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Abstract 

Our view of genome size in Archaea and Bacteria has remained skewed as the data used to paint 

its picture has been dominated by genomes of microorganisms that can be cultivated under 

laboratory settings. However, the continuous effort to catalog the genetic make-up of Earth’s 

microbiomes specifically propelled by recent extensive work on uncultivated microorganisms, 

provides a unique opportunity to revise our perspective on genome size distribution. Capitalizing 

on a recently released extensive catalog of tens of thousands of metagenome-assembled 

genomes, we provide a comprehensive overview of genome size distributions. We observe that 

the known phylogenetic diversity of environmental microorganisms possesses significantly 

smaller genomes than the collection of laboratory isolated microorganisms. Aquatic 

microorganisms average 3.1 Mb, host-associated microbial genomes average 3.0 Mb, terrestrial 

microorganism average 3.7 Mb and isolated microorganisms average 4.3 Mb. While the 

environment where the microorganisms live can certainly be linked to genome size, in some 

cases, evolutionary phylogenetic history can be a stronger predictor. Moreover, ecological 

strategies such as auxotrophies have a direct impact on genome size. To better understand the 

ecological drivers of genome size, we expand on the known and the overlooked factors that 

influence genome size in different environments, phylogenetic groups and trophic strategies.   
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Introduction 

Genomes are dynamic databases that encode the machinery behind the evolution and adaptation 

of living organisms to environmental settings. In brief, a genome encompasses all genetic material 

present in one organism and includes both its genes and its non-coding DNA. Genome size is 

largely a function of expansion and contraction by the gain or loss of DNA fragments. Genomes 

of extant organisms are the result of a long evolutionary history. In eukaryotes, an organism's 

complexity is not directly proportional to its genome size, which can have variations over 64 000-

fold (1, 2). However, the genome size ranges in Archaea and Bacteria are smaller and the genomes 

are information-dense (3). The known genome sizes range from 112 kb in Candidatus Nasuia 

deltocephalinicola (4) to 16.04 Mb in Minicystis rosea (5). While subject to genetic drift, 

prokaryotic and eukaryotic genomes have diverging constraints on size. Bacteria exhibit a 

mutational bias that deletes superfluous sequences, whereas Eukaryotes are biased toward large 

insertions (6). In Archaea and Bacteria, evolutionary studies have revealed extremely rapid and 

highly variable flux of genes (7) with drift promoting genome reduction (8).  

 

Genome size dynamics and evolution in Archaea and Bacteria are quite complex and have been 

studied by many researchers who each focused on different taxonomic lineages or different 

ecological or evolutionary backgrounds (8-14). The evolutionary forces driving genome size are 

debated in many excellent reviews (9, 10, 12, 13, 15). However, in this review, we want to focus 

on the genome size of Archaea and Bacteria seen from an ecological perspective. As microbial 

researchers, how do we define what is a small or a big genome? Perhaps, researchers working on 

model organisms such as Escherichia coli with a genome size of ~5 Mb (16) would define 'big' or 

'small' very differently to researchers working on soil-dwelling bacteria with a genome size of 16 
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Mb (5), the abundant Prochlorococcus with a genome size of ~2 Mb (17), or bacterial 

endosymbionts of insects that may have genomes merely larger than 100 kb (4). The recently 

published expanded databases of environmental archaeal and bacterial genomes (18, 19) allow us 

to revisit and acquire a complete understanding of genome size distribution across different 

environments with a higher resolution. This review offers an overview of the distribution of 

estimated genome sizes of all known archaeal and bacterial phyla across different environments. 

We found that while several archaeal phyla and two bacterial phyla with consistently smaller 

genome sizes (< 2 Mb, Figure 1B), 76.3% of representative archaeal and bacterial genomes 

recovered through genome-resolved metagenomics present estimated genome sizes below 4 Mb. 

 

Extant genome size distribution in the environment 

The current state of environmental sequencing, assembly, and binning technologies allows us to 

review and renew our view of archaeal and bacterial genome size distribution on Earth (18-20). 

