

In vitro maturation of *Toxoplasma gondii* bradyzoites in human myotubes and their metabolomic characterization

Authors

Céline Christiansen¹, Deborah Maus¹, Ellen Hoppenz¹, Mateo Murillo-León^{4,5,6}, Tobias Hoffmann², Jana Scholz¹, Florian Melerowicz¹, Tobias Steinfeldt^{4,5}, Frank Seeber³, Martin Blume^{1,7*}

1 NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany

2 ZBS 4: Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4, Robert Koch-Institute, 13353, Berlin, Germany

3 FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, 13353, Berlin, Germany

4 Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany.

5 Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.

6 Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.

7 Lead contact

* Corresponding author

Martin Blume

Junior Group 2

Robert Koch-Institute

Seestr. 10

13353 Berlin

Germany

Email: blumem@rki.de

Abstract

The apicomplexan parasite *Toxoplasma gondii* forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. However, current *in vitro* models do not allow long-term culture of these cysts to maturity. Here, we developed a human myotube-based *in vitro* culture model of functionally mature tissue cysts that are orally infectious to mice and tolerate exposure to a range of antibiotics and temperature stresses. Metabolomic characterization of purified cysts reveals global changes that comprise increased levels of amino acids and decreased abundance of nucleobase- and tricarboxylic acid cycle-associated metabolites. In contrast to fast replicating tachyzoite forms of *T. gondii* these tissue cysts tolerate exposure to the aconitase inhibitor sodium fluoroacetate. Direct access to persistent stages of *T. gondii* under defined cell culture conditions will be essential for the dissection of functionally important host-parasite interactions and drug evasion mechanisms. It will also facilitate the identification of new strategies for therapeutic intervention.

1 **Introduction**

2 *Toxoplasma gondii* is an apicomplexan parasite that infects most warm-blooded animals,
3 including an estimated third of all humans¹. Similar to other infectious protozoa, including the
4 apicomplexan *Plasmodium vivax*, the kinetoplastidae *Trypanosoma cruzi* and *Leishmania* spp.,
5 *T. gondii* forms specialized persistent stages that resist immune responses and many medical
6 treatments². *T. gondii* bradyzoites reside, surrounded by a glycan-rich cyst wall, predominantly in
7 brain and muscle tissue and can be transmitted through ingestion of undercooked meat products³.
8 These largely asymptomatic infections can cause recurring disease in immune-weakened
9 individuals that are lethal if untreated⁴.

10 The rapid proliferation of tachyzoites and the slow replication or dormancy of bradyzoites exert
11 distinct demands on the metabolism of *T. gondii*. The rate of proliferation and the metabolic state
12 are closely interrelated. They have been shown to independently affect lethality of antibiotics
13 against bacterial microbes, with metabolism being the dominant factor⁵. While multiple
14 metabolomic investigations on the tachyzoite stage of *T. gondii* revealed unexpected features of
15 key metabolic pathways such as the GABA-shunt of the tricarboxylic acid (TCA) cycle, a
16 constitutively active gluconeogenic fructose 1,6-bisphosphatase and the presence of a non-
17 oxidative pentose phosphate pathway⁶⁻⁸, the metabolism of bradyzoites has only been
18 characterized indirectly⁹, largely due to experimental constraints. In contrast to tachyzoites,
19 bradyzoites depend on the turnover of the storage polysaccharide amylopectin by glycogen
20 phosphorylase¹⁰, the hexose kinase¹¹ and on a dedicated isoform of lactate dehydrogenase¹².
21 This indicates that glycolytic degradation of glucose plays an important role in bradyzoites.
22 Similarly, the relevance of mitochondrial and amino acid metabolism has been inferred.
23 Bradyzoite formation is induced by a number of electron transport inhibitors, including
24 atovaquone, rotenone, oligomycin and antimycin^{13,14}. Moreover, *T. gondii* cysts survive extended
25 atovaquone exposure *in vivo*¹⁵⁻¹⁷, indicating that their mitochondrial electron transport chain is not
26 strictly essential. Similarly, bradyzoites can also be induced by limiting supply of exogenous amino
27 acids¹⁴ and their viability depends on proteolysis in their plant-like vacuolar compartment¹⁸ and
28 on autophagy¹⁹. Collectively, these data indicate a substantial remodeling of metabolic
29 homeostasis in bradyzoites as a strategy to cope with nutrient limitations²⁰. This proposed
30 metabolic shift may also be associated with tolerance against many antiparasitic treatments, as
31 the metabolic state of microbes has important implications for the lethality of antimicrobials⁵.

32 However, our ability to investigate such mechanisms remains very limited by the lack of adequate
33 *in vitro* culture models². Current methods to experimentally generate mature *T. gondii* tissue cysts
34 are confined to murine infections with cystogenic *T. gondii* strains^{21,22}. The number of obtainable
35 cysts from this *in vivo* model is low, precluding their metabolic analysis with current mass
36 spectrometry-based approaches. In contrast, *in vitro* models are scalable and the stage
37 conversion of *T. gondii* can be induced by a variety of treatments, such as alkaline, heat and
38 chemical stress²³, nutrient starvation²⁴, excess adenosine²⁵, inhibitors of parasite protein
39 kinases²⁶ as well as host cell-dependent factors such as cell cycle arrest and low glycolytic
40 flux^{20,27,28}. In addition, the infection of C2C12 murine skeletal muscle cells, neurons^{29,30} and
41 primary murine brain cells³¹ facilitates spontaneous stage conversion of cystogenic strains.
42 Generally, maturation times of *in vitro* cysts remain brief, but cysts develop detectable tolerance
43 against short exposure to low doses of pyrimethamine after three days¹⁰ and become orally
44 infectious to mice at high doses after five days of culture³². However, establishment of long-term
45 cultures that allow development of pan-antimicrobial- and temperature stress-tolerant cysts^{33,34}
46 remains a challenge. Incomplete differentiation leads to expansion of proliferating parasite
47 populations and subsequent host cell lysis that limits the scale and duration of current *in vitro*
48 culture systems.

49 Here, we developed a human myotube-based *in vitro* culture system that is scalable and enables
50 long-term maturation of *T. gondii* cysts. The cysts resemble *in vivo* cysts in their ultrastructure,
51 tolerance to antiparasitics and temperature stress and infectiousness to mice. Mass spectrometry-
52 based metabolic profiling revealed a distinct metabolome that renders tissue cysts insensitive
53 towards the aconitase inhibitor sodium fluoroacetate (NaFAc).

54

55 **Materials and Methods**

56 **Host cell lines and cultivation**

57 All cultures were maintained in a 37 °C humidified CO₂ (10 %) incubator as described previously⁷.

58 Briefly, human foreskin fibroblast (HFF) monolayers were cultured in Dulbecco's Modified Eagle's
59 Medium (DMEM) (Gibco) supplemented with 25 mM glucose (Sigma-Aldrich), 4 mM L-glutamine
60 (Thermo Fisher Scientific), 1 mM sodium pyruvate (Capricorn Scientific), 100 U/ml penicillin, 100
61 µg/ml streptomycin (Thermo Fisher Scientific) and 10 % heat-inactivated calf serum (Capricorn
62 Scientific).

63 The immortalized human myoblast cell line KD3 (a kind gift of N. Hashimoto; ³⁵), initially derived
64 from normal subcutaneous female muscle tissue, was cultured in DMEM supplemented with 25
65 mM glucose, 4 mM L-glutamine, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 µg/ml
66 streptomycin, 2 % Ultroser G (Cytogen GmbH) and 20 % heat inactivated fetal bovine serum
67 (FBS) (Capricorn Scientific). The differentiation of myoblasts into myotubes was induced at 70 %
68 confluence by changing medium to DMEM supplemented with 25 mM glucose, 4 mM L-glutamine,
69 1 mM sodium pyruvate, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 % horse serum (HOS)
70 (Capricorn Scientific), 10 µg/ml human insulin (Sigma-Aldrich), 5 µg/ml human holo-transferrin
71 (PAN Biotech) and 1.7 ng/µl sodium selenite (Sigma-Aldrich) for five to seven days³⁵.

72 **Parasite strains cultivation and differentiation**

73 Type I strain RH³⁶, RH- Δ ku80 Δ hxgprt (RH Δ ku80)³⁷, GT1³⁸, Type II ME49³⁹, NTE³⁹, Pru-
74 Δ ku80 Δ hxgprt(BSG-4) (Pru-GFP)⁴⁰, Pru- Δ hxgprt tdTomato (Pru-tdTomato)⁴¹ and Type III NED⁴²,
75 VEG (⁴³, provided by G. Schares), were maintained *in vitro* in HFF monolayers grown in DMEM
76 supplemented with 25 mM glucose, 4 mM L-glutamine, 1 mM sodium pyruvate, 100 U/ml
77 penicillin, 100 µg/ml streptomycin and 1 % heat-inactivated FBS (tachyzoite medium). Freshly
78 egressed parasites were passaged by transfer to new HFF monolayers.

79 Differentiation of tachyzoites into tissue cysts was facilitated by CO₂ depletion at pH 7.4 if not
80 otherwise indicated. To avoid acidification, the medium was changed to low glucose (5 mM), 50
81 mM HEPES (Sigma-Aldrich) buffered Roswell Park Memorial Institute 1640 (RPMI) medium
82 (Gibco) supplemented with 4 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 %
83 HOS and 10 µg/ml human insulin, 5 µg/ml human holo-transferrin and 1.7 ng/µl sodium selenite

84 (bradyzoite medium). The cells were incubated at 37 °C and ambient CO₂ levels. Medium was
85 changed every two days and cells were washed once per week with phosphate buffered saline
86 (PBS). The day after infection, infected monolayers were washed with prewarmed PBS to remove
87 not invaded parasites. Medium was changed every second day and bradyzoite cultures were
88 washed with PBS once a week. For assays involving plate reader-based fluorescence
89 measurements, phenol red was omitted from the medium.

90 **Electron microscopy**

91 KD3 myotube cultures in T60 dishes were infected with 1.3x10⁶ Pru-tdTomato tachyzoites
92 corresponding to a multiplicity of infection (MOI) of 0.3 and bradyzoite formation was facilitated
93 for the indicated times in bradyzoite medium at ambient CO₂ levels. On the day of the experiment,
94 the medium was removed and samples were fixed by covering the monolayer with 1 %
95 paraformaldehyde (Sigma-Aldrich) and 2.5 % glutaraldehyde (Sigma-Aldrich) in 0.05 M HEPES
96 buffer (pH 7.4). After incubation at room temperature (RT) for 3 h, samples were sealed with
97 parafilm and stored in the fridge until further processing.

98 For plastic embedding, cells were scraped off with a cell scraper, sedimented by centrifugation
99 (3000 x g, 10 min) and washed twice with 0.05 M HEPES buffer for removing the fixative. The
100 washed cell pellets were mixed with 3 % low-melting point agarose (1:1 [v/v]) at 40 °C, centrifuged
101 (3000 x g, 5 min) and cooled on ice. The cell pellets were cut off from the agarose gel block using
102 a sharp razor blade and stored in 2.5 % glutaraldehyde in 0.05 M HEPES buffer. Post-fixation,
103 block contrasting and dehydration, embedding in epoxy resin was performed according to a
104 standard procedure ⁴⁴. Ultrathin sections with a thickness of ~65 nm were generated with an
105 ultramicrotome (UC7, Leica Microsystems, Germany) using a diamond knife (45°, Diatome),
106 collected on copper slot grids and contrasted with 2 % uranyl acetate (Thermo Fisher Scientific)
107 and 0.1 % lead citrate (Sigma-Aldrich).

