning task was
significantly related to post-instruction PRI scores (A) and
differently for female and male students (C), and to
post-instruction FSIQ scores (B), as well as changes in PRI scores
overall (D) and differently for female and male students (F), and
changes in FSIQ scores overall (E) and differently for female and
male students (G). Accuracy on the physics knowledge task was
associated with post-instruction VCI scores (H) and WMI scores
differently for male and female students (I).

Here, task accuracy refers to the proportion of correct
answers given while participants performed a physics task
in the MRI scanner (Figure 1). In addition to the full models
(Equation 1), we assessed nested models without the WAIS
interaction terms (Supplementary Table 2).

Post-instruction accuracy on the physics reasoning task was
significantly related to post-instruction PRI scores (post PRI;
F(9, 120) = 5.122, p < 0.001; Figure 3A, 3C) and FSIQ scores
(post FSIQ; F(9, 120) = 5.770, p < 0.001; Figure 3B), in
addition to the pre- to post-instruction changes in both PRI
(APRL; F(9, 120) = 5.034, p < 0.001; Figure 3D, 3F) and FSIQ
scores (AFSIQ; F(9, 120) = 4.498, p < 0.001; Figure 3E, 3G).
After controlling for demographics and interactions, post
PRI, post FSIQ, APRI, and AFSIQ all significantly predicted
physics reasoning task accuracy, implying that they were
not wholly dependent on students’ sex and classroom
environment. However, relations between each post PRI,
APRI, and AFSIQ and performance were moderated by
students’ sex, such that female students exhibited a more
positive relationship between WAIS-IV  scores and
performance than male students (Figure 3B, 3C, and 3D;
Table 2, Physics Reasoning Accuracy). Conversely, male
students demonstrated overall higher accuracy on the task,
in line with previous research.®” Of these, the regression of
task that included class- and
sex-interaction terms (i.e., per Equation 1) explained
significantly more variance in physics reasoning task
accuracy than did the corresponding model without
interaction terms. Thus, the relation between task accuracy
and APRI is better understood in the context of students’ sex

accuracy on APRI

and classroom environments.

Post-instruction accuracy on the physics knowledge task
was associated with post-instruction Verbal Comprehension
Index (post VCI; F(9, 120) = 6.474, p < 0.001; Figure 3H) and
Working Memory Index (post WMI; F(9, 120) = 6.008, p <
0.001; Figure 3I). Physics knowledge accuracy was related to
post VCI after controlling for potential moderations of this
relation by sex and class type (Figure 3H). The converse was
true of relations between accuracy and post WMI. Post WMI
displayed sex-dependent relations with task accuracy, such
that greater accuracy in male students” was associated with
greater increases in WAIS scores than those of female
students (Figure 3I). Notably, this moderation was in the
opposite direction of those between WAIS scores and
physics reasoning accuracy noted above. Of these,
regression of task accuracy on WAIS-IV scores with class-
and sex-interaction terms (i.e., of the form displayed in
Equation 1) did not explain significantly more of the
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variance in physics knowledge task accuracy than did the models without interaction terms. This indicates that,
unlike in the case of physics reasoning, these sex and class interactions do not significantly add to our
understanding of these relations.

We found no relations between students’ final course grade and any WAIS-IV score or change therein.
Parameters and test statistics for all regressions, including non-significant regressions, can be found in
Supplementary Tables 2 and 3.

Table 2. Significant relations between physics task performance and WAIS scores.

Physics Reasoning Accuracy Physics Knowledge
Accuracy
Post PRI Post FSIQ APRT* AFSIQ Post VCI ~ Post WMI
WAIS 0.005 0.007 0.006 0.005 0.003 0.001
WALIS X Sex (M) -0.009 -0.003 -0.010 -0.010 0.004 0.005
WALIS X Class (A) 0.002 0.003 -0.001 -0.001 -0.002 0.002
WALIS X Sex X Class 0.006 -0.001 0.008 0.008 -0.002 -0.004
Sex X Class -0.764 0.038 -0.109 -0.109 0.270 0.498
Sex (M) 1.190 0.458 0.232 0.225 -0.434 -0.507
Class (A) -0.212 -0.319 0.004 -0.028 0.142 -0.235
Age -0.022 -0.014 -0.026 -0.029 -0.001 -0.004
Year in University 0.011 0.001 0.020 0.016 -0.014 -0.013

Regression coefficients are shown for each variable on which physics reasoning and physics
knowledge were regressed, for OLS regressions of the form shown in Equation 1 that were significant
at Prwewr < 0.05 and in which a WAIS term or interaction parameter significantly related to
performance. Bold text indicates parameters significant at p < 0.05; bold and italicized text, parameters
significant at p < 0.01. *Indicates that the full interaction model (i.e., of the form shown in Equation 1)
explained significantly more variance than a smaller model without interactions between each WAIS
scores, class (A for active learning), and sex (M for male).

