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2

Abstract3

1. Species classification is an important task that is the foundation of industrial, commercial, ecological, and scientific applications4

involving the study of species distributions, dynamics, and evolution.5

2. While conventional approaches for this task use off-the-shelf machine learning (ML) methods such as existing Convolutional6

Neural Network (ConvNet) architectures, there is an opportunity to inform the ConvNet architecture using our knowledge of7

biological hierarchies among taxonomic classes.8

3. In this work, we propose a new approach for species classification termed Hierarchy-Guided Neural Network (HGNN), which9

infuses hierarchical taxonomic information into the neural network’s training to guide the structure and relationships among10

the extracted features. We perform extensive experiments on an illustrative use-case of classifying fish species to demonstrate11

that HGNN outperforms conventional ConvNet models in terms of classification accuracy, especially under scarce training data12

conditions.13

4. We also observe that HGNN shows better resilience to adversarial occlusions, when some of the most informative patch regions14

of the image are intentionally blocked and their effect on classification accuracy is studied.15
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2 Hierarchy-guided Neural Networks for Species Classification

Introduction16

Depicting the branching pattern of taxa, phylogeny represents a hypothesis of evolutionary relationships based on shared similarities17

derived from common ancestry (Hennig, 1966). From conservation to zoology, phylogenetic relationships are critical for interpreting18

study results and implications in the biological sciences. One area, however, where this hierarchical information has yet to be19

fully incorporated is that of machine learning and image classification. Deep neural networks have found immense success in image20

classification problems with state-of-the-art ConvNet models (e.g., GoogleNet (Szegedy et al., 2015), AlexNet (Krizhevsky et al.,21

2012), and VGGNet (Simonyan and Zisserman, 2014)) reaching unprecedented performance on large-scale benchmark datasets such22

as ImageNet (Deng et al., 2009) and CIFAR (Krizhevsky, 2009). By design, deep neural networks function similarly to phylogenetic23

analyses by extracting a hierarchy of simpler to more complex forms of abstraction in hidden layers—simpler features at lower24

depths (e.g., edges and texture) are non-linearly composed to form complex features at higher depths (e.g., eyes and fins). This has25

motivated several recent architectural innovations in deep learning such as ResNet (He et al., 2016), ResNeXt (Xie et al., 2017),26

and DenseNet (Huang et al., 2017), that have enabled the learning of deep and complex hierarchy of hidden features. However, the27

innate hierarchy extracted by neural networks from data is not necessarily tied to known evolutionary relationships in real-world28

applications. In this work, we explore the question: Is it possible to make use of known phylogenetic classes to inform the learning29

of features, and can it lead to better generalization and robustness?30

Image classification in real-world biological problems such as species classification is fraught with several challenges that limit31

the usefulness of state-of-the-art deep learning methods trained on benchmark datasets. First, real-world images of specimens suffer32

from various data quality issues such as damaged specimens and occlusions of key morphological features (Fox and Hartman, 2019),33

which can crucially impact classification performance. Figure 1 shows some relevant examples. Second, real-world datasets for34

classification are limited in their scale in comparison to benchmark datasets, with limited representative power in terms of number35

of species (Rathi et al., 2018; Ogunlana et al., 2015; Costa et al., 2013; Larsen et al., 2009; Lee et al., 2008; Allken et al., 2019; Rauf36

et al., 2019; Ding et al., 2017), or number of images per species (Rodrigues et al., 2010; Lee et al., 2003). This is especially true for37

rare species (Villon et al., 2021). Third, the hierarchy of features extracted by conventional deep learning frameworks, while useful38

for prediction, do not conform to known biological hierarchies and hence do not directly translate to advancing scientific knowledge,39

which is often a more important goal than improving predictive performance for a scientist (Karpatne et al., 2017). While these40

challenges are applicable to species classification problems involving a variety of taxa, in this study we focus on the problem of41

