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Abstract

Our view of genome size in Archaea and Bacteria has remained skewed as the data used to paint
its picture has been dominated by genomes of microorganisms that can be cultivated under
laboratory settings. However, the continuous effort to catalog the genetic make-up of Earth’s
microbiomes specifically propelled by recent extensive work on uncultivated microorganisms,
provides a unique opportunity to revise our perspective on genome size distribution. Capitalizing
on a recently released extensive catalog of tens of thousands of metagenome-assembled
genomes, we provide a comprehensive overview of genome size distributions. We observe that
the known phylogenetic diversity of environmental microorganisms possesses significantly
smaller genomes than the collection of laboratory isolated microorganisms. Aquatic
microorganisms average 3.1 Mb, host-associated microbial genomes average 3.0 Mb, terrestrial
microorganism average 3.7 Mb and isolated microorganisms average 4.3 Mb. While the
environment where the microorganisms live can certainly be linked to genome size, in some
cases, evolutionary phylogenetic history can be a stronger predictor. Moreover, ecological
strategies such as auxotrophies have a direct impact on genome size. To better understand the
ecological drivers of genome size, we expand on the known and the overlooked factors that

influence genome size in different environments, phylogenetic groups and trophic strategies.
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Introduction

Genomes are dynamic databases that encode the machinery behind the evolution and adaptation
of living organisms to environmental settings. In brief, a genome encompasses all genetic material
present in one organism and includes both its genes and its non-coding DNA. Genome size is
largely a function of expansion and contraction by the gain or loss of DNA fragments. Genomes
of extant organisms are the result of a long evolutionary history. In eukaryotes, an organism's
complexity is not directly proportional to its genome size, which can have variations over 64 000-
fold (1, 2). However, the genome size ranges in Archaea and Bacteria are smaller and the genomes
are information-dense (3). The known genome sizes range from 112 kb in Candidatus Nasuia
deltocephalinicola (4) to 16.04 Mb in Minicystis rosea (5). While subject to genetic drift,
prokaryotic and eukaryotic genomes have diverging constraints on size. Bacteria exhibit a
mutational bias that deletes superfluous sequences, whereas Eukaryotes are biased toward large
insertions (6). In Archaea and Bacteria, evolutionary studies have revealed extremely rapid and

highly variable flux of genes (7) with drift promoting genome reduction (8).

Genome size dynamics and evolution in Archaea and Bacteria are quite complex and have been
studied by many researchers who each focused on different taxonomic lineages or different
ecological or evolutionary backgrounds (8-14). The evolutionary forces driving genome size are
debated in many excellent reviews (9, 10, 12, 13, 15). However, in this review, we want to focus
on the genome size of Archaea and Bacteria seen from an ecological perspective. As microbial
researchers, how do we define what is a small or a big genome? Perhaps, researchers working on
model organisms such as Escherichia coli with a genome size of ~5 Mb (16) would define 'big' or

'small' very differently to researchers working on soil-dwelling bacteria with a genome size of 16
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Mb (5), the abundant Prochlorococcus with a genome size of ~2 Mb (17), or bacterial
endosymbionts of insects that may have genomes merely larger than 100 kb (4). The recently
published expanded databases of environmental archaeal and bacterial genomes (18, 19) allow us
to revisit and acquire a complete understanding of genome size distribution across different
environments with a higher resolution. This review offers an overview of the distribution of
estimated genome sizes of all known archaeal and bacterial phyla across different environments.
We found that while several archaeal phyla and two bacterial phyla with consistently smaller
genome sizes (< 2 Mb, Figure 1B), 76.3% of representative archaeal and bacterial genomes

recovered through genome-resolved metagenomics present estimated genome sizes below 4 Mb.