These data indicate that WAIS-IV scores were clearly, but differentially associated with performance on
physics-related assessments, suggesting a distinction between skills related to physics conceptual reasoning and
content knowledge recall. Significant associations between physics reasoning accuracy and each APRI and AFSIQ
suggest that the development of perceptual reasoning ability and general intellectual ability underscore
performance in physics reasoning. Similarly, relations between post-instruction VCI and WMI scores and physics
knowledge accuracy suggest that working memory and verbal comprehension at post-instruction support
successful physics knowledge retrieval, not necessarily the development of those skills (i.e.,, pre- to
post-instruction). Nonetheless, post PRI and full-scale WAIS scores remain relevant for students” performance on
physics conceptual reasoning and problem solving tasks, in addition to the development of such skills.
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Functional brain network efficiency and connectivity differentially support component
intelligence across contexts.

To further investigate associations between intellectual ability and task performance, we assessed brain
organization during physics-related cognition using regressions of the same form as Equation 1 above.
Specifically, we combined theories of the neurobiology of intelligence (i.e., P-FIT and NEH) with methods for
studying individual differences in the brain organization (i.e., connectomics and network science) to search for a
common neural substrate underlying the relations between WAIS-IV scores and accurate physics cognition.
Measures of functional connectivity and network efficiency (denoted “topology” below) were regressed on
WAIS-IV scores, while students’ sex, classroom environment, demographics, and head movement (i.e., framewise
displacement, “fd”).

Equation 2

topology = B1Q + B,IQ xSex + B0 x Class + B, IQ x Class x Sex + BsSex + B,Class + B,Sex x Class
+ Bgdge + BoYearsin Univ. + B, fd

Topological measures were calculated from functional connectivity graphs computed from fMRI data collected
while participants performed the physics reasoning and physics knowledge tasks, using two brain parcellations
to ensure that results are not parcellation-induced artifacts. In these graphs, individual brain regions comprise
nodes and the pairwise correlation of their BOLD signals comprise edge weights, representing functional
connectivity. We regressed, separately, (a) global efficiency calculated during each task, (b) local efficiency of each
brain region during each task, and (c) connectivity between each pair of brain regions, during each task, on only
the WAIS-IV scores significantly related to performance on said task. Significance thresholds of @ < 0.05 were
adjusted to control the familywise error rate using the Sidak procedure, adjusted to account for dependence of
correlated measures (Li & Ji, 2005; Sidak, 1967). Regression test statistics, fit statistics, and parameter estimates for
all regressions calculated here are shown in Supplementary Tables 4 - 6.

Global and Local
Efficiency

These analyses found that
WAIS-IV  scores were not
significantly ~associated with
global efficiency or with local
efficiency across the brain
during either task. Across both
tasks, only head movement was

£ associated with brain network
. 5 ¢ efficiency.
y ! R
! , i ] remale @ @O Connectivity
; 4 ) S, 1 Male . I
01 ne 0z o] o
e Of the WAISIV  scores
associated with physics

Figure 4. Functional connectivity during physics-related cognition is contextually related to
WAIS scores following a semester of physics instruction. Regions (top row) demonstrating
functional connectivity (second row) during the physics reasoning task that is significantly related post FSIQ was additionally
to full-scale IQ scores, color-coded according to anatomical position in the brain to highlight ,o50ciated with task
similarities and differences between the parcellations. This connectivity is associated with FSIQ

scores differently for male and female students (bottom row) in the Shen (left column) and

Craddock (right column) parcellations. Each includes a portion of the anterior insula, though the

region to which it is connected differs between parcellations.

reasoning task accuracy, only
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connectivity, of the right anterior
Post FSIQ  ~_-0.009

m A insula (Figure  4A,  4CQ),
\ 0.021 o depending on students’ sex and
PostFSIOX |  0.062* 0.054 classroom environment (Figure
4B, 4D). For female students

Sex
Post FCI
‘ B Connectivity greater FSIQ was associated with
W increased connectivity for those

Post FSIQ X 0.004

Class enrolled in lecture-based classes,

p.002 l/// but decreased connectivity for
-0.071* 'Il/ 0.020 H \ those enrolled in active learning