classifying the species of a fish specimen given a 2D image. We selected fishes for our study because they are a highly diverse,42

well-studied, and an ancient group of animals that comprise almost half of all vertebrate species (Helfman et al., 2009). Further, the43

phylogenetic relationships of fishes are well-studied (Betancur-R et al., 2017; Hughes et al., 2018), and the taxonomic classification44

of fishes is generally aligned with phylogeny.45

Early work on automated fish classification used basic computer vision and image processing techniques to extract shape features46

such as landmarks and measurements and used tools such as decision trees, discriminant function analysis, and support vector47

machines to classify species based on these features (Lee et al., 2003, 2008; Larsen et al., 2009; Ogunlana et al., 2015). Others have48

applied scale-invariant feature transform (SIFT) and principal component analysis (PCA), and then used nearest neighbor search49

for classification (Rodrigues et al., 2010). Only recently has the use of raw image features in its intrinsic high-dimensionality become50
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Fig. 1: Fish images from museum collections, demonstrating the challenges of curating fish image datasets.

more feasible, likely because of advances in computational capabilities. For example, (Hasija et al., 2017) employed graph-embedding51

discriminant analysis, which reduces the image set matching problem to a point-to-point classification problem.52

Advances in computing power have also enabled researchers to use more flexible and powerful classification methods such as53

ConvNets, especially designed to work with high-dimensional images. The basic idea of a ConvNet is to learn convolutional kernels54

(or filters) of a fixed size at every layer, that are applied to the input image to generate multiple channels of image outputs for the55

next layer, followed by a final block of a max-pooling layer and a softmaxed fully connected layer to return class labels (Goodfellow56

et al., 2016). The number of feature maps is referred to as the width of the ConvNet, while the number of layers is termed as its57

depth. To further boost ConvNet’s performance, image preprocessing techniques can be used. For example, (Rathi et al., 2018)58

pre-processed the fish images by means of Gaussian blurring, erosion and dilation and Otsu thresholding (Otsu, 1979).59

More recently, researchers have taken advantage of state-of-the-art architectures available in the field of deep learning for biological60

classification. For example, in a work by (Rauf et al., 2019), the technique of transfer learning was explored for fish classification,61

where neural network models pre-trained over large and diverse benchmark datasets were used as building blocks and then fine-62

tuned on the fish images. Transfer learning eliminates much of the arduous task of hyper-parameter tuning otherwise required in the63

field of deep learning, and allows researchers to build on top of well-tested benchmark neural network models. It also saves model64

development time and boosts classification performance, especially when the available task-specific training sets are small (Yosinski65

et al., 2014). This technique has already been successfully applied in other prior works on fish classification (Siddiqui et al., 2018;66

Allken et al., 2019) and fish detection (Salman et al., 2019).67

Extensions of ConvNets have also been used for several tasks such as fish detection, counting, and classification. For example,68

(Salman et al., 2019) have used R-CNNs (Girshick et al., 2014) along with background subtraction and optical flow features to detect69

fish in underwater videos. Similarly, (Jalal et al., 2020) attack the problems of fish detection and classification using a YOLO deep70

neural network (Redmon et al., 2016) combined with a mixture of Gaussians model and optical flow features. In a different approach,71

(Villon et al., 2020) post-process the prediction of a deep learning model with confidence thresholding to obtain a misclassification72

risk estimation, which is particularly useful for identifying rare species. Finally, (Villon et al., 2021) have proposed using few-73

shot learning (Wang et al., 2020) to achieve better results on rare species. This, however, is at the expense of less robustness at74

distinguishing species that look too similar.75

Our current method aims for a generic method that incorporates hierarchy to improve neural network models. Here we use76

taxonomic relationships from fish classification to serve as an example training dataset. Specifically, we present a novel deep learning77
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4 Hierarchy-guided Neural Networks for Species Classification
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Fig. 2: Schematic diagram of HGNN. The top ResNet predicts the species (s) of the input fish image (x), while the bottom ResNet

predicts the genus (g). To leverage the relationship between genus and species classes for guiding the hidden features of our neural

network, we harness the genus features learned at an intermediate depth (yg) of the genus ResNet and aggregate them with the

species features learned at the ys level of the species ResNet. The combination of both species and genus features are then used to

make species class predictions. This architecture is described in details in the Materials and Methods section.

architecture termed Hierarchy-Guided Neural Network (HGNN) that incorporates known hierarchy among classes (available as a78

two-level taxonomy: genus and species) to guide the learning of features at the hidden layers of the neural network. This work builds79

on a history of multi-label and hierarchical classification techniques using pre-built taxonomies (Silla and Freitas, 2011; Zhang and80

Zhou, 2013). Our proposed architecture shown in Figure 2 consists of two sub-modules (top and bottom rows) of ResNet models81

operating in parallel. We use the ResNet architecture in our work because it is currently among the most widely-used and best-82

performing ConvNet models for benchmark computer vision problems, including fish identification (Khan et al., 2020; Jalal et al.,83

2020; Villon et al., 2020; Ditria et al., 2020a), although our proposed idea of HGNN is generic and can work with any deep learning84

architecture. In Figure 2, the top row ResNet predicts the species class s of the input fish image x, while the bottom row predicts85

the genus class g. These ResNets learn a hierarchy of features (from simple to complex) at their hidden layers useful for the tasks86

of species and genus classification, respectively. While both these sub-modules can be viewed as learning separate features, we know87

that the genus features learned in the bottom ResNet represents features at a higher level of abstraction that are directly useful for88

the task of species classification. Building upon this knowledge in our proposed HGNN framework, we harness the genus features89

learned at an intermediate depth Hg of the genus sub-module, and aggregate them with the species features learned at the Hs depth90

of the species sub-modules. The combination of both species and genus features is then used for the task of species prediction.91

While using taxonomic information for automated fish classification is not novel (Kutlu et al., 2017), to our knowledge, the92

only body of work that has researched it before in the context of deep learning is by (dos Santos and Gonçalves, 2019). However,93

our proposed method is distinguished in two ways. First, while they have used the family and order information, we use the genus94

information. We argue that incorporating the genus yields more information gain as it involves more discriminative features than the95

order and family. Second, their model only uses the taxonomic information in the last fully-connected layer, while our philosophy96

is to use it at a convolutional level of the network as that allows for capturing localized visual features that are taxonomically97

plausible.98

We demonstrate the effectiveness of our proposed HGNN model in learning meaningful, diverse, and robust features at the99

hidden layers of the neural network leading to better generalization performance in the target application of fish species classification,100
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Fig. 3: Species that belong to the same genus exhibit features that are similar because of common ancestry.

even in the paucity of training data. We also empirically test the robustness of our model to synthetically generated image occlusions,101

where salient regions of the input images were intentionally occluded to adversely affect classification performance. We observe that102

by anchoring our learned features to the biologically known hierarchy among genus and species classes, our model is much more103

robust to occlusions as compared to a data-only ‘black-box’ model that only uses image data and predicts the species with no genus104

information (i.e. using only the top ResNet in Figure 2).105

Materials and Methods106

HGNN framework107

We first present our proposed HGNN architecture that incorporates hierarchy among genus and species classes in neural network108

construction. We consider the problem of predicting the target species s given input image x using a composition of neural network109

layers. We are also given the genus level class g for every input x.110

We make two observations to motivate our proposed HGNN framework. First, we assume that the hierarchical taxonomy of111

genus and species classes captures a notion of derived similarity in terms of the discriminatory input features of every class. This is112

true, as illustrated in Figure 3, in the context of fish classification because species classes that belong to the same genus are more113

closely related phylogenetically than species classified in different genera. In the case of the species and genera analyzed here, with114

only a few exceptions, this is the case (Supporting Information, Table ??). As a result, species that map to the same genus g should115

generally share similar features at the internal representation of the neural network (e.g., filters learned at the convolutional layers).116

