

Fine-grained temporal mapping of derived high-frequency variants supports the mosaic nature of the evolution of *Homo sapiens*

Alejandro Andirkó^{1,2}, Juan Moriano^{1,2}, Alessandro Vitriolo^{3,4}, Martin Kuhlwilm⁵, Giuseppe Testa^{3,4,6}, and Cedric Boeckx^{1,2,7,*}

¹Universitat de Barcelona

²Universitat de Barcelona Institute of Complex Systems

³University of Milan

⁴European Institute of Oncology

⁵Institut de Biología Evolutiva, CSIC-Universitat Pompeu Fabra

⁶Human Technopole

⁷Catalan Institute for Research and Advanced Studies (ICREA)

*Correspondence: cedric.boeckx@ub.edu

ABSTRACT

As our knowledge about the history of the *Homo sapiens* lineage becomes increasingly complex, large-scale estimations of the time of emergence of derived variants become essential to be able to offer more precise answers to time-sensitive hypotheses concerning human evolution. Using an open repository of genetic variant age estimations recently made available, we offer here a temporal evaluation of various evolutionarily relevant datasets, such as *Homo sapiens*-specific variants, high-frequency variants found in genetic windows under positive selection, introgressed variants from extinct human species, as well as putative regulatory variants in various brain regions. We find a recurrent bimodal distribution of high-frequency variants, but also evidence for specific enrichments of gene categories in various time windows, which brings into prominence the 300-500k time slice. We also find evidence for very early mutations impacting the facial phenotype, and much more recent molecular events linked to specific brain regions such as the cerebellum or the precuneus. Additionally, we present a case study of an evolutionarily relevant gene, *BAZ1B*, and its targets, to emphasize the importance of applying temporal data to specific evolutionary questions. Overall, we present a unique resource that informs and complements our previous knowledge of *Homo sapiens* evolution using publicly available data, and reinforce the case for the mosaic, temporally very extended nature of the evolutionary trajectory of our species.

1 Introduction

The past decade has seen a significant shift in our understanding of the evolution of our lineage. We now recognize that anatomical features used as diagnostic for our species (globular neurocranium, small, retracted face, presence of a chin, narrow trunk, to cite only a few of the most salient traits associated with ‘anatomical modernity’) did not emerge as a package, from a single geographical location, but rather emerged gradually, in a mosaic-like fashion across the entire African continent [1]. Likewise, behavioral characteristics once thought to be exclusive of *Homo sapiens* (funerary rituals, parietal art, ‘symbolic’ artefacts, etc.) have recently been attested in some form in closely related (extinct) clades, casting doubt on a simple definition of ‘cognitive/behavioral’ modernity [2]. We have also come to appreciate the extent of (multidirectional) gene flow between Sapiens and Neanderthals and Denisovans, raising interesting questions about speciation [3, 4, 5, 6]. Last, but not least, it is now well established that our species has a long history. Robust genetic analyses [7] indicate a divergence time between us and other hominins for which genomes are available of roughly 700kya, leaving perhaps as many as 500ky between then and the earliest fossils displaying a near-complete suite of modern traits (Omo Kibish 1, Herto 1 and 2) [8].

Such a long period of time allows for the distinction between early and late members of our species [8]. Genomic analysis of ancient human remains in Africa reveal deep population splits and complex admixture patterns among populations well before the coalescence of modernity in the fossil record [9, 10]. At the same time, reanalysis of archaic fossils in Africa [11] point to the extended presence of multiple hominins on this continent, with the possibility of ‘super-archaic’ admixture [12, 13]. Lastly, our deeper understanding of other hominins point to derived characteristics in these lineages that make some of our species’ traits more ancestral (less ‘modern’) than previously believed [14].

In the context of this significant rewriting of our history, we decided to explore the temporal structure of an extended

catalog of single nucleotide changes found at high frequency (HF $\geq 90\%$) across major modern populations we previously generated on the basis of 3 high-coverage archaic genomes [15]. This catalog aims to offer a richer picture of molecular events setting us apart from our closest extinct relatives. To do so, we took advantage of the Genealogical Estimation of Variant Age (GEVA) tool [16]. GEVA is a coalescence-based method that provides age estimates for over 45 million human variants. GEVA is non-parametric, making no assumptions about demographic history, tree shapes, or selection. (For additional details on GEVA, see section 4). Our overall objective here is to use the temporal resolution afforded by GEVA to estimate the age of emergence of polymorphic sites, and gain further insights into the complex evolutionary trajectory.

Here, we reveal a bimodal temporal distribution of modern human derived high-frequency variants and provide insights into milestones of *Homo sapiens* evolution through the investigation of the molecular correlates and the predicted impact of variants across evolutionary-relevant periods. Our chronological atlas allows us to provide a time window estimate of introgression events and evaluate the age of variants associated with signals of positive selection, as well as estimate the age of enhancer regulatory variants for different brain regions. Our enrichment analyses uncovers GO-terms unique to specific temporal windows, prominently facial and behavioral-related terms between 300k and 500k years. With a finer-grained level of scrutiny, our machine learning-based analyses predicting differential gene expression regulation of mapped variants (through [17]) reveals a trend towards downregulation in the aforementioned period (300k-500k years; corresponding to the early emergence of our species). We further identify variant-associated genes whose differential regulation may specifically affect brain structures thought to be derived in late *Homo sapiens* such as the cerebellum and the precuneus. Finally, we delved into the study of *BAZ1B*, for its contribution to our understanding of craniofacial development and human evolution [18]. We found a cluster of variants linked to a specific set of *BAZ1B* targets dated around 300-500k years (within the suggested period of appearance of distinctive facial traits in our species), and characterized a set of older variants that further shed light into the timing of the emergence of the ‘modern’ human face.

2 Results

The distribution of alleles over time follows a bimodal distribution regardless of the frequency cutoff (Figure 1A; Figure S1), with a global maximum around 40kya (for complete allele counts, see section 4). The two modes of the distribution correspond to two periods of significance in the evolutionary history of *Homo sapiens*. The more recent peak of HF variants arguably corresponds to the period of population dispersal around 100kya [19], while the older distribution contains the period associated with the divergence between *Homo sapiens* and other *Homo* species [7, 20]. When dividing the modes (at the 300kya time mark), the distribution of variants over time is statistically different between the set of overall derived variants and each of the two HF filtered sets ($p < 0.01$, Kolmogorov–Smirnov test).

In order to divide the data for downstream analysis we considered a k -means clustering analysis (at $k = 3$ and $k = 4$, Figure S2). This clustering method yields a division clear enough to distinguish between early and late *Homo sapiens* specimens after the split with other human species. However, we reasoned that such a k -means division is not precise enough to represent key milestones used to test specific time-sensitive hypotheses. For this reason, we adopted a literature-based approach, establishing different cutoffs adapted to the need of each analysis below (Figure 1B). Our basic division consisted of three periods: a recent period from the present to 300 thousand years ago (kya), the local minimum, roughly corresponding to the period considered until recently to mark the emergence of *Homo sapiens*; a later period from 300kya to 500kya, the period associated with earlier members of our species such as the Jebel Irhoud fossil [21]; and a third, older period, from 500kya to 1 million year ago, corresponding to the time of the most recent common ancestor with the Neanderthal and Denisovan lineage [22]. Finer-grained time slices were adopted for further analyses (see, e.g., section 2.3).

We note that the distribution goes as far back as 2.5 million years ago (see Figure 1A) in the case of HF variants, and even further back in the case of the derived variants with no HF cutoff. This could be due to our temporal prediction model choice (GEVA clock model, of which GEVA offers three options, as detailed in 4), as changes over time in human recombination rates might affect the timing of older variants [16], or to the fact that we don’t have genomes for older *Homo* species. Some of these very old variants may have been inherited from them, and lost further down the archaic lineages. In this context, we note that 40% of the genes that exhibit an excess of mutations in the modern lineage and totally lack HF derived variants in other hominins in [15] do not exhibit any single ‘recent’ (<400 kya) HF variant (Fig. S3).

2.1 Variant subset distributions

In an attempt to see if specific subsets of variants had strikingly different distributions over time, we selected a series of evolutionary relevant sets of data publicly available, such as genome regions depleted of archaic introgression (so-called ‘deserts of introgression’) [23, 24], and regions under putative positive selection [25], and mapped the HF variants from [15] falling within those regions. We also examined genes that accumulate more HF variants than expected given their length and in comparison to the number of mutations these genes accumulate on the archaic lineages (‘length’ and ‘excess’ lists from [15] – see sec. 4). Finally, we plotted introgressed alleles [23, 26]. A bimodal distribution is clearly visible in all the subsets except

73 the introgression datasets (Figure 1C). Introgressed variants peak locally in the earlier period (0-100kya). The distribution
74 roughly fades after 250kya, in consonance with the possible timing of introgression events [4, 12, 24, 27]. As a case example,
75 we plotted those introgressed variants associated with phenotypes highlighted in Table 1 of [28]. As shown in Figure S4, half of
76 the variants cluster around the highest peak, but other variants may have been introduced in earlier instances of gene flow. We
77 caution, though, that multiple (likely) factors, such as gene flow from Eurasians into Africa, or effects of positive selection
78 affecting frequency, influence the distribution of age estimates and make it hard to draw any firm conclusions. We also note that
79 the two introgressed variant counts, derived from the data of [26] and [23], follow a significantly different distribution over time
80 ($p < 2.2 - 16$, Kolmogorov-Smirnov test) (Figure 1C).

81 Finally, we examined the distribution of putatively introgressed variants across populations, focusing on low-frequency
82 variants whose distributions vary when we look at African vs. non-African populations (Figure S5). As expected, those
83 variants that are more common in non-African populations are found in higher proportions in both of the Neanderthal genomes
84 studied here, with a slightly higher proportion for the Vindija genome, which is in fact assumed to be closer to the main source
85 population of introgression. We detect a smaller contribution of Denisovan variants overall, which is expected on several
86 grounds: given the likely more frequent interactions between modern humans and Neanderthals, the Denisovan individual
87 whose genome we relied on is likely part of a more pronounced “outgroup”. Gene flow from modern humans into Neanderthals
88 also likely contributed to this pattern.

89 In the case of the regions under putative positive selection, we find that the distribution of variant counts has a local peak
90 in the most recent period (0-100kya) that is absent from the deserts of introgression datasets. Also, as shown in 1E, the
91 distribution of variant counts in these regions under selection shows the greatest difference between the two peaks of the
92 bimodal distribution. Still, we should stress that our focus here is on HF variants, and that of course not all HF variants falling
93 in selective sweep regions were actual targets of selection. Figure S6 illustrates this point for two genes that have figured
94 prominently in early discussions of selective sweeps since [3]: *RUNX2* and *GLI3*. While recent HF variants are associated with
95 positive selection signals (indicated in purple), older variants exhibit such associations as well. Indeed some of these targets
96 may fall below the 90% cutoff chosen in [15]. In addition, we are aware that variants enter the genome at one stage and are
97 likely selected for at a (much) later stage [29, 30]. As such our study differs from the chronological atlas of natural selection in
98 our species presented in [31] (as well as from other studies focusing on more recent periods of our evolutionary history, such as
99 [32]). This may explain some important discrepancies between the overall temporal profile of genes highlighted in [31] and the
100 distribution of HF variants for these genes in our data (Figure S7).