Post FSIQ X < .
o X Clace 0.023 classes. Meanwhllef f(?r male
students, the direction of

0.04¢ associations between
Sex X Class 0 post-instruction FSIQ and
Sy PostFa connectivity did not differ due to

Accuracy

-0.037 o.1Geme classroom environment, though

\

N

it did across parcellations (Figure
4B, 4D). Furthermore, the two
parcellations ~ both  indicate
significant associations of FSIQ
and functional connectivity
during the physics reasoning
0 task; they did not converge on a
Age particular network or region,
providing no specific

Sex

-0.056
-0.033

Class -0.013

0.002 .
neuroanatomical locus. Across

both parcellations, there was no
consistent association between
functional connectivity during

Yearin
University

Figure 5. Functional connectivity is related to FSIQ, but does not mediate its relationship
with physics reasoning accuracy. This model combines Equations 1 and 2 into a mediation
model to assess whether task-based connectivity that is related to full-scale WAIS scores the physics knowledge task and
explains the relations between full-scale WAIS scores and students” accuracy on the physics it ar post WMI or VCI scores
reasoning task. Overall, this was not the case, although several exogenous variables that . i !
significantly explained variance in accuracy (see Equation 1, Table 2) were no longer only ~with  students’ head
significantly associated with accuracy in this model, where their relations with connectivity movement during this task (see
are simultaneously being considered. Lighter red paths indicate significant predictors of
post-instruction physics reasoning connectivity, while lighter blue paths indicate significant o
predictors of post-instruction physics reasoning accuracy. *Indicates significance at p < 0.05; for all significant edges).
*, at p <0.01, model is significant at p,,, . <0.01. Covariance between exogenous variables is

not shown in this model, but was assessed (see Supplementary Table 4).

Supplementary Figures 2 and 3

Functional brain networks are not a common neural substrate supporting the role of
intelligence in physics-related cognition.

We sought to explore possible common neural substrates for WAIS-IV and physics reasoning task accuracy. To
this end, we assembled mediation models to assess whether brain connectivity significantly associated with
WAIS-IV scores (Table 3, Figure 4) explains shared variance between WAIS-IV scores and task accuracy (Table 2,
Figure 3), accounting for the interactions and covariates in Equations 1 and 2 (all model statistics reported in
Supplementary Table 7). These models (Figure 5) indicated that the functional connectivity was unrelated to
students” accuracy on the task (yellow path), and while FSIQ scores continued to explain a significant proportion
of variability in connectivity (red paths), they no longer significantly accounted for variability in physics
reasoning task accuracy (blue paths). Across parcellations, anterior insula connectivity (Figure 4) was
significantly associated with FSIQ, but not task accuracy, and provided no significant mediation of the
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IQ-accuracy relationship (Supplementary Table 3). While WAIS scores and task accuracy seem to capture related
behavioral phenomena, FSIQ-accuracy relations were weakened by the inclusion of functional connectivity in the
model, and connectivity did not significantly mediate the FSIQ-accuracy association (Table 3).

Table 3. Mediation of the relations between changes in full-scale IQ and physics reasoning
accuracy by functional connectivity.

Connectivity Accuracy

Parameter estimate P-value Parameter estimate P-value

FSIQ -0.009 0.695 0.054 0.123
FSIQ X Sex 0.062 0.025 0.011 0.805
FSIQ X Class 0.004 0.894 0.003 0.938
FSIQ X Sex X Class -0.071 0.043 0.023 0.691
Sex X Class 0.046 0.199 0.053 0.355
Sex -0.037 0.26 -0.135 0.001
Class -0.033 0.154 -0.056 0.191
Age -0.001 0.931 -0.013 0.168
Year in University 0.002 0.467 0 0.967
Head motion 0.021 0.098 - -

Connectivity -- -- 0.020 0.891

Bold indicates significant parameters at @ < 0.05, bold and italicized, at & < 0.01. Values
shown are for the connectivity significant in the Craddock parcellation. Values for
mediation with functional connectivity significant in the Shen parcellation can be found in
Supplementary Table 4.