This observations seems to align with some earlier work (dos Santos and Gonçalves, 2019). Second, while the mapping from s to117

g is one-to-one, the inverse mapping from g to s is not unique. Hence, along with the shared features learned for every g, we also118

need to learn unique features for every s to differentiate between species belonging to the same genus.119

Building upon these two observations, we consider the following architectural composition of our neural network as shown in120

Figure 2. First, we use a functional block of layers Hg to extract hidden features at some intermediate depth of the neural network121

that are useful for predicting g as well as s. These hidden features are passed to another functional block Gg that predicts g. The122

complete chain of function compositions from x to g can be represented as Fg(x), where Fg = Gg ◦Hg and ◦ represents the function123

composition operator. Second, we learn another functional block Hs that extracts hidden features unique to every species. Finally,124
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6 Hierarchy-guided Neural Networks for Species Classification
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Fig. 4: Comparison among different models, showing the impact of data augmentation and transfer learning on the classification

performance of HGNN models.

the features from Hs and Hg are combined using matrix addition and fed to another functional block of layers, Gs that predicts125

the target species s. The composition of functions mapping x to s can thus be given by f(x), where F = Gs ◦ (Hg +Hs).126

To train the functional blocks in the complete HGNN architecture, we consider minimizing the following objective function:127

min
Hs,Hg,Gs,Gg

λs Ls(s, ts) + λg Lg(g, tg) (1)

where Ls and Lg are loss (or error) functions defined on the space of species labels and genus labels, respectively, on the training set.128

Specifically, these loss functions act as a measure of difference between the correct classification (ts and tg), and the prediction (s129

and g) on the training samples, respectively. We used the cross-entropy function as our preferred choice of loss function. Further, λs130

and λg are trade-off hyper-parameters balancing the relative importance of Ls and Lg, respectively; their values are automatically131

assigned using the adaptive smoothing algorithm proposed in (Murugesan et al., 2016). Both the softmaxed outputs of our neural132

network model, s and g, are probability vectors whose entries range from 0 to 1 proportional to the model’s credence about each133

species and genus class, respectively.134

As mentioned in the Introduction, our model is composed of two identical ResNets. The first ResNet comprises of Hg and Gg,135

while Hs and Gs constitute the other. In our experiments, we found that the best point to extract the intermediate genus features136

(i.e. the point between Hg and Gg) is right before the final max-pooling layer. The same point in the other ResNet is used to137

combine the genus and species features. Instead of initializing our neural network parameters (or weights) with arbitrary values, we138

used pre-trained weights of ResNet trained on the ImageNet benchmark dataset as a good starting solution for our target problem139

of fish classification. Then, by optimizing the loss function in equation (1) on the fish training dataset of interest, we fine-tuned the140

parameters of the entire network to be more specialized for our target task. This technique, which is called transfer learning (Tan141

et al., 2018a), is widely adopted in the field of deep learning particularly in applications of computer vision, and has proven its142

effectiveness in scenarios with data paucity. In our preliminary experiments, as shown in Figure 4, we have found using this mode143

of transfer learning to increase the model’s average performance by about 35%.144
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Evaluation145

Data Collection and Pre-processing146

Our dataset comprises of images contributed by five museums that participated in the Great Lakes Invasives Network Project (GLIN).147