101 Having said this, our analysis recaptures earlier observations about prominent selected variants, located around the most
102 recent peak, concerning genes such as *CADPS2* ([33], Fig. S8). This study also identifies a large set of old variants, well before
103 300kya, associated with genes belonging to putative positively-selected regions before the deepest divergence of *Homo sapiens*
104 populations [34], such as *LPHN3*, *FBXW7*, and *COG5* (figure S9).

105 Finally, we estimated the age of putative regulatory variants of the prefrontal (PFC), temporal (TC) and cerebellar cortices
106 (CBC), using the large scale characterization of regulatory elements of the human brain provided by the PsychENCODE
107 Consortium [35]. We did the same for the modern human HF missense mutations [15]. A comparative plot reveals a similar
108 pattern between the three structures, with no obvious differences in variant distribution (see Fig. S10). The cerebellum
109 contains a slightly higher number of variants assigned to the more recent peak when the proportion to total mapped variants is
110 computed: 15.59% to 14.97% (PFC) and 15.20% (TC). We also note that the difference of dated variants between the two local
111 maxima is more pronounced in the case of the cerebellum than in the case of the two cortical tissues, whereas this difference is
112 more reduced in the case of missense variants (Fig. S10). We caution, though, that the overall number of missense variants is
113 considerably lower in comparison to the other three datasets.

114 2.2 Gene Ontology analysis across temporal windows

115 In order to interpret functionally the distribution of HF variants in time, we performed enrichment analyses accessing curated
116 databases via the *gProfiler2* R package [36]. For the three time windows analyzed (corresponding to the recent peak: 0-300kya;
117 divergence time and earlier peak: 500kya-1mya; and time slot between them: 300kya-500kya), we identified unique and shared
118 gene ontology terms (see Figure 2A and sec. 4). Of note, when we compared the most recent period against the two earlier
119 windows together (from 300kya-1mya), we found bone, cartilage and visual system-related terms only in the earlier periods
120 (hypergeometric test; adj. $p < 0.01$; Table S1). Further differences are observed when thresholding by an adjusted $p < 0.05$. In
121 particular, terms related to behavior (startle response), facial shape (narrow mouth) and hormone systems only appear in the
122 middle (300-500k) period (Table S2; Figure S11). A summary of terms shared across the three time windows can be seen in
123 Figure S12.

124 2.3 Gene expression predictions

125 To see if term-enriched genes are associated with particular expression profiles, we made use of ExPecto [17], a sequence-
126 based tool to predict gene expression *in silico* (see description in section 4). We found that there is a significant skewness

Location	rsid	Nearest gene(s)	GWAS trait	Age (GEVA)
20:49070644	rs75994450	PTPN1	Fractional anisotropy measurement, Splenium (Corpus Callosum)	36735.46
14:59669037	rs75255901	DAAM1	Functional connectivity (rfMRI)	39543.24
1:22498451	rs2807369	WNT4	Volume of gray matter in Cerebellum (left)	50060.96
2:63144695	rs17432559	EHBP1	Volume of Corpus Callosum (Posterior)	52290.48
12:2231744	rs75557252	CACNA1C	Functional connectivity (rfMRI)	93924.62
10:92873811	rs17105731	PCGF5	Volume of inferiortemporal gyrus (right)	255792.5
17:59312894	rs73326893	BCAS3	Functional connectivity (rfMRI)	418742.6
22:27195261	rs72617274	CRYBA4	Functional connectivity (rfMRI)	445477.7
2:230367803	rs56049535	DNER	Functional connectivity (rfMRI)	523629.8
16:3687973	rs78315731	DNASE1	Volume of Pars triangularis (left)	698856.5

Table 1. Big40 Brain volume GWAS [41] top hits with high predicted gene expression in ExPecto ($\log > 0.01$, RPKM), along with dating as provided by GEVA. ‘Functional connectivity’ is a measure of temporal activity synchronization between brain parcels at rest (originally defined in [46]).

127 towards extreme negative values in the 300kya to 500kya time period that is not so salient in the other windows (as shown in
 128 quantile-quantile plots in Fig. S14). This skewness is present but not so salient in the overall set of tissue HF variant-specific
 129 expression predictions. A series of Kruskal-Wallis tests show that variants coming from GO-enriched genes have significant
 130 differences in their average expression levels in each period (0-300kya, 300-500kya and 500-800kya) compared to the others
 131 ($p = 3.411e - 05$, $p = 4.032e - 08$ and $p = 4.032e - 08$, adjusted by Bonferroni).

132 We applied the ExPecto tool as well to the overall derived HF variant dataset derived from [15], with a particular focus on
 133 expression changes in brain tissues.

134 To examine if certain tissues had a specially high predicted expression value in certain key time windows, we further divided
 135 the variants in six chronological groups ranging from the present to an estimated 800kya according to the GEVA set dating (Fig.
 136 3A – see Fig. S15 for full details). Of note is the presence of the cerebellum in a period preceding the last major Out-of-Africa
 137 event (as predicted by [37]) in a landscape otherwise dominated by tissues such as the Adrenal Gland, the Pituitary, Astrocytes,
 138 and Neural Progenitor Cells.

139 The six windows (0-60, 60-100, 100-200, 200-300, 300-500 and 500-800kya) attempt to capture events in a finer-grained
 140 fashion (see sec. 4). We found that the sum of predicted gene expression values differs across timing windows, as determined
 141 by an approximate Kruskal-Wallis Test with random sampling ($n = 1000$) test, but not across tissues. A post-hoc Dunn test
 142 shows that expression values predicted by ExPecto are significantly different between the 60-100 and the 200-300 and 300-500
 143 windows ($p = 0.001$ and $p = 0.0012$, p-values adjusted with Benjamini-Hochberg) and between 0-60 and 60-100 ($p = 0.0102$,
 144 adjusted). We performed an additional analysis to check whether there is an association between exact dates predicted by the
 145 GEVA tool and expression (as opposed to a time window division). The correlation between these two values is not significant
 146 ($p = 0.3287$, Pearson correlation test).

147 The authors of the article describing the ExPecto tool [17] suggest that genes with a high sum of absolute variant effects in
 148 specific time windows tend to be tissue or condition-specific. We explored our data to see if the genes with higher absolute
 149 variant effect were also phenotypically relevant (Figure 3B). Among these we find genes such as *DLL4*, a Notch ligand
 150 implicated in arterial formation [38]; *FGF14*, which regulates the intrinsic excitability of cerebellar Purkinje neurons [39];
 151 *SLC6A15*, a gene that modulates stress vulnerability through the glutamate system [40]; and *OPRM1*, a modulator of the
 152 dopamine system that harbors a HF derived loss of stop codon variant in the genetic pool of modern humans but not in that of
 153 extinct human species [15].

154 We also crosschecked if any of the variants in our high-frequency dataset with a high predicted expression value (RPKM)
 155 variant-specific values at $\log > 0.01$) were found in GWASs related to brain volume. The Big40 UKBiobank GWAS meta-
 156 analysis [41] shows that some of these variants are indeed GWAS top hits and can be assigned a date (see Table 1). Of note are
 157 phenotypes associated with the posterior Corpus Callosum (Splenium), precuneus, and cerebellar volume. In addition, in a large
 158 genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals seeking to identify
 159 specific genetic loci that influence human cortical structure [42], one variant (rs75255901) in Table 1, linked to *DAAM1*, has
 160 been identified as a putative causal variant affecting the precuneus. All these brain structures have been independently argued to
 161 have undergone recent evolution in our lineage [37, 43, 44, 45], and their associated variants are dated amongst the most recent
 162 ones in the table.

163 2.4 Case study

164 As a case example of the potential of the GEVA dataset when applied to evolutionary questions, we examined HF variants found
165 in *BAZ1B* and target genes. *BAZ1B* is a gene implicated in craniofacial defects in Williams-Beuren syndrome. We recently
166 positioned this gene upstream in the developmental hierarchy of the modern human face on the basis of empirical evidence
167 gathered from neural crest models with interfered gene function [18]. We wanted to determine if HF mutations harbored by
168 *BAZ1B* are temporally accompanied by HF variant changes in a range of target genes that we previously demonstrated cluster in
169 statistically significant ways when examined in an evolutionary context [18]. These targets fall in two broad groups: those
170 genes whose expression patterns change in the same direction as that of *BAZ1B* (labeled “DIR”), and those whose expression
171 patterns go in the opposite direction (labeled “INV”). Experimental validation further refined these two sets of genes and
172 identified *bona fide* direct targets of *BAZ1B* (27DIR and 25INV genes, and, with further filtering, 13DIR and 17INV). We
173 already observed that these two sets of targets overlap significantly with genes harboring (regulatory) HF mutations in modern
174 human genomes compared to archaic human genomes, although for the broadest set of “INV” targets, the overlap resulted
175 statistically significant for extinct human species as well [18].

176 Out of a total of 289 HF mutations harbored by direct targets of *BAZ1B*, 238 could be mapped via GEVA (Figure 4A-B).
177 We observe that close to 25% of all HF variants associated with both INV and DIR targets are found in the oldest time slices
178 defined by the occurrence of *BAZ1B* HF variants, around 1.3mya. 13% of all these ‘target’ variants are found in the 300-500k
179 time window, and about the same percentage (15%) in the most recent (0-300k) period. In other words, unlike the general
180 variant distribution found throughout this study, we do not find a recent peak of variants associated with *BAZ1B* targets. This is
181 in line with the GO-enrichment results presented above, where we don’t find any enrichment for ‘face’-related terms in the
182 most recent periods.

183 These results invited us to look more closely into the 300-500k period, which as been independently linked to the emergence
184 of modern facial traits (Jebel Irhoud fossil, [21]), and possibly mark a change in our prosociality captured by the “self-
185 domestication hypothesis” ([47, 48]). This period shows a local increase in HF variants for genes harboring an “excess” of
186 mutations compared to archaics, controlling for gene length [15] (Fig 4C). Mutations in other genes we have previously linked
187 to the earliest stages of self-domestication [49] cluster around this period, as shown in Fig 4C. Among them are other genes
188 belonging to the Williams-Beuren Syndrome critical region (*STX1A*, *GTF2I*), prominent targets of *BAZ1B* implicated in Neural
189 Crest processes (*OLFM1*, *EDN3*, *TGFBR2*), as well as specific classes of genes that modulate glutamate signaling (*GRIK3*,
190 *GRIK2*, *GRM7*, *NETO2*) and hormones (*OXTR*, *AVPR1B*). Interestingly, the most recent HF variants in *FOXP2* we could map
191 belong to that period.

192 It is noteworthy that HF variants harbored by genes associated with face and vocal tract anatomy that were singled out for
193 their extensive methylation changes in [50] (*SOX9*, *ACAN*, *COL2A1*, *NFIX* and *XYLT1*) cluster (together with other *BAZ1B*
194 HF mutations) in our dataset in a more recent time window (Fig S16), pointing to further refinement of the modern facial
195 phenotype, in line with the authors’ own claims in [50]. It is also worth pointing out that *BAZ1B* (and its targets) harbor several
196 HF mutations going back to as early as 900k, which may indicate that aspects of the ‘modern’ face are indeed as old as some
197 have recently claimed, relying on a characterization of both proteomic and phenotypic characterizations of *Homo antecessor*
198 [14, 51].