Discussion

We present evidence of complex relations between intellectual ability and physics learning, behaviorally and
neurally. Among these are significant increases in cognitive ability (i.e., WAIS-IV scores) over a semester of
physics instruction, corresponding with previously reported increases in college students tested twice over a
similar three-month period. These changes did not differ based on students’ sex or based on course pedagogy
and classroom environment. Gains in PRI were among the largest across index scores, and positively related to
physics reasoning accuracy, suggesting the WAIS-IV components driving FSIQ increases represent
physics-related skill development. Our data indicate that WAIS-IV measures of cognitive ability related to task
performance were also related to brain connectivity, but not efficiency, during the task. Although we found no
evidence of common neural underpinnings for the performance-ability relationship, we did uncover a
moderation of brain-ability associations by students” sex and physics classroom environment. Therefore, the
neurobiology supporting skill acquisition is context-, and perhaps pedagogy-dependent, instead of intrinsic,
underscoring the importance of experience and environment in associations between ability and performance.
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Are WAIS gains related to physics education or general college education?

The study of intelligence lacks concrete definitions,**** but compensates with extensive psychometrics.*®** Here,

we observed gains in intellectual ability, per the WAIS-1V, that outpaced retest gains reported in the measure’s
standardization sample.””**! These gains were seen across WAIS-IV index scores, greatest in PSI and PRI though
minimal in WMI, but did not significantly differ from retest effects over a similar time period in an independent
sample of college students.”” WAIS-IV score increases were not related to overall class performance (i.e., course
grade), but instead to physics reasoning ability at course completion (i.e., post-instruction FCI accuracy). This
suggests they capture skills related to students' grasp of Newtonian mechanics. While these relations are
moderated by students’ class type, we cannot definitively link WAIS-IV score increases to physics instruction,
and pedagogical differences therein, without a control group of participants who were not exposed to a semester
of physics instruction. Perceptual reasoning seems directly related to skills developed by the specific demands of
the course, though it and other components of intelligence are likely developed and engaged broadly across
university coursework. To clarify how university instruction may impact different components of intelligence
across disciplines, future studies should extend assessments across a range of curricula in the sciences, arts, and
humanities and compare retest effects across a semester of education with those seen in the broader population.
This is especially relevant given (a) the present evidence of education-related gains in WAIS-IV scores that appear
to capture domain-specific skills and, importantly, (b) the widespread belief in the significance of intelligence and
IQ for student and life success.

Perceptual reasoning improvements underlie physics-related cognition.

Following a semester of physics instruction, physics knowledge task accuracy was related to post-instruction
verbal comprehension and working memory abilities, while physics reasoning task accuracy was related to pre-
to post-instruction changes in perceptual reasoning and full-scale WAIS-IV scores (i.e., intellectual or cognitive
ability), in addition to their values post-instruction. These differences between the tasks may reflect their unique
cognitive demands and the manner in which the associated skills are acquired and exercised.

While physics knowledge reflects memorization of formulae and definitions of physics concepts, physics reasoning
reflects the development of accurate conceptual understanding of Newtonian mechanics and the macro-scale
forces at work in the physical world (e.g., gravity, friction). Students are unlikely to know definitions and
formulae learned in class before enrolling in a physics class, but working memory and reading comprehension
skills captured by WMI and VCI are not domain-specific but domain-general abilities exercised across
curricula.”'%" Therefore, it is the associated post-instruction scores that capture the skills utilized in accurately
recalling physics knowledge, i.e., recalling definitions and formulae learned in class, that were not necessarily

developed during the class.

Conversely, physics reasoning draws on the conceptions of physical phenomena that students bring into their first
physics class, including pre-existing “common-sense beliefs” acquired over a lifetime of interacting with the
physical world that are at odds with scientific explanations."” Decades of physics education research suggests
that these pre-existing conceptions are difficult for students to overcome, even with formal instruction.'™** As
this instruction relies heavily on visual representations of the movement of macroscale objects to teach
Newtonian mechanics, encouraging students to rely on visuospatial skills and mental imagery, likely developing
their perceptual reasoning skills throughout the course.”®''%" In this respect, our results indicate that students
with more accurate conceptions of Newtonian mechanics following physics instruction were those demonstrating
larger increases in perceptual reasoning skills and greater absolute perceptual reasoning ability, post-instruction.
It may be that either (a) students who acquire more perceptual reasoning skills in the course are better able to
align their conceptions of how the world works with Newtonian explanations or (b) students who are able to
overcome previous conceptions about the mechanisms of the physical world gain better perceptual reasoning
skills than their peers who have more difficulty doing so. In the former case, these findings might illustrate
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another approach for physics instructors to help students develop more accurate conceptions of Newtonian
mechanics: focusing on students’ perceptual reasoning skills.