108 Electron microscopy of ultrathin sections was performed with a transmission electron microscope
109 (Tecnai Spirit, Thermo Fisher Scientific) at 120 kV. Images were recorded with a side-mounted
110 CCD camera (Megaview III, EMSIS, Germany) and the montage function of the camera software
111 (Multiple Image Alignment, iTEM; EMSIS) was used to cover larger field of views with sufficient
112 pixel resolution.

113

114 **Immunofluorescence assay**

115 Uninfected host cells were grown in monolayers on 12 mm round glass coverslips (TPP) and
116 infected for 24 h, unless indicated otherwise. For bradyzoite experiments, independent of strain
117 and host cell background, myotube monolayers were infected with 1.3×10^4 extracellular
118 tachyzoites corresponding to an MOI of 0.1 and incubated for the indicated times. Samples were
119 fixed with 4 % paraformaldehyde in PBS for 20 min at RT followed by a washing step in 0.1 M
120 glycine/PBS (Thermo Fisher Scientific) and permeabilization for 20 min in 0.1 % Triton X-100
121 (Thermo Fisher Scientific) in PBS. Cells were blocked for 1 h in 2 % bovine serum albumin (BSA)
122 (Thermo Fisher Scientific) in PBS, stained for 1.5 h with primary and for 1 h with species-matched
123 secondary antibodies at RT and mounted on microscopy slides (Thermo Fisher Scientific) in
124 Fluoromount-G (Sigma-Aldrich) containing DAPI (1:3,000) (Thermo Fisher Scientific). Samples
125 were first stained with biotinylated *Dolichos biflorus* agglutinin (DBA) 1:1,000 (Sigma-Aldrich) and
126 primary monoclonal antibodies (mAb) (anti-rat CC2 1:1,000⁴⁵; anti-mouse myosin heavy chain
127 (MF20) 1:400 (eBioscienceTM); anti-mouse surface antigen 1 (SAG1) mab DG52 1:500⁴⁶ and
128 then with goat anti-rat-Alexa546 1:300 (Invitrogen), goat anti-rat-Alexa375 1:300 (Thermo Fisher
129 Scientific), rabbit anti-mouse-Cy3 1:400 (Dianova), donkey anti-mouse-Cy5 1:300 (Dianova) or
130 streptavidin-Alexa488 1:2,500 (Invitrogen), and streptavidin-Cy5 1:2,500 (Jackson antibodies).
131 Mitochondrial staining was done prior to fixation for 30 min with MitotrackerTM Deep Red FM
132 (Thermo Fisher Scientific) at 200 nM in tachyzoite medium at 37 °C in a humidified CO₂ incubator.
133 Cultures were chased for 15 min in tachyzoite medium and washed three times with PBS, fixed
134 with 4 % paraformaldehyde followed by immunofluorescence staining as indicated.
135 Monochromatic images were recorded on a Zeiss Apotome Imager equipped with a Plan-Fluar[®]
136 63x/1.45 oil M27 objective or on a Zeiss Axio Observer imager equipped with Plan-NeoFluar[®]
137 10x/0.3 or a Plan-Apochromat[®] 63x/1.4 oil objective and imported into ImageJ⁴⁷ for coloring and
138 the generation of overlays.

139 **Pepsin digestion and *in vitro* oral transmission assay**

140 KD3 myotube cultures in 6-well plates were infected with 6×10^4 extracellular Pru-tdTomato
141 tachyzoites corresponding to an MOI of 0.1 and bradyzoite formation was induced for the
142 indicated times in bradyzoite medium. Tachyzoite controls were infected for two days with 3.2×10^6
143 parasites corresponding to an MOI of 5 in tachyzoite medium. On the day of experiment, pepsin
144 digestion was performed for 20, 40 and 60 min at 37 °C as described previously⁴⁸ using a
145 modified pepsin solution. The buffered solution consisted of 1.01 g pepsin (Thermo Fisher

146 Scientific), 0.166 g glycine (Thermo Fisher Scientific), 0.129 g NaCl (Sigma-Aldrich) and 17.8 ml
147 of a 1 M HCl solution (Sigma-Aldrich), filled up to 200 ml with Milli-Q-water, resulting in a pH of
148 1.2 and supplemented with 5 mM glucose. Digestion was terminated by neutralization using a 1.2
149 % sodium bicarbonate solution (pH≈8.3) containing 0.0159 g/l phenol red as pH indicator dye.
150 Digested infected monolayers and uninfected and undigested controls were collected with a cell
151 scraper and harvested via centrifugation (1,200 x g, 10 min). The supernatant was then removed,
152 the pellets were resuspended in 450 µl DMEM tachyzoite medium and used to infect HFF cells in
153 a 96-well plate in triplicates, if not indicated differently. Parasite recovery was monitored by
154 measuring tdTomato fluorescence intensity (excitation 554 nm / emission 589 nm) in a plate
155 reader (Tecan Infinite M200 PRO) every second day for up to 21 days. Medium was carefully
156 exchanged without perturbing infected monolayers after each measurement.

157 For the oral transmission assay, scraped monolayers and controls were challenged by the
158 indicated combination of stresses: cold stress (4 °C for four and seven days), heat stress (55 °C
159 or 65 °C for 5 min), incubation at RT for two days, and pepsin digestion (60 min).

160 The resistance score (RS) was calculated as the difference of days passed between the detection
161 of vehicle-treated and treated tachyzoite cultures. This difference was normalized to the number
162 of days of total observation to account for differences in initial cyst loads and the resulting re-
163 growth periods between experiments:

$$164 \text{ RS} = 1 - (\#\text{days}_{\text{treatment}} - \#\text{days}_{\text{vehicle}}) / \#\text{days}_{\text{observed}}$$

165 An RS of 0 indicates no recovery from the treatment and a RS of 1 means equal growth to the
166 vehicle-treated control, indicating full resistance to the treatment.

167 ***In vivo* oral transmission assay**

168 KD3 myotube cultures in 6-well plates were infected with 1.9×10^5 Pru-tdTomato tachyzoites
169 corresponding to a MOI of 0.3. Bradyzoite formation was induced for indicated time in bradyzoite
170 medium. Tachyzoite cultures were prepared in T25 cell culture flasks by infecting KD3 myotubes
171 and human fibroblasts with 3.6×10^6 tachyzoites corresponding to an MOI of 2 for two days in
172 tachyzoite medium. The cultures were then prepared for shipping and sent to Freiburg at RT
173 within 24 h. The cultures were washed once with PBS, scraped in fresh respective medium and
174 harvested via centrifugation (1,200 x g, 10 min). The supernatant was removed after
175 centrifugation and the pellet was resuspended in 2 ml PBS and placed on ice. For tachyzoite

176 controls, scraped monolayers were syringed with a 27G needle (Sterican®) to release intracellular
177 parasites and counted in a Neubauer chamber (Roth). For cyst quantification, 10 µl of the cyst
178 solution was placed on a glass slide and cysts were counted based on the fluorescence of
179 tdTomato in a fluorescence microscope. For *in vivo* cyst generation, one C57BL/6JRj mouse was
180 infected with 1×10^3 *T. gondii* tachyzoites via intraperitoneal injection. 30 days post infection, the
181 mouse was euthanized by cervical dislocation. The brain was harvested in 2 ml PBS and minced
182 using an 18G and 21G needle (Sterican®) for cysts inspection via DBA staining as described
183 previously⁴⁹. Briefly, 50 µl out of 200 µl DBA-stained sample were pipetted in a clear-bottomed 96
184 well plate and quantified at 20x magnification using DBA positivity as a first criterion and tdTomato
185 positivity to confirm brain cyst.

186 **Mouse infections**

187 Groups of five 10-week-old male and female mice (C57BL/6JRj) were obtained from certified
188 breeders (Janvier Labs, Route du Genest, 53940 Le Genest-Saint-Isle, France) and kept under
189 specific-pathogen-free conditions in the local animal facility (Department for Microbiology and
190 Hygiene, Freiburg). All animal experiments were performed in accordance with the guidelines of
191 the German animal protection law and the Federation for Laboratory Animal Science
192 Associations. Experiments were approved by the state of Baden-Württemberg
193 (Regierungspräsidium Freiburg; reference number 35-9185.81/G-19/89).

194 Mice were infected by oral gavage with 50 or 500 freshly prepared *in vitro*-generated Pru-
195 tdTomato cysts, 10 freshly prepared *in vivo*-derived Pru-tdTomato cysts or 10^4 myotube- or HFF-
196 derived extracellular Pru-tdTomato tachyzoites in a total volume of 200 µl sterile PBS.

197 Infected mice were monitored and weighed daily for the duration of the experiment. Relative
198 weight loss was calculated based on the weight at the day of infection. Brains and blood from
199 moribund animals were collected starting from 12 days post infection. After 30 days post infection,
200 blood samples of all surviving mice were collected from the facial vein. Blood was allowed to clot
201 at RT for 30 min before centrifugation (500 x g, 10 min). Serum was collected and either
202 immediately analyzed or stored at -20 °C until further analysis. Animals were euthanized by
203 cervical dislocation. Brains were harvested and cysts per brain sample were blindly counted as
204 described previously:

205 Cysts/brain = cysts in 50 µl * 40

206 Seroconversion was evaluated via ELISA as described previously⁴⁹. Serum from non-infected
207 (n.i.) mice were included to calculate the cutoff:

208 cut-off = mean Absorbance^{450 nm-570 nm} (n.i.) + 2 x standard deviation of Absorbance^{450 nm-570 nm} (n.i.)

209 An individual cut-off was calculated per each individual ELISA. In order to compare the *T. gondii*
210 specific-antibody titers from different independent experiments a reactivity index was calculated
211 per sample:

212 Reactivity index = mean Absorbance^{450 nm-570 nm}/cut-off.

213 Reactivity index values higher than one were considered as positive.

214 **Cyst isolation**

215 Uninfected and infected myotubes were prepared. In both cases, two T150 dishes were pooled
216 into one sample. For bradyzoite samples, myotubes were infected with 3.2×10^6 Pru-tdTomato
217 tachyzoites corresponding to a MOI of 0.3 and cyst formation was induced for indicated time. On
218 the day of harvest, infected samples and uninfected host cell controls were placed on ice, medium
219 was removed and monolayers were washed three times with ice-cold PBS. Cells were then
220 harvested by scraping into 10 ml ice-cold 0.05 % BSA in PBS per T150 dish. Cysts were released
221 from the monolayer via forcing through a 23G needle (Sterican®) 25 times with a syringe and
222 collected via centrifugation (1,200 x g, 10 min, 0 °C). The supernatant was removed, the pellet
223 was resuspended carefully in ice-cold 2 % BSA in PBS containing 200 µl DBA-coupled beads
224 (preparation described below) and samples were incubated for 1 h at 4 °C with gentle shaking.
225 Subsequently, the samples were placed in a magnetic stand on ice, washed five times with 0.1
226 % BSA in PBS to remove cell debris, followed by two washing steps with PBS to remove residual
227 BSA. Cysts and beads were then collected via centrifugation (1,200 x g, 10 min, 0 °C), shock
228 frozen in liquid nitrogen and stored at -80 °C until extraction. Tachyzoite samples were generated
229 in T150 dishes by infecting myotubes and HFF cells with 3.2×10^7 tachyzoites corresponding to an
230 MOI of 3 for 48 h. Medium was replaced by ice-cold PBS and monolayers were scraped and
231 passaged through a 27G needle. Tachyzoites were filter-purified through a 3 µm filter (Whatman)
232 and PBS-washed by centrifugation (1,200 x g, 10 min, 0 °C) three times. All samples were
233 extracted simultaneously in 80 % acetonitrile for LC/MS analysis as described below. Bead-only
234 controls were processed equally. Bead-supplemented tachyzoite controls were processed equally

235 to cyst samples, replacing washing steps via magnetic stand by centrifugation (1,200 x g, 10 min,
236 0 °C).

237 **Preparation of beads**

238 Coupling of Dynabeads™ MyONE™ Streptavidin T1 (Thermo Fisher Scientific) to DBA was done
239 as described in the manufacturer's protocol. Briefly, 200 µl beads/sample were resuspended in 1
240 ml PBS by vortexing, washed three times with PBS in a magnetic stand and resuspended in 1 ml
241 PBS containing 50 µg DBA / sample. The tube containing the DBA-magnetic bead mixture was
242 incubated on a rotary mixer for 45 min at RT. Uncoupled DBA was removed by washing the
243 coated beads three times with PBS. After washing, the DBA-coated beads were resuspended in
244 2 ml PBS containing 2 % BSA.

245 **Untargeted metabolic analysis of *in vitro* cysts**

246 For metabolome measurements of tissue cysts and tachyzoites, tachyzoite isolation, cyst
247 maturation and isolation were performed as described above. Metabolites were extracted in 80
248 % acetonitrile (Carl Roth) and 20 % water (Carl Roth) containing internal standards
249 (phenolphthalein, CAPS, PIPES (Sigma-Aldrich)). Cell pellets were sonicated for 5 min and after
250 centrifugation (21,500 x g, 5 min, 0 °C), the supernatants were transferred to MS vials for
251 immediate LC/MS analysis. 5 µl of each sample were collected to generate a pooled biological
252 quality control (PBQC). 20 µl of the *in vitro* cysts, bead control and host cell background samples,
253 and 5 µl of the tachyzoite samples were injected. The injection order of the samples was
254 randomized, blanks and PBQCs were injected periodically. The samples were analyzed on a Q-
255 Exactive Plus mass spectrometer (Thermo Fisher Scientific) via 70k MS1 scans, with intermittent
256 35k data-dependent 35k MS2 scans in positive and negative mode separately.

257 Chromatographic separation was achieved on a Vanquish Flex fitted with an ACQUITY UPLC
258 BEH Amide column (Waters). Running a 25 min linear gradient starting with 90 % eluent A (10
259 mM ammonium carbonate in acetonitrile)/10 % eluent B (10 mM ammonium carbonate in water)
260 and ending with 40 % eluent A/60 % eluent B, followed by washing and equilibration steps.

261 Compound Discoverer 3.1 software (Thermo Fisher Scientific) was used for peak detection,
262 combination of adducts and compound annotation. Metabolite identifications were based on either
263 retention time and accurate mass match to an in-house library of 160 authentic standards, or by
264 matching accurate mass and MS2 fragments to m/z cloud database (Thermo Fisher Scientific).

265 Data were exported to Excel for grouping, combination of datasets from positive and negative
266 ionization runs and blank subtraction. Compounds with a coverage less than 50 % in at least one
267 sample group were excluded. All missing values were gap filled with either the respective mean
268 of each sample group or the global minimum intensity when undetected in a sample group. After
269 normalization to the internal standard, the fractional abundances for each sample were calculated
270 and centered between 1 and -1.

271 Raw data, data curation steps and performed statistics are accessible in table S1 and table S2.

272 **Drug tolerance assays**

273 Myotubes in 96-well plates were infected with 2.4×10^3 *T. gondii* Pru-tdTomato tachyzoites
274 corresponding to a MOI of 0.1 and cyst formation was induced for indicated times in bradyzoite
275 medium at ambient CO₂ levels, followed by a drug pulse of seven days with respective vehicle as
276 solvent control. Tachyzoite controls were infected with 2.4×10^4 Pru-tdTomato tachyzoites
277 corresponding to a MOI of 1 in tachyzoite medium for 2 h before the seven-day drug pulse was
278 applied in tachyzoite medium. Parasite recovery was monitored by measuring tdTomato
279 fluorescence for 28 days as described above. Medium was exchanged after each measurement.
280 The resistance score was calculated as described above for pepsin digestion and the oral
281 transmission assay.

282 **(i) Developing drug tolerance.** Cysts were generated for indicated times and treated with
283 established antiparasitics (pyrimethamine, sulfadiazine (Sigma)) and 1-hydroxy-2-dodecyl-4(1)-
284 quinolon (HDQ) (a kind gift of Wolfgang Bohne), two bumped kinase inhibitors (BKI1294,
285 BKI1553)^{50,51} or 0.2 % DMSO (Thermo Fisher Scientific) as solvent control at the indicated
286 concentrations for seven days. Respective tachyzoite controls were generated by infecting KD3
287 myotubes for 2 h with 2.4×10^4 tachyzoites corresponding to a MOI of 1 in tachyzoite medium
288 before treatment.

289 **(ii) Drug resistance of matured cysts vs. tachyzoites.** Cyst formation was induced for indicated
290 time and pulsed for seven days with indicated concentrations of sodium fluoroacetate (abcr
291 GmbH) or 0.5 % H₂O as solvent control. Respective tachyzoite controls were generated as
292 described above.

293 **(iii) IC₅₀ assay tachyzoites.** Growth of tachyzoite controls treated with the indicated
294 concentrations of sodium fluoroacetate was monitored throughout the seven-day drug pulse. The

295 half inhibitory concentration (IC_{50}) values were determined at day seven by fitting the dose-
296 response curve by non-linear regression in GraphPad Prism v8.

297

298 **Statistical analysis**

299 All tests, except statistics of metabolite abundances, were performed in GraphPad Prism v8 as
300 detailed in the results section. Statistical significance of metabolite changes was calculated in
301 Microsoft Excel. Principal component analyses were computed using ClustVis⁵².

302

303 **Results**

304 **KD3 human myoblasts differentiate into multinucleated myotubes**

305 *T. gondii* persists in skeletal muscle tissue⁵³, but robust *in vitro* culture systems supporting long-
306 term maturation of tissue cysts in these natural host cells are lacking. We tested an immortalized
307 human skeletal muscle cell isolate (KD3)³⁵ for its ability to support the culture of *T. gondii* tissue
308 cysts. Sub-confluent myoblast cultures were differentiated into myotubes through serum
309 starvation for five days until cells fused to multinucleated tubes that were expressing myosin
310 heavy chain (Figure 1A) and developed spontaneous contraction activity (Video S1)³⁵.
311 Accordingly, the myogenic index, which reflects the fraction of nuclei residing in cells containing
312 three or more nuclei, rose to 0.3 (Figure 1B).

313 **KD3 human myotubes support development of matured tissue cysts of several *T. gondii*
314 strains**

315 Next, KD3 myotubes were tested for their ability to support long-term maturation of *T. gondii* cysts.
316 We infected myotubes with Pru-tdTomato parasites, a type II Prugniaud strain constitutively
317 expressing the tandem (td) Tomato variant of the red fluorescent protein, for up to 21 days.
318 Evaluation of the ultrastructure of the encysted parasites by electron microscopy (Figure 2A, S1)
319 revealed hallmarks of bradyzoites including abundant amylopectin granules to posteriorly
320 positioned nuclei after seven days of infection. The formation of the cyst wall is indicated by the
321 apparent deposition of electron-dense vesicular-tubular material along the parasitophorous
322 vacuolar membrane throughout the course of infection (Figure S1D)⁵⁴.

323 *T. gondii* strains differ greatly in their capacity to form tissue cysts *in vitro* and *in vivo*⁵⁵ and their
324 maturation is accompanied by sequential regulation of marker protein expression⁵⁶. To test the
325 suitability of KD3 myotubes to culture tissue cysts of multiple *T. gondii* strains, we monitored the
326 formation of tissue cysts of eight parasite strains of three major isotypes under CO₂-deplete
327 conditions at neutral and basic pH. Stage conversion was detected by staining the cyst wall with
328 *Dolichos biflorus* agglutinin (DBA) and antibodies against the CC2 protein⁴⁵ and by the absence
329 of the tachyzoite-specific surface antigen 1 (SAG1) (Figure 2B). Myotubes infected with type I
330 RH- Δ ku80 parasites that do not easily form tissue cysts *in vitro* served as a tachyzoite control.

331 Strikingly, under both conditions all observed vacuoles of every tested strain were DBA-positive
332 and remained stable without being overgrown by tachyzoites for 21 days. This was also true for
333 the hard to differentiate RH Δ ku80 (Figure S2). We observed almost complete differentiation of

334 type III VEG parasites into DBA- and CC2-positive and SAG1-negative cysts. All type II strains
335 and the type III NED strain showed intermediate maturation (between 35 % and 63 %) that was
336 considerably increased in basic pH to 73 % and 83 %, respectively. Also, wild-type type I strains
337 GT1 and RH exhibited differentiation up to 30 % that increased to 77 % and 55 % at basic pH,
338 respectively. As expected, the high-passage laboratory strain RH Δ ku80 did not lose SAG1 signal
339 at neutral pH but required basic conditions (Figure 2C).

340 To directly relate the capability of KD3 myotubes to generate mature bradyzoites to existing
341 culture methods, we differentiated Pru-tdTomato parasites for up to 21 days in HFF, KD3
342 myoblasts and KD3 myotubes by bicarbonate starvation at pH 7.4 (Figure S3A) and pH 8.3
343 (Figure S3B). In both conditions, parasites in myoblasts and HFF cells lysed host cells after 14
344 and 21 days respectively. Only in myotubes, Pru-tdTomato parasites formed an increasing
345 fraction of DBA-positive and SAG1-negative cysts, while SAG1-positive and DBA-negative
346 tachyzoites remained undetectable.

347 We also tested spontaneous stage conversion under standard bicarbonate-replete conditions as
348 observed in the murine skeletal muscle cell line C2C12⁵⁷. To this end, we infected myoblasts,
349 myotubes and HFF cells with Pru-GFP parasites which express GFP through the bradyzoite-
350 specific LDH2 promoter⁴⁰ for 96 h (Figure S4). GFP-negative tachyzoites continued to proliferate
351 in HFF cells and myoblasts leading to host cell lysis. In contrast, proliferation of *T. gondii* appeared
352 attenuated and spontaneous formation was indicated by DBA staining and GFP expression
353 (Figure S4).

354 Together, these data show that KD3 myotubes enable the culture of tissue cysts of multiple
355 parasite strains at physiological pH over the course of 21 days and augment spontaneous stage
356 conversion.

357 **KD3 myotubes-derived tissue cysts harbor pepsin- and temperature stress-
358 resistant bradyzoites**

359 To test whether *in vitro* bradyzoites also develop functional hallmarks of *in vivo* bradyzoites, such
360 as resistance to temperature stress and pepsin digestion³³, we infected myotubes with Pru-
361 tdTomato parasites and then differentiated parasites for up to 35 days (Figure 3A). Intracellular
362 cysts were digested with pepsin for 20, 40 and 60 min, the reaction mix was then neutralized and
363 cysts were seeded onto HFF cells to allow re-differentiation in tachyzoite medium under CO₂-
364 replete conditions. Untreated and pepsin-digested tachyzoite cultures served as positive and

365 negative controls, respectively. Growth of both, untreated tachyzoite and bradyzoite cultures, was
366 observed by an increase in red fluorescence (indicative of tachyzoite replication) after two and
367 seven days, respectively (Figure 3B). Interestingly, all pepsin-treated bradyzoite cultures
368 recovered after 7, 9 and 14 days, depending on the length of the pepsin digest, while pepsin-
369 digested tachyzoite cultures did not recover even after a period of 21 days. We quantified pepsin
370 resistance across the time course of cyst maturation by calculating a resistance score (RS) (see
371 Material and Methods) based on the pepsin-inflicted growth delay (Figure 3C). Already after 14
372 days all digested cultures recovered with an RS between 0.4 to 0.5. Pepsin resistance continued
373 to increase over the course of 28 days up to an RS of 0.8 (Figure 3C).

374 In human transmission scenarios, encysted bradyzoites survive extended cold-storage and heat
375 stress³³. To test whether *in vitro* bradyzoites would survive under these conditions, cysts were
376 matured for 35 days and treated with a combination of (1) storage as cell 'pellets' at 4 °C for up
377 to seven days, (2) a 5 min heat shock at 55 °C or 65 °C and (3) pepsin digestion for 60 min (Figure
378 3D). Storage at room temperature (RT) for two days served as a positive control and did not
379 decrease viability in comparison with untreated cysts, as indicated by an RS of 1. Different
380 combinations of storage at 4 °C for four or seven days and heat shock at 55 °C did lower the RS
381 to a range between 0.75 and 0.65, while heating to 65 °C effectively killed tissue cysts as
382 expected³³. These results demonstrate that myotube-grown encysted bradyzoites develop traits
383 that are important for oral transmission of tissue cysts as it occurs with cysts in muscle tissues of
384 farm animals.

385 Summarized, these data indicate that KD3 myotubes support maturation of *T. gondii* tissue cysts
386 for 35 days. These *in vitro* bradyzoites develop of resistance to pepsin and temperature stresses,
387 which are functional hallmarks of mature *in vivo* bradyzoites and required properties for both
388 experimental oral infection of mice and environmental transmission to humans.

389 **KD3 myotube-derived tissue cysts are orally infectious to mice**

390 To assure oral infectivity to animals, groups of five mice were infected with 50 and 500 35-day-
391 old *in vitro* cysts via oral gavage. Control groups included mice receiving 10⁴ fibroblast- or
392 myotube-derived tachyzoites and as positive control 10 *in vivo* tissue cysts prepared 35 days post
393 infection from brain tissue. To facilitate the comparison of infectivity between *in vitro* and *in vivo*
394 cysts, we estimated relative volumes of *in vitro* cysts by measuring their diameters (Figure 4A).
395 Maturation over the course of 35 days increased the average diameter from 8.8 µm to 11 µm.
396 This compares to 35-day-old *in vivo* cysts from brain tissue with a mean diameter of 56 µm ²².

397 Assuming spherical cysts, this implies an approximate 150-fold difference in volume. Infection of
398 mice with 50 and 500 *in vitro*-derived cysts led to seroconversion of 8 out of 10 and 9 out of 10
399 mice, respectively (Figure 4B, D). We also observed seroconversion of 1 and 2 mice infected with
400 HFF- and myotube-derived tachyzoites. As expected, all mice infected with 10 *in vivo*-derived
401 tissue cysts showed seroconversion. Infection was also indicated by weight loss of mice receiving
402 500 *in vitro* or 10 *in vivo* cysts. In these groups two animals succumbed to the infections while
403 one animal that received 50 cysts needed to be culled (Figure S6A, B). The presence of DBA-
404 positive *T. gondii* cysts in the brains of infected mice was quantified microscopically 30 days post
405 infection in brain homogenates (Figure 4 C, D). We detected cysts in all seroconverted tachyzoite
406 infected mice and mice receiving 500 *in vitro* cysts or 10 *in vivo* cysts. Only one of three mice that
407 seroconverted from infection with 50 cysts and survived, harbored detectable cysts.

408 Together these data indicate that KD3 myotube derived tissue cysts develop oral infectivity to
409 mice that is similar to *in vivo* cysts.

410 **KD3 myotube-derived tissue cysts develop resistance against antiparasitics.**

411 *T. gondii* tissue cysts largely resist current toxoplasmosis treatments. To test whether cysts
412 cultured in myotubes mirror drug resistance *in vivo*, we exposed 14-, 21- and 28-day-old Pru-
413 tdTomato-expressing cysts to antiparasitics for seven days and monitored their re-differentiation
414 into tachyzoites under CO₂-replete conditions as a measure of bradyzoite viability (Figure 5A).
415 Figure 5B shows the fluorescence signal observed over 49 days, including 14 days of cyst
416 maturation, seven days of pyrimethamine treatment, and 28 days of re-differentiation. Growth of
417 DMSO- and pyrimethamine-treated parasites was indicated by an increase in fluorescence
418 above background at 14- and 24-days post treatment, respectively (Figure 5B). Next, 14-, 21-
419 and 28-day-old tissue cysts were treated with 5 µM and 20 µM pyrimethamine, 20 µM
420 sulfadiazine and 0.1 µM of 1-hydroxy-2-dodecyl-4(1)-quinolone (HDQ), an inhibitor of
421 dihydroorotate dehydrogenase (DHOD)⁵⁸ and alternative NADH dehydrogenase⁵⁹ (Figure 5C).
422 Bradyzoite cultures survived all tested treatments. Interestingly, while resistance against
423 sulfadiazine, HDQ or low doses of pyrimethamine was already fully developed after 21 days,
424 indicated by an RS of 1, resistance against high doses of pyrimethamine increased until 28 days
425 of maturation (Figure 5C). In contrast, tachyzoite-infected myotubes, which served as a control
426 and are shown as '0 days differentiated cultures', only marginally survived treatment with 5 µM
427 pyrimethamine, with a low RS of 0.18. While resistance of bradyzoites to antifolates is well
428 established resistance to mitochondrial inhibitors is less well documented. We sought to test

429 whether exclusion of HDQ by the cyst wall would lead to insensitivity and thus monitored
430 resistance and mitochondrial membrane potential of 28-day old cysts. Up to one 1 μ M of HDQ
431 did not decrease the RS and cyst diameter but decreased the mitochondrial membrane potential
432 estimated by the drop of intensity of Mitotracker staining intensity by 60 % (Figure SA-D).
433 Furthermore, we tested the resistance against two different bumped kinase inhibitors (BKI),
434 BKI1553 and BKI1294 (Figure 5D), that have been shown to decrease cyst burden in
435 chronically infected mice^{60,61}. Consistent with previous results, tachyzoites did not grow after
436 exposure to fourfold of the IC₅₀ of each compound. In contrast, already 14-day-old tissue cysts
437 were resistant to both treatments, with an RS of 0.42 and 0.83, respectively. Resistance
438 increased further and BKI1553 became completely ineffective against 28-day-old cysts while
439 cysts reached an RS of 0.89 against BKI1294 (Figure 5D).

440 Taken together, these data demonstrate that myotube-cultured cysts gradually develop
441 resistance against both established and experimental antiparasitics and are suited for
442 compound screens against chronically infectious forms of *T. gondii*.

443 **The metabolome of *T. gondii* depends on the host cell type and parasite stage**

444 The metabolome is directly linked to the mode of action of many antiparasitics and may also be
445 associated with their efficacy⁵. However, the metabolome of bradyzoites and its differences to
446 tachyzoites remains largely unknown. To test whether bradyzoites possess a distinct
447 metabolome, we compared the abundance of metabolites between ME49 parasites in their
448 bradyzoite form with intracellular tachyzoites in both HFF cells and myotubes (Figure 6).
449 Parasites were differentiated into cysts for 28 days, quenched with ice-cold PBS, released from
450 cells by needle passage and purified from host cell debris via binding to DBA-coated magnetic
451 beads. We estimated a yield of 2x10⁶ cysts from two pooled T150 culture dishes that were used
452 for one replicate (data not shown). Intracellular tachyzoites were prepared by needle passage
453 and filtered to remove host material. We also estimated artefacts that are introduced by
454 differences in quenching and preparation procedures of tachyzoites and bradyzoites. We
455 supplemented isolated tachyzoites with beads and processed them similarly to bradyzoites. To
456 correct for background metabolites from contaminating host material and magnetic bead
457 preparations, we included uninfected myotubes and bead-only controls into our analysis. These
458 samples were treated identically to bradyzoite samples. All preparations were extracted in 80 %
459 acetonitrile and analyzed on a HILIC-UHPLC-LC/MS. Blank and host cell background
460 subtracted ion intensities were normalized to the total ion count per sample and log2-fold
461 changes of metabolites between experimental conditions calculated (Figure S8A-F, Table S1).

462 Principal component (PC) analysis indicated that bradyzoites in the purified tissue cysts differed
463 from tachyzoites along PC1, while myotube- and HFF-derived tachyzoites were separated in
464 PC2 (Figure 6A). Bead-supplemented tachyzoite controls that underwent incubation with similar
465 purification procedure as tissue cysts and were incubated with beads for one hour were
466 indistinguishable from pure tachyzoites. Uninfected host cells controls were similar to bead-only
467 samples, indicating minimal metabolite alterations and contamination due to the purification
468 procedures (Figure S8E). The two clusters of HFF-derived tachyzoites represent two
469 independent experiments whose variation manifests itself after host-background subtraction
470 (Figure S8D). We quantified the levels of 71 metabolites, excluding those that we detected in
471 uninfected controls. The levels of 26 metabolites varied between parasite stages, 10 varied
472 between types of host cells, while 24 depended on both factors, and 11 remained invariant
473 (Figure 6B-D). Comparing bradyzoites to tachyzoites from the same host cell type (Figure 6E),
474 we noted that the relative abundances of amino acids and sugar derivatives were generally
475 increased, while vitamins, derivatives of amino acids, nucleic acids and metabolites associated
476 with the tricarboxylic acid (TCA) cycle were significantly decreased. Fatty acids (FAs) and
477 related molecules are variably affected by stage conversion. When comparing tachyzoites from
478 HFF cells with those from myotubes (Figure 6E), we found that the levels of amino acids and
479 sugars were higher in HFF-grown tachyzoites, while FAs increased in abundance. The host cell
480 type had mixed effects on other metabolite classes.

481 These data reveal distinct metabolic features in *T. gondii* bradyzoites involving various
482 metabolite classes and the mitochondrial TCA cycle.

483 **Mature *T. gondii* tissue cysts develop resistance against the aconitase inhibitor sodium
484 fluoroacetate**

485 We hypothesized that diminished pools of TCA metabolites in bradyzoites would be consistent
486 with lower importance in this stage. To estimate the reliance of bradyzoites on the TCA cycle,
487 we used the aconitase inhibitor NaFAC to inhibit the TCA cycle flux in *T. gondii*⁶. Continuous
488 exposure to NaFAC arrests tachyzoite replication with an IC₅₀ of 168 μM, and parasite
489 replication was minimal at 500 μM (Figure 7A). Next, we tested the ability of tachyzoites and
490 bradyzoites to survive exposure to 0.5 to 5.0 mM NaFAC for seven days. 28-day-old cysts
491 recovered after treatment with a RS of approximately 0.8, while tachyzoites were only able to
492 survive 0.5 mM NaFAC, but not higher concentrations (Figure 7B). To exclude that tolerance of
493 bradyzoites towards NaFAC relies on exclusion of this inhibitor from the cyst wall⁶², we sought
494 to measure marked direct metabolic effects of this inhibitor on tachyzoite and bradyzoite

495 stages⁶. We treated 28-day-old ME49 cysts and intracellular myotube-cultured tachyzoites with
496 NaFAc for seven and three days, respectively and analyzed the metabolomes by HILIC-
497 UHPLC-LC/MS (Figure 7C-D, Table S2). The PC analysis revealed that solvent- and NaFAc-
498 treated tachyzoites form distinct clusters that are separated along the PC2 axis. In contrast,
499 treatment of tissue cysts did not lead to a separation from untreated controls (Figure 7C).
500 NaFAc treatment affected the relative abundance of 33 metabolites in tachyzoites, but changed
501 only 8 metabolites in bradyzoites (Figure 7D). Aconitate levels in both parasite stages were
502 increased significantly upon NaFAc treatment (Figure 7D). These data **are consistent with a**
503 **NaFAc-mediated inhibition of aconitase in bradyzoites and show that extended exposure to high**
504 **doses of this inhibitor, in contrast to tachyzoites, is well tolerated.**

505 **Discussion**

506 Persistence mechanisms of important protozoan pathogens, including *T. gondii*, *T. cruzi*,
507 *Leishmania* spp. and *P. vivax*, remain largely understudied, and there are inadequate or no
508 treatments available against chronic infections with these organisms². The limited availability of
509 methods to culture persister cells restricts the approaches to study **the link between persistence**
510 **and metabolism**^{2,63}. Here, we report a cell culture model based on immortalized human skeletal
511 muscle cells³⁵ that supports maturation of tissue cysts of type I, II and III *T. gondii* strains. These
512 myotube-grown bradyzoites exhibit key characteristics including typical ultrastructural features,
513 stress resistance and tolerance towards antimicrobials.

514 Our *in vitro* system is scalable, enabling measurements of bradyzoite metabolites via mass
515 spectrometry. To this end, we established a protocol that allows isolation and purification of cysts
516 in large quantities and without the use of Percoll gradients²², making them available for mass
517 spectrometry-based metabolomics. We obtained an estimated yield of 2×10^6 cysts per two T150
518 culture dishes that were sufficient for one technical replicate and represented a volume-adjusted
519 10-fold improvement to the bradyzoite yield from the infection of one mouse²². Principal
520 component analysis of the impact of host cell type and the parasite stage indicates mostly
521 independent effects on the metabolome (Figure 5A). Stage conversion leads to changes that are
522 largely homogeneous across classes of metabolites such as amino acids, vitamins, TCA cycle
523 intermediates and nucleic acids. This indicates the operation of distinct metabolic homeostasis
524 mechanisms in bradyzoites.

525 Bradyzoites harbor lower levels of several TCA cycle-associated metabolites that are consistent
526 with a lower reliance on this pathway (Figure 6E). This interpretation is supported by an NaFAc-

527 induced slight accumulation of aconitate (Figure 7B). Extensive accumulation of citric acid and
528 aconitate has previously been shown to occur in extracellular tachyzoites already after four hours
529 of treatment⁶. We attribute the lower accumulation of aconitate we observe in bradyzoites to the
530 extended treatment over seven days and the longer quenching and purification procedure
531 required for intracellular parasites. Importantly, this accumulation of aconitate suggests that
532 NaFAc is available to bradyzoites, that the aconitase is active and inhibited by NaFAc. This
533 interpretation also agrees with previous findings of an active TCA cycle enzyme, isocitrate
534 dehydrogenase, in lysates of four-week-old bradyzoites from mice⁶⁴ and with continued
535 transcription of TCA-cycle related genes⁶⁵. Interestingly, NaFAc exerts comparatively limited
536 effects on other non-TCA cycle-related metabolites in bradyzoites. It is noteworthy that our data
537 do not exclude the possibility that parts of the TCA cycle remain operational and may process
538 anaplerotic substrates, such as glutamine to generate NADH for subsequent ATP production
539 through the mitochondrial electron transport chain (mETC). However, full resistance to the
540 inhibitor of the alternative type 2 NADH-dehydrogenase TgNDH2⁶⁶ (Figure 5C, Figure S7C-D)
541 suggests that this source of ATP would equally be dispensable. HDQ appears to only partially
542 decrease the mitochondrial membrane potential in bradyzoites (Figure S7A-B), indicating the
543 presence of HDQ-independent sources of reduction equivalents or a very slow rate of
544 mitochondrial ATP synthesis concomitant with negligible depolarization of the membrane
545 potential. Bradyzoites may rely increasingly on glycolytic ATP production, as indicated by
546 increased activity of glycolytic enzymes in this stage⁶⁴. The number of *T. gondii* cysts in brain
547 tissue of latently infected mice depends on the turnover of large amylopectin pools⁶⁷ and on the
548 expression of several glycolytic enzymes including hexokinase¹¹ and lactate dehydrogenase^{12,68}.
549 Also, the pyruvate dehydrogenase E1 subunit transcript is less abundant in four-week-old
550 bradyzoites⁶⁹. Interestingly, transcriptomic analyses of *P. vivax* hypnozoites, a persistent stage of
551 this malaria parasite, indicates a similar metabolic shift towards glycolysis⁷⁰.

552 We also found that a number of amino acids were accumulated in bradyzoites (Figure 6E). We
553 attribute these changes directly to stage conversion and not to differences in media composition.
554 The affected amino acids, except for proline, which can also be synthesized from glutamate⁷¹, are
555 less concentrated in the RPMI-based bradyzoite medium compared to the DMEM-based medium
556 used for tachyzoites. All of these amino acids have been shown to be imported by extracellular
557 tachyzoites⁷². *T. gondii* tachyzoites express several Apicomplexan Amino Acid Transporters
558 (ApiATs)⁷², all of which remain transcriptionally expressed in bradyzoites⁶⁹ (Figure S9). This
559 suggests that bradyzoites retain the ability to take up amino acids from their environment.

560 Interestingly, restriction of some exogenous amino acids has been used to facilitate stage
561 conversion^{63,73} suggesting that alternative sources may represent adaptions to limiting supply of
562 exogenous amino acids. These include obligate autophagy and proteolysis through autophagy-
563 related protein (ATG9)¹⁹ and cathepsin L⁷⁴ and lower amino acid demand by translational
564 repression through the eukaryotic initiation factor 2 α ⁷⁵. The diversification of nutrient sources
565 would resemble the stringent metabolic response of *Leishmania mexicana* amastigotes that also
566 adopt a slow growing phenotype within the phagolysosome of macrophages⁷⁶.

567 Nucleobase-containing metabolites were found to be less abundant in bradyzoites (Figure 6E).
568 While the parasite is auxotroph for purines, pyrimidines can both be imported and synthesized⁷⁷.
569 Slowly growing or dormant bradyzoites likely require lower amounts of nucleobases.
570 Consistently, the transcription of the corresponding low affinity and high-capacity adenosine
571 transporter TgAT^{78,79} appears to be down-regulated in 4-week-old bradyzoites *in vivo* (Figure
572 S9). Two other proteins containing nucleoside transport signatures remain expressed and may
573 represent the unidentified high-affinity purine transporter being responsible for maintaining a
574 slow influx of nucleobases⁶⁹ (Figure S9). Pyrimidine salvage does not appear to be essential for
575 bradyzoite formation⁸⁰ indicated by its continued synthesis. Similar to *P. falciparum*⁸¹, pyrimidine
576 synthesis in *T. gondii* tachyzoites depends on the mitochondrial electron transport chain (mETC)
577 to provide an electron acceptor to the dihydroorotate dehydrogenase (DHOD)⁸². The role and
578 relevance of the mETC in bradyzoites remains to be formally established. While we show that *in*
579 *vitro* bradyzoites develop tolerance towards the dual alternative NADH dehydrogenase and
580 DHOD inhibitor HDQ^{58,83} (Figure S7D), other mETC inhibitors, such as atovaquone appear to
581 have some effect and lead to a decrease in cyst counts in brains of latently infected mice^{15-17,84}.
582 Activity of atovaquone against *in vitro* tissue cysts could not be conclusively assessed due to
583 the lack of a treatment window in KD3 myotubes (data not shown). Together, available data
584 suggests that the mETC is a viable target in tissue cysts but that the importance of the
585 associated metabolic pathways, such as the TCA cycle may differ from tachyzoites.

586

587 Multinucleated myotubes are generally arrested in the G0 phase of the cell cycle and exhibit highly
588 branched mitochondria and oxidative metabolism as opposed to glycolytic lactate production⁸⁵.
589 Both traits have been shown to also facilitate stage conversion of *T. gondii*^{27,86,87} and may
590 contribute to the suitability of KD3 cells to harbor *T. gondii* tissue cysts by limiting the expansion
591 of non-converting tachyzoites. While the differentiation efficiency of all tested *T. gondii* strains can

592 be further increased by additional non-physiological stressors such as basic pH, it is not needed
593 for extended cultures. Strikingly, even highly virulent RH-derived parasite sub-strains did not
594 overgrow the culture (Figure 2C). Resistance of bradyzoites against pepsin digestion and
595 temperature stress develops after 14 days post infection and increases until 28 days post infection
596 (Figure 3C). The onset of tolerance towards inhibitors of well-established drug targets including
597 the calcium-dependent protein kinase 1 (TgCDPK1)^{60,61}, dihydrofolate reductase-thymidylate
598 synthase (TgDHFR-TS)⁸⁸ and the DHOD (Figure 5C-D) follows similar timing and is shared with
599 *T. gondii* cysts in the brain of chronically infected mice^{59-61,89}. Hence, our *in vitro* model will
600 facilitate dissecting the molecular basis of the impressive drug tolerance and stress resistance of
601 *T. gondii* tissue cysts. Expectedly, *in vitro* cysts are also orally infectious to mice (Figure 4A-D).
602 Comparing estimated volumes of *in vitro* cysts and *in vivo* brain-derived cysts, our data suggest
603 that 10 *in vivo* cysts are equivalent to 500 *in vitro* cysts in this regard. Surprisingly, 3 out of 20
604 mice that received tachyzoite via oral gavage seroconverted. This has been observed earlier were
605 numbers greater than <1000 pepsin-sensitive tachyzoites were orally infectious to mice⁴⁸.

606 Electron microscopic analysis of the ultrastructure of myotube-derived tissue cysts revealed
607 typical features such as a developing cyst wall, amylopectin granules and posteriorly positioned
608 nuclei in the bradyzoites (Figure 2A, S1)⁹⁰. Interestingly, we also found evidence of disintegrating
609 bradyzoites at all time points up to 21 days post infection, (Fig S1) that has also been described
610 previously in mice after four and eight weeks of infection^{22,90,91}. This parasite turnover likely
611 contributes to the heterogeneous appearance with respect to cyst size and bradyzoite packaging
612 density^{21,22}. A similar phenotypic heterogeneity has been ascribed to the ability of other
613 intracellular pathogens to persist in the presence of stressors such as drugs and immune
614 effectors⁹².

615 In conclusion, we present a novel system to culture functionally mature *T. gondii* tissue cysts that
616 surpasses typical *in vivo* systems through its scalability. Importantly, it allows cyst purification with
617 methods compatible with subsequent mass spectrometry-based [applications](#). We show that
618 bradyzoites maintain a distinct metabolome and that confers resistance to an aconitase inhibitor
619 . This culture model will be valuable for uncovering new bradyzoite biology and for addressing
620 drug tolerance.

Acknowledgements / Funding

We are grateful to Naohiro Hashimoto for sharing KD3 skeletal muscle cells, David Sibley for sharing DG52 antibodies, Wesley Van Voorhis and Wolfgang Bohne for sharing BKIs and HDQ, respectively; Alexander Neumann for sharing CCEAN software; Gereon Schares, Marie-France Cesbron-Delauw, Jonathan Howard, Boris Striepen and Dominique Soldati-Favre for *T. gondii* strains and Anton Aebscher and Dominique Soldati-Favre for helpful discussions. MB, CC, DM, EH, JS, FM are funded by the Federal Ministry of Education and Research (BMBF) under project number 01KI1715 as part of the “Research Network Zoonotic Infectious Diseases”. FS is a senior member of graduate schools GRK 2046 and IRTG 2290, supported by the German Research Council (DFG). TS receives support from the Deutsche Forschungsgemeinschaft (DFG) (STE 2348/2), MML is funded (Research Grants-Doctoral Programs in Germany) by the German Academic Exchange Service (DAAD). MB, CC, DM, EH, JS, FM, TH and FS receive internal support from the Robert Koch-Institute.

Data availability

Authors can confirm that all relevant data are included in the paper and/or its supplementary information files.

Author Contributions

Conceptualization: M.B.; C.C.; Methodology: M.B., F.S., C.C., D.M., M.M.L., T.S.; Investigation: C.C., D.M., E.H., M.M.L., T.H., J.S.; Writing –Original Draft: M.B. and C.C.; Writing –Review & Editing: all authors; Funding Acquisition: M.B.; Supervision: M.B., F.S., T.S.

Declaration of Interests

The authors declare no competing interests.

Main Figures

Figure 1: KD3 human myoblasts form multinucleated myotubes. (A) Immunofluorescence images of KD3 myoblasts and myotubes after five days of differentiation stained for myosin heavy chain (MF20) and DNA (DAPI). Scale bar indicates 100 μ m. (B) As a morphological parameter of myotube formation, the myogenic index (number of nuclei residing in cells containing three or more nuclei, divided by the total number of nuclei) was measured in at least 10 different randomly selected locations by CCEAN software⁹⁵. Values are expressed as mean \pm SEM of two individual experiments performed in triplicates (**p<0.001, Mann-Whitney-U-test).

Figure 2: Time- and pH-dependent cyst maturation of type I, II and III *T. gondii* strains in KD3 myotubes. (A.) Electron microscopy of 7-, 14- and 21-day-old Pru-tdTomato tissue cysts in KD3 myotubes (days post-infection; d.p.i.). Cysts show a distinct wall (CW) and are densely packed with parasites containing amylopectin granules (A) and nuclei (N). (B) Immunofluorescence imaging of KD3 myotubes infected with type I (RH, RH Δ ku80, GT1), type II (ME49, NTE, Pru-tdTomato) and type III (NED, VEG) parasites. Cyst formation was induced for 7, 14 and 21 days under neutral or basic pH and stained with anti-CC2, anti-SAG1 antibodies, DBA and DAPI. Shown are representative images of tachyzoite controls infected with RH Δ ku80 for 24 h (upper panel), 14-day-old intermediate cysts (middle panel) and mature cysts (lower panel) of the NED strain. Scale bar indicates 5 μ m (C.) Relative numbers of SAG1-negative but DBA and CC2-positive cysts counted from three independent blinded experiments performed in triplicates. At least 25 DBA positive cysts per strain, time point and replicate were counted. Values represent means \pm SEM.

Figure 3: *In vitro* bradyzoites develop resistance to pepsin and tolerance to temperature stresses. (A.) Experimental design of *in vitro* pepsin and oral transmission assay. Pru-tdTomato cysts and tachyzoite controls were challenged with indicated pepsin and/or temperature stresses. Treated parasites were seeded onto fresh human fibroblasts to induce tachyzoite re-differentiation and proliferation. tdTomato fluorescence was monitored in a fluorescent based plate reader. (B.) Raw fluorescence intensities of 21-day-old cysts digested for 20 (red), 40 (blue) and 60 min (green) and the respective tachyzoite control (grey). Dashed lines indicate corresponding untreated controls. The data represent the means and SEM of one experiment consisting of three digestion reactions (C.) Resistance scores of tachyzoite cultures (0), 14-, 21- and 28-day-old cysts after 20 (red), 40 (blue), 60 min (green) of pepsin digestion. Shown are the means and SEM of three independent experiments performed in triplicates (*p \leq 0.05, Mann-Whitney-U-test). (D.) Resistance scores of 35-day-old bradyzoites exposed to indicated temperature stresses and pepsin digestion. Values are expressed as means and SEM from three or two independent experiments in triplicates (**p<0.005, ***p<0.001, Mann-Whitney-U-test).

Figure 4: *In vitro* cysts are orally infectious to mice and lead to manifestation of chronic infection. (A.) Quantification of cyst diameter of 7-, 14-, 21, 28 and 35-day-old Pru-tdTomato *in vitro* tissue cysts. Encysted bradyzoites were stained with DBA and DAPI. Images of 50 cysts were randomly recorded and the diameter was measured by defining the DBA stain as the outline of the cysts. Values are expressed as means and SEM from one experiment. (B.-D.) Reactivity index and cyst number per brain of mice that were orally infected with 10^4 HFF- or myotube-derived tachyzoites, 50 or 500 35-day-old Pru-tdTomato *in vitro* cysts or 10 Pru-tdTomato *in vivo* cysts. Brains and blood from moribund animals were collected starting from 12 days post infection. (B.) Seroconversion was checked for *T. gondii* specific IgGs via ELISA and reactivity index was calculated. Values are expressed as means and SEM from two independent experiments consisting of five mice per group. (C.) Quantification of cyst burden in brains of infected mice. Only seropositive mice from one experiment were analyzed for brain cysts. Values are expressed as means and SEM. (D.) Summary of *in vivo* infection experiments. †: infected animals died during the 30-day period. * Seroconversion of moribund, but not dead animals were checked throughout the experiment. ** Brain cyst burden was only determined in seropositive animals of one experiment.

Figure 5: *T. gondii* *in vitro* bradyzoites develop broad drug tolerance. (A.) Experimental design for *in vitro* drug tolerance assay. Pru-tdTomato cysts and tachyzoite controls were drug treated at the indicated concentrations for one week. Following the treatment, medium was changed to bicarbonate-replete medium to induce re-differentiation to proliferating tachyzoites and tdTomato fluorescence was monitored. (B.) Raw fluorescence intensities of a representative experiment during cyst maturation for 14 days, 7 days of treatment with 20 μ M pyrimethamine or 0.2 % DMSO as solvent control and re-differentiation for 28 days. Black dotted line indicates the limit of detection. Data represents the means and SEM of one experiment with five replicates. (C.-D.) Resistance scores of tachyzoites (0) and 14-, 21- and 28-day-old bradyzoites treated with pyrimethamine (PYR), sulfadiazine (SULF) or 1-hydroxy-2-dodecyl-4(1H) quinolone (HDQ) and bumped kinase inhibitor (BKI) 1553 and BKI 1294. Shown are means of three independent experiments with five replicates each and SEM (* $p\leq 0.05$, Mann-Whitney-U-test).

Figure 6: *T. gondii* *in vitro* tissue cysts harbor a distinct metabolome (A.) Principal component analysis of untargeted metabolomic data comparing 28-day-old ME49 *T. gondii* *in vitro* cysts cultivated in KD3 myotubes, tachyzoites in KD3 myotubes (MT) and tachyzoites in human fibroblasts (HFF). Two individual experiments with four replicates each were analyzed. (B.) Pie chart showing the number of metabolites within the dataset and how they were affected by host cell environment and parasite stage. (C.-D.) Volcano plots of log2-fold changes calculated from fractional metabolite abundances between (C.) *in vitro* cysts and myotube-isolated tachyzoites or (D.) tachyzoites isolated from HFFs and myotubes (n=8, Mann-Whitney-U-test). (E.) Heatmap showing log2-fold changes of significantly different metabolites ($p<0.05$, uncorrected Mann-Whitney-U test) between *in vitro* cysts and tachyzoites (Tz) in MTs (left panel) and tachyzoites in HFFs compared to tachyzoites in myotubes (right panel). Log2-fold changes

were calculated pair-wise. Grey areas indicate non-significantly changed metabolites. Asterisks denote putative metabolite identifications based on accurate mass only. Ac: acetyl, UDP-NAc-GlcN: UDP-N-acetyl-glucosamine, GABA: γ -aminobutyric acid, GroPIns: glycerophosphoinositol, GroPEtn: glycerophosphoethanolamine, G3P: glycero-3-phosphate.

Figure 7: Bradyzoites develop resistance to an aconitase inhibitor.. (A.) Calculation of half inhibitory concentration (IC_{50}) of sodium fluoroacetate (NaFAC) for Pru-tdTomato tachyzoites. Parasites were grown for seven days in presence of NaFAC and the IC_{50} value was calculated from fluorescence intensities normalized to untreated controls. Shown are means and SEM of three independent experiments with three replicates each. (B.) Resistance scores of tachyzoites and 28-day-old bradyzoites treated with NaFAC or 0.5 % water as solvent control. Shown are means and SEM of two and three independent experiments for bradyzoites and tachyzoites performed in triplicates, respectively (* $p \leq 0.05$, Mann-Whitney-U-test). (C.) Principal component analysis of untargeted metabolomic data comparing 28-day-old ME49 *T. gondii* *in vitro* cysts cultivated in KD3 myotubes either incubated for 7 days in presence of 1 mM NaFAC or 0.5 % water as solvent control and tachyzoites cultivated in myotubes treated for three days with 500 μ M NaFAC or 0.25 % water as solvent control. One experiment with four replicates for bradyzoite groups, five replicates for solvent treated and three replicates for NaFAC treated tachyzoites were analyzed. (D.) Heatmap showing log2-fold changes of significantly different metabolites ($p < 0.05$, uncorrected Mann-Whitney-U test) between NaFAC treated and vehicle treated *in vitro* cysts and between NaFAC treated (left panel) and vehicle tachyzoites (Tz) (right panel). Log2-fold changes were calculated pair-wise. Grey areas indicate non-significantly changed metabolites. Ac: acetyl, G3P: glycerol 3-phosphate.

Supplemental Information

Video S1: Spontaneous contraction of differentiated KD3 human myotubes. Short video sequences were recorded on a Zeiss Observer equipped with a 63X oil immersion objective

Figure S1: Micrographs of maturing Pru-tdTomato in KD3 human myotubes. Electron microscopy of (A.) 7-, (B.) 14- and (C.) 21-day-old Pru-tdTomato tissue cysts matured in KD3 myotubes as shown in Figure 2 (p.i.: post infection). Images of a single section plane through entire cysts were taken for each time point. Each overview image (upper left) is grouped with three images showing enlarged areas, such as individual parasites with their nuclei (N), amylopectin granules (A) or the cyst wall (CW). In the example shown here, the cyst wall is already well developed 7 days post infection. Other cysts at this time point reveal an immature cyst wall, which is shown in the left image of the additional image panel on the lower right side (D.). At this stage the parasitophorous vacuolar membrane (PVM) is associated with a loose matrix containing vesicles and membrane-bound tubules. In cysts 21 days post induction (shown at the right side of this image panel), the cyst wall (CW) is formed by a dense and rather homogenous matrix, which is associated with the PVM.

Figure S2: Immunofluorescence imaging of KD3 myotubes infected with type I RH Δ ku80. Cyst formation was induced for 7, 14 and 21 days under neutral or basic pH and stained with anti-SAG1 antibodies, DBA and DAPI. Shown are representative images of 21-day-old RH Δ ku80 tissue cysts cultured in neutral (left image) and cultured in basal pH (right image). Scale bar indicates 50 μ m.

Figure S3: Time- and pH-dependent maturation of type II Pru-tdTomato parasites in human fibroblasts, human KD3 myoblasts and myotubes. (A.-B.) Cyst formation was induced for 7, 14 and 21 days in human fibroblasts, KD3 myoblasts and myotubes under neutral (A.) or basic (B.) pH and stained with anti-SAG1 antibodies, DBA and DAPI. Displayed are percentage of vacuoles that only expressed SAG1 but not DBA, vacuoles that co-expressed SAG1 and DBA and vacuoles that exclusively expressed DBA but lacked SAG1. Values represent means from one blinded experiment. At least 25 images were taken and processed per cell line, time point and pH.

Figure S4: Influence of different host cell environments on spontaneous cystogenesis of *T. gondii*. Human KD3 myoblasts, myotubes and fibroblasts were infected with *T. gondii* Pru-GFP that express GFP under the bradyzoite-specific LDH2-promoter for 96 h. Monolayers were stained with anti-SAG1 antibodies, DBA and DAPI. The GFP signal indicates spontaneous stage conversion to early bradyzoite stages 96 h post-infection in bicarbonate-replete conditions. Scale bar indicates 20 μ m.

Figure S5: Immunofluorescence imaging of maturing Pru-tdTomato encysted bradyzoites in KD3 myotubes. Human KD3 myotubes were infected with Pru-tdTomato tachyzoites under

bradyzoite inducing conditions for indicated times and stained with DBA and DAPI. Shown are representative images of 7-, 14-, 21- and 28-day-old Pru-tdTomato tissue cysts. Scale bar indicates 20 μ m.

Fig S6: Weight loss and survival of mice infected with Pru-tdTomato tachyzoites and tissue cysts. (A.-B.) Mice were orally infected with either 1×10^4 myotube (MT)- or human fibroblast (HFF)-derived tachyzoites, 50 or 500 *in vitro*-generated or 10 *in vivo*-generated tissue cysts for 30 days. (A.) The relative weight loss displayed in %. Each data point represents the means of two experiments consisting of five infected animals per group with \pm SEM. (B.) % of surviving animals during infection period.

Figure S7: Impact of HDQ treatment on bradyzoite membrane potential and vitality. (A.-B.) Human KD3 myotubes were infected with ME49 tachyzoites under bradyzoite inducing conditions for 28 days, treated for seven days with either 0.005 % DMSO as solvent control or indicated concentration of HDQ and stained with MitotrackerTM Deep Red, DBA and DAPI. Images of 22 cysts per group from two experimental replicates were randomly recorded at identical exposure times. DBA was used to determine the outline of the cysts (green dashed line). For determination of mitochondrial activity, images were converted into monochromatic images and thresholds were set for grey values. We normalized the MitotrackerTM signal (23 to 255) by that of DAPI (19 to 255) per tissue cyst. Values are expressed as means and SEM from two independent experiments. (****p \leq 0.0001, Mann-Whitney-U-test). Scale bar indicated 10 μ m. (C.) Resistance scores of 28-day-old Pru-tdTomato bradyzoites treated with indicated concentrations of HDQ or 0.005 % DMSO as solvent control. Shown are means and SEM of two independent experiments for bradyzoites performed in triplicates.

Figure S8: Data curation LC/MS. Samples were analyzed in positive and negative ionization mode separately. The principal component analyses illustrate effects of the data analysis steps. (A.) Positive and negative datasets were combined. (B.) Blanks were subtracted. Metabolites that had a coverage of less than 50 % in at least one sample set were excluded. (C.) Gaps in the dataset were filled with the mean intensity of the sample group of the respective batch. If a metabolite was not detected in sample group the minimal intensity value was used for gap filling. (D.) Metabolites that were prominent within the magnetic bead or host cell background samples were excluded. (E.) To allow statistical comparison of the cyst samples, which were not normalized to parasite numbers, with the tachyzoites samples, the fractional abundances were calculated by dividing each metabolite intensity by the sum of all intensities per sample. (F.) Because the addition of beads to the tachyzoite samples did not play an important role, these controls were omitted from further analysis.

Figure S9: Transcriptomic data of amino acid transporter genes of *T. gondii* from Pittman et al., 2014⁶⁸. Transcripts per kilobase million were downloaded from ToxoDB (<http://www.toxodb.org>) and analyzed for stage specific regulation by dividing expression values for acute (10 days post infection (d.p.i.)) by chronic infection in mice (28 d.p.i.).

References

- 1 Tenter, A., Heckeroth, A. & Weiss, L. *Toxoplasma gondii*: From animals to humans. *International journal for parasitology* **30**, 1217-1258, doi:10.1016/S0020-7519(00)00124-7 (2000).
- 2 Barrett, M. P., Kyle, D. E., Sibley, L. D., Radke, J. B. & Tarleton, R. L. Protozoan persister-like cells and drug treatment failure. *Nat Rev Microbiol* **17**, 607-620, doi:10.1038/s41579-019-0238-x (2019).
- 3 Desmonts, G. *et al.* [Epidemiological study on toxoplasmosis: the influence of cooking slaughter-animal meat on the incidence of human infection]. *Rev Fr Etud Clin Biol* **10**, 952-958 (1965).
- 4 Luft, B. J., Brooks, R. G., Conley, F. K., McCabe, R. E. & Remington, J. S. Toxoplasmic encephalitis in patients with acquired immune deficiency syndrome. *Jama* **252**, 913-917 (1984).
- 5 Lopatkin, A. J. *et al.* Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. *Nature microbiology* **4**, 2109-2117, doi:10.1038/s41564-019-0536-0 (2019).
- 6 MacRae, J. I. *et al.* Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of *Toxoplasma gondii*. *Cell Host Microbe* **12**, 682-692, doi:10.1016/j.chom.2012.09.013 (2012).
- 7 Blume, M. *et al.* A *Toxoplasma gondii* Gluconeogenic Enzyme Contributes to Robust Central Carbon Metabolism and Is Essential for Replication and Virulence. *Cell Host Microbe* **18**, 210-220, doi:10.1016/j.chom.2015.07.008 (2015).
- 8 Olson, W. J. *et al.* Dual metabolomic profiling uncovers *Toxoplasma* manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. *PLoS pathogens* **16**, e1008432, doi:10.1371/journal.ppat.1008432 (2020).
- 9 Blume, M. & Seeber, F. Metabolic interactions between *Toxoplasma gondii* and its host. *F1000Res* **7**, doi:10.12688/f1000research.16021.1 (2018).
- 10 Murata, Y., Sugi, T., Weiss, L. M. & Kato, K. Identification of compounds that suppress *Toxoplasma gondii* tachyzoites and bradyzoites. *PLoS One* **12**, e0178203, doi:10.1371/journal.pone.0178203 (2017).
- 11 Shukla, A. *et al.* Glycolysis is important for optimal asexual growth and formation of mature tissue cysts by *Toxoplasma gondii*. *Int J Parasitol* **48**, 955-968, doi:10.1016/j.ijpara.2018.05.013 (2018).
- 12 Abdelbaset, A. E. *et al.* Lactate dehydrogenase in *Toxoplasma gondii* controls virulence, bradyzoite differentiation, and chronic infection. *PLoS One* **12**, e0173745, doi:10.1371/journal.pone.0173745 (2017).
- 13 Tomavo, S. & Boothroyd, J. C. Interconnection between organellar functions, development and drug resistance in the protozoan parasite, *Toxoplasma gondii*. *Int J Parasitol* **25**, 1293-1299, doi:10.1016/0020-7519(95)00066-b (1995).
- 14 Ferreira da Silva Mda, F., Barbosa, H. S., Gross, U. & Lüder, C. G. Stress-related and spontaneous stage differentiation of *Toxoplasma gondii*. *Mol Biosyst* **4**, 824-834, doi:10.1039/b800520f (2008).
- 15 Araujo, F. G., Huskinson, J. & Remington, J. S. Remarkable in vitro and in vivo activities of the hydroxynaphthoquinone 566C80 against tachyzoites and tissue cysts of *Toxoplasma gondii*. *Antimicrob Agents Chemother* **35**, 293-299, doi:10.1128/aac.35.2.293 (1991).
- 16 Ferguson, D. J., Huskinson-Mark, J., Araujo, F. G. & Remington, J. S. An ultrastructural study of the effect of treatment with atovaquone in brains of mice chronically infected with the ME49 strain of *Toxoplasma gondii*. *Int J Exp Pathol* **75**, 111-116 (1994).

17 Araujo, F. G., Huskinson-Mark, J., Gutteridge, W. E. & Remington, J. S. In vitro and in vivo activities of the hydroxynaphthoquinone 566C80 against the cyst form of *Toxoplasma gondii*. *Antimicrob Agents Chemother* **36**, 326-330, doi:10.1128/aac.36.2.326 (1992).

18 Di Cristina, M. *et al.* *Toxoplasma* depends on lysosomal consumption of autophagosomes for persistent infection. *Nature microbiology* **2**, 17096, doi:10.1038/nmicrobiol.2017.96 (2017).

19 Smith, D. *et al.* *Toxoplasma* TgATG9 is critical for autophagy and long-term persistence in tissue cysts. *bioRxiv*, 2020.2005.2013.093401, doi:10.1101/2020.05.13.093401 (2020).

20 Lüder, C. G. K. & Rahman, T. Impact of the host on *Toxoplasma* stage differentiation. *Microb Cell* **4**, 203-211, doi:10.15698/mic2017.07.579 (2017).

21 Ferguson, D. J. & Hutchison, W. M. An ultrastructural study of the early development and tissue cyst formation of *Toxoplasma gondii* in the brains of mice. *Parasitol Res* **73**, 483-491, doi:10.1007/bf00535321 (1987).

22 Watts, E. *et al.* Novel Approaches Reveal that *Toxoplasma gondii* Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo. *MBio* **6**, e01155-01115, doi:10.1128/mBio.01155-15 (2015).

23 Soete, M., Camus, D. & Dubremetz, J. F. Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of *Toxoplasma gondii* in vitro. *Exp Parasitol* **78**, 361-370, doi:10.1006/expr.1994.1039 (1994).

24 Fox, B. A., Gigley, J. P. & Bzik, D. J. *Toxoplasma gondii* lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. *Int J Parasitol* **34**, 323-331, doi:10.1016/j.ijpara.2003.12.001 (2004).

25 Mahamed, D. A., Mills, J. H., Egan, C. E., Denkers, E. Y. & Bynoe, M. S. CD73-generated adenosine facilitates *Toxoplasma gondii* differentiation to long-lived tissue cysts in the central nervous system. *Proceedings of the National Academy of Sciences of the United States of America* **109**, 16312-16317, doi:10.1073/pnas.1205589109 (2012).

26 Donald, R. G. *et al.* *Toxoplasma gondii* cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite protein kinase. *Eukaryot Cell* **1**, 317-328, doi:10.1128/ec.1.3.317-328.2002 (2002).

27 Weilhammer, D. R. *et al.* Host metabolism regulates growth and differentiation of *Toxoplasma gondii*. *International Journal for Parasitology* **42**, 947-959, doi:<https://doi.org/10.1016/j.ijpara.2012.07.011> (2012).

28 Mayoral, J., Di Cristina, M., Carruthers, V. B. & Weiss, L. M. *Toxoplasma gondii*: Bradyzoite Differentiation In Vitro and In Vivo. *Methods Mol Biol* **2071**, 269-282, doi:10.1007/978-1-4939-9857-9_15 (2020).

29 Guimaraes, E. V., de Carvalho, L. & Barbosa, H. S. Primary culture of skeletal muscle cells as a model for studies of *Toxoplasma gondii* cystogenesis. *J Parasitol* **94**, 72-83, doi:10.1645/GE-1273.1 (2008).

30 Guimaraes, E. V., Carvalho, L. d. & Barbosa, H. S. Interaction and cystogenesis of *Toxoplasma gondii* within skeletal muscle cells in vitro. *Memórias do Instituto Oswaldo Cruz* **104**, 170-174 (2009).

31 Mouveaux, T. *et al.* Primary brain cell infection by *Toxoplasma gondii* reveals the extent and dynamics of parasite differentiation and its impact on neuron biology. *Open biology* **11**, 210053, doi:10.1098/rsob.210053 (2021).

32 Fux, B. *et al.* *Toxoplasma gondii* Strains Defective in Oral Transmission Are Also Defective in Developmental Stage Differentiation. *Infection and immunity* **75**, 2580-2590, doi:10.1128/IAI.00085-07 (2007).