199 3 Discussion

200 Deploying GEVA to probe the temporal structure of the extended catalog of HF variants distinguishing modern humans from
201 their closest extinct relatives ultimately aims to contribute to the goals of the emerging attempts to construct a molecular
202 archaeology [52] and as detailed a map as possible of the evolutionary history of our species. Like any other archaeology
203 dataset, ours is necessarily fragmentary. In particular, fully fixed mutations, which have featured prominently in early attempts
204 to identify candidates with important functional consequences [52], fell outside the scope of this study, as GEVA can only
205 determine the age of polymorphic mutations in the present-day human population. By contrast, the mapping of HF variants was
206 reasonably good, and allowed us to provide complementary evidence for claims regarding important stages in the evolution of
207 our lineage. This in and of itself reinforces the rationale of paying close attention to an extended catalog of HF variants, as
208 argued in [15].

209 While we wait for more genomes from more diverse regions of the planet and from a wider range of time points, we find
210 our results encouraging: even in the absence of genomes from the deep past of our species in Africa, we were able to provide
211 evidence for different epochs and classes of variants that define these. Indeed, the emerging picture is very much mosaic-like in
212 its character, in consonance with recent work in archeology [1].

213 Our analysis highlights the importance of a temporal window between 300-500k that may well correspond to a significant
214 behavioral shift in our lineage, corresponding to the Jebel Irhoud fossil, but also in other parts of the African continent, to
215 increased ecological resource variability [53], and evidence of long-distance stone transport and pigment use [54]. Other
216 aspects of our cognitive and anatomical modernity emerged much more recently, in the last 150000 years, and for these our

217 analysis points to the relevance of gene expression regulation differences in recent human evolution, in line with [55, 56, 57].
218 These two salient temporal windows are well represented by the density of HF mutations in genes such as *PTEN*, one of the
219 genes highlighted in [15] as harboring an excess of derived HF mutations on the modern compared to extinct human lineages
220 (Fig S17).

221 Lastly, our attempt to date the emergence of mutations in our genomes points to multiple episodes of introgression, whose
222 history is likely to turn out to be quite complex.

223 4 Methods

224 **Homo sapiens variant catalog.** We made use of a publicly available dataset [15] that takes advantage of the Neanderthal
225 and Denisovan genomes to compile a genome-wide catalog of *Homo sapiens*-specific variation (genome version *hg19*, 1000
226 genomes project frequency data, dbSNP database). In addition to the full data, the authors offered a subset of the data that
227 includes derived variants at a $\geq 90\%$ global frequency cutoff. Since such a cutoff allows some variants to reach less than 90% in
228 certain populations, as long as the total is $\geq 90\%$, we also considered including a metapopulation-wide variant $\geq 90\%$ frequency
229 cutoff dataset to this study (Fig 1A). All files (the original full and high-frequency sets and the modified, stricter high-frequency
230 one) are provided in the accompanying code.

231 **GEVA.** The Genealogical Estimation of Variant Age (GEVA) tool [16] uses a hidden Markov model approach to infer the
232 location of ancestral haplotypes relative to a given variant. It then infers time to the most recent ancestor in multiple pairwise
233 comparisons by coalescent-based clock models. The resulting pairwise information is combined in a posterior probability
234 measure of variant age. We extracted dating information for the alleles of our dataset from the bulk summary information of
235 GEVA age predictions. The GEVA tool provides several clock models and measures for variant age. We chose the mean age
236 measure from the joint clock model, that combines recombination and mutation estimates. While the GEVA dataset provides
237 data for 1000 genomes project and the Simons Genome Diversity Project, we chose to extract only those variants that were
238 present in both datasets. Ensuring a variant is present in both databases implicitly increases genealogical estimates (as detailed
239 in Supplementary document 3 of [16]), although it decreases the amount of sites that can be looked at. We give estimated dates
240 after assuming 29 years per generation, as suggested in [58]. While other measures can be chosen, this value should not affect
241 the nature of the variant age distribution nor our conclusions.

242 Out of a total of 4437804 for our total set of variants, 2294023 where mapped in the GEVA dataset (51% of the original
243 total). For the HF subsets, the mapping improves: 101417 (74% of total) and 48424 (69%) variants were mapped for the
244 original high frequency subset and the stricter, meta-population cutoff version, respectively.

245 **ExPecto.** In order to predict gene expression we made use of the *ExPecto* tool [17]. *ExPecto* is a deep convolutional
246 network framework that predicts tissue-specific gene expression directly from genetic sequences. *ExPecto* is trained on histone
247 mark, transcription factor and DNA accessibility profiles, allowing *ab initio* prediction that does not rely on variant information
248 training. Sequence-based approaches, such as the one used by *Expecto*, allow to predict the expression of high-frequency
249 and rare alleles without the biases that other frameworks based on variant information might introduce. We introduced the
250 high-frequency dated variants as input for *ExPecto* expression prediction, using the default tissue training models trained on
251 the GTEx, Roadmap genomics and ENCODE tissue expression profiles. We then selected brain and brain-related tissues (as
252 detailed in the code), and divided the variants by time period (0-60kya, 60-100kya, 100-200kya, 200-300kya, 300-500kya and
253 500-800kya – Fig. S15 and Fig. 3A).

254 **gProfiler2.** Enrichment analysis was performed using *gProfiler2* package [36] (hypergeometric test; multiple comparison
255 correction, ‘gSCS’ method; p-values .01 and .05). Dated variants were subdivided in three time windows (0-300kya, 300kya-
256 500kya and 500kya-1mya) and variant-associated genes (retrieved from [15]) were used as input (all annotated genes for *H.*
257 *sapiens* in the Ensembl database were used as background). Following [17], variation potential directionality scores were
258 calculated as the sum of all variant effects in a range of 1kb from the TSS. Summary GO figures presented in Figure S12 were
259 prepared with *GO Figure* [59].

260 For enrichment analysis, the Hallmark curated annotated sets [60] were also consulted, but the dated set of HF variants as a
261 whole did not return any specific enrichment.

Code URL

<https://github.com/AGMAndirko/Temporal-mapping>

Author Contributions

Conceptualization: CB & AA & JM; Methodology: CB & AA & JM; Data Curation: AA & JM; Software: AA & JM; Formal
analysis: AA & JM; Visualization: CB & AA & JM & AV & MK & GT; Investigation: CB & AA & JM & AV & MK & GT;

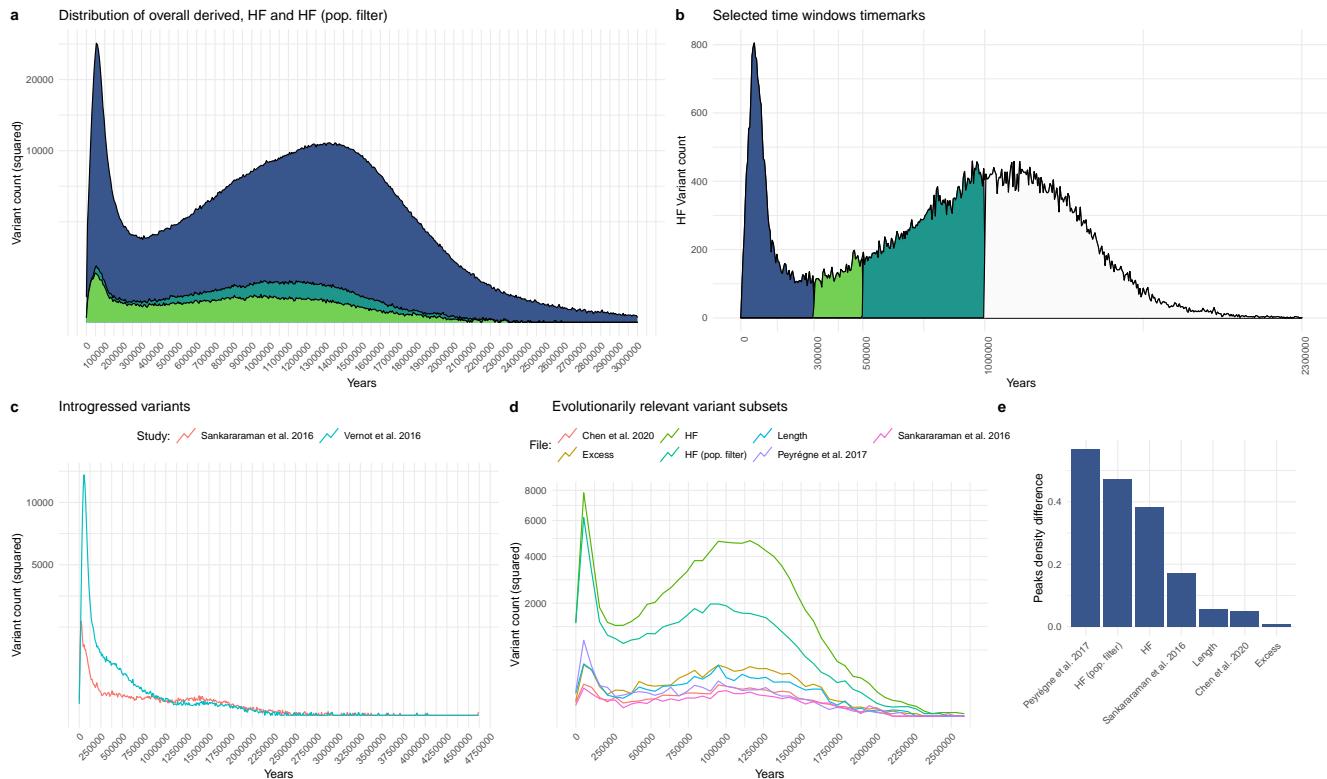
Writing – original draft preparation: CB & AA & JM; Writing – review and editing: CB & AA & JM & AV & MK & GT; Supervision: CB; Funding acquisition: CB.

Funding statement

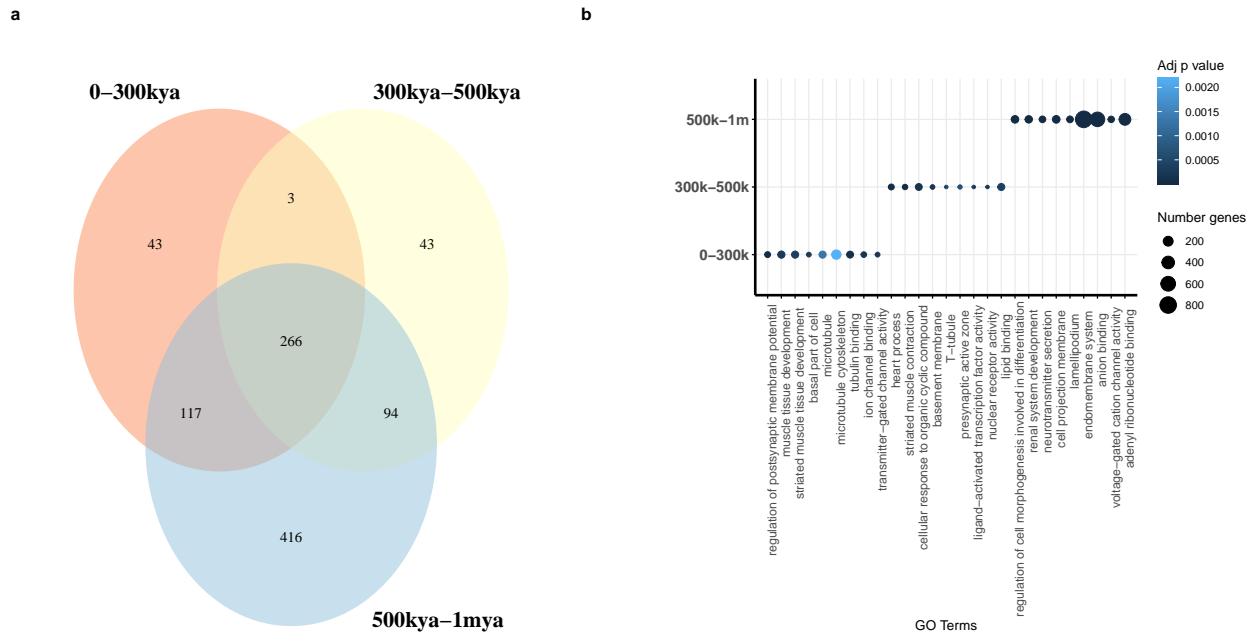
CB acknowledges support from the Spanish Ministry of Economy and Competitiveness (grant PID2019-107042GB-I00), MEXT/JSPS Grant-in-Aid for Scientific Research on Innovative Areas #4903 (Evolinguistics: JP17H06379), Generalitat de Catalunya (2017-SGR-341), and the BBVA Foundation (Leonardo Fellowship). AA acknowledges financial support from the Spanish Ministry of Economy and Competitiveness and the European Social Fund (BES-2017-080366). JM acknowledges financial support from the Departament d'Empresa i Coneixement, Generalitat de Catalunya (FI-SDUR 2020). M.K. is supported by “la Caixa” Foundation (ID 100010434), fellowship code LCF/BQ/PR19/11700002.