Insofar as changes in WAIS-IV index scores reflect skill acquisition, it follows that physics reasoning accuracy,
reflecting conceptualizations of Newtonian mechanics honed throughout physics instruction, is associated with
changes in perceptual reasoning and full-scale intelligence, though absolute levels of these skills remain relevant.
Conversely, physics knowledge accuracy, reflecting correct recall of definitions and formulae learned throughout
physics instruction, is associated with absolute levels of verbal comprehension and working memory skills, but
not the changes therein. This may highlight an opportunity for correcting students’ pre-existing conceptions of
physical phenomena, by focusing on students’ perceptual reasoning skills throughout their physics instruction.
However, the sex- and classroom-differences suggest that this is not a one-size-fits-all opportunity, and that
students may benefit differently from such learning interventions. For female students, who historically perform
poorer on the Force Concept Inventory (our physics reasoning task) due to a host of sociocognitive factors,
increases in PRI might provide a means of “leveling the playing field” compared to their male counterparts.

Brain network organization during physics cognition is related to intelligence, but does not

explain its relationship with physics task accuracy.
Contrary to previous research,””” our data did not indicate associations between students” WAIS-IV scores and
either global or local brain network efficiency and did not support the neural efficiency hypothesis, which
suggests more intelligent individuals benefit from “more efficient” brains. The concept of neural “efficiency” is, at
best, unclear, with varying definitions across the years, and at worst, empty and misleading."® Here, we use the
network science definition of efficiency, defined mathematically in terms of connections between nodes of a
graph (i.e., connectivity between brain regions).""! These findings add domain-specific insight to what has
previously been a study of intrinsic abilities and neurobiological processes, failing to find support in a sample
demonstrating intelligence gains related to an extrinsic manipulation (i.e., physics instruction). Our data do not
support the parieto-frontal integration hypothesis, either, as we uncovered no parieto-frontal connectivity
underlying intelligence during physics-related cognition.

Representing a small proportion of all possible connections in the brain, sparse connectivity during physics
reasoning was related to post-instruction full-scale WAIS-IV scores, the full complement of measured verbal,
perceptual, working memory, and processing speed skills. Different roles of pedagogy and classroom
environment on brain network connectivity, cognitive abilities, and relations between the two with respect to sex
point out a potentially significant sex difference in classroom experience. In a heavily male-dominated field like
physics, it is a reasonable assumption that male and female students would have differential classroom

experiences.*!* 11

For example, it is a commonly-held stereotype that men are good at math and that women are
not,"'*" gubjecting women and female students to stereotype threat in physics classrooms, where beliefs
negatively affect classroom experience and performance.'®'"” The data presented here indicate no sex differences
in overall course performance, but persistent sex differences across classroom environments in associations
between cognitive abilities and not only performance on physics assessments, but brain connectivity during those
assessments. Together, this literature and our findings indicate meaningful neurobiological consequences of
classroom experience on the basis of sex. However, our data show no sex- or classroom-related difference in
changes in intelligence or cognitive abilities, though the brain-WAIS relationships point to a multitude of
neurobiological representations of intelligence. Neural phenomena related to intelligence differ based not only on
cognitive context,but on sociological and pedagogical contexts, as well.

Although intelligence measures associated with physics task accuracy also explained certain functional
connectivity during these tasks, we found no evidence of a common neural substrate for intelligence and
accuracy. On the whole, task-based connectivity related to intelligence was unrelated to participants” accuracy on
said task, and no connectivity associated with intelligence accounted for any significant portion of the relations
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between intelligence and accuracy. This may indicate a lack of a common neural substrate for these two
phenomena, suggesting that, while they are measuring a similar skill or capacity, they are not measuring the
same skill or capacity. On the other hand, the neural substrate of a common skill measured by PRI or full-scale
WAIS scores and physics reasoning accuracy may merely lie beyond a linear relation with brain network
connectivity or topology. In any case, understanding the neural instantiation of a common reasoning skill to
perceptual reasoning and physics reasoning requires further study.

Finally, rather than a global property of brain network organization, as indicated in prior research,®*®'* these
data indicate that sparse, coordinated interactions of disparate brain regions underlie intelligence, in this
domain-specific context. That connections across the brain during physics-related cognition are related to changes
in students” overall intellectual skills, but differently with respect to their classroom environment, casts further
doubt on the notion of IQ or intelligence as a fixed, innate measure and, instead, highlights the role of
environment and experience. Although differences in these relationships between female and male students
support the substantial body of literature supporting this notion of sex differences in the biological
representations of intelligence,”"'?'"'* here we suggest a potential sociological explanation. These findings
indicate, too, neural support for intelligence exhibits domain-specific relations in the context of STEM education.
Not only does cognitive context matter to the relations between intelligence and brain network organization, our
data indicate that sex and learning environment matter, too.