More information about this project can be found in the Data Availability section. This dataset, as is typical for biological species148

images, is highly imbalanced; some species have only a few images, while others have thousands. To alleviate this problem, and149

for computational feasibility, we created a number of subsets of the dataset for the purpose of training and evaluation. Specifically,150

we created two subsets that differ in terms of classification complexity (or difficulty). The first subset is called Easy and comes151

from a single museum (Illinois Natural History Survey). Therefore, its images are homogeneous in terms of lighting and camera152

conditions. The second is called Hard and its images are aggregated from across all museums, making it a larger, more diverse, and153

more complex dataset. Comparing results from these two datasets helps illustrate the effects of dataset complexity on classification154

performance. We further created two subsets of the Easy dataset by capping the number of images per species in the Easy dataset155

to 50 or 100. These different dataset sizes help illustrate how training data paucity impacts the model’s classification performance.156

Henceforth, the suffix of the datset will refer to the number of images per species. For example, Easy/100 has 100 images per157

species. Table 1 gives a statistical summary of each dataset considered in this study. More details can be found in the Supporting158

Information document, Tables ??, ??, and ??159

The acquired fish images typically contained a ruler, specimen label(s), and species tags along with the fish specimen. To retain160

only the fish region in the images, we trained a 2D Unet model (Goodfellow et al., 2016) using a small portion of our data in the161

ANTsRNet software (Tustison et al., 2018). We manually segmented the background, fish, scale bar, and field notes on 550 images162

using 3D Slicer (Kikinis et al., 2014). We used weights from the trained model to automatically mask and crop the fish specimen163

portion of the remainder images. With the exception of rare cases where the fish overlapped the scale bar and/or the field notes,164

which were discarded, this pipeline resulted in successful generation of RGB fish-only images at the original resolution. The pipeline165

was implemented in R using ANTsR (Avants, 2019) and ANTsRNet.166

Once the cropped fish images were obtained, we performed data augmentation by randomly applying standard image167

transformations used in deep learning for computer vision, including translations of up to 0.25 of the image dimension, flips168

with a probability of 30%, rotations of up to 60◦, and Gaussian random intensity variations using PCA with σ = 0.1 of the color169

channel value (Krizhevsky et al., 2012). Data augmentation is critical when using ConvNets for image processing and is a common170

practice for fish classification (Villon et al., 2020, 2021), especially when the available data is limited (Shorten and Khoshgoftaar,171

2019). By training the model on variations of the same image, the model is deterred from learning nuanced patterns in the images172

that can lead to spurious performance, such as the intensity of the background, and encouraged to be robust under variable input173

conditions. Our preliminary results, as shown in Figure 4, indicate that data augmentation boosted the model’s accuracy by about174

2.8%.175

Evaluation Setup for Comparing Classification Performance176

In the process of training black-box neural network architectures, it is common to observe higher generalization errors when the177

amount of training data is small. However, in HGNN, we show that by including a biological knowledge-guided loss term (see178

Equation 1) in the learning objective of neural networks, we can achieve reasonably good generalization performance even in179

situations where training data are scarce. This is in alignment with the observations made in a previous work by (Jia et al., 2019).180
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8 Hierarchy-guided Neural Networks for Species Classification

(a) Barbels and fins (b) Eye (c) Label paper

Fig. 5: Saliency maps of different fish images obtained for Blackbox-NN. Pixels in red denote image regions with high saliency

scores, indicating higher importance of those regions for fish classification as perceived by the model.

To test for this hypothesis in the context of fish classification, we compared the classification performance of our proposed model181

to a baseline black-box neural network architecture (termed Blackbox-NN) comprising of a ResNet of the same size and shape182

as that of one of the ResNets of our proposed model. Specifically, we compared the performance of HGNN and Blackbox-NN183

on each of the three data subsets mentioned in Table 1. For each of these subsets, we used 64% of the data for training, 16% for184

validation, and the remainder for testing. To measure classification performance, we used the f1-score of the correct species class185

(Tan et al., 2018b). Throughout this paper, we used box plots to show the model’s performance over five random runs of neural186

network training. To obtain the best-performing neural network models, we performed an explorative Näıve-Bayes approach for187

hyper-parameter search and fine-tuning. Then, we picked those parameters that performed best on the validation set.188

Tools for Deep Learning Visualization and Assessing Robustness to Adversarial Occlusions189

Saliency maps (Simonyan et al., 2014) are heatmaps of the gradients of a neural network model’s output with respect to its input.190

In other words, a saliency map shows how strongly do changes in pixel values of a certain region of the image cause a change in the191

species’ probability, highlighting the areas of the image that are most decisive for the classification problem. While other tools, such192

as GradCAM (Selvaraju et al., 2017), have been used for the same purpose (dos Santos and Gonçalves, 2019), we found saliency193

maps to be more powerful and capable of detecting the most subtle visual features. Figure 5 shows some examples of saliency maps194

obtained for Blackbox-NN. The code we used for generating these saliency maps is inspired by FlashTorch (Ogura and Jain, 2020),195

an implementation tool based on Guided Back-propagation (Springenberg et al., 2015). As we can see in Figure 5, the baseline196

model is quite sensitive to different features of the input fish image for different species, including barbels and fins in Figure 5a197

and the eye in Figure 5b. Saliency maps are also a good debugging tool as they can reveal cases where the model is “cheating” or198

looking at irrelevant features of the image that are not biologically meaningful for the purpose of fish classification. An example of199

such a case is presented in Figure 5c, where the model is incorrectly picking up pixels around the note on the label paper in the200

image as regions with high saliency scores. In this way, saliency maps can be used for “interpreting” the learned features of neural201

network models.202

Along with offering interpretability, saliency maps can also be used for investigating the resiliency (or robustness) of neural203

networks to adversarial occlusions. For example, by occluding regions (or patches) in the input image with high saliency scores, a204
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Fig. 6: Classification performance across different subsets of the GLIN dataset for HGNN and Blackbox-NN. By definition, as

the boxes for the two models do not overlap for Easy/50 and Hard, it means there is at least 95% confidence (McGill et al., 1978)

that the median accuracy of HGNN is higher than Blackbox-NN

neural network model’s reliability at making correct predictions can be stress-tested even when it is starved off information from205

salient image regions. To measure the robustness of a model at every round of adversarial occlusions, we calculated the average206

probability of the correct class predicted by the model on an input image x, averaged over all test images as Ex(Pts (x)). The207

higher this metric, the less confused the model is about the input. Further, by measuring drops in this metric as a consequence of208

adversarial occlusions, we can evaluate if a model is too sensitive to selective regions of the input image (with the highest saliency209

score contributions), which when obstructed can confuse a model into making incorrect predictions. We make use of this metric to210

assess the robustness of Blackbox-NN and HGNN in our experiments.211

Results212

Effect of Dataset Complexity and Training Size213

Figure 6 shows a comparison between HGNN and Blackbox-NN on three subsets of the GLIN dataset: Easy/100, Easy/50, and214

Hard. Two observations can be made from this figure. First, as datasets become more complex (e.g., the Hard dataset) and/or215

subject to less training data (e.g., the Easy/50), the performance of the model deteriorates. Second, and more importantly, the216

impact of our method is more pronounced exactly when data is scarce and the dataset is complex. As Figure 6 shows, while the217

median performance of HGNN is almost equal to that of Blackbox-NN for Easy/100, which is the easiest of the datasets, the218

former clearly outperforms the latter on both Easy/50 and Hard. This highlights our model’s power and ability to compensate for219

the relative lack of data with respect to dataset complexity by incorporating biological knowledge.220

Effect of Adversarial Occlusion221

To demonstrate HGNN’s resiliency to adversarial occlusions, we iteratively cover regions (or patches) in an image with the highest222

saliency scores and report the probability of the correct class predicted by the model over the occluded image. Figure 7 shows an223

example of this process on an illustrative fish specimen from the Easy/50 dataset. From left to right, the figure shows a progression224
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from an image with no occlusion towards applying more patches of adversarial occlusions (seen as green square patches) on the225

same image. Below each image is the model’s predicted probabilities over the 5 most probable species sorted in descending order,226

for both HGNN (top row) and Blackbox-NN (bottom row). We make a number of observations here. First, all of the saliency227

maps highlight the features of importance for classifying this fish, namely the eye, nostrils, and the dorsal fin. However, notice228

that the saliency maps for HGNN are slightly different from that of Blackbox-NN, demonstrating that the two models are not229

looking at the image in the exact same way (i.e., they have distinct saliency maps). This difference is important for making a fair230

comparison between the two models. Second, even when there is no occlusion, while Blackbox-NN makes the correct prediction, its231

probability of the correct species class is significantly lower than that of HGNN’s. This demonstrates HGNN’s ability to extract232

more useful and generalizable features from images for fish classification. Third, after applying two patches of occlusions (in the233

middle column), we notice that even though both models get the species right, Blackbox-NN’s second guess is not within the234

correct genus. Finally, and most importantly, after applying four patches of occlusions (in rightmost column), we notice that while235

both models start predicting the wrong class, HGNN is still within the correct genus, while Blackbox-NN is not. It follows that236

the Blackbox-NN model is not learning phylogenetic features that could be used in other tasks, such as trait segmentation. To237

drive this point home, we automate this process for the entire dataset and compute the average predicted probability of the correct238

class across all images, as a function of the number of adversarial occlusions applied to the images. Table 2 reports the results for239

each number of patches ranging from 0 (no occlusion) to 4. We can see that HGNN shows higher average probability of the correct240

class across all number of patches in comparison with Blackbox-NN. This demonstrates HGNN’s ability to generalize and handle241

image imperfections better, especially when the most informative (or salient) regions of the image are occluded.242

Discussion243

In this paper, we have shown that embedding the hierarchical taxonomy of the genus and species classes in the design and learning of244

neural networks leads to solutions with better generalization, superior accuracy, and better resiliency to adversarial occlusions. Most245

of the deep learning methods currently in the literature perform tasks without learning biologically-relevant features. Our proposed246

method leverages a particularly important aspect of species classification—the hierarchical arrangement of taxon names—which247

improves model interpretability and biological-validity. The aim of our method is to provide biologists not only with the correct248

classification, but also with a plausible one when it fails.249

An ultimate goal of this research is to augment biological information on the connections among phenotype, genotype and250

environment into deep learning, so that an understanding of genealogical relationships among species is discovered by our neural251

networks. While we have not fully investigated these relationships here, a future direction of our project is to explore how the252

anatomical features of species learned by our models relate to the environments the species were collected from and how closely253

related the species are. This would increase understanding of how the environment and genealogy shape the phenotypes of species.254

Moreover, we plan to investigate how such learned features aid us in other relevant tasks, such as segmenting the phenotypic traits255

of species. Finally, we also plan to exploit other forms of hierarchical information such as phylogenetic tree-based distances among256

species to better understand how this informs biologically-informed neural network feature learning.257

Recent advances in image computation are enabling automated methods of extracting phenotypic data from specimen images.258

We hope that our present framework for leveraging biological information in training machine learning models will have a direct259

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.01.17.427006doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427006
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

H
G
N
N

Not
ro

pi
s nu

bi
lu

s - 25

Not
ro

pi
s leu

cio
du

s - 24

Not
ro

pi
s do

rs
al

is
- 22

Phe
na

co
bi

us
m

ira
bi

lis
- 37

Not
ur

us
no

ct
ur

nu
s - 36

0.58 0.02 0.02 0.02 0.01

Not
ro

pi
s nu

bi
lu

s - 25

Not
ro

pi
s leu

cio
du

s - 24

Not
ro

pi
s do

rs
al

is
- 22

Lep
om

is
cy

an
ell

us
- 8

Not
ro

pi
s te

xa
nu

s - 29

0.09 0.08 0.04 0.03 0.03

Not
ro

pi
s leu

cio
du

s - 24

Not
ro

pi
s nu

bi
lu

s - 25

Lep
om

is
cy

an
ell

us
- 8

Not
ro

pi
s vo

lu
ce

llu
s - 30

Not
ro

pi
s te

xa
nu

s - 29

0.07 0.06 0.03 0.03 0.03

B
la
c
k
b
o
x
-N

N

Not
ro

pi
s nu

bi
lu

s - 25

Phe
na

co
bi

us
m

ira
bi

lis
- 37

Not
ro

pi
s do

rs
al

is
- 22

Not
ro

pi
s wick

liffi
- 31

Not
ro

pi
s te

les
co

pu
s - 28

0.42 0.03 0.03 0.02 0.02

Not
ro

pi
s nu

bi
lu

s - 25

Phe
na

co
bi

us
m

ira
bi

lis
- 37

Not
ro

pi
s bu

cc
at

us
- 20

Not
ro

pi
s wick

liffi
- 31

Not
ro

pi
s te

les
co

pu
s - 28

0.14 0.05 0.04 0.03 0.03

Alo
sa

ch
ry

so
ch

lo
ris

- 0

Not
ro

pi
s nu

bi
lu

s - 25

Not
ro

pi
s do

rs
al

is
- 22

Not
ur

us
gy

rin
us

- 34

Not
ro

pi
s te

les
co

pu
s - 28

0.04 0.04 0.03 0.03 0.03

Fig. 7: Saliency maps showing the effect of adversarial occlusions (shown as green square patches) on the predicted probabilities of

the species class produced by HGNN (top row) and Blackbox-NN (bottom row) on an example fish image. The left-most column

corresponds to the case with no occlusion, while the number of occlusions increase as we go from left column to the middle column

(2 patches) to the right-most column (4 patches).

impact on several biologically relevant computer vision tasks, including species detection (Li et al., 2016), tracking and counting260

(Spampinato et al., 2008), segmentation (Chuang et al., 2013; Yao et al., 2013), and classification (Ding et al., 2017; Rathi et al.,261

2018; Sarigul, 2017). This automation effort is essential as manual annotation is laborious and requires expertise (Villon et al.,262

2020), especially with the large amount of data that has become recently available (Ditria et al., 2020a). Moreover, it has been263

shown that automation can be more accurate than human annotation (Ditria et al., 2020b).264

In this paper, we have focused on teleost fishes as a model system for species classification due to their high diversity and265

importance economically and scientifically. Fishes are the targets of recreation (Arlinghaus and Cooke, 2009), aquaculture and266

fisheries (Lynch et al., 2016), and conservation (Arthington et al., 2016). Fishes make up more than half of all vertebrates and they267
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12 Hierarchy-guided Neural Networks for Species Classification

play critical roles in Earth ecosystems (Near et al., 2012; Villon et al., 2020). However, our framework of HGNN is quite generic268

and can be potentially applied to incorporate hierarchical knowledge into machine learning models for a broad variety of other269

biological problems involving phenotypic trait discovery and understanding in other taxonomic groups.270
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Table 1. Statistics of the subsets of the GLIN dataset used in this study for training and evaluation.

Dataset # of images # of species # of genera # of images per species

GLIN (All) 63758 575 187 1 to 7935

Hard 4882 102 26 30 to 50

Easy/100 3762 38 11 63 to 100

Easy/50 1900 38 11 50

Table 2. Average probability of the correct species class predicted by Blackbox-NN and HGNN over Easy/50, as a function of the number

of adversarial occlusions applied to every image. From left to right, we start with non-occluded images and progressively add more patches of

occlusions.

Model
Number of Occlusion Patches

0 1 2 3 4

Blackbox-NN 0.473 0.355 0.291 0.232 0.187

HGNN 0.482 0.369 0.307 0.256 0.215
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