Competing interests

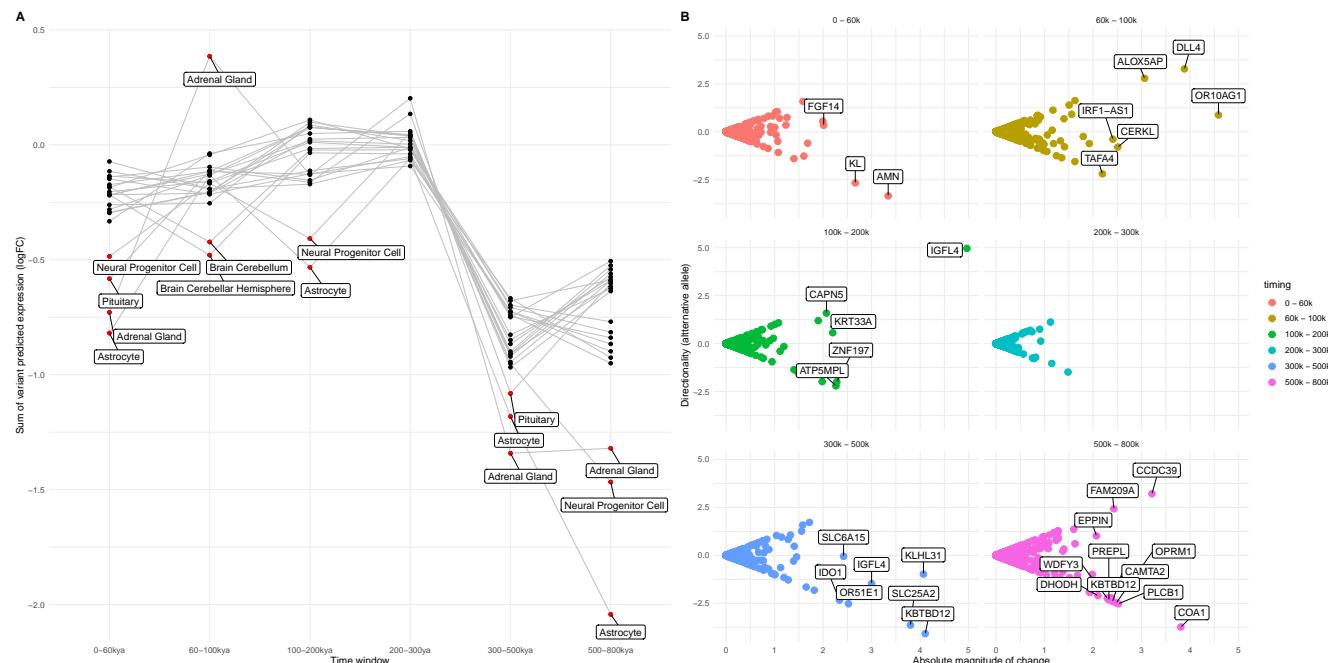
The authors declare no competing interests.

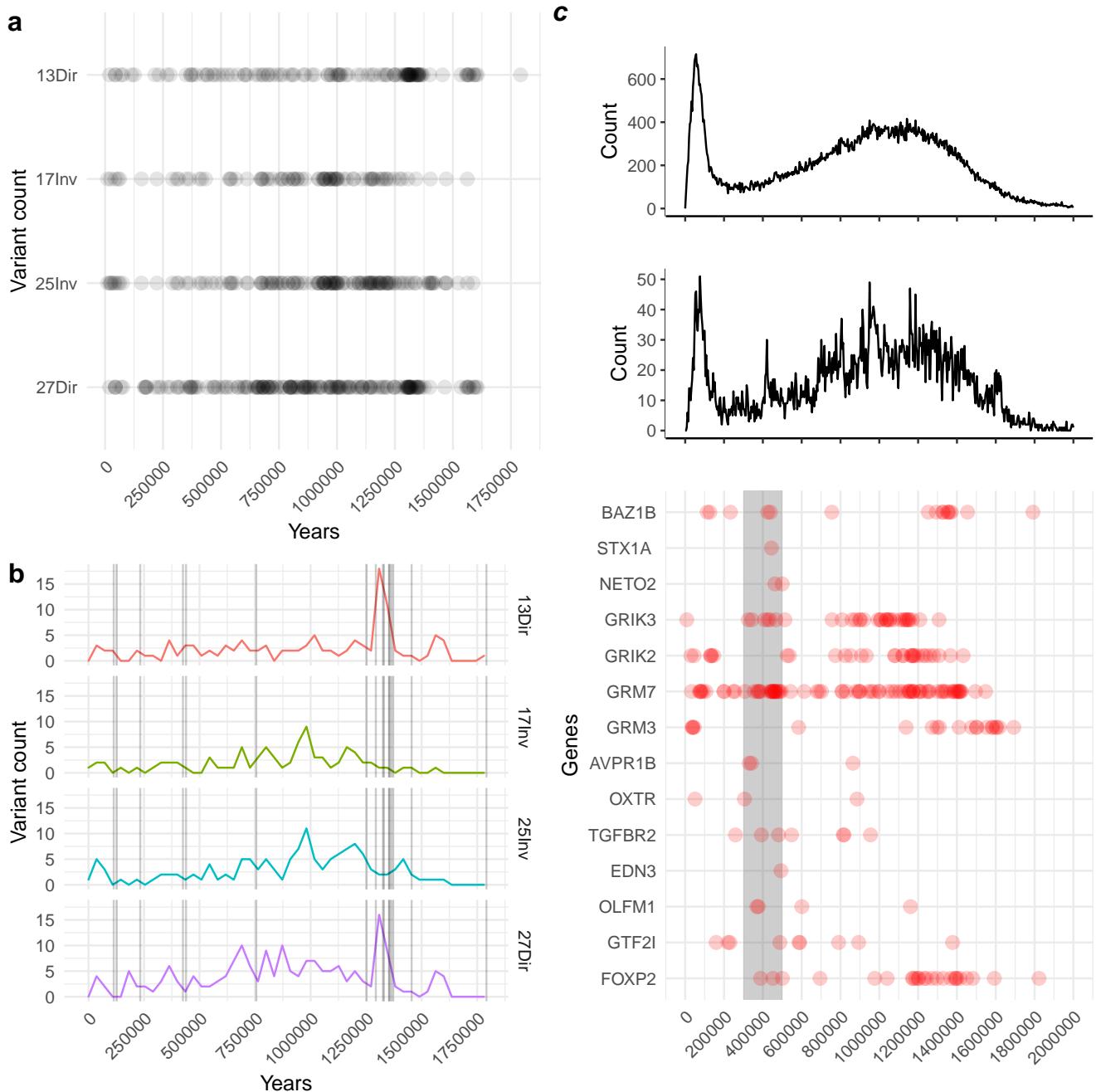

References

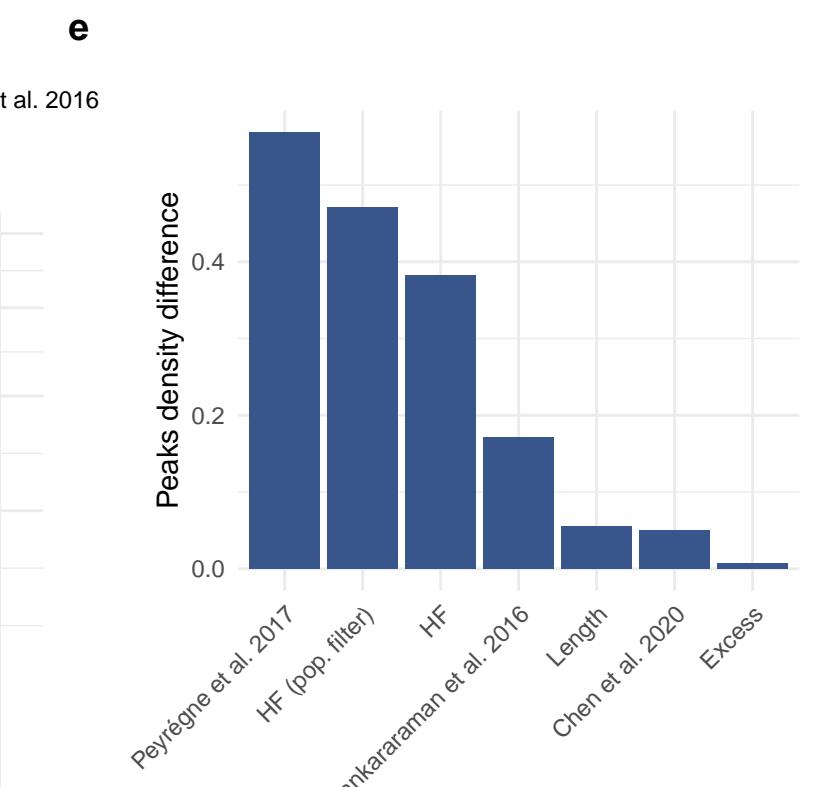
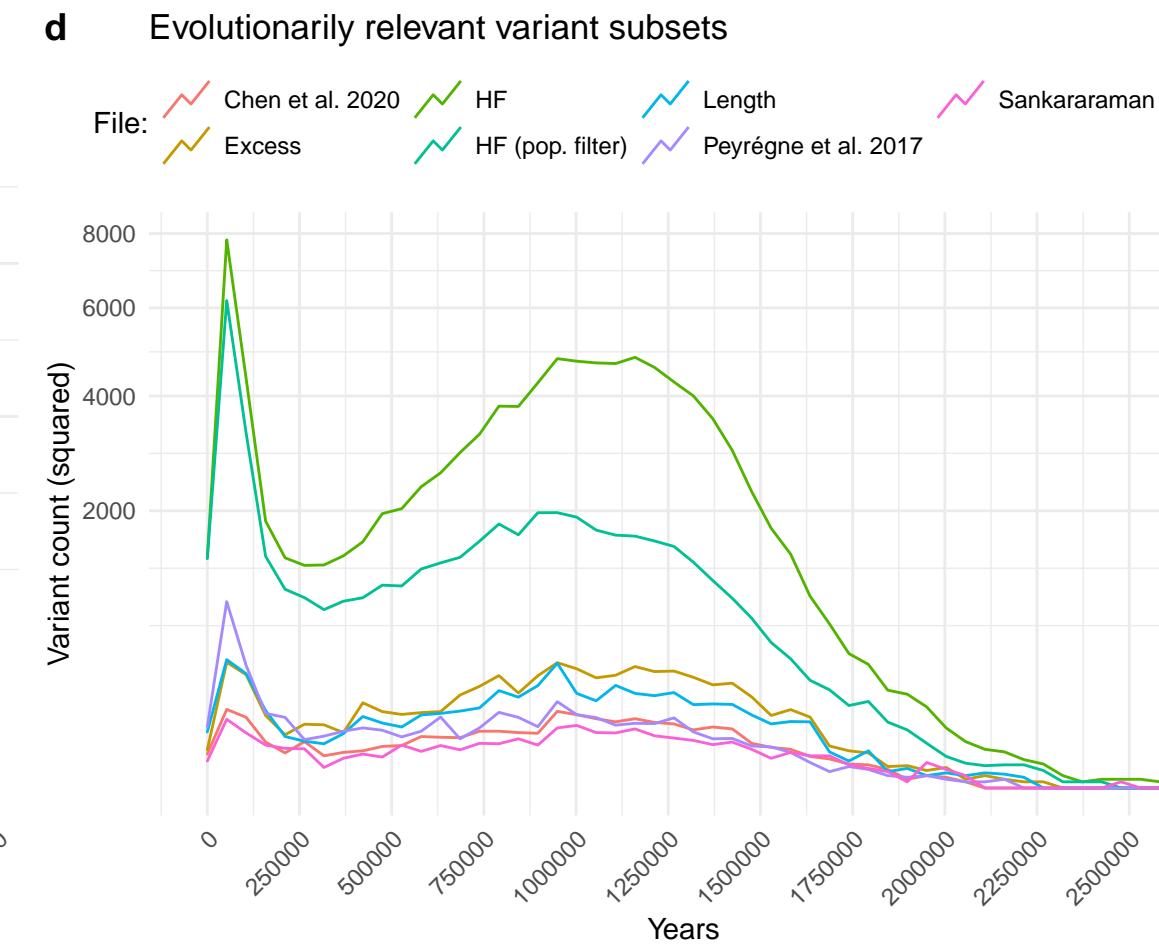
1. Scerri, E. M. L. *et al.* Did Our Species Evolve in Subdivided Populations across Africa, and Why Does It Matter? *Trends Ecol. & Evol.* **33**, 582–594, DOI: [10.1016/j.tree.2018.05.005](https://doi.org/10.1016/j.tree.2018.05.005) (2018).
2. Sykes, R. W. *Kindred: 300,000 Years of Neanderthal Life and Afterlife*. (Bloomsbury Publishing USA, 2020). OCLC: 1126396038.
3. Green, R. E. *et al.* A Draft Sequence of the Neandertal Genome. *Science* **328**, 710–722, DOI: [10.1126/science.1188021](https://doi.org/10.1126/science.1188021) (2010).
4. Kuhlwilm, M. *et al.* Ancient gene flow from early modern humans into Eastern Neanderthals. *Nature* **530**, 429–433, DOI: [10.1038/nature16544](https://doi.org/10.1038/nature16544) (2016).
5. Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. *Cell* **173**, 53–61.e9, DOI: [10.1016/j.cell.2018.02.031](https://doi.org/10.1016/j.cell.2018.02.031) (2018).
6. Gokcumen, O. Archaic hominin introgression into modern human genomes. *Am. J. Phys. Anthropol.* **171**, 60–73, DOI: <https://doi.org/10.1002/ajpa.23951> (2020).
7. Posth, C. *et al.* Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. *Nat. Commun.* **8**, 16046, DOI: [10.1038/ncomms16046](https://doi.org/10.1038/ncomms16046) (2017).
8. Stringer, C. The origin and evolution of *Homo sapiens*. *Philos. Transactions Royal Soc. B: Biol. Sci.* **371**, 20150237, DOI: [10.1098/rstb.2015.0237](https://doi.org/10.1098/rstb.2015.0237) (2016).
9. Schlebusch, C. M. *et al.* Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. *Science* **358**, 652–655, DOI: [10.1126/science.aao6266](https://doi.org/10.1126/science.aao6266) (2017).
10. Prendergast, M. E. *et al.* Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. *Science* **365**, DOI: [10.1126/science.aaw6275](https://doi.org/10.1126/science.aaw6275) (2019).
11. Grün, R. *et al.* Dating the skull from Broken Hill, Zambia, and its position in human evolution. *Nature* **580**, 372–375, DOI: [10.1038/s41586-020-2165-4](https://doi.org/10.1038/s41586-020-2165-4) (2020).
12. Hubisz, M. J., Williams, A. L. & Siepel, A. Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph. *PLOS Genet.* **16**, e1008895, DOI: [10.1371/journal.pgen.1008895](https://doi.org/10.1371/journal.pgen.1008895) (2020).
13. Durvasula, A. & Sankararaman, S. Recovering signals of ghost archaic introgression in African populations. *Sci. Adv.* **6**, eaax5097, DOI: [10.1126/sciadv.aax5097](https://doi.org/10.1126/sciadv.aax5097) (2020).
14. Lacruz, R. S. *et al.* The evolutionary history of the human face. *Nat. Ecol. & Evol.* **3**, 726–736, DOI: [10.1038/s41559-019-0865-7](https://doi.org/10.1038/s41559-019-0865-7) (2019).
15. Kuhlwilm, M. & Boeckx, C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. *Sci. Reports* **9**, 8463, DOI: [10.1038/s41598-019-44877-x](https://doi.org/10.1038/s41598-019-44877-x) (2019).

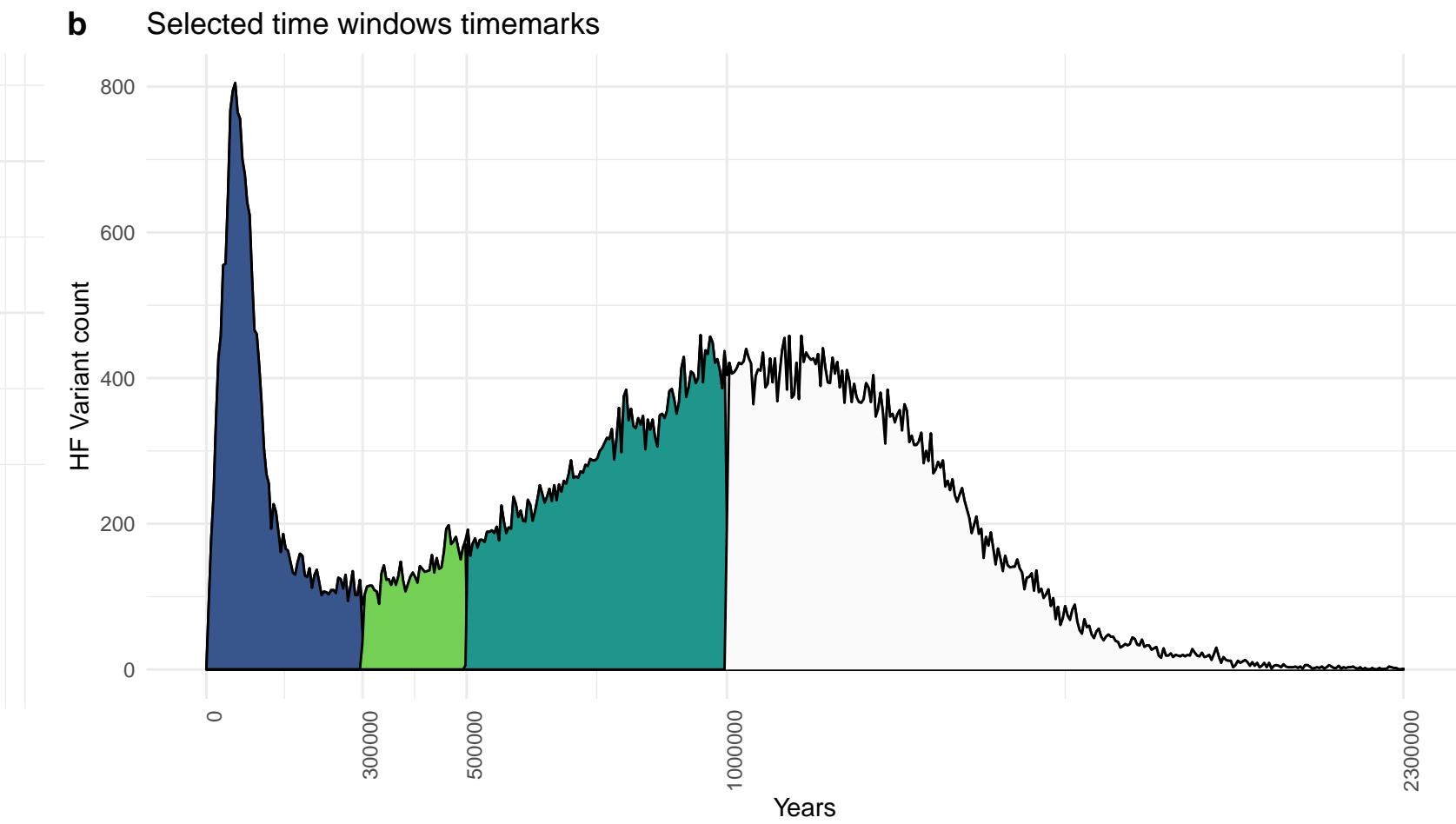
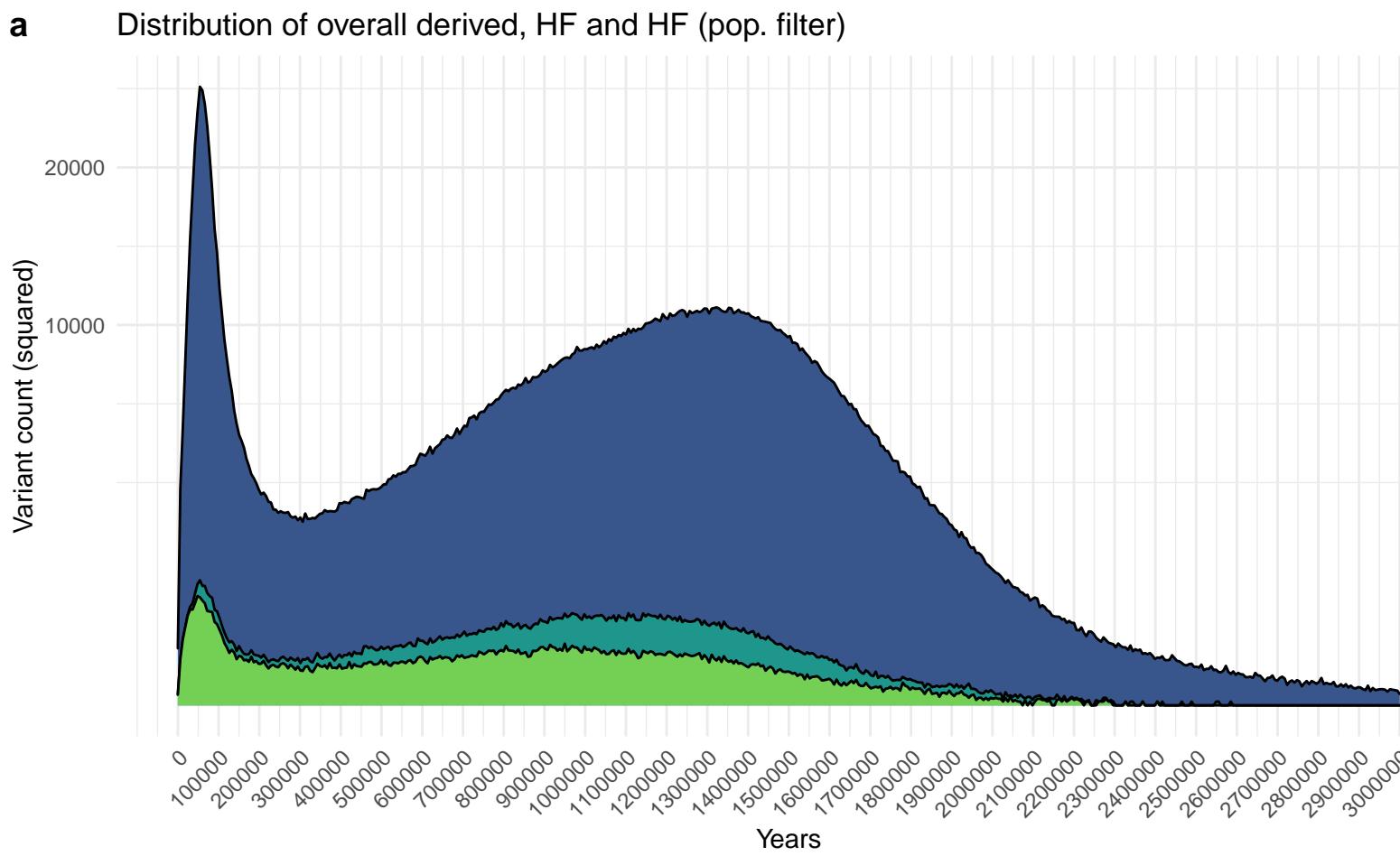