Limitations and future directions

Here, we demonstrate increases in intellectual ability over a semester of physics instruction. While students’ sex
and classroom environment did not affect the extent of these increases, the data suggest meaningful
consequences of classroom environment on the relations between intellectual ability and underlying brain
network organization. The implication that the learning environment affects male and female students
differently, both cognitively and neurobiologically, in a field as male-dominated as physics demands attention
and further study. However, as there were no observed sex differences in final course grade or in change in
intellectual ability, any differences in classroom experience are not differentially affecting female and male
students” academic performance in the course. Further work should assess whether differences in experience and
associated brain function are linked to long-term success for male and female students. This assessment should
consider factors beyond overt measures of success and focus on variables related to self-efficacy and in-classroom
experiences, both previously been shown to affect men and women differently in physics education.®

While we have identified differences in physics-related brain organization and its relation to WAIS-IV scores
based on class type, this study is unable to distinguish whether these differences are due to differences in
pedagogy or social classroom environment, or to practice effects across a short assessment period. Future
research should include in-classroom assessments of social climate and the possibility of gender differences in
social interactions during physics instruction. Furthermore, control groups in (1) another, less male-dominated,
domain and (2) an age- and sex-matched groups outside of university would provide insight into both sex
differences in and the degree to which changes in intellectual ability are associated with STEM education.

Conclusion

While our data indicate clear relations between domain-specific components of intellectual ability and
performance on assessments of physics conceptual reasoning and content knowledge, we found no association
between academic outcomes and intelligence. Likewise, intelligence was related to functional brain connections
during these assessments, but none that explain its association with performance. Our multifaceted approach to
studying the neurobiological underpinnings of intelligence did not uncover a single, robust aspect of brain
network organization that was consistent across cognitive contexts and experiential influences. However,
relations between intelligence and, separately, physics task performance and task-based functional connectivity
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were moderated by students’ sex and classroom environment. Ultimately, both the magnitude and development
of perceptual reasoning skills is meaningful over the course of a semester of physics instruction. As these data
show significant increases in perceptual reasoning over a semester, we present an optimistic and more plastic
view of intelligence, as a set of skills to be developed, rather than an innate capacity that students either have or
don't have. Together, these data highlight the complicated nature of relations between intelligence and classroom
successes, which vary with students’ sex and domain-specific experiences.

Methods

Participants and Study Design

One hundred and thirty healthy right-handed undergraduate students (mean age = 20.03 + 2.25 years, range =
18-25 years; 61 females) who completed a semester of introductory calculus-based physics at Florida International
University (FIU), a Hispanic Serving Institution, took part in this study. Participants were not currently using
psychoactive medications and reported that they had not been diagnosed with any cognitive impairments or
neurological or psychiatric conditions. The physics course emphasized problem solving skill development and
covered topics in classical Newtonian mechanics, including motion along straight lines and in two and three
dimensions, Newton’s laws of motion, work and energy, momentum and collisions, and rotational dynamics.
Students were either enrolled in a lecture class or an active learning, “Modeling Instruction”, class, which bases
course content in conceptual scientific models and instructs students to appropriate scientific models for their
own use. Students completed behavioral assessments and MRI scans in separate appointments at two time points:
at the beginning (“pre-instruction”) and conclusion (“post-instruction”) of the 15-week semester. Pre-instruction
data collection sessions were acquired no later than the fourth week of classes and post-instruction sessions were
completed no more than two weeks after the final exam. Written informed consent was obtained in accordance
with FIU’s Institutional Review Board approval.

Missing Data

A missing value analysis indicated that, of the variables of interest in this study, missingness ranged from 2% to
17%. Data were more often missing from MRI data than behavioral or demographic data and more often missing
from post-instruction data than from pre-instruction. Assessment of the relations between missingness on each
variable and values of each other variable of interest revealed that data were likely missing completely at random
(MCAR). Behavioral and brain network efficiency data were imputed using iterated Bayesian ridge regression
implemented in scikit-learn (v. 0.23.1; scikit-learn.org/). Due to its high dimensionality, missingness in edgewise
functional connectivity data was addressed using distance-weighted K-Nearest Neighbors approach (K = 100,
where p = 71,824) implemented in scikit-learn, which is robust to missingness up to 20% '%.