Extant genome size distribution in the environment

The current state of environmental sequencing, assembly, and binning technologies allows us to
review and renew our view of archaeal and bacterial genome size distribution on Earth (18-20).
To minimize representation biases (21), from the ~64 500 environmental metagenome-
assembled genomes (MAGs), we included one representative per mOTU, defined by 95%
average nucleotide identity (ANI), from the GEMs and the stratfreshDB MAGs resulting in ~18
000 MAGs. We complemented these data by adding ~8 000 species (or mOTUs) cluster
representatives from >90% complete genomes of isolates from GTDB (Figure 1A). We found
540 mOTUs with representatives in both the environmental MAGs and the isolate genomes
(Figure 1C). This would mean that about 3% of the extracted MAGs from the environment have

a cultivated representative.
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Furthermore, using completeness estimates from CheckM (22), we compared the genome size
distribution of all MAGs versus genomes from isolates. Isolates have an average genome size of
4.3 Mb which is significantly larger than that of MAGs (t-test p<0.0001), both when comparing
Archaea and Bacteria combined and separately. Although the ecosystem classification we have
chosen to display is coarse and might contain countless niches, it still allowed us to see trends for
genome sizes. Aquatic MAGs average 3.1 Mb, host-associated MAGs average 3.0 Mb, and
terrestrial MAGs average 3.7 Mb (Figure 1A). It is known that MAG assembly might
discriminate against ribosomal RNAs, transfer RNAs, mobile element functions and genes of
unknown function (23, 24), and also that completeness estimations can be underestimated for
streamlined genomes (25). For the 540 mOTUs with MAGs and isolate genomes (Figure 1C), we
found that MAGs were estimated on average 3.7% smaller than isolate genomes (Figure S1).
This suggests that there might be only a small bias in metagenome assembly and binning of these
environmental genomes. On its own, it would not account for the genome size difference

between all isolate representatives and all MAGs.

A reason for the difference in genome size between isolates and microorganisms living in
different ecosystems might be related to the fact that traditional isolation techniques select for
rare microorganisms (26) and do not capture the entire ecosystem's diversity (Figure 1C). For
example, it is known that current cultivation techniques with rich media bias the cultivation
towards copiotrophic and fast-growing microorganisms (27). Moreover, microorganisms in
nature do not live in isolation but have coevolved with other microorganisms and might have
specific requirements that are hard to meet in batch-culture standard-media isolation techniques

(28). Other reasons for biases in cultivation include slow growth of microorganisms (29), host
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dependency (30), dormancy (31), and microorganisms with very limited metabolic capacity (32)
among others. More innovations to culturing the uncultured microbial majority (33) will enable

us to bring representatives from the whole genome size spectrum to culture.

Placing archaeal and bacterial genome sizes in phylogenetic trees (Figure 2A and B) shows that
the distribution of representative genomes and their estimated sizes varies widely between
different phyla and within phyla. Eight phyla in the domain Archaea were reconstructed
exclusively from aquatic environments, whereas eight other archaeal phyla were found in
multiple ecosystems. There was no significant difference between the genome sizes of those two
groups of archaeal phyla (Figure 2C). However, estimated genome sizes in bacterial phyla were
significantly larger than those in archaeal phyla. Moreover, genera from phyla with genome sizes
below 3 Mb, such as Halobacteriota, Thermoproteota and Patescibacteria, do not show genome
size variation in different ecosystems (Figure 2D, 2E, 2I). Nevertheless, genera from smaller
genome size phyla are significantly smaller than genera with more genome size variation in any
environment (Figure 2K-2N). For phyla spanning genome sizes above 3 Mb, the genome sizes in
aquatic or host-associated genera are smaller than terrestrial or non-specific environments
(Figure 2F, 2G, 2H, 2J). We observe that while the microorganisms' environment can certainly
be linked to genome size, evolutionary phylogenetic history can be a stronger predictor in phyla

where genome sizes are mostly below 3 Mb.

Lumping microorganisms together by the three biome categories is not optimal since each biome
contains innumerable niches, each of which will have different selective pressures on the genome

size. An example is clearly shown in a study (34) in which it is observed that Archaea and
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Bacteria sampled from different parts of the human body have differences in genome size. Low
metadata resolution and clustering of all genomes into three main environments might be a
reason why we see a range of genome sizes in the genera of different environments (Figure 2).
With more precise metadata and higher sampling resolution of micro-areas, it might be possible
to better identify the ecological drivers of genome sizes in the different niches in the
environment. But for now, we will discuss the known and the overlooked ecological drivers of

genome sizes.