To minimize representation biases (21), from the ~64 500 environmental metagenome-

assembled genomes (MAGs), we included one representative per mOTU, defined by 95% 

average nucleotide identity (ANI), from the GEMs and the stratfreshDB MAGs resulting in ~18 

000 MAGs. We complemented these data by adding ~8 000 species (or mOTUs) cluster 

representatives from >90% complete genomes of isolates from GTDB (Figure 1A). We found 

540 mOTUs with representatives in both the environmental MAGs and the isolate genomes 

(Figure 1C). This would mean that about 3% of the extracted MAGs from the environment have 

a cultivated representative. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.01.18.427069doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427069
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Furthermore, using completeness estimates from CheckM (22), we compared the genome size 

distribution of all MAGs versus genomes from isolates. Isolates have an average genome size of 

4.3 Mb which is significantly larger than that of MAGs (t-test p<0.0001), both when comparing 

Archaea and Bacteria combined and separately. Although the ecosystem classification we have 

chosen to display is coarse and might contain countless niches, it still allowed us to see trends for 

genome sizes. Aquatic MAGs average 3.1 Mb, host-associated MAGs average 3.0 Mb, and 

terrestrial MAGs average 3.7 Mb (Figure 1A). It is known that MAG assembly might 

discriminate against ribosomal RNAs, transfer RNAs, mobile element functions and genes of 

unknown function (23, 24), and also that completeness estimations can be underestimated for 

streamlined genomes (25). For the 540 mOTUs with MAGs and isolate genomes (Figure 1C), we 

found that MAGs were estimated on average 3.7% smaller than isolate genomes (Figure S1). 

This suggests that there might be only a small bias in metagenome assembly and binning of these 

environmental genomes. On its own, it would not account for the genome size difference 

between all isolate representatives and all MAGs.  

 

A reason for the difference in genome size between isolates and microorganisms living in 

different ecosystems might be related to the fact that traditional isolation techniques select for 

rare microorganisms (26) and do not capture the entire ecosystem's diversity (Figure 1C). For 

example, it is known that current cultivation techniques with rich media bias the cultivation 

towards copiotrophic and fast-growing microorganisms (27). Moreover, microorganisms in 

nature do not live in isolation but have coevolved with other microorganisms and might have 

specific requirements that are hard to meet in batch-culture standard-media isolation techniques 

(28). Other reasons for biases in cultivation include slow growth of microorganisms (29), host 
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dependency (30), dormancy (31), and microorganisms with very limited metabolic capacity (32) 

among others. More innovations to culturing the uncultured microbial majority (33) will enable 

us to bring representatives from the whole genome size spectrum to culture. 

 

Placing archaeal and bacterial genome sizes in phylogenetic trees (Figure 2A and B) shows that 

the distribution of representative genomes and their estimated sizes varies widely between 

different phyla and within phyla. Eight phyla in the domain Archaea were reconstructed 

exclusively from aquatic environments, whereas eight other archaeal phyla were found in 

multiple ecosystems. There was no significant difference between the genome sizes of those two 

groups of archaeal phyla (Figure 2C). However, estimated genome sizes in bacterial phyla were 

significantly larger than those in archaeal phyla. Moreover, genera from phyla with genome sizes 

below 3 Mb, such as Halobacteriota, Thermoproteota and Patescibacteria, do not show genome 

size variation in different ecosystems (Figure 2D, 2E, 2I). Nevertheless, genera from smaller 

genome size phyla are significantly smaller than genera with more genome size variation in any 

environment (Figure 2K-2N). For phyla spanning genome sizes above 3 Mb, the genome sizes in 

aquatic or host-associated genera are smaller than terrestrial or non-specific environments 

(Figure 2F, 2G, 2H, 2J). We observe that while the microorganisms' environment can certainly 

be linked to genome size, evolutionary phylogenetic history can be a stronger predictor in phyla 

where genome sizes are mostly below 3 Mb. 

 

Lumping microorganisms together by the three biome categories is not optimal since each biome 

contains innumerable niches, each of which will have different selective pressures on the genome 

size. An example is clearly shown in a study (34) in which it is observed that Archaea and 
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Bacteria sampled from different parts of the human body have differences in genome size. Low 

metadata resolution and clustering of all genomes into three main environments might be a 

reason why we see a range of genome sizes in the genera of different environments (Figure 2). 

With more precise metadata and higher sampling resolution of micro-areas, it might be possible 

to better identify the ecological drivers of genome sizes in the different niches in the 

environment. But for now, we will discuss the known and the overlooked ecological drivers of 

genome sizes. 

 

Impact of ecosystem and trophic strategy on genome size 

Terrestrial ecosystems harbor immense microbial diversity (35). Yet, the most up-to-date data 

compilation provided here shows only 2033 MAGs from terrestrial environments (Figure 1C) 

with an average genome size of 3.7 Mb (Figure 1A). The sub-ecosystems considered in this view 

are soil and deep subsurface, among others (Figure S2). While the terrestrial microorganism’s 

genome size is the biggest of the three ecosystem categories in this review, they are smaller than 

expected based on previous metagenomic predictions, which placed the genome size of soil 

bacteria at 4.74 Mb (36). Trends of larger genome sizes in soil have been hypothesized to be 

related to scarcity and high diversity of nutrients, fluctuating environment combined with little 

penalty for the slow growth rate (11, 37, 38). Although terrestrial environments are physically 

structured, they are generally characterized by two to three orders of magnitude greater 

variations (in temperature and currents) than marine environments (39). In silico studies predict 

that large genome sizes could result from higher environmental variability (40). A recent 

example showed that isolates of terrestrial Cyanobacteria have genomes on the larger size scale 

(6.0-8.0. Mb) that are enriched in genes involved in regulatory, transport and motility functions 
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(37). These functional categories enable thriving in a fluctuating environment and high nutrient 

diversity. Despite these general trends showing larger genome sizes in terrestrial environments, it 

is worth noting that the diversity captured in the GEMs survey is probably a small fraction of the 

total terrestrial microbial diversity. It is, for example, also known that streamlined 

microorganisms such as Patescibacteria (Fig 1B) and ‘Candidatus Udaeobacter copiosus’ 

(Verrucomicrobiota) are abundant in soils (41). We predict that the view on genome size 

distribution in terrestrial ecosystems will be more complete with more sequencing, assembly, 

binning and novel isolation efforts.   

 

In host-associated microbiomes, genetic drift, deletion biases and low populations sizes drive the 

reduction of genomes. In these environments, microorganisms are shaped in their ecological and 

evolutionary history by the differing levels of intimacy they might have with their host. For 

example, within the Chlamydiaceae family, some lineages have evolved intracellular 

associations with eukaryotes (42, 43). These intracellular Chlamydiaceae have lost many genes 

when comparing them to their common ancestor Chlamydiia (class) that lives in the environment 

(44). Moreover, host-associated bacterial genomes show a variation in size depending on the 

type of host (plant, animal, etc.) and the type of association they have with the host, such as 

endosymbiotic, ectobiotic, or epibiotic (Table S1). Generally, microorganisms associated with 

Arthropoda (45), humans (46) and other mammals show smaller genomes sizes, whereas protist- 

and plant-associated bacteria present larger genomes (47) (Figure S2). In fact, in silico studies of 

Alphaproteobacteria show massive genome expansions diversifying plant-associated Rhizobiales 

and extreme gene losses in the ancestor of the intracellular lineages Rickettsia, Wolbachia, 

Bartonella and Brucella that are animal- and human-associated (48). Although host-associated 
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microorganisms are widely known for their reduced genomes, the characteristics of host-

associated MAGs show coding densities of ~91% for genomes between 0 and 2 Mb (Figure 1D). 

 

Small genomes exhibit either strong dependency on other community members or have specific 

nutrient requirements. Two diverging views on genome reduction have emerged. On the one 

hand, genetic drift is more pronounced in species that have a small effective population size, 

such as host-associated endosymbiotic microorganisms. These microorganisms might thrive 

because hosts provide energy or nutrients. On the other hand, streamlining is the process of gene 

loss through selection and it is mainly observed in free-living microorganisms with high 

effective population sizes. Some of the most numerically abundant and streamlined 

microorganisms known to date, such as Pelagibacter (class Alphaproteobacteria) (10), 

Prochlorococcus (phylum Cyanobacteria) (17) Thermoproteota (49) and Patescibacteria (50), are 

commonly found in aquatic niches. Paradoxically, even though these microorganisms are free-

living, their small genomes increase their nutritional connectivity to other individuals (10). Free-

living aquatic microorganisms have been used as exemplary streamlining cases in which many 

have gone through community adaptive selections and gene loss (51). Their gene loss goes so far 

that they become auxotrophic, meaning they cannot biosynthesize essential metabolites. One 

strategy to overcome their required nutritional needs is to thrive in functional cohorts (52). As 

opposed to prototrophic lifestyle, auxotrophic lifestyle is reflected by smaller genome sizes (25, 

41, 53, 54) (Table S1). In our freshwater survey (19), from a total of 887 mOTUs with at least 3 

MAGs each, only 61 had the metabolic potential to biosynthesize vitamin B12 de novo (Figure 

3B). Moreover, genomes of Vitamin B12 synthesizers were on average 1 Mb larger than Vitamin 

B12 auxotrophs (Figure 3C). An exciting avenue for future studies includes understanding how 
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prevalent auxotrophies are for the entire spectrum of metabolites (amino acids, nucleotides, fatty 

acids, vitamins, etc.) in different microbial communities and how those auxotrophies are linked 

with genome size.  

 

In this review, the largest fraction of MAGs is recovered from aquatic environments. The two 

main sub-ecosystems show that freshwater MAGs (average 3.2 Mb) bimodal genome size 

distribution is significantly different (p<0.0001) from the unimodal marine genome size 

distribution (average 2.9 Mb) (Figure 3A). Although the potential to synthesize Vitamin B12 

might partly explain the bimodal distribution of genome sizes in freshwaters (Figure 3C), more 

research is necessary to fully understand the trophic strategies behind the bimodal freshwater 

genome size distribution. Moreover, when comparing freshwater and marine environments, the 

most obvious difference is salinity followed by nutrient concentration. Further exploring the 

impact of differing levels of salinity on genome size is an interesting research prospect. In 

general, aquatic environments are vertically structured by gradients of light penetration, 

temperature, oxygen, and nutrient. Moreover, microorganisms might experience a microscale 

spatial and nutrient structure due to the presence of heterogeneous particles. These aquatic 

structures are drivers of the genetic repertoire of aquatic microorganisms. Metagenomic 

sequencing reported the increase of genome sizes for Archaea and Bacteria with increasing 

depths (55). Temperature may be as important; for example, a study based on twenty-one 

Thermoproteota and Euryarchaeota fosmids (Euryarchaetoa is now reclassified into 

Methanobacteriota, Halobacteriota and Nanohaloarchaeota) showed high rates of gene gains 

through HGT to adapt to cold and deep marine environments (56). One other driver we want to 

point out in aquatic environments is light which decreases with depth. Photosynthetic bacteria 
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such as Prochlorococcus spp. are well-differentiated into a high-light adapted ecotype with 

smaller genome sizes (average 1.6 Mb) and a low-light-adapted ecotype with a slightly bigger 

genome size (average 1.9 Mb) (57) (Table S1). Limitation of nutrients such as nitrogen (58) 

might also be one of the central factors determining genomic properties (59). Nitrogen fixation is 

a complex process that requires several genes (60) and most nitrogen-fixing marine 

cyanobacteria have the largest genomes (61). 

 

Diversity and quantity of nutrients might be two understudied factors that drive ecology and 

genome size evolution. A recent example shows that polysaccharide xylan triggers 

microcolonies, whereas monosaccharide xylose promotes solitary growth in Caulobacter (62). 

This is a striking example of how nutrient complexity can foster diverse niches for well-studied 

cells such as Caulobacter with genome size 4 Mb. We believe that to fully understand the link 

between genome size and nutritional requirements of diverse environmental microorganisms, we 

need to systematically explore the ~90% of molecules/metabolites still unknown (63-65). The 

wide nutrient complexity in the environment might prompt microorganisms to shape their 

genome. Their genome content will allow them either to feed or not on a variety of nutrients and 

might leave them either depending or not on other microorganisms. Metagenomics combined 

with metabolomics will provide an understanding of the genome size of microorganisms and 

their nutritional and trophic strategy.  

 

Conclusion 

This review offers an overview where genomes obtained from environmental samples show to be 

smaller than those obtained from laboratory isolates. This is not mainly because isolates and 
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MAGs from the same species differed in size but because cultivation methods bias the sampling 

of environmental microbiome towards obtaining copiotrophs, fast growers, and more 

metabolically independent microorganisms. Moreover, we find the distribution of genome sizes 

across the phylogenetic tree of Archaea and Bacteria can be linked to the environment where the 

microorganisms live. In some cases, phylogenetic history can be a stronger predictor of genome 

size than the environment. Finally, we review the ecological factors causing the varying sizes of 

genomes in different ecosystems. Soils might have the microorganisms with the bigger estimated 

genome sizes due to higher fluctuations in the environment. Host-associations might shape 

genomes sizes differentially based on the type of host and level of intimacy between the 

microorganisms and the host. Genomes in aquatic environments might be shaped by vertical 

stratification in nutrients and light penetration and particle distribution. Moreover, different 

trophic strategies such as auxotrophies might be connected to smaller genome sizes. We expect 

that as the microbial ecology field keeps moving forward with sequencing, bioinformatics, 

chemical analysis, and novel cultivation techniques, we will get a deeper resolution on 

physicochemical, metabolic, spatial, and biological drivers of archaeal and bacterial genome 

sizes. 
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Figure 1 

 

Figure 1.  Overview of the genome size distribution across Earth’s microbiomes. Genome size 

distribution of Archaea and Bacteria [A] from different environmental sources and across 
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different archaeal and bacterial phyla [B] are shown for a total of 26,101 representative genomes. 

Isolate genomes were gathered from GTDB (release95) and environmental MAGs were gathered 

from GEMs (18) and stratfreshDB (19). We use one representative genome per mOTU (defined 

by 95% ANI) from the union of GEMs catalog and stratfreshDB in the plots. From the GTDB 

database, we selected one representative isolate genome per species cluster that was 

circumscribed based on the ANI (>=95%) and alignment fraction ((AF) >65%) between 

genomes (20). To construct the figures, we plotted the estimated genome sizes, which were 

calculated based on the genome assembly size and completeness estimation provided. Venn 

diagram of the intersection between the representative environmental MAGs and the 

representative isolate genomes [C]. The intersection was calculated using FastANI (66) and was 

determined with a threshold of 95%. The coding density [D] and GC content (%) [E] are shown 

for the archaeal and bacterial MAGs across different environments and isolates. Pair-wise t-test 

was performed in all variables of panel E and F and shown in [F], where white is significant 

(p<0.05) and black is not significant (p>0.05). In panel B, we only included phyla with more 

than five genomes.  
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Figure 2 

 

Figure 2. Phylogenetic trees of archaeal [A] and bacterial [B] representative genomes show 

variation in genome size between and within phyla. The trees were constructed using GTDB-tk 

using de novo workflow using aligned concatenated set of 122 and 120 single copy marker 
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proteins for Archaea and Bacteria, respectively (67). Moreover, in this mode, GTDB-tk adds 

1672 and 30238 backbone genomes for Archaea and Bacteria, respectively. Estimated genome 

size is in scale from 0 Mbp to 6 Mpb or 14 Mbp for Archaea or Bacteria respectively and it 

shows the distribution of larger and smaller genomes sizes are non-monophyletic. In the tree, the 

origin of the environmental genomes is labeled: aquatic, terrestrial and host-associated (same 

MAGs as Figure 1). Highlighted phyla with more representative genomes are color-coded. 

Boxplots show the average estimated genome size per phyla within Archaea and Bacteria [C] 

domain. The average estimated size per genus within Halobacteriota [D], Thermoproteota [E], 

Actinobacteriota [F], Bacteroidota [G], Firmicutes A [H], Patescibacteria [I], Proteobacteria [J]. 

The presence of the genus is marked as non-specific when there are MAGs in it whose origin is 

not the same environment. The average estimated size per genus extracted from aquatic 

environments [K], host-associated ecosystems [L], terrestrial environments [M], or non-specific 

environments [N]. Letters in boxplot panels are the result of non-parametric tests, Wilcoxon 

and/or Kruskal-Wallis. Different letters show significant differences p<0.05  
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Figure 3 

 

Figure 3. Genome size distribution of estimated genome sizes of representative MAGs 

recovered from marine and freshwater ecosystems [A]. The number of MAGs in each sub-

ecosystem is in parenthesis. Average genome size distribution of mOTUs within each phylum 

from the stratfreshDB with present and absent vitamin B12 biosynthesis capacity [B]. Phyla with 

no Vitamin B12 synthesizer were excluded. The presence and absence of oxic and anoxic 

Vitamin B12 capacities were analyzed by assessing the completeness of KEGG modules. A 

module was considered present (solid boxplots) when its completeness was >= 81.67 %, which is 

the average completeness of mOTUs in the stratfreshDB. A module was considered absent when 

none of the genes assigned to any of the vitamin B12 modules was detected in the mOTU 

(dashed boxplots). Wilcoxon signed-rank tests were performed to test for significant differences 

(p-value <= 0.05) of average estimated genome sizes in mOTUs with absent and present Vitamin 

B12 pathways within a phylum. Significant differences are marked with an asterisk. The number 

of mOTUs is shown in or next to the corresponding boxplot. Distribution of average estimated 

genome sizes per mOTU with and without VitaminB12 biosynthesis capacity [C].  
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Figure S1. Comparison of conspecific MAGs and isolate genomes. In total, 17834 representative 

MAGs from environments were clustered with 8267 reference genomes from isolates into 

mOTUs at 95% ANI. Only 560 MAGs formed clusters with 556 isolate genomes resulting in 540 

mOTUs. Each point in the plot represents a MAG/mOTU pair assigned to a single mOTU. The 

x-axis indicates the estimated genome size of isolates genomes and the y-axis indicates the 

estimated genome size of MAGs. 
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Figure S2. Distribution of estimated genome sizes per phyla in aquatic [A], terrestrial [B], and 

host-associated ecosystems [C]. In each Panel, the two sub ecosystems are shown from which the 

most MAGs were recovered, while 'Others' combine MAGs from less represented sub 

ecosystems. 
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Table S1. Ecological factors and their correlation to genome size.  

 
Chemical, physical or biological variable influencing 

genome size 

Taxa References 

Temperature Literature review indicates a negative correlation between genome size and temperature. 

Comparative genomic of genomes of 

hyperthermophilic microorganisms shows 

average genome sizes of about 2.3 Mb 

with very active horizontal gene transfer 

(HGT) mechanisms 

Thermus thermophilus (phylum 

Deinococcota) 

Thermus spp. 

(68, 69) 

Metagenomics suggest that gene gains 

would have played an important role in 

adaptation to low temperature and 

oligotrophic deep marine environments 

Thermoproteota and 

Euryarchaeota (phyla) 

(56) 

Comparative genomics of isolates in one 

genus indicate larger genomes in colder 

environments. 

Janthinobacterium spp. (class 

Gammaproteobacteria) 

(70) 

Soil microorganisms show evidence for an 

inverse relationship between genome size 

and temperature 

Different Archaea and Bacteria (71) 

Environmental samples indicate that 

hypersaline environments could increase 

gene gain via HGT, whereas thermal 

environments decrease it.  

Halobacteria and Thermoproteia 

(class) 

(72) 

Nutrients  Diversity and quantity of nutrients are two factors that drive ecology and evolution of genome size. 

Literature present conflicting results on the effect of these dimensions. Future work should use more 
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sophisticated chemical analytics to characterize quality and quantity of diversity of nutrients to find 

more predictable correlations.  

Metagenomics indicate dominance of 

reduced genomes in the Baikal Lake. 

Small genomes are thought to reflect the 

extremely oligotrophic conditions of the 

lake.  

Actinobacteria, Bacteroidetes, 

Cyanobacteria Verrucomicrobia 

and Thermoproteota (phyla) 

 

(73) 

Online databases indicate that larger 

genome-sized species may dominate 

environments where resources are scarce 

but diverse. 

70 closely related bacterial 

genomes 

(11)  

Phylogenomics of isolates show gene loss 

in functions like resource scavenging and 

energy acquisition when adapting to 

nutrient-rich environments in algae and 

corals. 

Roseobacter spp. (class 

Alphaproteobacteria) 

(74) 

Oceanic metagenomic data show positive 

correlation between nutrient 

concentration and genome size. 

Different bacteria phyla (75) 

Metagenomics indicates small genomes in 

mesopelagic environments are the result 

of adaptation to energy scarcity. 

Some Thermoproteota (phylum) (49) 

Whole-genome shotgun sequencing 

indicated that deep oligotrophic marine 

environments are dominated by large 

genomes with high GC content. 

Lactobacillales (phylum 

Firmicutes) 

(76) 
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Oceanic metagenomic samples suggest 

that deeper areas with more nitrate and 

phosphate as nutrients are dominated by 

large genomes and high GC content. 

Bacteria (SAR11, Prochlorococcus 

spp., Roseobacter spp., etc.) and 

Archaea (phyla Thermoproteota 

and Euryarchaeota) 

(55) 

Oxygen Oxygen promotes bigger genome sizes  
Aerobic microorganisms show larger 

genome sizes than anaerobes across 

different environments 

Diverse archaeal and bacterial 

taxa  

(77) 

Trophic strategy Some trophic strategies (such as prototrophy, phototrophy, nitrogen fixation) require more genes hence 

a larger genome size 

Nitrogen-fixation in symbiotic microbes 

show genome sizes above 7 Mbp. 

Agromonas oligotrophica and 

Bradyrhizobium spp. (phylum 

Proteobacteria) and Nostoc spp. 

(phylum Cyanobacteria) 

(78-80)  

Marine isolates show bigger genome sizes 

in copiotrophs than in oligotrophs. 

Copiotrophs (family Vibrionaceae 

and Photobacterium angustum) 

and oligotrophs (family 

Sphingomonadaceae and 

Sphingopyxis alaskensis) (phylum 

Proteobacteria) 

(81) 

In silico studies indicate that larger 

genome sizes could have access to a 

wider variety of carbon substrates but 

with lower efficiency in carbon usage than 

smaller genome microbes. 

Diverse bacterial taxa (phyla 

Proteobacteria, Actinobacteriota, 

Acidobacteriota, Firmicutes, 

Verrucomicrobiota and 

Planctomycetota) 

(82) 
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Auxotrophs have streamlined genomes. Actinobacteriota, Proteobacteria, 

Verrucomicrobiota (phyla) 

(25, 41, 53, 54) 

Members of cyanobacteria that don’t 

have photosynthetic capacities have 

genome sizes between 1.9 and 2.3 Mbp. 

Former Candidatus 

Melainabacteria now in the class 

Vampirovibrionia 

(83) 

Light In oxygenic phototrophs there is negative correlation between light irradiance and the genome size. 

Genomes of cultures and single cells show 

high-light-adapted ecotypes with smaller 

genome sizes and low-light-adapted 

ecotypes with bigger genomes. 

Prochlorococcus spp. (phylum 

Cyanobacteria) 

(17, 57, 84) 

Particles Microorganisms with particle associated lifestyle tend to have larger genome sizes. 

Comparison of metagenomes in coastal 

ecosystems show larger genome sizes for 

particle associated microorganisms than 

free-living. 

Metagenomic data (85) 

Particle associated microbes have larger 

genome sizes than free-living bacteria. 

Cyanobacteria and Bacteroidetes 

(phyla) 

(75) 

Host-association Host-associated bacterial genomes show a variation in size depending on the type of host (plant, animal, 

etc.) and the type of association they have with the host (endosymbiotic, ectobiotic or epibiotic) 

In silico studies indicate massive genome 

expansions in plant-associated bacteria.  

 

Alphaproteobacteria (class) (48) 

Isolates from sugarcane (Saccharum sp.) 

rhizosphere and endophytic roots and 

stalks show 26 individual genomes of 

Diverse bacterial taxa 

(Burkholderiaceae, Rhizobiaceae, 

Caulobacteraceae, 

Xanthomonadaceae, etc.) 

(86) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.01.18.427069doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427069
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

associated bacteria whose genomes 

ranged from 3.9 to 7.5 Mbp. 

Genomic comparison of 3837 bacterial 

genomes identified thousands of plant-

associated gene clusters and found 

genomes of plant associated 

microorganisms tended to be larger 

Diverse bacterial taxa (47) 

Intense genome reduction in isolates of 

microbes associated with aphids 

(Arthropoda). 

Buchnera aphidicola (class 

Gammaproteobacteria) 

(45) 

In vitro cultures and metagenomic 

datasets indicate reduced genome sizes in 

microbes associated with humans and 

other mammmals 

Salmonella enterica (class 

Gammaproteobacteria) 

Patescibacteria (phylum) 

(46, 87) 

 

Environmental samples indicate that 

symbionts and epibionts of other 

microbes present highly reduced 

genomes.  

 Bacteria of the CPR clade (such as 

Vampirococcus lugosii) and 

Archaea of the DPANN 

(88, 89) 

Viruses  Marine isolates support the “Cryptic 

Escape Theory”. In here small cell size is a 

strategy to minimize viral predation. This 

article also finds a correlation between 

genome size and cell size. 

Diverse bacterial taxa 

(Cyanobacteria, Proteobacteria, 

Actinobacteria, among others) 

(90) 
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