Behavioral Measures

During pre- and post-instruction behavior sessions, participants were administered the fourth edition of the
Wechsler Adult Intelligence Scale (WAIS-IVY), a standardized intelligence test for adults, in addition to other
assessments not used here. The WAIS-IV provides scores in four domains, in addition to an overall score of
intellectual functioning. The Verbal Comprehension index measures application of verbal skills in problem
solving. The Perceptual Reasoning index measures the ability to detect the underlying conceptual relationship
among visual objects and use reasoning to identify and apply rules. The Working Memory index measures
short-term memory with auditory and visual stimuli. The Processing Speed index measures speed of mental
operations and visual-motor coordination. Lastly, the Full-Scale intelligence quotient (IQ) represents a global
estimate of intellectual or cognitive ability. All instruments were administered by researchers for the purpose of
this research and not professionally or clinically (i.e., for diagnostic or instructional purposes).
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fMRI Tasks

In the scanner, participants performed two different physics tasks, each probing different aspects of physics
learning and problem solving (Figure 1).

Participants completed three runs of a physics reasoning task, which uses questions from the Force Concept
Inventory (FCL ) to assess domain-specific problem solving. This task includes two conditions, FCI and control,
presented in a block design with self-paced trials. FCI and control questions were presented in three screens
(Figure 1A, SI Figure 3), between which participants advanced by the press of a button. The first screen presented
a written description of a physical scenario and corresponding figure; the second, a question relating to the
scenario; and the third, four answer choices from which the participants were instructed choose the correct
answer while mentally justifying their choice.

Participants additionally completed two runs of a physics knowledge task, which probed physics-related memory
retrieval and included physics, general, and control conditions. Participants were asked a series of
multiple-choice questions and instructed to respond by indicating their choice with the press of a button (Figure
1B). In the physics condition, participants were asked to recall definitions and formulas taught in the physics
course (e.g., “What does the ‘SI’ in SI units stand for?” or “What is the value of the acceleration due to gravity?”).
In the general condition, participants were asked to recall general trivia (e.g., “Which of these is not an
automobile brand?” or, “Who is the President of the United States?”). The low-level control condition asked
participants to press the button corresponding to a letter or symbol. Conditions were organized into blocks and
each run included three blocks per condition.

fMRI Acquisition and Pre-Processing

Neuroimaging data were acquired on a GE 3T Healthcare Discovery 750W MRI scanner at the University of
Miami. Functional MRI (fMRI) data were acquired with an interleaved gradient-echo, echo planar imaging (EPI)
sequence (TR/TE = 2000/30ms, flip angle = 75°, field of view [FOV] = 220x220mm, matrix size = 64x64, voxel
dimensions = 3.4x3.4x3.4mm, 42 axial oblique slices). A T1-weighted series was also acquired using a 3D fast
spoiled gradient recall brain volume (FSPGR BRAVO) sequence with 186 contiguous sagittal slices (TI = 650ms,
bandwidth = 25.0kHz, flip angle = 12°, FOV = 256x256mm, and slice thickness = 1.0mm). A 2-mm isotropic
MNI152 template image was nonlinearly oriented to each participant’s structural T1-weighted image using
FMRIB’s Software Library’s (FSL; https:/ /fsl.fmrib.ox.ac.uk/fsl/fslwiki'®’) nonlinear registration tool (FNIRT"").
Then, each participant’s T1-weighted image was coregistered to the middle volume of each functional run, using
FSL’s linear registration tool (FLIRT™?). These two transformations were concatenated and used to align
regionwise parcellations to each subject's functional images. Tissue-type masks for white matter, gray matter, and
cerebrospinal fluid (CSF) were created from each subject’s T1l-weighted images using FSL’s automated
segmentation tool (FAST').

Task-based fMRI preprocessing began with FSL’s MCFLIRT with spline interpolation, per run per functional task,
to align all volumes of each subject’s fMRI time series with that middle volume. To further correct for in-scanner
motion effects, functional volumes unduly affected by motion were identified using fsl_motion_outliers, with a
framewise displacement threshold of 0.9mm for functional scans.'® Data were standardized, detrended, and
high-pass filtered, according to the period of each task. The physics knowledge task was high-pass filtered at
0.018Hz and the physics reasoning task was thresholded according to each participant’s individual timing.

Regionwise Parcellation and Brain Connectivity Analyses

Each participant’s fMRI data were parcellated according to two functionally-derived, whole-brain parcellations
with similar numbers of regions. Here, we used a 268-region parcellation computed via multigraph k-way
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clustering, without spatial constraints, henceforth referred to as the Shen parcellation.” To ensure that our results
were not artifacts of node definition, we additionally performed all analyses with an atlas generated from
resting-state fMRI data by performing normalized-cut spectral clustering on voxelwise functional connectivity
data to define homogeneous, spatially-constrained clusters (i.e., regions), henceforth referred to as the Craddock
parcellation,® which includes a range of atlas sizes from which we chose a 268-region solution, to match the
granularity of the Shen parcellation. Connectivity graphs were computed using two different brain parcellations
(Supplementary Figure 4). Following preprocessing, data analysis continued in two parallel streams, one with the
Craddock parcellation and one with the Shen parcellation, to ensure that any results were not artifacts of
parcellation schema. Presented results (e.g., Figures 4, 5) include brain-IQ relations observed for both
parcellations, but values displayed are derived from the Shen parcellation.

For each region, a single time series was computed as an average of the fMRI time series from all voxels within
the region, after further regressing out six motion parameters (from MCFLIRT) and censoring high-motion
volumes (framewise displacement >0.9mm), as well as the immediately preceding volume and two following
volumes, following recommendations from Power et al. '¥
standardized (i.e., z-scored), divided by condition per task per run and spliced together across runs, creating
separate time series per condition per task for each participant. Adjacency matrices were constructed with each
parcellation per participant, per functional task, per session (pre- and post-instruction) using Nilearn (v. 0.3.1,
http:/ /nilearn.github.io/index.html), a Python (v 2.7.13) module, built on scikit-learn, for the statistical analysis
of neuroimaging data,'®' by computing the pairwise Pearson’s correlations between each pair of regions,
resulting in a 268x268 region-wise correlation matrix for each subject per condition per task per session (pre- and
post-instruction). Graph theoretic, topological measures were calculated across a range of density-based
thresholds. The lowest thresholds at which each network became (a) scale-free and (b) became node-connected
were calculated for each adjacency matrix. From these values, a lower- and upper-bound for network
thresholding were estimated, following recommendations from Lynall'® and Ginestet'*, such that networks
would remain node-connected, meaning there are no brain regions completely separate from the rest of the brain,
and spurious connections would be removed while maintaining the scale-free degree distribution expected of the
brain per prior research.' >

. Functional tasks’ regionwise time series were

All topological measures were calculated using bctpy, a Python toolbox intended to replicate the functionality of
the Brain Connectivity Toolbox, a MATLAB toolbox for graph theoretic analysis of functional and structural brain
connectivity (brain-connectivity-toolbox.net'""). From each correlation matrix described above, we calculated
global efficiency, characteristic path length, and modularity for across the range of proportional thresholds as
calculated above (T = [0.21, 0.31] at steps of 0.01), then calculated the area under the curve (AUC) of each
measure."*'* These AUCs were used in all following statistical tests assessing the relationship between brain
network organization and IQ and will henceforth be referred to per the topological measure from which they
were calculated. All topology-related results reported here are significant per topology values calculated from
graphs generated from both parcellations.

Statistical Analyses

Statistical inference was performed using the lavaan R package, and the Python modules SciPy (v. 1.2.1;
scipy.org'’ %) statsmodels (v. 0.9.0; statsmodels.org), and nilearn (v. 0.6.2; nilearn.github.io).

Paired t-tests were used to assess changes in WAIS-IV scores pre- to post-instruction. Two-sample t-tests were
used to assess differences in the changes in WAIS-IV scores (post- minus pre-instruction) between male and
female students, as well as between students enrolled in the active learning and lecture classes.

Ordinary least squares (OLS) regressions implemented in R were used to regress measures of academic and task
performance on WAIS-IV scores, sex, class, age, and years in university, per Equation 1. Significance of individual
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models was assessed by comparing models’ p-values to a significance threshold adjusted for multiple
comparisons via Sidék correction.®!

A similar procedure, using mass-univariate OLS regressions with permutation testing as implemented by the
Python package Nilearn,"™* " was used to regress topological measures and functional connectivity (thresholded
at T = 0.31) on WAIS-1IV scores, sex, class, age, years in university, head size, average framewise displacement
(calculated by fsl_motion_outliers, per run, per task), per Equation 2. To correct for multiple comparisons across
these regressions, we used the Sidék correction as mentioned above. All reported results were significant in both
parcellations, to minimize the effects of brain parcellation on our interpretations.

Mediation models to assess whether brain connectivity explained the relationship between WAIS-IV scores and
task performance were run using the R package lavaan.””

Data Availability

A GitHub repository was created at github.com/62442katieb/physics-learning-iq to archive the code and source
files for this study, including data preprocessing and analysis scripts and behavioral data. Significant
neuroimaging results are available at neurovault.org/collections /9385/ .
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