Impact of ecosystem and trophic strategy on genome size

Terrestrial ecosystems harbor immense microbial diversity (35). Yet, the most up-to-date data
compilation provided here shows only 2033 MAGs from terrestrial environments (Figure 1C)
with an average genome size of 3.7 Mb (Figure 1A). The sub-ecosystems considered in this view
are soil and deep subsurface, among others (Figure S2). While the terrestrial microorganism’s
genome size is the biggest of the three ecosystem categories in this review, they are smaller than
expected based on previous metagenomic predictions, which placed the genome size of soil
bacteria at 4.74 Mb (36). Trends of larger genome sizes in soil have been hypothesized to be
related to scarcity and high diversity of nutrients, fluctuating environment combined with little
penalty for the slow growth rate (11, 37, 38). Although terrestrial environments are physically
structured, they are generally characterized by two to three orders of magnitude greater
variations (in temperature and currents) than marine environments (39). In silico studies predict
that large genome sizes could result from higher environmental variability (40). A recent
example showed that isolates of terrestrial Cyanobacteria have genomes on the larger size scale

(6.0-8.0. Mb) that are enriched in genes involved in regulatory, transport and motility functions
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(37). These functional categories enable thriving in a fluctuating environment and high nutrient
diversity. Despite these general trends showing larger genome sizes in terrestrial environments, it
is worth noting that the diversity captured in the GEMs survey is probably a small fraction of the
total terrestrial microbial diversity. It is, for example, also known that streamlined
microorganisms such as Patescibacteria (Fig 1B) and ‘Candidatus Udaeobacter copiosus’
(Verrucomicrobiota) are abundant in soils (41). We predict that the view on genome size
distribution in terrestrial ecosystems will be more complete with more sequencing, assembly,

binning and novel isolation efforts.

In host-associated microbiomes, genetic drift, deletion biases and low populations sizes drive the
reduction of genomes. In these environments, microorganisms are shaped in their ecological and
evolutionary history by the differing levels of intimacy they might have with their host. For
example, within the Chlamydiaceae family, some lineages have evolved intracellular
associations with eukaryotes (42, 43). These intracellular Chlamydiaceae have lost many genes
when comparing them to their common ancestor Chlamydiia (class) that lives in the environment
(44). Moreover, host-associated bacterial genomes show a variation in size depending on the
type of host (plant, animal, etc.) and the type of association they have with the host, such as
endosymbiotic, ectobiotic, or epibiotic (Table S1). Generally, microorganisms associated with
Arthropoda (45), humans (46) and other mammals show smaller genomes sizes, whereas protist-
and plant-associated bacteria present larger genomes (47) (Figure S2). In fact, in silico studies of
Alphaproteobacteria show massive genome expansions diversifying plant-associated Rhizobiales
and extreme gene losses in the ancestor of the intracellular lineages Rickettsia, Wolbachia,

Bartonella and Brucella that are animal- and human-associated (48). Although host-associated
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microorganisms are widely known for their reduced genomes, the characteristics of host-

associated MAGs show coding densities of ~91% for genomes between 0 and 2 Mb (Figure 1D).

Small genomes exhibit either strong dependency on other community members or have specific
nutrient requirements. Two diverging views on genome reduction have emerged. On the one
hand, genetic drift is more pronounced in species that have a small effective population size,
such as host-associated endosymbiotic microorganisms. These microorganisms might thrive
because hosts provide energy or nutrients. On the other hand, streamlining is the process of gene
loss through selection and it is mainly observed in free-living microorganisms with high
effective population sizes. Some of the most numerically abundant and streamlined
microorganisms known to date, such as Pelagibacter (class Alphaproteobacteria) (10),
Prochlorococcus (phylum Cyanobacteria) (17) Thermoproteota (49) and Patescibacteria (50), are
commonly found in aquatic niches. Paradoxically, even though these microorganisms are free-
living, their small genomes increase their nutritional connectivity to other individuals (10). Free-
living aquatic microorganisms have been used as exemplary streamlining cases in which many
have gone through community adaptive selections and gene loss (51). Their gene loss goes so far
that they become auxotrophic, meaning they cannot biosynthesize essential metabolites. One
strategy to overcome their required nutritional needs is to thrive in functional cohorts (52). As
opposed to prototrophic lifestyle, auxotrophic lifestyle is reflected by smaller genome sizes (25,
41, 53, 54) (Table S1). In our freshwater survey (19), from a total of 887 mOTUs with at least 3
MAGs each, only 61 had the metabolic potential to biosynthesize vitamin B12 de novo (Figure
3B). Moreover, genomes of Vitamin B12 synthesizers were on average 1 Mb larger than Vitamin

B12 auxotrophs (Figure 3C). An exciting avenue for future studies includes understanding how
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prevalent auxotrophies are for the entire spectrum of metabolites (amino acids, nucleotides, fatty
acids, vitamins, etc.) in different microbial communities and how those auxotrophies are linked

with genome size.

In this review, the largest fraction of MAGs is recovered from aquatic environments. The two
main sub-ecosystems show that freshwater MAGs (average 3.2 Mb) bimodal genome size
distribution is significantly different (p<0.0001) from the unimodal marine genome size
distribution (average 2.9 Mb) (Figure 3A). Although the potential to synthesize Vitamin B12
might partly explain the bimodal distribution of genome sizes in freshwaters (Figure 3C), more
research is necessary to fully understand the trophic strategies behind the bimodal freshwater
genome size distribution. Moreover, when comparing freshwater and marine environments, the
most obvious difference is salinity followed by nutrient concentration. Further exploring the
impact of differing levels of salinity on genome size is an interesting research prospect. In
general, aquatic environments are vertically structured by gradients of light penetration,
temperature, oxygen, and nutrient. Moreover, microorganisms might experience a microscale
spatial and nutrient structure due to the presence of heterogeneous particles. These aquatic
structures are drivers of the genetic repertoire of aquatic microorganisms. Metagenomic
sequencing reported the increase of genome sizes for Archaea and Bacteria with increasing
depths (55). Temperature may be as important; for example, a study based on twenty-one
Thermoproteota and Euryarchaeota fosmids (Euryarchaetoa is now reclassified into
Methanobacteriota, Halobacteriota and Nanohaloarchaeota) showed high rates of gene gains
through HGT to adapt to cold and deep marine environments (56). One other driver we want to

point out in aquatic environments is light which decreases with depth. Photosynthetic bacteria
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such as Prochlorococcus spp. are well-differentiated into a high-light adapted ecotype with
smaller genome sizes (average 1.6 Mb) and a low-light-adapted ecotype with a slightly bigger
genome size (average 1.9 Mb) (57) (Table S1). Limitation of nutrients such as nitrogen (58)
might also be one of the central factors determining genomic properties (59). Nitrogen fixation is
a complex process that requires several genes (60) and most nitrogen-fixing marine

cyanobacteria have the largest genomes (61).

Diversity and quantity of nutrients might be two understudied factors that drive ecology and
genome size evolution. A recent example shows that polysaccharide xylan triggers
microcolonies, whereas monosaccharide xylose promotes solitary growth in Caulobacter (62).
This is a striking example of how nutrient complexity can foster diverse niches for well-studied
cells such as Caulobacter with genome size 4 Mb. We believe that to fully understand the link
between genome size and nutritional requirements of diverse environmental microorganisms, we
need to systematically explore the ~90% of molecules/metabolites still unknown (63-65). The
wide nutrient complexity in the environment might prompt microorganisms to shape their
genome. Their genome content will allow them either to feed or not on a variety of nutrients and
might leave them either depending or not on other microorganisms. Metagenomics combined
with metabolomics will provide an understanding of the genome size of microorganisms and

their nutritional and trophic strategy.

Conclusion
This review offers an overview where genomes obtained from environmental samples show to be

smaller than those obtained from laboratory isolates. This is not mainly because isolates and

11
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MAGs from the same species differed in size but because cultivation methods bias the sampling
of environmental microbiome towards obtaining copiotrophs, fast growers, and more
metabolically independent microorganisms. Moreover, we find the distribution of genome sizes
across the phylogenetic tree of Archaea and Bacteria can be linked to the environment where the
microorganisms live. In some cases, phylogenetic history can be a stronger predictor of genome
size than the environment. Finally, we review the ecological factors causing the varying sizes of
genomes in different ecosystems. Soils might have the microorganisms with the bigger estimated
genome sizes due to higher fluctuations in the environment. Host-associations might shape
genomes sizes differentially based on the type of host and level of intimacy between the
microorganisms and the host. Genomes in aquatic environments might be shaped by vertical
stratification in nutrients and light penetration and particle distribution. Moreover, different
trophic strategies such as auxotrophies might be connected to smaller genome sizes. We expect
that as the microbial ecology field keeps moving forward with sequencing, bioinformatics,
chemical analysis, and novel cultivation techniques, we will get a deeper resolution on
physicochemical, metabolic, spatial, and biological drivers of archaeal and bacterial genome

sizes.
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different archaeal and bacterial phyla [B] are shown for a total of 26,101 representative genomes.
Isolate genomes were gathered from GTDB (release95) and environmental MAGs were gathered
from GEMs (18) and stratfreshDB (19). We use one representative genome per mOTU (defined
by 95% ANI) from the union of GEMs catalog and stratfreshDB in the plots. From the GTDB
database, we selected one representative isolate genome per species cluster that was
circumscribed based on the ANI (>=95%) and alignment fraction ((AF) >65%) between
genomes (20). To construct the figures, we plotted the estimated genome sizes, which were
calculated based on the genome assembly size and completeness estimation provided. Venn
diagram of the intersection between the representative environmental MAGs and the
representative isolate genomes [C]. The intersection was calculated using FastANI (66) and was
determined with a threshold of 95%. The coding density [D] and GC content (%) [E] are shown
for the archaeal and bacterial MAGs across different environments and isolates. Pair-wise t-test
was performed in all variables of panel E and F and shown in [F], where white is significant
(p<0.05) and black is not significant (p>0.05). In panel B, we only included phyla with more

than five genomes.
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Figure 2. Phylogenetic trees of archaeal [A] and bacterial [B] representative genomes show
variation in genome size between and within phyla. The trees were constructed using GTDB-tk

using de novo workflow using aligned concatenated set of 122 and 120 single copy marker

16


https://doi.org/10.1101/2021.01.18.427069
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427069; this version posted August 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

proteins for Archaea and Bacteria, respectively (67). Moreover, in this mode, GTDB-tk adds
1672 and 30238 backbone genomes for Archaea and Bacteria, respectively. Estimated genome
size is in scale from 0 Mbp to 6 Mpb or 14 Mbp for Archaea or Bacteria respectively and it
shows the distribution of larger and smaller genomes sizes are non-monophyletic. In the tree, the
origin of the environmental genomes is labeled: aquatic, terrestrial and host-associated (same
MAG:s as Figure 1). Highlighted phyla with more representative genomes are color-coded.
Boxplots show the average estimated genome size per phyla within Archaea and Bacteria [C]
domain. The average estimated size per genus within Halobacteriota [D], Thermoproteota [E],
Actinobacteriota [F], Bacteroidota [G], Firmicutes A [H], Patescibacteria [I], Proteobacteria [J].
The presence of the genus is marked as non-specific when there are MAGs in it whose origin is
not the same environment. The average estimated size per genus extracted from aquatic
environments [K], host-associated ecosystems [L], terrestrial environments [M], or non-specific
environments [N]. Letters in boxplot panels are the result of non-parametric tests, Wilcoxon

and/or Kruskal-Wallis. Different letters show significant differences p<0.05
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Figure 3. Genome size distribution of estimated genome sizes of representative MAGs
recovered from marine and freshwater ecosystems [A]. The number of MAGs in each sub-
ecosystem is in parenthesis. Average genome size distribution of mOTUs within each phylum
from the stratfreshDB with present and absent vitamin B12 biosynthesis capacity [B]. Phyla with
no Vitamin B12 synthesizer were excluded. The presence and absence of oxic and anoxic
Vitamin B12 capacities were analyzed by assessing the completeness of KEGG modules. A
module was considered present (solid boxplots) when its completeness was >= 81.67 %, which is
the average completeness of mOTUs in the stratfreshDB. A module was considered absent when
none of the genes assigned to any of the vitamin B12 modules was detected in the mOTU
(dashed boxplots). Wilcoxon signed-rank tests were performed to test for significant differences
(p-value <= 0.05) of average estimated genome sizes in mOTUs with absent and present Vitamin
B12 pathways within a phylum. Significant differences are marked with an asterisk. The number
of mOTUs is shown in or next to the corresponding boxplot. Distribution of average estimated

genome sizes per mOTU with and without VitaminB12 biosynthesis capacity [C].
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Figure S1. Comparison of conspecific MAGs and isolate genomes. In total, 17834 representative
MAGs from environments were clustered with 8267 reference genomes from isolates into
mOTUs at 95% ANI. Only 560 MAGs formed clusters with 556 isolate genomes resulting in 540
mOTUs. Each point in the plot represents a MAG/mOTU pair assigned to a single mOTU. The
x-axis indicates the estimated genome size of isolates genomes and the y-axis indicates the

estimated genome size of MAGs.
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Figure S2. Distribution of estimated genome sizes per phyla in aquatic [A], terrestrial [B], and
host-associated ecosystems [C]. In each Panel, the two sub ecosystems are shown from which the
most MAGs were recovered, while 'Others' combine MAGs from less represented sub

ecosystems.
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Table S1. Ecological factors and their correlation to genome size.

Chemical, physical or biological variable influencing Taxa References
genome size
Temperature Literature review indicates a negative correlation between genome size and temperature.
Comparative genomic of genomes of Thermus thermophilus (phylum (68, 69)
hyperthermophilic microorganisms shows | Deinococcota)
average genome sizes of about 2.3 Mb Thermus spp.
with very active horizontal gene transfer
(HGT) mechanisms
Metagenomics suggest that gene gains Thermoproteota and (56)
would have played an important role in Euryarchaeota (phyla)
adaptation to low temperature and
oligotrophic deep marine environments
Comparative genomics of isolates in one Janthinobacterium spp. (class (70)
genus indicate larger genomes in colder Gammaproteobacteria)
environments.
Soil microorganisms show evidence for an | Different Archaea and Bacteria (71)
inverse relationship between genome size
and temperature
Environmental samples indicate that Halobacteria and Thermoproteia (72)
hypersaline environments could increase | (class)
gene gain via HGT, whereas thermal
environments decrease it.
Nutrients Diversity and quantity of nutrients are two factors that drive ecology and evolution of genome size.
Literature present conflicting results on the effect of these dimensions. Future work should use more
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sophisticated chemical analytics to characterize quality and quantity of diversity of nutrients to find

more predictable correlations.

Metagenomics indicate dominance of Actinobacteria, Bacteroidetes, (73)
reduced genomes in the Baikal Lake. Cyanobacteria Verrucomicrobia

Small genomes are thought to reflect the | and Thermoproteota (phyla)

extremely oligotrophic conditions of the

lake.

Online databases indicate that larger 70 closely related bacterial (1D
genome-sized species may dominate genomes

environments where resources are scarce

but diverse.

Phylogenomics of isolates show gene loss | Roseobacter spp. (class (74)
in functions like resource scavenging and | Alphaproteobacteria)

energy acquisition when adapting to

nutrient-rich environments in algae and

corals.

Oceanic metagenomic data show positive | Different bacteria phyla (75)
correlation between nutrient

concentration and genome size.

Metagenomics indicates small genomes in | Some Thermoproteota (phylum) (49)
mesopelagic environments are the result

of adaptation to energy scarcity.

Whole-genome shotgun sequencing Lactobacillales (phylum (76)

indicated that deep oligotrophic marine
environments are dominated by large

genomes with high GC content.

Firmicutes)
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genome sizes than anaerobes across

different environments

taxa

Oceanic metagenomic samples suggest Bacteria (SAR11, Prochlorococcus | (55)
that deeper areas with more nitrate and spp., Roseobacter spp., etc.) and
phosphate as nutrients are dominated by | Archaea (phyla Thermoproteota
large genomes and high GC content. and Euryarchaeota)

Oxygen Oxygen promotes bigger genome sizes
Aerobic microorganisms show larger Diverse archaeal and bacterial (77)

Trophic strategy

Some trophic strategies (such as prototrophy, phototrophy, nitrogen fixation) require more genes hence

a larger genome size

Nitrogen-fixation in symbiotic microbes Agromonas oligotrophica and (78-80)
show genome sizes above 7 Mbp. Bradyrhizobium spp. (phylum
Proteobacteria) and Nostoc spp.
(phylum Cyanobacteria)
Marine isolates show bigger genome sizes | Copiotrophs (family Vibrionaceae | (81)
in copiotrophs than in oligotrophs. and Photobacterium angustum)
and oligotrophs (family
Sphingomonadaceae and
Sphingopyxis alaskensis) (phylum
Proteobacteria)
In silico studies indicate that larger Diverse bacterial taxa (phyla (82)

genome sizes could have access to a
wider variety of carbon substrates but
with lower efficiency in carbon usage than

smaller genome microbes.

Proteobacteria, Actinobacteriota,
Acidobacteriota, Firmicutes,
Verrucomicrobiota and

Planctomycetota)
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Auxotrophs have streamlined genomes.

Actinobacteriota, Proteobacteria,

Verrucomicrobiota (phyla)

(25, 41, 53, 54)

Members of cyanobacteria that don’t
have photosynthetic capacities have

genome sizes between 1.9 and 2.3 Mbp.

Former Candidatus
Melainabacteria now in the class

Vampirovibrionia

(83)

Light In oxygenic phototrophs there is negative correlation between light irradiance and the genome size.
Genomes of cultures and single cells show | Prochlorococcus spp. (phylum (17, 57, 84)
high-light-adapted ecotypes with smaller | Cyanobacteria)
genome sizes and low-light-adapted
ecotypes with bigger genomes.

Particles Microorganisms with particle associated lifestyle tend to have larger genome sizes.

Comparison of metagenomes in coastal Metagenomic data (85)
ecosystems show larger genome sizes for

particle associated microorganisms than

free-living.

Particle associated microbes have larger Cyanobacteria and Bacteroidetes | (75)

genome sizes than free-living bacteria.

(phyla)

Host-association

Host-associated bacterial genomes show a variation in size depending on the type of host (plant, animal,

etc.) and the type of association they have with the host (endosymbiotic, ectobiotic or epibiotic)

In silico studies indicate massive genome | Alphaproteobacteria (class) (48)
expansions in plant-associated bacteria.
Isolates from sugarcane (Saccharum sp.) Diverse bacterial taxa (86)

rhizosphere and endophytic roots and

stalks show 26 individual genomes of

(Burkholderiaceae, Rhizobiaceae,
Caulobacteraceae,

Xanthomonadaceae, etc.)
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associated bacteria whose genomes

ranged from 3.9 to 7.5 Mbp.

Genomic comparison of 3837 bacterial Diverse bacterial taxa 47
genomes identified thousands of plant-
associated gene clusters and found
genomes of plant associated

microorganisms tended to be larger

Intense genome reduction in isolates of Buchnera aphidicola (class (45)
microbes associated with aphids Gammaproteobacteria)

(Arthropoda).

In vitro cultures and metagenomic Salmonella enterica (class (46, 87)

datasets indicate reduced genome sizes in | Gammaproteobacteria)
microbes associated with humans and Patescibacteria (phylum)

other mammmals

Environmental samples indicate that Bacteria of the CPR clade (such as | (88, 89)
symbionts and epibionts of other Vampirococcus lugosii) and
microbes present highly reduced Archaea of the DPANN
genomes.
Viruses Marine isolates support the “Cryptic Diverse bacterial taxa (90)

Escape Theory”. In here small cell sizeisa | (Cyanobacteria, Proteobacteria,
strategy to minimize viral predation. This | Actinobacteria, among others)
article also finds a correlation between

genome size and cell size.
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