33 Dubey, J. P., Kotula, A. W., Sharar, A., Andrews, C. D. & Lindsay, D. S. Effect of high temperature on infectivity of *Toxoplasma gondii* tissue cysts in pork. *J Parasitol* **76**, 201-204 (1990).

34 Dunay, I. R., Gajurel, K., Dhakal, R., Liesenfeld, O. & Montoya, J. G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. *Clin Microbiol Rev* **31**, doi:10.1128/cmr.00057-17 (2018).

35 Shiomi, K. et al. CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential. *Gene Ther* **18**, 857-866, doi:10.1038/gt.2011.44 (2011).

36 Sabin, A. B. Toxoplasmic Encephalitis In Children. *JAMA* **116**, 801-807, doi:10.1001/jama.1941.02820090001001 (1941).

37 Huynh, M.-H. & Carruthers, V. B. Tagging of endogenous genes in a *Toxoplasma gondii* strain lacking Ku80. *Eukaryotic cell* **8**, 530-539, doi:10.1128/EC.00358-08 (2009).

38 Dubey, J. P. Mouse pathogenicity of *Toxoplasma gondii* isolated from a goat. *Am J Vet Res* **41**, 427-429 (1980).

39 Guo, Z.-G., Gross, U. & Johnson, A. M. *Toxoplasma gondii* virulence markers identified by random amplified polymorphic DNA polymerase chain reaction. *Parasitology Research* **83**, 458-463, doi:10.1007/s004360050280 (1997).

40 Singh, U., Brewer, J. L. & Boothroyd, J. C. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in *Toxoplasma gondii* reveals a hierarchy of gene induction. *Mol Microbiol* **44**, 721-733, doi:10.1046/j.1365-2958.2002.02903.x (2002).

41 Chtanova, T. et al. Dynamics of neutrophil migration in lymph nodes during infection. *Immunity* **29**, 487-496, doi:10.1016/j.immuni.2008.07.012 (2008).

42 Darde, M. L., Bouteille, B. & Pestre-Alexandre, M. Isoenzyme analysis of 35 *Toxoplasma gondii* isolates and the biological and epidemiological implications. *J Parasitol* **78**, 786-794 (1992).

43 Sibley, L. D., Mordue, D. G., Su, C., Robben, P. M. & Howe, D. K. Genetic approaches to studying virulence and pathogenesis in *Toxoplasma gondii*. *Philos Trans R Soc Lond B Biol Sci* **357**, 81-88, doi:10.1098/rstb.2001.1017 (2002).

44 Laue, M. Electron microscopy of viruses. *Methods in cell biology* **96**, 1-20, doi:10.1016/s0091-679x(10)96001-9 (2010).

45 Gross, U. et al. Monoclonal rat antibodies directed against *Toxoplasma gondii* suitable for studying tachyzoite-bradyzoite interconversion in vivo. *Clin Diagn Lab Immunol* **2**, 542-548 (1995).

46 Bulow, R. & Boothroyd, J. C. Protection of mice from fatal *Toxoplasma gondii* infection by immunization with p30 antigen in liposomes. *J Immunol* **147**, 3496-3500 (1991).

47 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* **9**, 671-675 (2012).

48 Dubey, J. P. Re-examination of resistance of *Toxoplasma gondii* tachyzoites and bradyzoites to pepsin and trypsin digestion. *Parasitology* **116** (Pt 1), 43-50 (1998).

49 Matta, S. K. et al. *Toxoplasma gondii* effector TgIST blocks type I interferon signaling to promote infection. *Proceedings of the National Academy of Sciences of the United States of America* **116**, 17480-17491, doi:10.1073/pnas.1904637116 (2019).

50 Huang, W. et al. SAR Studies of 5-Aminopyrazole-4-carboxamide Analogues as Potent and Selective Inhibitors of *Toxoplasma gondii* CDPK1. *ACS Med Chem Lett* **6**, 1184-1189, doi:10.1021/acsmedchemlett.5b00319 (2015).

51 Doggett, J. S., Ojo, K. K., Fan, E., Maly, D. J. & Van Voorhis, W. C. Bumped kinase inhibitor 1294 treats established *Toxoplasma gondii* infection. *Antimicrobial agents and chemotherapy* **58**, 3547-3549, doi:10.1128/AAC.01823-13 (2014).

52 Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. *Nucleic acids research* **43**, W566-570, doi:10.1093/nar/gkv468 (2015).

53 Dubey, J. P. Long-term persistence of *Toxoplasma gondii* in tissues of pigs inoculated with *T. gondii* oocysts and effect of freezing on viability of tissue cysts in pork. *Am J Vet Res* **49**, 910-913 (1988).

54 Speer, C. A., Dubey, J. P., McAllister, M. M. & Blixt, J. A. Comparative ultrastructure of tachyzoites, bradyzoites, and tissue cysts of *Neospora caninum* and *Toxoplasma gondii*. *Int J Parasitol* **29**, 1509-1519, doi:10.1016/s0020-7519(99)00132-0 (1999).

55 Sullivan, W. J., Jr., Smith, A. T. & Joyce, B. R. Understanding mechanisms and the role of differentiation in pathogenesis of *Toxoplasma gondii*: a review. *Mem Inst Oswaldo Cruz* **104**, 155-161, doi:10.1590/s0074-02762009000200005 (2009).

56 Ferguson, D. J. Use of molecular and ultrastructural markers to evaluate stage conversion of *Toxoplasma gondii* in both the intermediate and definitive host. *Int J Parasitol* **34**, 347-360, doi:10.1016/j.ijpara.2003.11.024 (2004).

57 Ferreira-da-Silva Mda, F., Takacs, A. C., Barbosa, H. S., Gross, U. & Lüder, C. G. Primary skeletal muscle cells trigger spontaneous *Toxoplasma gondii* tachyzoite-to-bradyzoite conversion at higher rates than fibroblasts. *Int J Med Microbiol* **299**, 381-388, doi:10.1016/j.ijmm.2008.10.002 (2009).

58 Hegewald, J., Gross, U. & Bohne, W. Identification of dihydroorotate dehydrogenase as a relevant drug target for 1-hydroxyquinolones in *Toxoplasma gondii*. *Mol Biochem Parasitol* **190**, 6-15, doi:10.1016/j.molbiopara.2013.05.008 (2013).

59 Saleh, A., Friesen, J., Baumeister, S., Gross, U. & Bohne, W. Growth inhibition of *Toxoplasma gondii* and *Plasmodium falciparum* by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases. *Antimicrob Agents Chemother* **51**, 1217-1222, doi:10.1128/aac.00895-06 (2007).

60 Winzer, P. *et al.* In Vitro and In Vivo Effects of the Bumped Kinase Inhibitor 1294 in the Related Cyst-Forming Apicomplexans *Toxoplasma gondii* and *Neospora caninum*. *Antimicrob Agents Chemother* **59**, 6361-6374, doi:10.1128/aac.01236-15 (2015).

61 Scheele, S. *et al.* *Toxoplasma* Calcium-Dependent Protein Kinase 1 Inhibitors: Probing Activity and Resistance Using Cellular Thermal Shift Assays. *Antimicrob Agents Chemother* **62**, doi:10.1128/AAC.00051-18 (2018).

62 Tomita, T. *et al.* The *Toxoplasma gondii* cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. *PLoS pathogens* **9**, e1003823, doi:10.1371/journal.ppat.1003823 (2013).

63 Cerutti, A., Blanchard, N. & Besteiro, S. The Bradyzoite: A Key Developmental Stage for the Persistence and Pathogenesis of Toxoplasmosis. *Pathogens* **9**, doi:10.3390/pathogens9030234 (2020).

64 Denton, H., Roberts, C. W., Alexander, J., Thong, K. W. & Coombs, G. H. Enzymes of energy metabolism in the bradyzoites and tachyzoites of *Toxoplasma gondii*. *FEMS microbiology letters* **137**, 103-108, doi:10.1111/j.1574-6968.1996.tb08090.x (1996).

65 Fleige, T., Pfaff, N., Gross, U. & Bohne, W. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in *Toxoplasma gondii*. *Int J Parasitol* **38**, 1121-1132, doi:10.1016/j.ijpara.2008.01.007 (2008).

66 Lin, S. S. *et al.* The *Toxoplasma gondii* type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H)quinolones. *Biochimica et biophysica acta* **1777**, 1455-1462, doi:10.1016/j.bbabi.2008.08.006 (2008).

67 Sugi, T., Tu, V., Ma, Y., Tomita, T. & Weiss, L. M. *Toxoplasma gondii* Requires Glycogen Phosphorylase for Balancing Amylopectin Storage and for Efficient Production of Brain Cysts. *MBio* **8**, doi:10.1128/mBio.01289-17 (2017).

68 Xia, N. *et al.* A Lactate Fermentation Mutant of *Toxoplasma* Stimulates Protective Immunity Against Acute and Chronic Toxoplasmosis. *Front Immunol* **9**, 1814, doi:10.3389/fimmu.2018.01814 (2018).

69 Pittman, K. J., Aliota, M. T. & Knoll, L. J. Dual transcriptional profiling of mice and *Toxoplasma gondii* during acute and chronic infection. *BMC genomics* **15**, 806, doi:10.1186/1471-2164-15-806 (2014).

70 Bertschi, N. L. *et al.* Transcriptomic analysis reveals reduced transcriptional activity in the malaria parasite *Plasmodium cynomolgi* during progression into dormancy. *Elife* **7**, doi:10.7554/elife.41081 (2018).

71 Krishnan, A. *et al.* Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific *Toxoplasma* Metabolism. *Cell Host Microbe* **27**, 290-306.e211, doi:10.1016/j.chom.2020.01.002 (2020).

72 Parker, K. E. R. *et al.* The tyrosine transporter of *Toxoplasma gondii* is a member of the newly defined apicomplexan amino acid transporter (ApiAT) family. *PLoS pathogens* **15**, e1007577, doi:10.1371/journal.ppat.1007577 (2019).

73 Jeffers, V., Tampaki, Z., Kim, K. & Sullivan, W. J., Jr. A latent ability to persist: differentiation in *Toxoplasma gondii*. *Cell Mol Life Sci* **75**, 2355-2373, doi:10.1007/s00018-018-2808-x (2018).

74 Dou, Z., McGovern, O. L., Di Cristina, M. & Carruthers, V. B. *Toxoplasma gondii* ingests and digests host cytosolic proteins. *MBio* **5**, e01188-01114, doi:10.1128/mBio.01188-14 (2014).

75 Sullivan, W. J., Jr., Narasimhan, J., Bhatti, M. M. & Wek, R. C. Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control. *The Biochemical journal* **380**, 523-531, doi:10.1042/bj20040262 (2004).

76 Saunders, E. C. *et al.* Induction of a stringent metabolic response in intracellular stages of *Leishmania mexicana* leads to increased dependence on mitochondrial metabolism. *PLoS pathogens* **10**, e1003888, doi:10.1371/journal.ppat.1003888 (2014).

77 Fox, B. A. & Bzik, D. J. De novo pyrimidine biosynthesis is required for virulence of *Toxoplasma gondii*. *Nature* **415**, 926-929, doi:10.1038/415926a (2002).

78 Chiang, C. W. *et al.* The adenosine transporter of *Toxoplasma gondii*. Identification by insertional mutagenesis, cloning, and recombinant expression. *J Biol Chem* **274**, 35255-35261, doi:10.1074/jbc.274.49.35255 (1999).

79 De Koning, H. P., Al-Salabi, M. I., Cohen, A. M., Coombs, G. H. & Wastling, J. M. