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Abstract

Background. Increasingly, researchers use protein-coding genes from targeted PCR amplification or direct metagenomic
sequencing in community and population ecology. Analysis of protein-coding genes presents different challenges from those
encountered in traditional SSU rRNA studies. Most protein-coding sequences are annotated based on homology to other
computationally-annotated sequences, which can lead to inaccurate annotations. Therefore, the results of sensitive
homology searches must be validated to remove false-positives and assess functionality. Multiple lines of in silico evidence
can be gathered by examining conserved domains and residues identified through biochemical investigations. However,
manually validating sequences in this way can be time consuming and error prone, especially in large environmental studies.

Results. An automated pipeline for protein active site validation (PASV) was developed to improve validation and partitioning
accuracy for protein-coding sequences, combining multiple sequence alignment with expert domain knowledge. PASV was
tested using commonly misannotated proteins: ribonucleotide reductase (RNR), alternative oxidase (AOX), and plastid
terminal oxidase (PTOX). PASV partitioned 9,906 putative Class I alpha and Class II RNR sequences from bycatch in a global
viral metagenomic investigation with >99% true positive and true negative rates. PASV predicted the class of 2,579 RNR
sequences in >98% agreement with manual annotations. PASV correctly partitioned all 336 tested AOX and PTOX sequences.

Conclusions. PASV provides an automated and accurate way to address post-homology search validation and partitioning of
protein-coding marker genes. Source code is released under the MIT license and is found with documentation and usage
examples on GitHub at https://github.com/mooreryan/pasv.
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Background

Next generation DNA sequencing has continued to yield ever
larger sequence datasets, enabling researchers to leverage vast
amounts of sequence data in addressing a variety of scientific
questions from cataloguing variation in human genomes [1] and
connecting the gut microbiome with human health [2] to examin-
ing the circadian clock in soybean [3] and surveying viruses of the
global ocean [4]. For example, sequencing has led to substantial
advancements in understanding the community and population
biology of microorganisms in nature. Nevertheless, while gener-
ation of data continually improves, accurate and comprehensive
data analysis remains a challenge for investigations leveraging
large sequence datasets.

Building on the example of microbial ecology, for decades re-
searchers have relied on sequence based surveys of stable RNA
genes, such as SSU rRNA, as phylogenetic markers for assess-
ing the composition of cellular microbial communities. However,
the focus on stable and highly conserved RNA gene sequences
for microbial ecology studies has limited researcher’s ability for
fine scale delineation of cellular microbial populations from one
another [5, 6] and identification of viral populations which do
not encode SSU rRNA genes [7]. Use of protein-coding gene se-
quences as phylogenetic markers for community and population
ecology studies can address these shortcomings of SSU rRNA anal-
yses. However, accurate identification of protein-coding genes
from either targeted amplicon libraries or shotgun metagenomes
remains a significant analytical challenge.

In microbial ecology investigations, both stable rRNA and pro-
tein coding marker gene sequences are obtained either through
targeted PCR amplification or direct sequencing (i.e., shotgun
metagenome sequencing) of environmental DNA. Either ap-
proach has limitations that are addressed by the other. Tar-
geted PCR amplification can deeply sample microbial populations
within a community, detecting even the rarest of members; how-
ever, this approach may miss novel diversity by relying on pre-
viously sequenced genes for constructing PCR primers [8, 9, 10].
While every effort is made to ensure marker gene primers cap-
ture as much diversity as possible, amplification bias is always
present [11]. In contrast, metagenome sequence libraries from
shotgun sequencing provide a relatively unbiased picture of mi-
crobial diversity, with the caveat of a more limited ability for sam-
pling rare populations [12, 13]. With sequence assembly, this ap-
proach also provides the genomic context of marker genes, highly
useful information for genome to phenome investigations [14].
Nevertheless, shotgun metagenomics presents significant addi-
tional analytical and computational requirements making this
approach more expensive and difficult [15, 16]. Furthermore, re-
searchers still must drill down to the level of specific genes within
metagenomes, such as those that have undergone extensive bio-
chemical characterization, to uncover interesting biological and
ecological patterns from the sequencing data [17, 18, 19, 20]. In
the case of either approach, accurately determining the identity
of a sequence is critical in preventing subsequent errors in phy-
logenetic and functional analyses.

Assessing the potential gene functions within a community
requires annotation of peptide sequences within metagenomes.
Homology-based search tools such as BLAST [21] are the bedrock
of sequence annotation, however, functional annotation of pro-
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teins based on homology can be error prone [22, 23]. Biochem-
ically annotated proteins are relatively rare in major databases,
and usually arise from studies of a few select model organisms
[24, 25, 26]. As a result, many environmental sequences are an-
notated based solely on homology to other computationally an-
notated environmental sequences rather than to biochemically
characterized proteins. Often, such environmental sequence an-
notations are several steps away from a confident, biochemical
annotation, which can quickly lead to inaccuracies resulting from
“error percolation” [24].

Furthermore, highly sensitive homology search tools used for
annotating and identifying marker genes within metagenomes
often have high false positive rates [27]. Identifying false posi-
tives in functional annotations is an active area of research and
many techniques are available. Machine learning algorithms
have been used for identifying false positives based on charac-
teristics of multiple sequence alignments (MSAs) [28, 29]. Active
site profiling, or examining the characteristics of regions close to
a protein’s active sites, has been used for sensitive and function-
ally relevant annotations [30, 31, 32, 33].

Even with accurate functional annotations, researchers need
a means for predicting if a peptide sequence represents a func-
tional enzyme. While a protein’s function cannot be definitively
determined in silico, evidence can be gathered by examining ac-
tive sites, allosteric sites, and other key conserved residues es-
tablished through biochemical investigations. However, manu-
ally validating key residues in thousands of peptide sequences
using MSAs is time consuming, especially when considering the
large volume of marker gene sequences obtained through am-
plicon or shotgun metagenome studies [4]. Furthermore, mul-
tiple sequence alignment quality degrades as the number of se-
quences in an alignment increases [34], or when the sequences
to be aligned are highly divergent from one another [35].

To address the issue of accuracy in the validation of protein-
coding gene sequences, an automated pipeline for protein active
site validation (PASV) was developed. PASV provides researchers
with a fast and accurate method for validating protein active sites
and point mutations in particular genes of interest. Combining
multiple sequence alignment with expert domain knowledge in
an automated way, PASV more accurately identifies functional
protein sequences within large sequence datasets. In this way,
PASV can be used as a post-homology search processing step to
eliminate most false positive hits and peptides that are likely to
be non-functional. Additionally, PASV can be used to partition
proteins into groups based on the residues present in functionally
important positions of an alignment, such as conserved catalytic
residues or residues with interesting biochemical properties (e.g.,
variants in motif B in DNA polymerase I [17]).

The accuracy of PASV was tested using commonly misanno-
tated proteins: ribonucleotide reductase (RNR), alternative oxi-
dase (AOX), and plastid terminal oxidase (PTOX) [36, 37]. In the
first case, PASV was used to identify functional RNRs based on
active site residues, and to differentiate Class I alpha and Class II
RNRs based on a single amino acid residue. In the second case,
PASV was used to distinguish two proteins commonly found in
plants, AOX and PTOX, which have been previously shown to be
difficult to differentiate with homology search alone, but can be
readily partitioned using conserved residues [37].
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Figure 1. PASV conceptual diagram. PASV individually aligns each query sequence
with a user-defined set of reference sequences. Then, columns of the resulting
multiple sequence alignment are checked for user-defined key residue positions
and, optionally, a region of interest (ROI). Finally, query sequences are partitioned
into groups based on the amino acids at each of the key residues and whether the
sequence spans the ROI.

Methods
PASV Pipeline Overview

PASV automates the process of aligning query sequences with
a set of reference sequences and subsequently validating key
residues and regions within the queries (Fig. 1). PASV is not a ho-
mology search tool. Rather it is a post-homology search filtering
program. PASV uses a set of user-defined key amino acid residue
positions to review alignment columns within multiple sequence
alignments (MSAs). Key positions ideally will be residues that
are both essential to the protein’s function such as active sites
and allosteric binding sites, and highly conserved across the di-
versity of known protein sequences. In this way, PASV leverages
the user’s domain knowledge for automated filtering and valida-
tion of functional proteins discovered through homology search.
Alternatively, key positions may contain residues that, when mu-
tated, display interesting biochemical properties. PASV automat-
ically bins such amino acid variants, providing information on
the functional diversity of a given protein. Finally, PASV can au-
tomatically filter out query sequences that fail to span a region
of interest (ROI) on the reference sequences.

Prior to using PASV, users must select a set of reference se-
quences for the alignment. Special care should be taken when
choosing a set of reference sequences, as picking an optimal ref-
erence set influences PASV’s accuracy and runtime (see Results
and Discussion sections for best practices). Reference sets are tai-
lored to the protein of interest. That is, a set of references chosen
for partitioning ribonucleotide reductase (RNR) sequences would
not be the same as a set of references used to partition alterna-
tive oxidase (AOX) and plastoquinol terminal oxidase (PTOX). In
addition to the reference set, which is developed once for a given
protein of interest and then reused, the main input to PASV is a
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set of query protein sequences, generally obtained via a homology
search for a protein of interest within a larger sequence dataset.
PASV is especially useful in cases where there are many puta-
tive protein sequences to validate. For example, using a highly
sensitive homology search tool (e.g., BLAST [21], HMMER [38],
MMsegs2 [39], or PSI-BLAST [40]) against a metagenome often
returns a large set of putative sequences that would be impracti-
cal for manual validation. PASV automates sequence validation
avoiding time-consuming and potentially error-prone manual
validation.

In the PASV pipeline, each query sequence is individually
aligned with the reference sequences. PASV abstracts the pro-
cess of aligning queries with references and identifying residues
present in specific columns. Rather than reimplementing MSA
algorithms, PASV leverages existing MSA software for aligning
queries and reference sequences. It has built-in support for
Clustal Omega [41] and MAFFT [42], but other alignment soft-
ware can be specified at the command line by providing a custom
specification.

For each alignment, PASV checks the residues of the query se-
quence aligning with the user-provided key residue positions in
the reference set. The provided key residue positions are inter-
preted with respect to the original, unaligned first reference se-
quence. Each query is assigned a key residue “signature” based
on these residues. PASV also optionally checks whether each
query sequence spans a user-defined region of interest with re-
spect to the reference sequences. Thus, PASV groups query se-
quences based on the key residue signature, and optionally by ROI
spanning status. For example, in the case of RNR, the user may
select key residue positions 437, 438, 439, 441, and 462 with re-
spect to the first reference sequence. Then queries will be binned
according to the residues that align with the reference sequences
at those positions, i.e., their key residue “signatures” (Fig. 2).

Implementation & source code availability

The PASV pipeline is implemented in Ruby (https://www.
ruby-lang.org/), a dynamic, open source programming lan-
guage. PASV leverages existing multiple sequence alignment
software, such as Clustal Omega [41] or MAFFT [42], thus, a
multiple sequence alignment program should be installed prior
to running PASV. PASV is open-source software (MIT license)
and is freely available on GitHub (https://github.com/mooreryan/
pasv). Rather than install PASV and its dependencies directly,
a Docker image (https://hub.docker.com/r/mooreryan/pasv) and
wrapper script (https://github.com/mooreryan/pasv/blob/master/
bin/pasv_docker) are also available. PASV v1.3.0 (https://github.
com/mooreryan/pasv/releases/tag/v1.3.0) was used for all exper-
iments.

PASV result network diagrams

Resulting PASV output files were converted to a node-link net-
work diagram with a custom script (available on the PASV GitHub
page) and visualized with Cytoscape v3.7.1 [43].

Collecting RNR sequences

Retrieving RNR sequences from the RNRdb

All available Class I alpha and Class II RNRs were retrieved from
the RNRdb on August 20, 2018 [36]. These 66,209 RNR peptide
sequences were dereplicated (exact and substring matches) us-
ing CD-HIT v4.6 [44], yielding 29,401 representative sequences.
Sequences were then divided into closely related groups (clades)
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Figure 2. RNR classification and partitioning example. PASV aligns each query sequence individually with all reference sequences (in this case, four references). Labelled
positions are the user-specified key residues. The coordinates are specified with respect to the original positions on the unaligned first reference sequence (here, E. coli).
Each query is assigned a signature based on the residues that align in the same columns as the key residues. In the case of RNR, residues N437, C439, E441, and C462
are required, while residue 438 is diagnostic of RNR class (L438 indicates Class I alpha and P438 indicates Class II). In this example, queries 1, 2, and 3 have NCEC in
the correct positions and are considered to be bonafide RNRs. Queries 1 and 3 can be classified as Class I alpha based on L438, whereas query 2 can be classified as Class
1I based on P438. Queries 4, 5, and 6, do not have the required NCEC signature and are thus considered bycatch.

as defined by the RNRdb for manual assessment of active site
residues and intein removal [23]. From the 29,401 representa-
tive sequences, 286 sequences were removed as they lacked one
or more of the four residues essential for RNR function (N437,
C439, E441, C462 with respect to Escherichia coli K12 W3110 ri-
bonucleoside diphosphate reductase 1 alpha subunit, accession
no. WP_001075164.1) [45, 46, 47, 48]. The 29,133 remaining
RNRs were retained for downstream analysis.

RNRdb sequence tree & phylogenetic clustering

To reduce the number of sequences used for building a phy-
logenetic tree of known RNR peptides, the 29,133 bonafide
RNRdb sequences were clustered with MMseqs2 (version
elaic1226ef22ac3doda8e8f71adb8fd2388a249) [39] at 75% iden-
tity over 80% of the alignment length, resulting in a set of 2,579
peptide clusters. Cluster centroids were aligned with MAFFT
v7.427 using the FFT-NS-2 method [42]. Columns of the re-
sulting multiple sequence alignment containing >95% gaps were
removed. Finally, FastTree v2.1.10 with double precision arith-
metic [50] was used to build the tree, and the resulting tree was
midpoint-rooted with a custom Python script (https://github.
com/mooreryan/midpoint-root) using ETE Toolkit v3 [51]. Differ-
ent numbers of phylogenetic RNR clusters were generated by col-
lapsing branches whose lengths were below a threshold using
iTOL [49]. Six different clustering scenarios were used represent-
ing six levels of phylogenetic granularity (4 clusters: collapsed
branch length (BRL) < 3.75; 8 clusters: BRL < 3.1; 14 clusters:
BRL < 2.85; 19 clusters: BRL < 2.65; 24 clusters: 2.485; and 29
clusters: BRL < 2.34) (Fig. 3).

Retrieving RNR sequences from the Global Ocean Viromes dataset

The 1,995,784 Global Oceans Virome (GOV) [52] peptides (down-
loaded from: https://datacommons.cyverse.org/browse/iplant/
home/shared/iVirus/GOV/Contigs_set, file last modified 2017-04-
23) were searched against RNRdb sequences with MMseqs2 (sen-
sitivity: 7, max-seqs: 1000, num-iterations: 3, start-sens: 1,
sens-steps: 7, default e-value cutoff: 0.001, defaults for all other
options). This search yielded 12,412 virome sequences. Sequences
having fewer than 100 amino acids were removed, leaving 9,906

sequences. These sequences were manually curated using a com-
bination of conserved residues, domains, and phylogenetic place-
ment (as in [23]) resulting in 2,916 bonafide RNRs and 6,990
non-RNRs.

Reference sets and PASV accuracy

Full reference set test

Given that PASV uses MSA for validating key residues, PASV’s ac-
curacy is dependent on the chosen reference set and aligner. An
experiment testing 1,920 combinations of reference sets, query
sets, and aligners was used to determine those variables most
affecting accuracy (Fig. 4). First, randomly selected reference
sequence sets were compared to sets where selection was guided
by a phylogenetic tree. For phylogenetically selected references,
a tree containing 2,579 RNR sequences was partitioned at six lev-
els of granularity (4, 8, 14, 19, 24, and 29 clusters (Fig. 3)). Two
approaches were then taken for phylogenetic reference selection.
First, phylogenetic reference sets were generated by selecting a
single reference sequence from each tree clade (clades defined by
various minimum branch lengths (BRL, Fig. 3) to test whether in-
creasing the evenness of representation among rarer or divergent
clades would improve PASV accuracy. Second, phylogenetic refer-
ence sets were generated by weighting the selection of sequences
according to the number of sequences within a cluster (one ref-
erence sequence for every 200 sequences in the cluster) (Fig. 3).
For each of the phylogenetically selected reference sets (including
weighted and unweighted at all six levels of granularity), size-
matched, randomly selected reference sets were included as con-
trols. Finally, for each reference set selection criteria (phyloge-
netic or random, single or multi, reference set size), ten repli-
cates were generated. Each reference set was tested with two
aligners, MAFFT v7.427 [42] and Clustal Omega v1.2.4 [41], and
two different query sets (RNRdb queries: 100 bonafide RNRs and
100 invalid RNRs missing key functional residues; Global Ocean
Virome (GOV) queries: 200 bonafide RNRs and 100 invalid RNRs
missing key functional residues). All experiments were run on
an Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz server with 36
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Figure 3. Phylogenetic clustering of ribonucleotide reductase proteins. Ribonu-
cleotide reductases (RNRs) from the RNRdb [36] were clustered with MMseqs2
[39] at 75% identity over 80% of the alignment length. Phylogenetic clusters
(grey circles) were created in iTOL [49] by collapsing clades with branch lengths
(BRL) less than the amount shown. Leaf labels show the number of sequences
within the clade. Branches without grey dots represent singleton clusters, and
were not included in the pool of potential reference sequences. Scale bar repre-
sents amino acid substitutions per site.

cores (2 threads per core) and 512 GB of ram, with PASV set to
use 68 threads (i.e., process 68 queries concurrently).

In summary, a total of 1,920 experiments were conducted. Six
levels of phylogenetic tree partitioning were used (6 reference
sets) (Fig. 3), each generating either a single (unweighted) or
multiple (weighted) reference sequences per clade (6 * 2 = 12
reference sets). For each of these twelve groups, ten replicates
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Figure 4. PASV reference set test. Conceptual diagram of the validation exper-
iment testing the effects of reference set, query set, and aligner on PASV ac-
curacy. One experiment is a PASV run with a unique combination of a refer-
ence set, a query set, and an aligner. The reference sequence selection strategy
(phylogenetically-guided or random), the size of the reference set (numbers of
sequences and their distribution across the known diversity of a protein), and
the length of reference sequences (full length or smaller region of interest) were
tested for their impact on PASV accuracy in correctly identifying manually curated
sequences. For each reference set category, 10 random samples (i.e., replicates)
were generated. For each reference set, two aligners (Clustal Omega [41], and
MAFFT (42]), and two query sets (RNRdb [36] and Global Ocean Virome (GOV)
[52]) were run.

were made (12 * 10 = 120 reference sets). For each of these 120
reference sets, size-matched, randomly selected reference sets
were used as controls (120 * 2 = 240 reference sets). For each
of these 240 reference sets, both full-length reference sequences,
and reference sequences trimmed to the shorter region of interest
(ROI, positions 437 - 605, E. coli numbering) were tested (240 *
2 = 480 reference sets). For each of these 480 reference sets, two
aligners (Clustal Omega or MAFFT) were tested (480 * 2 = 960
reference sets + aligners). For each of these 960 reference set
plus aligner pairs, two different query sets (RNRdb or GOV) were
tested (960 * 2 = 1,920 experiments) (Fig. 4).

Putative GOV RNR queries test

GOV RNR sequences (9,906 sequences) were used to test PASV
on a dataset more reflective of an actual use case. Because most
of the variables tested in the full reference set test had little ef-
fect on PASV accuracy (see Results), and due to the size of the
query set, a reduced set of variables was used to generate refer-
ence sets. References from three clustering levels (8, 19, 29) with
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both phylogenetic and random sequence picking were generated
in triplicate, yielding 18 reference sets. For the other variables
included in the full reference set test, only the top performing
options were used in this experiment: Clustal Omega rather than
MAFFT, full-length references rather than trimmed, and one se-
quence per clade vs one sequence for every 200 sequences per
clade. All experiments were run on the same server as the full
reference set test with PASV set to run 68 concurrent alignment
jobs.

Data analysis

Data analysis was performed in R v3.6.3 [53] with tidyverse v1.3.0
[54] and ggplot2 v3.3.0 [55]. All true positive and true nega-
tive rate linear models were calculated with the 1m function in R.
Model coefficients were considered significant if their p-values
were less than 0.05 as reported by the R function summary.1m. All
box and whisker plots were made using the geom_boxplot func-
tion from ggplot2. All scatter plot regression lines were made
using the geom_smooth function from ggplot2 using locally esti-
mated scatterplot smoothing (LOESS, default parameters) with
95% confidence intervals, except for Additional Files 1 and 4
which use linear regression with 95% confidence intervals cal-
culated with geom_smooth using 1m. All point jittering was done
using the geom_jitterdodge function from ggplot2.

Analyzing putative and bonafide GOV RNRs

GOV RNR trees

The 9,906 putative RNR sequences identified through homology
search alone, and the 2,914 PASV-predicted bonafide RNR se-
quences (using the reference set chosen from the best practices
according to the full reference set test and the GOV RNR queries
test) were aligned with MAFFT v7.427 FFT-NS-2 [42]. Columns
with >95% gaps were removed and a phylogenetic tree was in-
ferred with FastTree v2.1.10 double precision arithmetic [50]. The
resulting Newick tree files were visualized with Iroki [56].

Annotating GOV tree sequences

Sequences were manually selected from clades containing only
non-RNRs (according to manual curation) from the phylogenetic
tree containing all 9,906 putative RNRs from GOV. Sequences
were searched against National Center for Biotechnology Infor-
mation’s Conserved Domain Database (NCBI CDD) v3.18 and the
top domain hit by e-value was recorded [57]. All sequences that
had a mismatch between manual curation and PASV prediction
in any of the 18 full GOV experiments were also searched against
the conserved domain database using Batch CD-Search [58] and
the top domain hit was recorded. In the case that multiple do-
mains were identified, the top hit was recorded for each domain
(Additional File 10).

Partitioning RNR classes

To test PASV’s ability to partition Class I RNR alpha subunit se-
quences from Class II RNR sequences, the 2,579 clusters from the
RNRdb tree (Fig. 3) were used as PASV query sequences with the
"best practices" RNR reference set. In addition to the same N437,
C439, E441, and C462 key residues (E. coli numbering) used in
previous experiments, residue L/P438 was also included. Any se-
quence PASV identified as having NLCEC was labeled as a Class I
alpha RNR, whereas any sequence with NPCEC was classified as
a Class II RNR. Any sequences with key residue signatures other
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than the NLCEC for Class I alpha and NPCEC for Class II were
grouped into the “Other” category. The PASV predictions were
compared with RNRdb assigned class annotations.

Partitioning AOX and PTOX

Alternative oxidase (AOX) and plastid terminal oxidase (PTOX)
peptide sequences were collected from a recent study [37]. Se-
quences from supplemental data sheet 1, containing 14 full-
length PTOX proteins that were previously erroneously annotated
as AOX, and sequences from supplemental data sheet 2, repre-
senting trimmed AOX and PTOX sequences, were obtained. Some
of the trimmed sequences in supplemental data sheet 2 had ac-
cession numbers with which the corresponding full length se-
quences could be recovered from NCBI databases using the Entrez
Direct efetch [59]. Forty-eight full-length AOX and eight PTOX
sequences were recovered in this manner. Recovered full length
sequences were combined with trimmed sequences yielding a set
of 336 query sequences for PASV testing.

The ability of PASV to classify both AOX and PTOX sequences
within a mixed set of peptide sequences was tested with two sep-
arate PASV runs: once with an AOX reference set (UniProt entry
IDs 022048, 022049, and E1CIY3; sequences selected from those
manually annotated as AOX in [37]) and once with a PTOX refer-
ence set (UniProt entry IDs AOA061GHF5, BQRXE2, and Q56X52;
sequences selected from those manually annotated as PTOX in
[37]) sequences. In the AOX run, all query sequences were
checked for conserved residues from AOX motifs 1 (E233, R234,
M235, H236, L237, M238, T239) and 2 (L283, E284, E285, E286,
A287), and sequences containing the correct residues were la-
beled as AOX, while sequences with other residues at these po-
sitions were labeled as non-AOX (numbering with respect to se-
quence 022048) [37]. For the PTOX run, all queries were checked
for conserved residues from PTOX motifs 1 (G157, W158, R160,
R161) and 2 (H177, H178, L179, L180, M182, E183), and any se-
quences containing the correct residues were labeled as being
PTOX, while sequences with other residues at these positions
were labeled as non-PTOX (numbering with respect to sequence
A0A061GHF5) [37]. Finally, the sequence labels from the AOX and
the PTOX run were combined for the final classification. Two po-
sitions were excluded from the motifs that were presented in [37]
(159 in motif 1, and 181 in motif 2) as these positions were more
variable than the other motif positions.

Results
What factors influence PASV accuracy?

True positive and true negative rates for PASV validated RNR
peptide sequences were explored with linear models. For GOV
query sequences, aligner and reference trimming had a signif-
icant (p-value < 0.05) association with both true positive and
true negative rates (Fig. 5). Clustal Omega was associated with
an 11.1% increase in true positive rate and a 0.2% decrease in true
negative rate as compared to MAFFT. Full length references had
a 12.6% increase in true positive rate and a 0.07% increase in
true negative rate as compared to references trimmed to the re-
gion of interest. While statistically significant according to the
linear model, variables associated with true negative rate had
negligible effect in practice for GOV queries. For RNRdb queries,
when all variables were included as predictors, aligner and refer-
ence trimming were both significant predictors of true positive
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Figure 5. PASV accuracy is influenced by aligner and reference trimming. PASV true positive (A1 & B1) and true negative rates (A2 & B2) across reference sets of
RNR peptide sequences. Results are shown for the Global Ocean Virome (GOV) query set (A) and the RNRdb query set (B). Each dot represents a single PASV run (i.e.,
one reference set with an aligner). Box (showing median and interquartile range (IQR)) and whisker (1.5 x IQR) plots are overlaid. Within each panel, PASV tests are
partitioned by reference sequence length (full length references vs. those trimmed to the region of interest) and by multiple sequence aligner (Clustal Omega - purple

vs. MAFFT - orange).

rate. Clustal Omega was associated with a 1.5% increase, and full
length references were associated with 2.7% increase in true pos-
itive rate. For true negative rate, all variables other than replicate
were significant; however, all effects were quite small (< 1.3%).

Given that full-length references were superior to those
trimmed to a ROI (Fig. 5), only full-length references were in-
cluded in subsequent analysis of covariate effects on PASV accu-
racy. Full-length reference sets split into groups based on query
set (GOV vs RNRdb) and aligner (Clustal Omega vs. MAFFT) were
re-run through linear models on the following five remaining
covariates: (1) number of tree clusters; (2) number of reference
sequences; (3) single or multiple reference sequences chosen per
clade (single/multi); (4) random or phylogenetically-guided ref-
erence sequence choice (random/phylo); and (5) reference set
replicate (Table 1).

The PASV true positive rate decreased with the number of tree
clusters used in the phylogenetically-guided reference sequence
choice approach (Fig. 3), but increased with respect to the num-
ber of references for GOV-MAFFT, RNRdb-MAFFT, and RNRdb-
Clustal groups (Table 1). When using MAFFT, picking a single
reference from each clade as opposed to weighting the number
of references by number of sequences in the clade was associated
with a significantly higher true positive rate for both GOV and
RNRdb query sets; however, this trend was not seen when using
Clustal (Table 1). Overall, choosing references randomly (when
using MAFFT, but not Clustal) and including more sequences
in the reference set were associated with better PASV accuracy.
However, the positive effect of the number of reference sequences
on true positive rate plateaued after ca. 20 reference sequences
(Fig. 6). Additionally, the effect of increasing the number of ref-
erences is more pronounced with the MAFFT aligner than with
Clustal Omega (Fig. 6).

While using an increasing number of references boosted PASV
accuracy, it also increased runtime (Additional File 1), as more

sequences needed to be aligned. Using full-length references as
opposed to references trimmed to the region of interest also in-
creased the runtime. This is due to full-length references con-
taining more bases that need to be aligned. Another considera-
tion for run-time is the alignment algorithm: running PASV with
Clustal Omega was faster than with MAFFT (Additional File 1).

In summary, variables that had the most impact on PASV
true positive and true negative rate were alignment software
(with Clustal Omega outperforming MAFFT) and reference trim-
ming (full-length references performing better than references
trimmed to the ROI) (Fig. 5, Table 1, Additional File 2).

Testing PASV with the full GOV query set

PASV was tested on a large metagenomic query set using best
practices determined from the 1,920 reference set tests. The only
variable significantly associated with PASV accuracy was phylo-
genetic vs. random reference picking, which affected the true
negative rate; however, the size difference was small (0.027%)
(Additional File 3). As the different reference sets all had compa-
rable results, the mean and 95% CI of all 18 reference set runs was
used for the confusion matrix. Overall, PASV was highly concor-
dant with the manual curation, with >99% agreement between
PASV predictions and manual curation (Table 2). As in the full
reference set tests, runtime increased with increasing numbers of
reference sequences (Additional File 4) (linear model: runtime =
(-13.5 + 6.8) + (5.26 + 0.3) « number of reference sequences).
PASV provides a means for automating the process of validat-
ing the identity of peptide sequences collected through homology
search. The algorithm partitions query peptides into bonafide
and by-catch sequences (Fig. 1). Given this, the impact of in-
cluding by-catch sequences in a phylogenetic analysis of metage-
nomic RNR sequences was examined. Phylogenetic trees of puta-
tive RNR sequences from GOV (9,906 sequences), and sequences
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Table 1. Linear model coefficients with p-value < 0.1 for PASV reference set test (full-length references only).

Coefficient + Standard Error

Model Variable
GOV-MAFFT GOV-Clustal RNRdAb-MAFFT RNRdb-Clustal

Intercept 86.50 +1.86 97.60 +1.69 97.30 & 0.55 99.29 + 0.28

No. tree clusters? -0.56 + 0.13 -0.12 4+ 0.39 -0.03 £ 0.02
True positive rate I\{o. references".C 0.78 + 0.15 0.17 £ 0.45 0.05 + 0.02

Single vs. multi 4.77 £1.33 1.10 + 0.39

Random vs. phylod 0.65 + 0.36 0.24 +0.11

Replicate

Intercept 99.92 4+ 0.19 99.99 £ 0.43 99.87 4+ 0.06 100.00 £ 0.00

No. tree clusters 0.00 + 0.00

. No. references 0.01+ 0.00 0.00 % 0.00

True negative rate . :

Single vs. multi

Random vs. phylo -0.12 £ 0.04

Replicate -0.01+0.01

2Number of tree clusters

bNumber of reference sequences

Single or multiple reference sequences chosen per clade
dRandom or phylogentically-guided reference sequence selection

Table 2. Confusion matrix of PASV results for 18 references sets
against putative GOV RNR sequences.

Manual curation

PASV Prediction
Positive Negative
Positive 2894.6 + 5.3 12.54+ 0.8
Negative 21.4 £ 5.3 6977.5 £ 0.8

Mean + 95% confidence interval for 18 PASV runs. Each run is one of 18 reference
sets with the full 9,906 sequence Global Ocean Virome (GOV) query set.

from the putative RNRs that PASV identified as bonafide (i.e.,
those sequences with N437, C439, E441, C462, E. coli numbering)
were compared (Additional File 5). For this PASV run, the best
performing reference set (hereby referred to as the "best prac-
tices" reference set) of the 18 tested on the full GOV query set
that also followed the best practices observed in the full refer-
ence set test (i.e., full-length, single sequence per clade, random
selection) was used. This PASV run yielded 2,914 bonafide RNR
sequences (i.e., those sequences with N437, C439, E441, C462, E.
coli numbering).

The tree including all putative RNRs contained a high propor-
tion of sequences on long branches, indicative of distantly re-
lated sequences or sequences with poor alignment (Fig. 7A). In
contrast, the bonafide PASV sequence tree contained fewer long
branches and more reasonable topology [60] (Fig. 7B). In the
case of both trees, clades with long branches did contain non-
target sequences such as helicases, DNA polymerases, terminase,
and thioredoxin (Fig. 7 and Additional File 6). However, the tree
containing bonafide RNR sequences had substantially fewer long
branches, and those that were present would be relatively easy
to identify and remove. In practice, having fewer long branches
reduces the time necessary for manual curation of phylogenetic
trees.

Across all 18 GOV PASV runs (1 run per generated reference
set), a total of 187 sequences out of 9,906 showed disagreement
between PASV predictions and manual curation. These 187 se-
quences were annotated using NCBI CDD (Table 3, Additional File
3). Annotations of the 162 PASV predicted negative, manual cu-

Table 3. NCBI CDD annotations of sequences with mismatched PASV
prediction and manual curation.

Annotation Count
PASV positive, PASV negative,
manual curation = manual curation
negative positive

RNR (subclass unknown) 5 96
Class I RNR alpha subunit 4

Class I RNR beta subunit 2 -
Class IT RNR *2 63
Helicase 4 -
Pol I 3 -
Endonuclease 2 -
Terminase 1 -
Ankyrin repeat 1 -
No match 1 -

Counts are totals across 18 PASV runs: the full 9,906 sequence Global Ocean Vi-
rome query with 18 different reference sets.
*Sequences erroneously categorized as non-RNR by manual curation

ration positive sequences included three Class I RNR alpha sub-
units, 63 Class II RNRs, and 96 RNRs with unknown subclass.
Sequences with hits to the RNR_ PFL superfamily were consid-
ered to be either Class I alpha or Class II RNRs for two reasons: 1)
other members of the supergroup, pyruvate formate lyase (PFL)
and Class III RNRs, are oxygen-sensitive [61, 62], and thus un-
likely to be found in the environments sampled in the GOV study
[52]; and 2) these sequences grouped with other Class I alpha
and Class II sequences on the phylogenetic trees (Fig. 7). The 25
remaining mismatched sequences (i.e., PASV predicted positive,
manual curation negative) had more heterogeneous annotations.
Twelve of these had hits to non-RNR domains: four helicases,
three Pol Is, two endonucleases, one terminase, one Ankyrin re-
peat, and one with no match. Thirteen had hits to RNR domains:
four Class I alpha subunit, two Class I beta subunit, two Class II
RNR, and five RNRs with unknown subclass. The six sequences
annotated as RNR Class I alpha subunits and Class II represent se-
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Table 4. PASV Class I alpha and Class II predictions.

Manual annotation

PASV Prediction
Class I alpha  Class II
Class I alpha? 98.96% 0.30%
Class I 0.08% 98.27%
Other® 0.96% 1.43%

aNCEC sequences with L438 (E. coli numbering)
bNCEC sequences with P438 (E. coli numbering)
“Non-NCEC sequences or those with any other residue at position 438

quences that were likely erroneously categorized during manual
curation. Thus, PASV was correct according to CDD annotations
in 175 of the 187 cases in which PASV predictions disagreed with
manual annotation.

Partitioning RNR Class I alpha subunit and Class II se-
quences

PASV’s ability to partition two biochemical classes of RNR se-
quences (Class I alpha subunit and Class II [63, 62]) was exam-
ined. The 2,579 RNRdb sequences used to make the RNR tree
for phylogenetic clustering (Fig. 3) were partitioned into Class I
alpha subunits and Class II sequences using PASV. As the NCEC
residues within the RNR PASV profile are required for RNR func-
tion [45, 46, 47, 48], any sequence without NCEC at residues
437, 439, 441, and 462 (E. coli numbering) in the PASV run were
grouped into the “Other” category. These included five Class I
alpha and four Class II sequences. For the remaining 2,570 NCEC
sequences, any sequence that PASV predicted as having an leucine
at position 438 was labeled as a Class [ alpha subunit, whereas any
sequence with a proline at that position was predicted to be Class

I1. These PASV predictions were compared to RNRdb annotations,
and the results were recorded in Table 4 (Additional File 7). Of
the 1,244 annotated Class I alpha sequences, PASV predicted 1,236
of them to be Class I alpha (correct PASV predictions: 98.96%),
one to be Class II (0.08%), and seven to be “Other” (0.96%). For
the 1,326 annotated Class II sequences, PASV predicted 1,307 of
them to be Class II (correct PASV predictions: 98.27%), four to
be Class I alphas (0.30%), and 15 “Others” (1.43%).

Partitioning AOX and PTOX sequences

A total of 336 alternative oxidase (AOX) and plastid terminal ox-
idase (PTOX) peptide sequences were recovered from a previ-
ous study examining misannotation of the AOX and PTOX gene
groups in plants [37]. These sequences were classified with PASV
using residues from the diagnostic, conserved motifs identified
in [37]. This experiment tested the ability of PASV for correctly
binning a mixed collection of AOX and PTOX peptide sequences.
While distinct proteins, AOX and PTOX share regions of homol-
ogy and are frequently missanotated by standard methods [37].
However, two motifs for each protein, when used in conjunction
with MSA, enables correct classification of the proteins. Two ref-
erence sets were constructed, one to classify AOX and one to clas-
sify PTOX. The entire query set (336 total sequences, 254 AOX,
82 PTOX) was run through the PASV algorithm against both ref-
erence sets (Additional Files 8 & 9). In the AOX run, any sequence
with the correct residues in the conserved motifs as identified by
PASV was considered an AOX (motif 1: E233, R234, M235, H236,
L237, M238, T239; motif 2: L283, E284, E285, E286, A287, num-
bered according to sequence 022048). Any sequence containing
any other residue in any of these positions was considered to be
non-AOX. In the PTOX run, sequences that PASV identified as
having the correct residues in motifs 1 and 2 were annotated as
PTOX (motif 1: G157, W158, R160, R161; motif 2: H177, H178, L179,
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Figure 7. Phylogenetic trees of putative and bonafide GOV RNR sequences.
Approximately-maximum likelihood trees of (A) 9,906 putative GOV RNR se-
quences identified by MMseqgs2 using sensitive homology search parameters, and
(B) 2,914 PASV validated, bonafide GOV RNR sequences (i.e., sequences with N437,
C439, E441, C462, E. coli numbering). In panel B, the dotted line indicates the
divide of Class I and Class II RNR sequences. Branch colors correspond to the re-
sults of manual curation. Blue branches indicate sequences manually annotated
as RNR, whereas yellow branches represent sequences annotated as non-RNR
or non-functional RNR sequences. Labelled sequences represent a sampling of
sequences with homology to RNR, but manually curated as non-RNR or nonfunc-
tional RNR. Note that some yellow branches in panel B, which were originally
annotated as RNRs through manual curation, but having the correct residues ac-
cording to PASV, were found to have correct RNR annotations according to the
NCBI CDD [57]. The branch labeled "RNR*" in panel B indicates 3 branches an-
notated as RNR by the CDD.

L180, M182, E183, numbered according to sequence AOA061GHF5).
Sequences containing different residues in any of these positions
were annotated as non-PTOX. When these two annotations were
combined, PASV correctly identified all 254 AOX and 82 PTOX pep-
tide sequences and misannotated none.

Discussion

Homology tools used for collecting gene sequences from
databases and metagenomes, such as BLAST [21], HMMER [38],
MMseqs2 [39], or PSI-BLAST [40], are sensitive and have the abil-
ity to detect remote homology between sequences. While detect-
ing distant homologs is useful, especially when analyzing envi-

available under aCC-BY 4.0 International license.

ronmental metagenomic data, such sensitivity often comes with
a price: increased levels of false positive sequences [27]. In the
context of viral and microbial ecology, false positives can include
non-functional versions of the protein of interest, correctly an-
notated proteins that do not span a predetermined region of in-
terest, and proteins that share a conserved region or domain with
the protein of interest, but are not the desired protein.

Including such false positives in analyses of functional pro-
teins causes a number of problems. False positives interrupt
multiple sequence alignments and subsequent phylogenetic anal-
yses, which leads to inaccurate conclusions as to the evolutionary
history of a protein [64, 65]. In ecological studies, inclusion of
false positive sequences in marker gene phylogenetic analyses
can lead to erroneous identification of microbial or viral popula-
tions [66, 37, 23].

Manual validation of proteins becomes increasingly error-
prone and impractical with increasing dataset size. While larger
datasets provide the means for deeper exploration of micro-
bial communities and protein diversity and evolution, they also
yield more protein sequences for validation. Sensitive homology
searches can result in thousands of protein sequences from a sin-
gle metagenome library, making automatic validation an attrac-
tive option.

Using RNRs to test PASV

Any protein containing conserved residues, whether these are dis-
covered purely through computational methods or are backed by
biochemical characterization experiments can be validated using
PASV. Ribonucleotide reductase (RNR), an ancient enzyme with
well understood structural biochemical features [67] that is often
misannotated in sequence databases [36], was an excellent exper-
imental model for testing PASV’s ability to validate and partition
putative RNR sequences collected from large sequence datasets by
homology search. RNRs contain many immutable residues that
have been discovered through decades of structural biology re-
search [68]. There is at least one documented case of a gene with
high sequence homology to RNR with mutated active sites that
has evolved to perform an alternative function [69].

While RNRs are evolutionarily related, perform the same func-
tion, and are biochemically conserved, some share only 10-20%
primary sequence similarity, a level below the “twilight zone”
of homology search similarity [70, 71, 72]. Searching for RNRs,
therefore, requires sensitive homology searches, which can re-
turn many false positive sequences. Due to the low level of se-
quence similarity among RNRs in general, and its many classes
and subclasses, RNRs can be difficult to annotate. In one survey
of RNRs recovered from GenBank, only 23% were deemed to be
annotated correctly and 16% had not been annotated as RNRs at
all [36]. Given the frequency of misannotation, low sequence ho-
mology, presence of immutable residues, and the RNRdb, a large,
hand-curated database of bonafide RNR sequences [36], RNR pro-
vided an excellent model system for testing PASV. In addition,
RNRs are of interest to researchers in many fields, including evo-
lution, biochemistry, cancer research, and viral ecology [62, 18].

Here, we focused on Class I and II RNRs, which are the two
most closely related extant RNRs. Class I RNRs are encoded by
two genes, one each for the alpha and beta subunits comprising
the active protein [67]. The larger alpha subunit is hypothesized
to be the direct descendent of Class II RNRs [72], while the beta
subunit belongs to the ferritin-like superfamily [73] and bears
no homology to either Class I alpha or Class IT RNRs. Class I and
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II RNRs require different cofactors for ribonucleotide reduction,
so differentiating the classes is crucial for subsequent ecological
analyses [18, 23].

PASV was tested using RNRs from two contrasting datasets:
the RNRdb [36] and Global Ocean Viromes (GOV) [52]. The ma-
jority of RNRs in the RNRdb are from known organisms within
large sequence databases (e.g. GenBank, SwissProt, etc.), with
relatively few sequences originating from metagenomes. Virus
sequences are relatively rare in curated databases as compared to
sequences from eukaryotes and bacteria. In fact, viral sequences
make up only 2.7% of the Class I alpha and Class II RNRs in the
RNRdb. GOV, in contrast, is an environmental dataset of viral
sequences. Thus the RNRdb and GOV represented different chal-
lenges for PASV.

Factors influencing PASV accuracy

The most important factors influencing PASV accuracy sur-
rounded the relative length of reference sequences and the ap-
proach used for choosing them. Using full length reference se-
quences, picking references randomly from a pool of potential
sequences rather than based on phylogenies, and using more ref-
erence sequences all increased accuracy as measured by true pos-
itive and true negative rate. The benefit of using more reference
sequences, however, plateaued after ca. 20 sequences in the ref-
erence set (Fig. 6), while the computing time required by PASV
continued to increase (Additional File 1).

For each phylogenetically-informed reference set generated, a
size-matched set of randomly selected RNRs were chosen to act
as a control. It is important to note that while the randomly se-
lected sequences are random with respect to their position on the
tree, sequences from the RNRdb are biased with respect to class
and subclass representation. Therefore, the “random” controls
can also be seen as weighted by the composition of the RNRdb.

Alignment software was also a factor, with Clustal Omega
generally outperforming MAFFT. However, this advantage was
mostly lost when using full-length reference sequences rather
than references trimmed to the region of interest. This result
may also differ depending on the protein to be aligned, as some
datasets are more difficult to align than others [74].

Reference sets representing as much of the known diversity
of RNRs as possible (i.e., those taken evenly from across major
clades of a phylogenetic tree) were hypothesized to increase PASV
accuracy. This hypothesis was built on the idea that including di-
verse RNRs would prevent large irregularities in the alignments
from more divergent query sequences. However, including di-
verse RNRs had the opposite effect and statistical tests showed
that randomly selecting full-length reference sequences resulted
in greater accuracy. One explanation for this phenomenon is that
accuracy of multiple sequence alignment decreases with increas-
ing sequence heterogeneity [35, 34]. As a consequence, forcing
divergent sequences into the reference sets likely destabilized the
alignments and decreased PASV’s accuracy.

Using PASV to eliminate bycatch of non-target se-
quences

The GOV dataset provided an alternative experimental model for
testing how PASV performed as a post-processing step after a
homology search of a metagenomic sequence library. PASV ef-
fectively filtered out false-positive bycatch sequences recovered
from the environmental metagenomes while searching for the
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gene of interest, RNR. Of the nearly 10,000 putative RNR se-
quences identified by MMseqs2, only about one-third were vali-
dated as functional RNRs by both PASV and manual curation. The
other two-thirds were considered bycatch sequences. Common
gene families within the bycatch sequences included RNR Class
I beta subunits, thioredoxins, glutaredoxins, polymerases, heli-
cases, and terminases (Additional File 6). Given the sensitivity
of MMseqs2 [39], it is likely to find significant hits in sequences
only distantly related to RNR or to sequences with domains sim-
ilar to those occasionally found in RNRs. Some RNR Class I beta
subunits are known to contain fused glutaredoxin domains [75].
RNRs may also have regions of remote homology to polymerases,
helicases, and terminases as all of these proteins bind DNA. Some
RNRs are known to contain zinc-finger domains [76], and at least
one of the helicases examined with the CDD contained a zinc-
finger domain as well (Additional File 6).

Overall, PASV did an excellent job of removing most bycatch
sequences (Table 2). Across the 18 reference set experiments that
used the full GOV query set, only 187 of 9,906 RNR sequences
had PASV predictions that disagreed with manual curation (Addi-
tional File 10). In most instances these sequences, annotated as
terminases, polymerases, and helicases by NCBI CDD, existed on
long branches indicating significant evolutionary distance from
true Class I large subunit and Class II RNR sequences (Fig. 7B).
Many of the false-positives identified by PASV (those sequences
that PASV predicted to be RNRs, but manual curation predicted to
be non-RNR) were likely RNR sequences that were missed dur-
ing manual annotation. This can be attributed to the challenge
of manually curating thousands of sequences and the problems
inherent when performing large multiple sequence alignments.

Partitioning sequences by key residues

PASV was conceived as a tool for validating the identity and
functionality of protein sequences following homology searches.
However, use cases for PASV extend beyond separation of
bonafide and bycatch sequences. PASV provides an automated
method for applying domain knowledge of a target protein to a
large number of sequences. From this domain knowledge, PASV
can partition sequences into groups based on structural character-
istics that may be linked with protein biochemistry or phylogeny.

PASV was used in such a way to partition Class I alpha and
Class II RNRs. While many amino acid residues in the active and
allosteric sites of Class I alpha and Class II RNRs are conserved,
other residues may be diagnostic of class [23]. Prior work based
on protein alignments and phylogenetic trees suggests that the
residue in position 438 (E. coli numbering) may be diagnostic of
RNR class. Thus, we tested PASV’s ability to leverage this domain
knowledge by sorting RNRdb sequences into class based on the
identity of the residue in position 438. The function of residue
438 is unknown, but it is known to be conserved and sits within
the active finger loop domain that contains the immutable active
sites N437, C439, and E441 [77]. The sorting by PASV agreed
almost perfectly with the RNRdb class annotations (Table 4), with
>98% of Class I alpha and Class II sequences correctly identified.

An extension of this use case are peptides that cannot be
differentiated by homology searches alone. Alternative oxi-
dase (AOX) and plastid terminal oxidase (PTOX) are membrane-
bound di-iron carboxylate proteins that oxidize a quinol substrate
[78]. Although the proteins function within different organelles
(AOX functions within the mitochondrial electron transport chain
[79, 80] while PTOX is a chlororespiration enzyme only found
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within plastids and cyanobacteria [81]), their shared homology
and function has led to high levels of misannotation [37]. How-
ever, using the amino acid signatures presented previously [37],
PASV was able to sort AOX and PTOX proteins from each other
with 100% accuracy. In this way, PASV leverages expert knowl-
edge in an automated fashion.

We have shown that PASV can accurately partition Class I al-
pha and Class II RNRs using a residue diagnostic of these classes
(Table 4), and AOX sequences from PTOX sequences using con-
served motifs [37]. Given its success with these two disparate
examples, it is likely that PASV could be effectively applied to
other gene partitioning tasks as well. For example, a single amino
acid mutation at position 762 (E. coli numbering) of motif B of
DNA polymerase I (Pol I) imparts dramatic changes in either the
fidelity or efficiency of replication [82]. Subsequent work has
hypothesized that Pol I 762 mutations predict the life history
characteristics [17] and the genetic composition of the replica-
tion module [14] of bacteriophages using Pol I for genome repli-
cation. PASV could be used to automatically partition viral Pol I
sequences based on the 762 position, providing a means to fur-
ther test hypothesized connections between Pol I biochemistry
and phage life history using large metagenomic datasets. There
are many examples of point mutation(s) in bacterial proteins that
prevent antibiotics from binding and, thus, inhibit the function of
the antibiotic (e.g., K88R in rpsL [83], C117D in murA [84], H526T
in rpoB [85], Q124K in EF-Tu [86], V246A and V300G in ndh [87]).
Such point mutations within a protein would not be readily ap-
parent from homology search alone. Thus PASV could be used for
validating and grouping these peptide sequences according to key
point mutations following identification via homology search.

Conclusions

Studies using gene sequences of functional proteins collected
from metagenomes for investigating microbial diversity provide
new challenges not faced when using genes for stable RNAs like
SSU rRNA. These challenges include detecting and preventing
false-positive bycatch sequences within datasets, validating key
functional residues in proteins of interest, and partitioning pep-
tide sequences into groups or classes. The PASV pipeline provides
researchers with a means for addressing these challenges in an
automated and highly accurate fashion by combining multiple se-
quence alignment with expert-curated domain knowledge. The
PASV program and source code is freely available under the MIT
license and can be found, along with documentation and usage
examples, on GitHub: https://github.com/mooreryan/pasv.

Availability of source code and requirements

- Project name: Protein Active Site Validation (PASV)

+ Project home page: https://github.com/mooreryan/pasv

+ Operating system(s): Any platform where Ruby and align-
ment software may be installed, or any platform that supports
Docker

- Programming language: Ruby

+ Other requirements: Ruby or Docker; alignment software, e.g.,
Clustal Omega, MAFFT, etc.

+ License: MIT

available under aCC-BY 4.0 International license.

Availability of supporting data and materials

PASV source code and documentation are available on GitHub at
https://github.com/mooreryan/pasv. The PASV Docker image is
available on DockerHub at https://hub.docker.com/r/mooreryan/
pasv. Data sets and miscellaneous scripts used in the prepara-
tion of the manuscript are available on Zenodo at https://doi.
org/10.5281/zenodo.4426410. Additionally, a snapshot of the PASV
source code v1.3.0 is available on Zenodo at https://doi.org/10.
5281/zenodo.4426410.

Declarations
List of abbreviations

- AOX: alternative oxidase

- BRL: branch length

+ CDD: conserved domain database

+ GOV: global ocean virome

- IQR: interquartile range

- LOESS: locally estimated scatterplot smoothing
+ MSA: multiple sequence alignment

- NCBI: National Center for Biotechnology Information
- PASV: protein active site validation

- PFL: pyruvate formate lyase

+ Pol I: DNA polymerase I

- PTOX: plastid terminal oxidase

- RNR: ribonucleotide reductase

- ROI: region of interest

Ethical Approval

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

This project was supported by the Agriculture and Food Research
Initiative grant no. 2012-68003-30155 from the USDA National
Institute of Food and Agriculture, the National Science Founda-
tion Advances in Biological Informatics program (award num-
ber DBI-1356374), the National Science Foundation Grant No.
1736030, the Established Program to Stimulate Competitive Re-
search (award number OIA-1736030) from the Office of Inte-
grated Activities, and a Doctoral Fellowship provided by Univer-
sity of Delaware in conjunction with the Unidel Foundation. Com-
putational infrastructure support by the University of Delaware
Center for Bioinformatics and Computational Biology Core Fa-
cility was made possible through funding from the Delaware
Biotechnology Institute, and the Delaware INBRE program with
a grant from the National Institute of General Medical Sciences
(NIGMS P20 GM103446) from the National Institutes of Health
and the State of Delaware. The funders had no role in study de-


https://github.com/mooreryan/pasv
https://github.com/mooreryan/pasv
https://github.com/mooreryan/pasv
https://hub.docker.com/r/mooreryan/pasv
https://hub.docker.com/r/mooreryan/pasv
https://doi.org/10.5281/zenodo.4426410
https://doi.org/10.5281/zenodo.4426410
https://doi.org/10.5281/zenodo.4426410
https://doi.org/10.5281/zenodo.4426410
https://doi.org/10.1101/2021.01.20.427478
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427478; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

sign, data collection and analysis, decision to publish, or prepara-
tion of the manuscript. This content is solely the responsibility of
the authors and does not necessarily represent the official views
of NIH.

Author’s Contributions

« RMM: Conceptualization, Data curation, Formal analysis, Soft-
ware, Writing - original draft, Writing - review & editing

- AOH: Conceptualization, Data curation, Writing - review &
editing

- DJN: Conceptualization, Writing - review & editing

+ JC: Conceptualization, Writing - review & editing

+ MC: Conceptualization, Data curation, Visualization

- BDF: Conceptualization, Supervision, Writing - review & edit-
ing

+ SWP: Conceptualization, Funding acquisition, Supervision,
Writing - review & editing

- KEW: Conceptualization, Funding acquisition, Supervision,
Writing - review & editing

Acknowledgements

We would like to acknowledge current and past members of the
Viral Ecology and Informatics Lab at the University of Delaware
who tested early versions of PASV and provided valuable feed-
back: Jacob T Dums (ORCID: 0000-0002-6314-4779), Zach
Schreiber (ORCID: 0000-0002-6271-2754), and Michael Dahle
(ORCID: 0000-0003-0518-3355).

References

1. TelentiA, Pierce LCT, Biggs WH, di Iulio J, Wong EHM, Fabani
MM, et al. Deep sequencing of 10,000 human genomes. Proc
Natl Acad Sci U S A 2016 Oct;113(42):11901-11906.

2. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M,
Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut mi-
crobial ecosystem in inflammatory bowel diseases. Nature
2019 May;569(7758):655-662.

3. Li M, Cao L, Mwimba M, Zhou Y, Li L, Zhou M, et al.
Comprehensive mapping of abiotic stress inputs into the
soybean circadian clock. Proc Natl Acad Sci U S A 2019
Nov;116(47):23840-23849.

4. Gregory AC, Zayed AA, Conceicdo-Neto N, Temperton B,
Bolduc B, Alberti A, et al. Marine DNA Viral Macro- and Mi-
crodiversity from Pole to Pole. Cell 2019 May;177(5):1109-
1123.e14.

5. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward
DM, et al. Identifying the fundamental units of bacterial di-
versity: a paradigm shift to incorporate ecology into bacterial
systematics. Proc Natl Acad Sci U S A 2008 Feb;105(7):2504—
2509.

6. Berry MA, White JD, Davis TW, Jain S, Johengen TH, Dick
GJ, et al. Are Oligotypes Meaningful Ecological and Phyloge-
netic Units? A Case Study of Microcystis in Freshwater Lakes.
Front Microbiol 2017 Mar;8:365.

7. Mizuno CM, Guyomar C, Roux S, Lavigne R, Rodriguez-
Valera F, Sullivan MB, et al. Numerous cultivated and un-
cultivated viruses encode ribosomal proteins. Nat Commun
2019 Feb;10(1):752.

8. Parada AE, Needham DM, Fuhrman JA. Every base mat-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Mooreetal. | 13

ters: assessing small subunit rRNA primers for marine mi-
crobiomes with mock communities, time series and global
field samples. Environ Microbiol 2016 May;18(5):1403-1414.

. Bahram M, Anslan S, Hildebrand F, Bork P, Tedersoo L.

Newly designed 16S rRNA metabarcoding primers amplify di-
verse and novel archaeal taxa from the environment. Environ
Microbiol Rep 2019 Aug;11(4):487-494.

Zhang RY, Zou B, Yan YW, Jeon CO, Li M, Cai M, et al. De-
sign of targeted primers based on 16S rRNA sequences in
meta-transcriptomic datasets and identification of a novel
taxonomic group in the Asgard archaea. BMC Microbiol 2020
Feb;20(1):25.

McLaren MR, Willis AD, Callahan BJ. Consistent and cor-
rectable bias in metagenomic sequencing experiments. Elife
2019 Sep;8.

Wooley JC, Ye Y. Metagenomics: Facts and Artifacts, and
Computational Challenges*. ] Comput Sci Technol 2009
Jan;25(1):71-81.

Zhang YZ, Shi M, Holmes EC. Using Metagenomics to Charac-
terize an Expanding Virosphere. Cell 2018 Mar;172(6):1168-
1172.

Nasko DJ, Chopyk J, Sakowski EG, Ferrell BD, Polson SW,
Wommack KE. Family A DNA Polymerase Phylogeny Uncov-
ers Diversity and Replication Gene Organization in the Virio-
plankton. Front Microbiol 2018 Dec;9:3053.

Sullivan MB. Viromes, not gene markers, for studying
double-stranded DNA virus communities. ] Virol 2015
Mar;89(5):2459-2461.

Nayfach S, Pollard KS. Toward Accurate and Quantitative
Comparative Metagenomics. Cell 2016 Aug;166(5):1103-1116.
Schmidt HF, Sakowski EG, Williamson SJ, Polson SW, Wom-
mack KE. Shotgun metagenomics indicates novel family A
DNA polymerases predominate within marine virioplankton.
ISME J 2014 Jan;8(1):103-114.

Sakowski EG, Munsell EV, Hyatt M, Kress W, Williamson SJ,
Nasko DJ, et al. Ribonucleotide reductases reveal novel vi-
ral diversity and predict biological and ecological features
of unknown marine viruses. Proc Natl Acad Sci U S A 2014
Nov;111(44):15786-15791.

Marine RL, Nasko DJ, Wray J, Polson SW, Wommack KE.
Novel chaperonins are prevalent in the virioplankton and
demonstrate links to viral biology and ecology. ISME ] 2017
Nov;11(11):2479-2491.

Chopyk J, Allard S, Nasko DJ, Bui A, Mongodin EF, Sapkota
AR. Agricultural Freshwater Pond Supports Diverse and Dy-
namic Bacterial and Viral Populations. Front Microbiol 2018
Apr;9:3489.

Altschul SF, Gish W, Miller W, Myers EW, Lipman D]J. Basic
local alignment search tool. J Mol Biol 1990 Oct;215(3):403-
410.

Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annota-
tion error in public databases: misannotation of molecular
function in enzyme superfamilies. PLoS Comput Biol 2009
Dec;5(12):€1000605.

Harrison AO, Moore RM, Polson SW, Wommack KE. Reanno-
tation of the Ribonucleotide Reductase in a Cyanophage Re-
veals Life History Strategies Within the Virioplankton. Front
Microbiol 2019 Feb;10:134.

Gilks WR, Audit B, De Angelis D, Tsoka S, Ouzounis CA.
Modeling the percolation of annotation errors in a database
of protein sequences. Bioinformatics 2002 Dec;18(12):1641-
1649.

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ,


https://doi.org/10.1101/2021.01.20.427478
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427478; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

14 |

Moore et al.

Cheng JF, et al. Insights into the phylogeny and coding poten-
tial of microbial dark matter. Nature 2013 Jul;499(7459):431—
437.

Solden L, Lloyd K, Wrighton K. The bright side of microbial
dark matter: lessons learned from the uncultivated majority.
Curr Opin Microbiol 2016 Jun;31:217-226.

Kaushik S, Nair AG, Mutt E, Subramanian HP, Sowdhamini R.
Rapid and enhanced remote homology detection by cascading
hidden Markov model searches in sequence space. Bioinfor-
matics 2016 Feb;32(3):338-344.

Fujimoto MS, Suvorov A, Jensen NO, Clement M]J, Bybee
SM. Detecting false positive sequence homology: a machine
learning approach. BMC Bioinformatics 2016 Feb;17:101.
Fujimoto MS, Suvorov A, Jensen NO, Clement M]J, Snell Q,
Bybee SM. The OGCleaner: filtering false-positive homology
clusters. Bioinformatics 2017 Jan;33(1):125-127.

Fetrow JS. Active Site Profiling to Identify Protein Func-
tional Sites in Sequences and Structures Using the Dea-
con Active Site Profiler (DASP). Curr Protoc Bioinformatics
2006;14(1):8.10.1-8.10.16.

Leuthaeuser JB, Morris JH, Harper AF, Ferrin TE, Babbitt PC,
Fetrow JS. DASP3: identification of protein sequences be-
longing to functionally relevant groups. BMC Bioinformatics
2016 Nov;17(1):458.

Harper AF, Leuthaeuser JB, Babbitt PC, Morris JH, Ferrin
TE, Poole LB, et al. An Atlas of Peroxiredoxins Created Us-
ing an Active Site Profile-Based Approach to Functionally
Relevant Clustering of Proteins. PLoS Comput Biol 2017
Feb;13(2):€1005284.

Knutson ST, Westwood BM, Leuthaeuser JB, Turner BE,
Nguyendac D, Shea G, et al. An approach to functionally rel-
evant clustering of the protein universe: Active site profile-
based clustering of protein structures and sequences: Func-
tionally Relevant Clustering of Protein Superfamilies. Protein
Sci 2017 Apr;26(4):677-699.

Md Mukarram Hossain AS, Blackburne BP, Shah A, Whelan
S. Evidence of Statistical Inconsistency of Phylogenetic Meth-
ods in the Presence of Multiple Sequence Alignment Uncer-
tainty. Genome Biol Evol 2015 Jul;7(8):2102-2116.

Yang K, Zhang L. Performance comparison between k-tuple
distance and four model-based distances in phylogenetic
tree reconstruction. Nucleic Acids Res 2008 Mar;36(5):e33.
Lundin D, Torrents E, Poole AM, Sjoberg BM. RNRdb, a cu-
rated database of the universal enzyme family ribonucleotide
reductase, reveals a high level of misannotation in sequences
deposited to Genbank. BMC Genomics 2009;10(1):589.
Nobre T, Campos MD, Lucic-Mercy E, Arnholdt-Schmitt
B. Misannotation Awareness: A Tale of Two Gene-Groups.
Front Plant Sci 2016 Jun;7:868.

Eddy SR. Accelerated Profile HMM Searches. PLoS Comput
Biol 2011 Oct;7(10):€1002195.

Steinegger M, Soding J. MMseqgs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nat
Biotechnol 2017 Nov;35(11):1026-1028.

Altschul SF, Madden TL, Schdffer AA, Zhang J, Zhang Z,
Miller W, et al. Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids
Res 1997 Sep;25(17):3389-3402.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al.
Fast, scalable generation of high-quality protein multiple se-
quence alignments using Clustal Omega. Mol Syst Biol 2011
Oct;7:539.

Katoh K, Standley DM. MAFFT multiple sequence alignment

43.

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

available under aCC-BY 4.0 International license.

software version 7: improvements in performance and us-
ability. Mol Biol Evol 2013 Apr;30(4):772-780.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage
D, et al. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res
2003 Nov;13(11):2498-2504.

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clus-
tering the next-generation sequencing data. Bioinformatics
2012 Dec;28(23):3150-3152.

Kasrayan A, Persson AL, Sahlin M, Sjoberg BM. The
conserved active site asparagine in class I ribonucleotide
reductase is essential for catalysis. ] Biol Chem 2002
Feb;277(8):5749-5755.

Mao SS, Yu GX, Chalfoun D, Stubbe J. Characterization of
C439SR1, a mutant of Escherichia coli ribonucleotide diphos-
phate reductase: evidence that C439 is a residue essen-
tial for nucleotide reduction and C439SR1 is a protein pos-
sessing novel thioredoxin-like activity. Biochemistry 1992
0ct;31(40):9752-9759.

Mao SS, Holler TP, Yu GX, Bollinger JM Jr, Booker S, Johnston
MI, et al. A model for the role of multiple cysteine residues
involved in ribonucleotide reduction: amazing and still con-
fusing. Biochemistry 1992 Oct;31(40):9733-9743.

Persson AL, Eriksson M, Katterle B, Potsch S, Sahlin M,
Sjoberg BM. A New Mechanism-based Radical Intermediate
in a Mutant R1 Protein Affecting the Catalytically Essential
Glu441 inEscherichia coli Ribonucleotide Reductase. ] Biol
Chem 1997 Dec;272(50):31533-31541.

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: re-
cent updates and new developments. Nucleic Acids Res 2019
Jul;47(W1):W256-W259.

Price MN, Dehal PS, Arkin AP. FastTree 2-approximately
maximum-likelihood trees for large alignments. PLoS One
2010 Mar;5(3):e9490.

Huerta-CepasJ, Serra F, Bork P. ETE 3: Reconstruction, Anal-
ysis, and Visualization of Phylogenomic Data. Mol Biol Evol
2016 Jun;33(6):1635-1638.

Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB,
Loy A, et al. Ecogenomics and potential biogeochemical
impacts of globally abundant ocean viruses. Nature 2016
Sep;537(7622):689-693.

R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria; 2020.

Wickham H, Averick M, Bryan ], Chang W, McGowan LD,
Francois R, et al. Welcome to the tidyverse. Journal of Open
Source Software 2019;4(43):1686.

Wickham H. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York; 2016.

Moore RM, Harrison AO, McAllister SM, Polson SW,
Eric Wommack K. Iroki: automatic customization and vi-
sualization of phylogenetic trees. Peer] 2020 Feb;8:e8584.
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S,
et al. CDD/SPARCLE: functional classification of proteins
via subfamily domain architectures. Nucleic Acids Res 2017
Jan;45(D1):D200-D203.

Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire
MK, DeWeese-Scott C, et al. CDD: a Conserved Domain
Database for the functional annotation of proteins. Nucleic
Acids Res 2011 Jan;39(Database issue):D225-9.

Kans J. Entrez Direct: E-utilities on the UNIX Command Line.
National Center for Biotechnology Information (US); 2020.
Harrison AO, Eric Wommack K, editor, Ribonucleotide re-


https://doi.org/10.1101/2021.01.20.427478
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427478; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

61.

62.
63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

74.

75-

76.

71-

78.

79-

80.

available under aCC-BY 4.0 International license.

ductase genes influence the biology and ecology of marine
viruses; 2019.

Sawers G. Biochemistry, physiology and molecular biol-
ogy of glycyl radical enzymes. FEMS Microbiol Rev 1998
Dec;22(5):543-551.

Nordlund P, Reichard P. Ribonucleotide reductases. Annu
Rev Biochem 2006;75:681-706.

Reichard P. From RNA to DNA, why so many ribonucleotide
reductases? Science 1993 Jun;260(5115):1773-1777.

Ogden TH, Rosenberg MS. Multiple sequence alignment
accuracy and phylogenetic inference.  Syst Biol 2006
Apr;55(2):314-328.

Wong KM, Suchard MA, Huelsenbeck JP.
uncertainty and genomic analysis.
Jan;319(5862):473-476.

Tripp HJ, Hewson I, Boyarsky S, Stuart JM, Zehr JP. Misanno-
tations of rRNA can now generate 90% false positive protein
matches in metatranscriptomic studies. Nucleic Acids Res
2011 Nov;39(20):8792-8802.

Jordan A, Reichard P. Ribonucleotide reductases. Annu Rev
Biochem 1998;67:71-98.

Kolberg M, Strand KR, Graff P, Andersson KK. Struc-
ture, function, and mechanism of ribonucleotide reductases.
Biochim Biophys Acta 2004 Jun;1699(1-2):1-34.

Lembo D, Donalisio M, Hofer A, Cornaglia M, Brune W,
Koszinowski U, et al. The ribonucleotide reductase R1 ho-
molog of murine cytomegalovirus is not a functional en-
zyme subunit but is required for pathogenesis. J Virol 2004
Apr;78(8):4278-4288.

Rost B. Twilight zone of protein sequence alignments. Pro-
tein Eng 1999 Feb;12(2):85-94.

Torrents E. Ribonucleotide reductases: essential enzymes for
bacterial life. Front Cell Infect Microbiol 2014 Apr;4:52.
Lundin D, Berggren G, Logan DT, Sjoberg BM. The ori-
gin and evolution of ribonucleotide reduction. Life 2015
Feb;5(1):604-636.

Andrews SC. The Ferritin-like superfamily: Evolution of the
biological iron storeman from a rubrerythrin-like ancestor.
Biochim Biophys Acta 2010 Aug;1800(8):691-705.

Wang LS, Leebens-Mack J, Kerr Wall P, Beckmann K, de-
Pamphilis CW, Warnow T. The impact of multiple protein
sequence alignment on phylogenetic estimation. IEEE/ACM
Trans Comput Biol Bioinform 2011 Jul;8(4):1108-1119.
Rozman Grinberg I, Lundin D, Sahlin M, Crona M, Berggren
G, Hofer A, et al. A glutaredoxin domain fused to the radical-
generating subunit of ribonucleotide reductase (RNR) func-
tions as an efficient RNR reductant. J Biol Chem 2018
0ct;293(41):15889-15900.

Loderer C, Jonna VR, Crona M, Rozman Grinberg I, Sahlin
M, Hofer A, et al. A unique cysteine-rich zinc finger do-
main present in a majority of class II ribonucleotide re-
ductases mediates catalytic turnover. ] Biol Chem 2017
Nov;292(46):19044-19054.

Eklund H, Uhlin U, Firnegardh M, Logan DT, Nordlund P.
Structure and function of the radical enzyme ribonucleotide
reductase. Prog Biophys Mol Biol 2001 Nov;77(3):177-268.
Berthold DA, Stenmark P. Membrane-bound diiron carboxy-
late proteins. Annu Rev Plant Biol 2003;54:497-517.
Affourtit C, Albury MS, Crichton PG, Moore AL. Exploring
the molecular nature of alternative oxidase regulation and
catalysis. FEBS Lett 2002 Jan;510(3):121-126.

McDonald A, Vanlerberghe G. Branched mitochondrial
electron transport in the Animalia: presence of alterna-

Alignment
Science 2008

81.

82.

83.

84.

85.

86.

87.

Mooreetal. | 15

tive oxidase in several animal phyla. IUBMB Life 2004
Jun;56(6):333-341.

Carol P, Kuntz M. A plastid terminal oxidase comes to light:
implications for carotenoid biosynthesis and chlororespira-
tion. Trends Plant Sci 2001 Jan;6(1):31-36.

Tabor S, Richardson CC. A single residue in DNA polymerases
of the Escherichia coli DNA polymerase I family is critical for
distinguishing between deoxy- and dideoxyribonucleotides.
Proc Natl Acad Sci U S A 1995 Jul;92(14):6339-6343.

Ballif M, Harino P, Ley S, Coscolla M, Niemann S, Carter
R, et al. Drug resistance-conferring mutations in Mycobac-
terium tuberculosis from Madang, Papua New Guinea. BMC
Microbiol 2012 Sep;12:191.

De Smet KAL, Kempsell KE, Gallagher A, Duncan K, Young DB.
Alteration of a single amino acid residue reverses fosfomycin
resistance of recombinant MurA from Mycobacterium tuber-
culosis The EMBL accession number for the sequence in this
paper is X96711. Microbiology 1999 Nov;145(11):3177-3184.
Sajduda A, Brzostek A, Poplawska M, Augustynowicz-Kopec
E, Zwolska Z, Niemann S, et al. Molecular characteriza-
tion of rifampin- and isoniazid-resistant Mycobacterium tu-
berculosis strains isolated in Poland. ] Clin Microbiol 2004
Jun;42(6):2425-2431.

Zuurmond AM, Olsthoorn-Tieleman LN, Martien de Graaf J,
Parmeggiani A, Kraal B. Mutant EF-Tu species reveal novel
features of the enacyloxin Ila inhibition mechanism on the
ribosome. ] Mol Biol 1999 Dec;294(3):627-637.

Vilchéze C, Weisbrod TR, Chen B, Kremer L, Hazb6n MH,
Wang F, et al. Altered NADH/NAD+ ratio mediates coresis-
tance to isoniazid and ethionamide in mycobacteria. Antimi-
crob Agents Chemother 2005 Feb;49(2):708-720.


https://doi.org/10.1101/2021.01.20.427478
http://creativecommons.org/licenses/by/4.0/

	Background
	Methods
	PASV Pipeline Overview
	Implementation & source code availability
	PASV result network diagrams

	Collecting RNR sequences
	Retrieving RNR sequences from the RNRdb
	RNRdb sequence tree & phylogenetic clustering
	Retrieving RNR sequences from the Global Ocean Viromes dataset

	Reference sets and PASV accuracy
	Full reference set test
	Putative GOV RNR queries test
	Data analysis

	Analyzing putative and bonafide GOV RNRs
	GOV RNR trees
	Annotating GOV tree sequences

	Partitioning RNR classes
	Partitioning AOX and PTOX

	Results
	What factors influence PASV accuracy?
	Testing PASV with the full GOV query set
	Partitioning RNR Class I alpha subunit and Class II sequences
	Partitioning AOX and PTOX sequences

	Discussion
	Using RNRs to test PASV
	Factors influencing PASV accuracy
	Using PASV to eliminate bycatch of non-target sequences
	Partitioning sequences by key residues

	Conclusions
	Availability of source code and requirements
	Availability of supporting data and materials
	Declarations
	List of abbreviations
	Ethical Approval
	Consent for publication
	Competing Interests
	Funding
	Author's Contributions

	Acknowledgements