16. Albers, P. K. & McVean, G. Dating genomic variants and shared ancestry in population-scale sequencing data. *PLOS Biol.* **18**, e3000586, DOI: [10.1371/journal.pbio.3000586](https://doi.org/10.1371/journal.pbio.3000586) (2020).
17. Zhou, J. *et al.* Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. *Nat. Genet.* **50**, 1171–1179, DOI: [10.1038/s41588-018-0160-6](https://doi.org/10.1038/s41588-018-0160-6) (2018).
18. Zanella, M. *et al.* Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication. *Sci. Adv.* **5**, eaaw7908, DOI: [10.1126/sciadv.aaw7908](https://doi.org/10.1126/sciadv.aaw7908) (2019).
19. Groucutt, H. S. *et al.* Rethinking the dispersal of *Homo sapiens* out of Africa. *Evol. Anthropol.* **24**, 149–164, DOI: [10.1002/evan.21455](https://doi.org/10.1002/evan.21455) (2015).
20. Gómez-Robles, A. Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. *Sci. Adv.* **5**, eaaw1268, DOI: [10.1126/sciadv.aaw1268](https://doi.org/10.1126/sciadv.aaw1268) (2019).
21. Hublin, J.-J. *et al.* New fossils from Jebel Irhoud, Morocco and the pan-African origin of *Homo sapiens*. *Nature* **546**, 289–292, DOI: [10.1038/nature22336](https://doi.org/10.1038/nature22336) (2017).
22. Bermúdez de Castro, J. M. *et al.* A hominid from the lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans. *Sci. (New York, N.Y.)* **276**, 1392–1395, DOI: [10.1126/science.276.5317.1392](https://doi.org/10.1126/science.276.5317.1392) (1997).
23. Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans. *Curr. biology: CB* **26**, 1241–1247, DOI: [10.1016/j.cub.2016.03.037](https://doi.org/10.1016/j.cub.2016.03.037) (2016).
24. Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals. *Cell* **180**, 677–687.e16, DOI: [10.1016/j.cell.2020.01.012](https://doi.org/10.1016/j.cell.2020.01.012) (2020).
25. Peyrégne, S., Boyle, M. J., Dannemann, M. & Prüfer, K. Detecting ancient positive selection in humans using extended lineage sorting. *Genome Res.* **27**, 1563–1572, DOI: [10.1101/gr.219493.116](https://doi.org/10.1101/gr.219493.116) (2017).
26. Vernot, B. *et al.* Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. *Science* **352**, 235–239, DOI: [10.1126/science.aad9416](https://doi.org/10.1126/science.aad9416) (2016).
27. Petr, M. *et al.* The evolutionary history of Neanderthal and Denisovan Y chromosomes. *Science* **369**, 1653–1656, DOI: [10.1126/science.abb6460](https://doi.org/10.1126/science.abb6460) (2020).
28. McCoy, R. C., Wakefield, J. & Akey, J. M. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression. *Cell* **168**, 916–927.e12, DOI: [10.1016/j.cell.2017.01.038](https://doi.org/10.1016/j.cell.2017.01.038) (2017).
29. Zhang, X. *et al.* The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. *bioRxiv* 2020.10.01.323113, DOI: [10.1101/2020.10.01.323113](https://doi.org/10.1101/2020.10.01.323113) (2020).
30. Yair, S., Lee, K. M. & Coop, G. The timing of human adaptation from Neanderthal introgression. *bioRxiv* 2020.10.04.325183, DOI: [10.1101/2020.10.04.325183](https://doi.org/10.1101/2020.10.04.325183) (2020).
31. Zhou, H. *et al.* A Chronological Atlas of Natural Selection in the Human Genome during the Past Half-million Years. *bioRxiv* 018929, DOI: [10.1101/018929](https://doi.org/10.1101/018929) (2015).
32. Tilot, A. K. *et al.* The Evolutionary History of Common Genetic Variants Influencing Human Cortical Surface Area. *Cereb. Cortex* DOI: [10.1093/cercor/bhaa327](https://doi.org/10.1093/cercor/bhaa327) (2020).
33. Racimo, F. Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation. *Genetics* **202**, 733–750, DOI: [10.1534/genetics.115.178095](https://doi.org/10.1534/genetics.115.178095) (2016).
34. Schlebusch, C. M. *et al.* Kho-San Genomes Reveal Unique Variation and Confirm the Deepest Population Divergence in *Homo sapiens*. *Mol. Biol. Evol.* **37**, 2944–2954, DOI: [10.1093/molbev/msaa140](https://doi.org/10.1093/molbev/msaa140) (2020).
35. Wang, D. *et al.* Comprehensive functional genomic resource and integrative model for the human brain. *Science* **362**, eaat8464, DOI: [10.1126/science.aat8464](https://doi.org/10.1126/science.aat8464) (2018).
36. Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. *Nucleic Acids Res.* **35**, W193–W200, DOI: [10.1093/nar/gkm226](https://doi.org/10.1093/nar/gkm226) (2007).

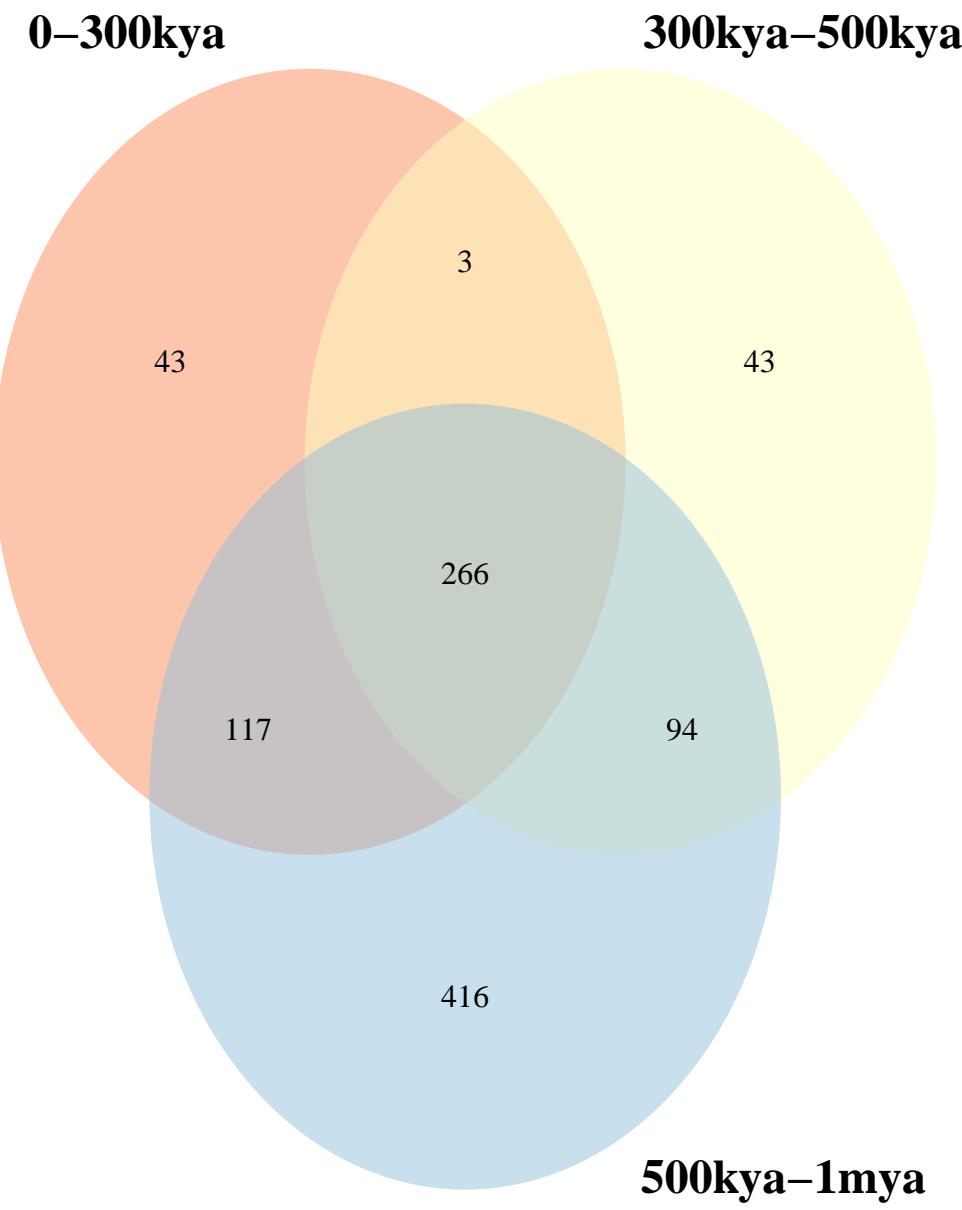
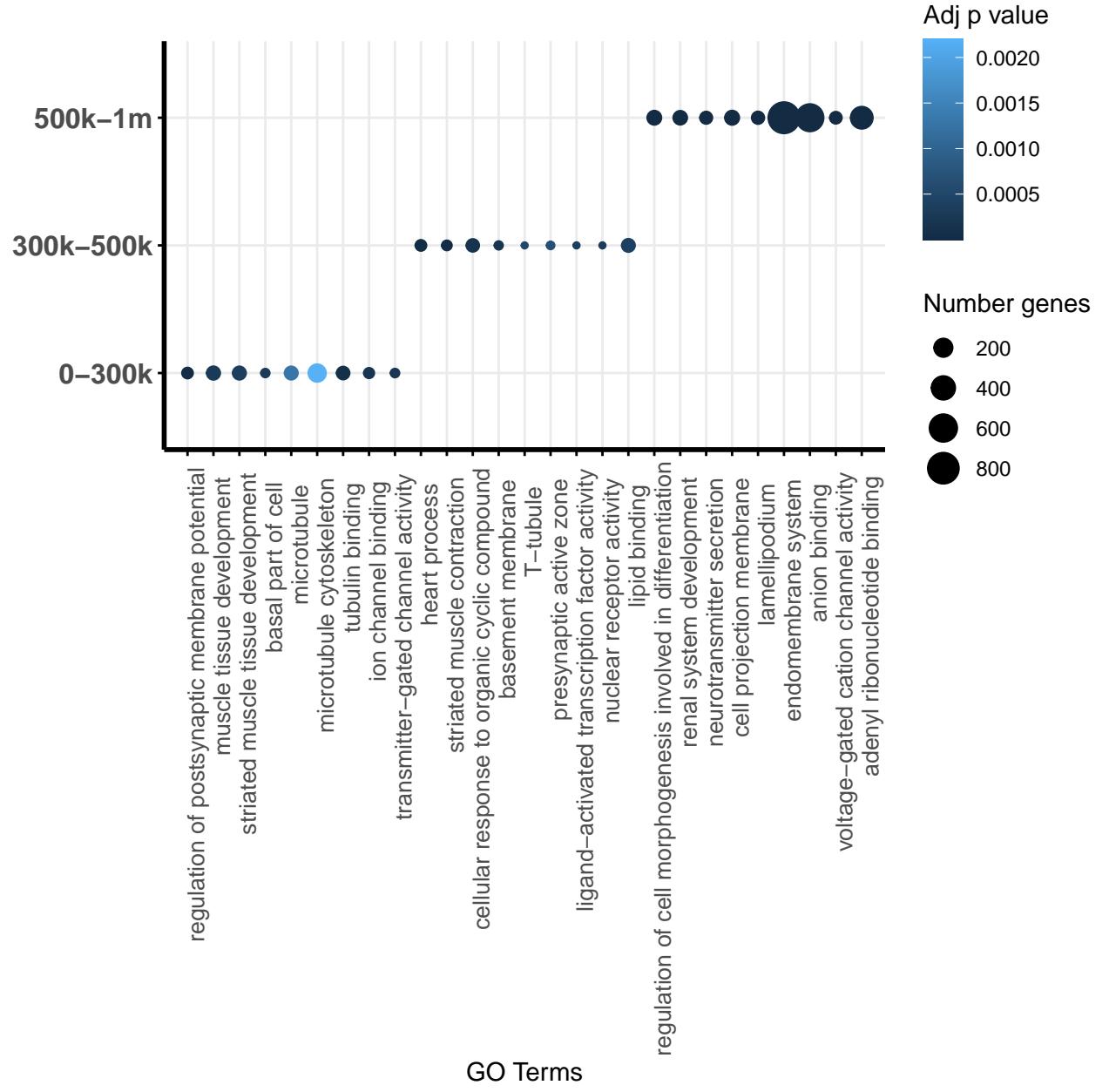
37. Neubauer, S., Hublin, J.-J. & Gunz, P. The evolution of modern human brain shape. *Sci. Adv.* **4**, eaao5961, DOI: [10.1126/sciadv.aa05961](https://doi.org/10.1126/sciadv.aa05961) (2018).
38. Pitulescu, M. E. *et al.* Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. *Nat. Cell Biol.* **19**, 915–927, DOI: [10.1038/ncb3555](https://doi.org/10.1038/ncb3555) (2017).
39. Bosch, M. K. *et al.* Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. *The J. Neurosci. The Off. J. Soc. for Neurosci.* **35**, 6752–6769, DOI: [10.1523/JNEUROSCI.2663-14.2015](https://doi.org/10.1523/JNEUROSCI.2663-14.2015) (2015).
40. Santarelli, S. *et al.* SLC6A15, a novel stress vulnerability candidate, modulates anxiety and depressive-like behavior: involvement of the glutamatergic system. *Stress. (Amsterdam, Netherlands)* **19**, 83–90, DOI: [10.3109/10253890.2015.1105211](https://doi.org/10.3109/10253890.2015.1105211) (2016).
41. Smith, S. M. *et al.* Enhanced Brain Imaging Genetics in UK Biobank. *bioRxiv* 2020.07.27.223545, DOI: [10.1101/2020.07.27.223545](https://doi.org/10.1101/2020.07.27.223545) (2020).
42. Grasby, K. L. *et al.* The genetic architecture of the human cerebral cortex. *Science* **367**, DOI: [10.1126/science.aay6690](https://doi.org/10.1126/science.aay6690) (2020).
43. Theofanopoulou, C. Brain asymmetry in the white matter making and globularity. *Front. Psychol.* **6**, DOI: [10.3389/fpsyg.2015.01355](https://doi.org/10.3389/fpsyg.2015.01355) (2015).
44. Bruner, E. Human Paleoneurology and the Evolution of the Parietal Cortex, DOI: [10.1159/000488889](https://doi.org/10.1159/000488889) (2018).
45. Lombard, M. & Högberg, A. Four-Field Co-evolutionary Model for Human Cognition: Variation in the Middle Stone Age/Middle Palaeolithic. *J. Archaeol. Method Theory* DOI: [10.1007/s10816-020-09502-6](https://doi.org/10.1007/s10816-020-09502-6) (2021).
46. Elliott, L. T. *et al.* Genome-wide association studies of brain imaging phenotypes in UK Biobank. *Nature* **562**, 210–216, DOI: [10.1038/s41586-018-0571-7](https://doi.org/10.1038/s41586-018-0571-7) (2018).
47. Theofanopoulou, C. *et al.* Self-domestication in *Homo sapiens*: Insights from comparative genomics. *PLOS ONE* **12**, e0185306, DOI: [10.1371/journal.pone.0185306](https://doi.org/10.1371/journal.pone.0185306) (2017).
48. Godinho, R. M., Spikins, P. & O'Higgins, P. Supraorbital morphology and social dynamics in human evolution. *Nat. Ecol. & Evol.* **2**, 956–961, DOI: [10.1038/s41559-018-0528-0](https://doi.org/10.1038/s41559-018-0528-0) (2018).
49. O'Rourke, T. & Boeckx, C. Glutamate receptors in domestication and modern human evolution. *Neurosci. & Biobehav. Rev.* **108**, 341–357, DOI: [10.1016/j.neubiorev.2019.10.004](https://doi.org/10.1016/j.neubiorev.2019.10.004) (2020).
50. Gokhman, D. *et al.* Differential DNA methylation of vocal and facial anatomy genes in modern humans. *Nat. Commun.* **11**, 1189, DOI: [10.1038/s41467-020-15020-6](https://doi.org/10.1038/s41467-020-15020-6) (2020).
51. Welker, F. *et al.* The dental proteome of *Homo antecessor*. *Nature* **580**, 235–238, DOI: [10.1038/s41586-020-2153-8](https://doi.org/10.1038/s41586-020-2153-8) (2020).
52. Pääbo, S. The Human Condition—A Molecular Approach. *Cell* **157**, 216–226, DOI: [10.1016/j.cell.2013.12.036](https://doi.org/10.1016/j.cell.2013.12.036) (2014).
53. Potts, R. *et al.* Increased ecological resource variability during a critical transition in hominin evolution. *Sci. Adv.* **6**, eabc8975, DOI: [10.1126/sciadv.abc8975](https://doi.org/10.1126/sciadv.abc8975) (2020).
54. Brooks, A. S. *et al.* Long-distance stone transport and pigment use in the earliest Middle Stone Age. *Science* **360**, 90–94, DOI: [10.1126/science.aa02646](https://doi.org/10.1126/science.aa02646) (2018).
55. Moriano, J. & Boeckx, C. Modern human changes in regulatory regions implicated in cortical development. *BMC Genomics* **21**, 304, DOI: [10.1186/s12864-020-6706-x](https://doi.org/10.1186/s12864-020-6706-x) (2020).
56. Weiss, C. V. *et al.* The cis-regulatory effects of modern human-specific variants. *bioRxiv* 2020.10.07.330761, DOI: [10.1101/2020.10.07.330761](https://doi.org/10.1101/2020.10.07.330761) (2020).
57. Yan, S. M. & McCoy, R. C. Archaic hominin genomics provides a window into gene expression evolution. *Curr. Opin. Genet. & Dev.* **62**, 44–49, DOI: [10.1016/j.gde.2020.05.014](https://doi.org/10.1016/j.gde.2020.05.014) (2020).

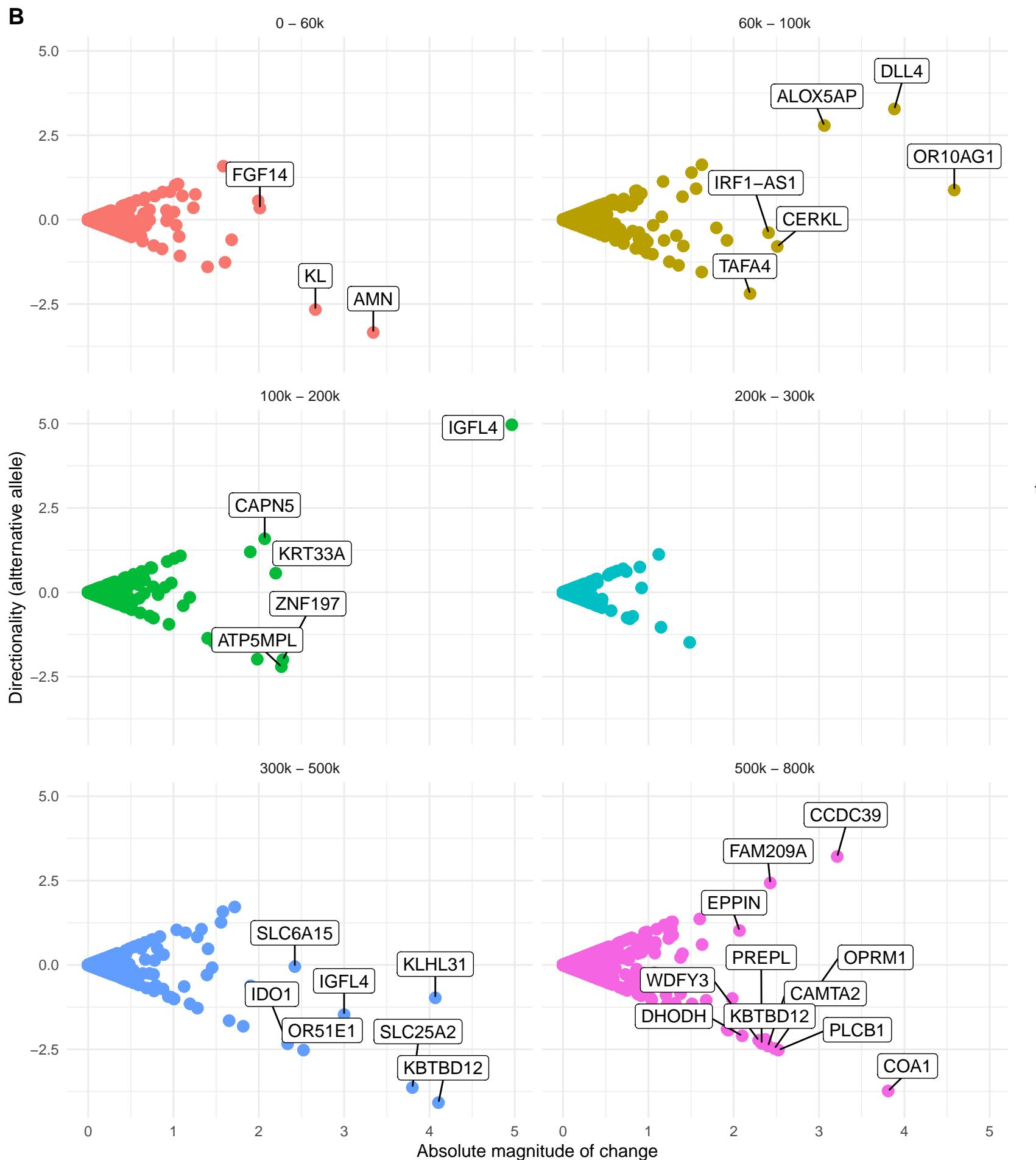
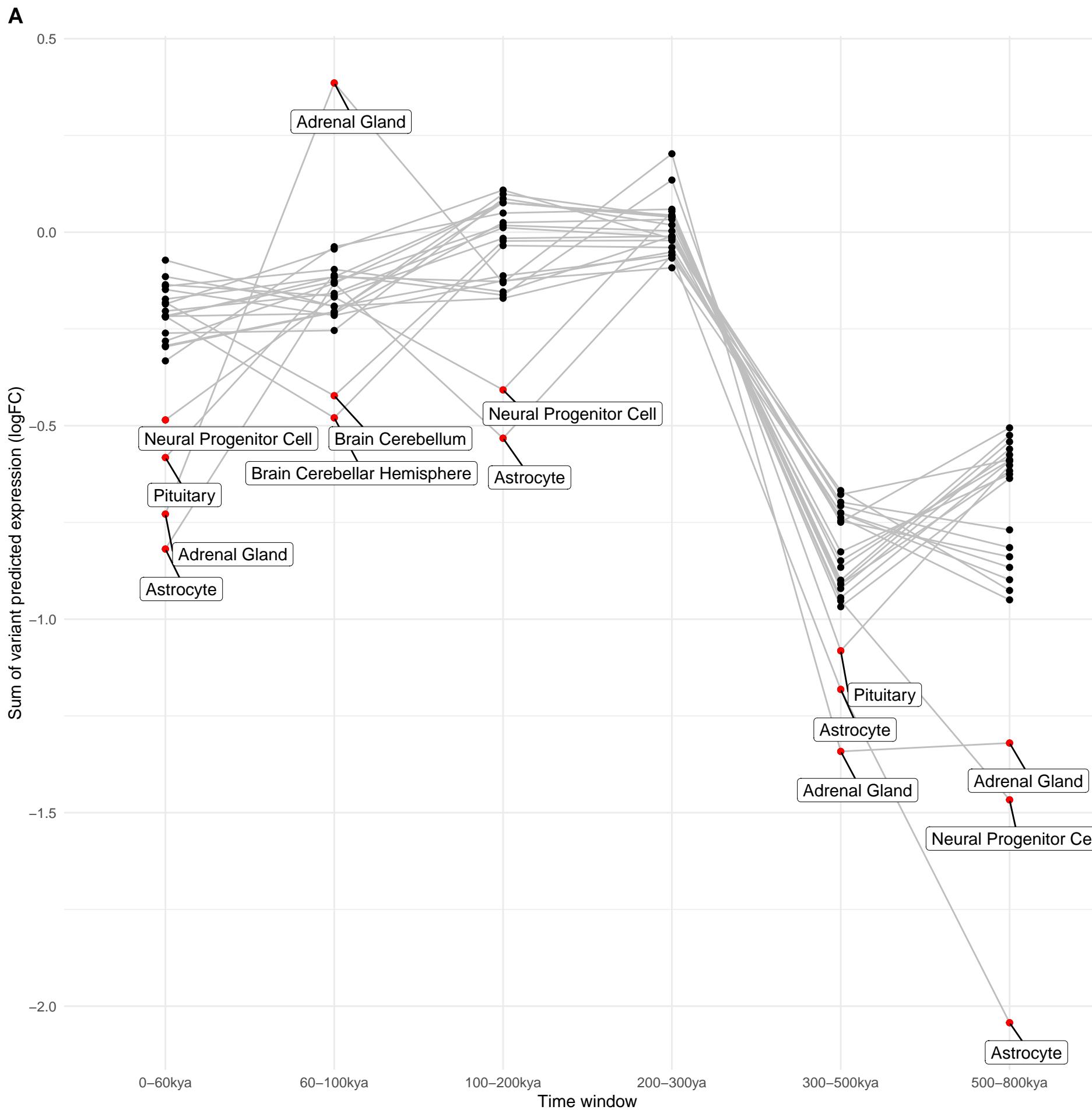

58. Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. *Am. J. Phys. Anthropol.* **128**, 415–423, DOI: [10.1002/ajpa.20188](https://doi.org/10.1002/ajpa.20188) (2005).
59. Reijnders, M. J. & Waterhouse, R. M. Summary Visualisations of Gene Ontology Terms with GO-Figure! *bioRxiv* 2020.12.02.408534, DOI: [10.1101/2020.12.02.408534](https://doi.org/10.1101/2020.12.02.408534) (2020).
60. Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell systems* **1**, 417–425, DOI: [10.1016/j.cels.2015.12.004](https://doi.org/10.1016/j.cels.2015.12.004) (2015).


Figure 1. A: Distribution of derived *Homo sapiens* alleles over time with no frequency cutoff, in HF and the modified population-wise HF subset (see sec. 4). Trimmed at 3mya – the full distributions is shown in Fig S1 B: Selected chronological milestones used in our study, as informed by the archaeological record. C: Distribution of introgressed alleles over time, as identified by [23] and [26]. D: Plots of HF variants in datasets relevant to human evolution, including regions under positive selection [25], regions depleted of archaic introgression [23, 24] and genes showing an excess of HF variants ('excess' and 'length') [15]. Variant counts in A, C and D are squared to aid visualization. E: Kernel density difference between the highest point in the distributions of D (leftmost peak) and the second, older highest density peak, normalized, in percentage units.



Figure 2. A: Venn diagram of GO terms associated with genes shared across time windows. B: Top GO terms per time window.



Figure 3. A: Sum of all directional mutation effects within 1kb to the TSS per time window in 22 brain regions from the ENCODE, GTEx and Road map datasets. Highlighted in red, bottom and top values labelled for illustration. Note, however, that expression values predicted are significantly different across time windows but not tissues (as detailed in sec. 2.3). B: Genes with a high sum of all directional mutation effects, and cumulative directionality of expression values.

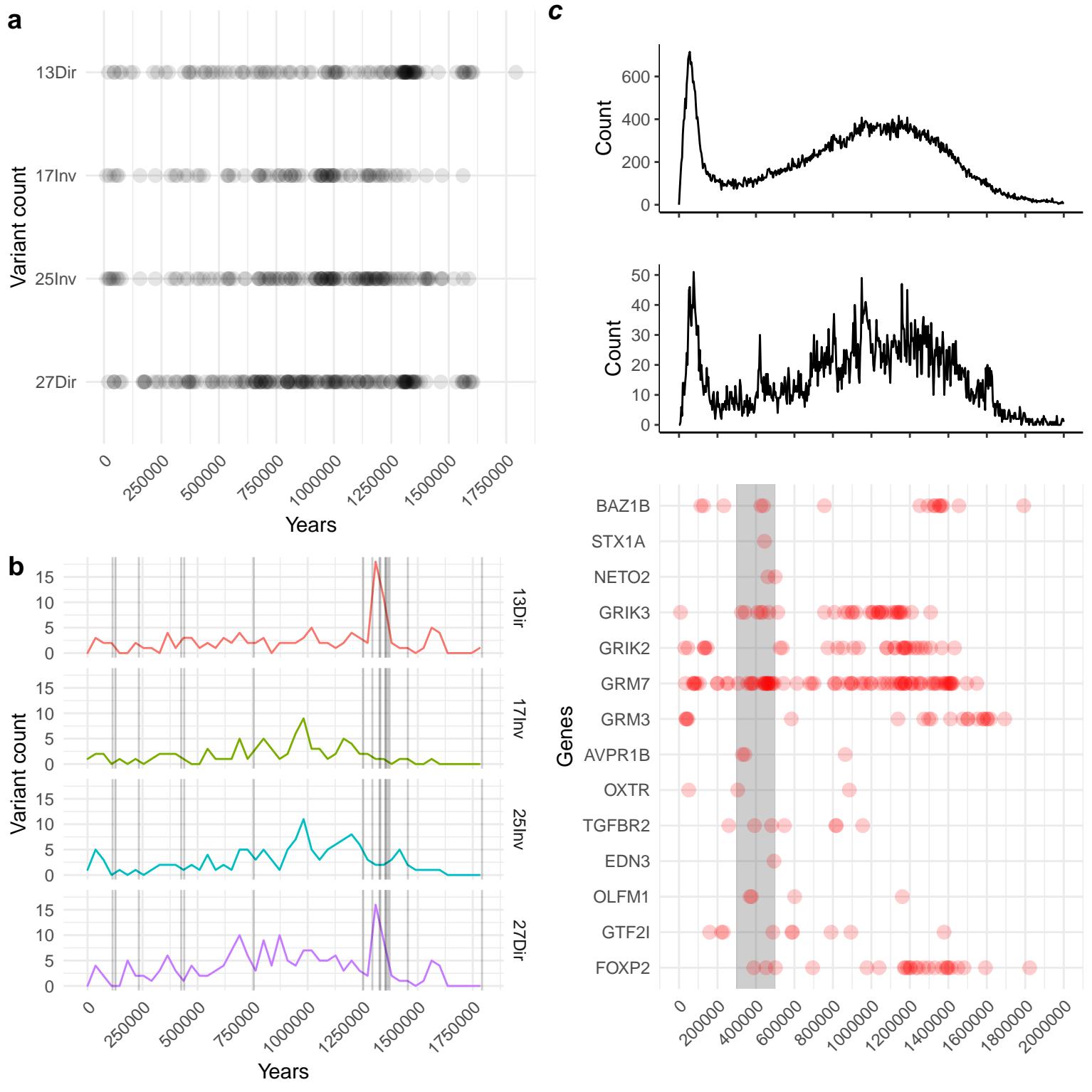


Figure 4. A: Accumulation of variants over time in genes whose expression levels are robustly correlated, directly ('Dir') or inversely ('Inv'), with BAZ1B expression, as per [18]. B: Relation of variant emergence and BAZ1B mutations (vertical black lines) per list of robustly correlated target genes. C: Distribution of HF variants (top), variants in genes showing an excess of HF mutations (middle), and date of emergence of HF variants in selected genes over time (bottom), including a highlight between 300kya and 500kya (in gray). The total number of mapped HF variants for these genes follows a linear relationship with gene length (Fig. S. 18).

a**b**

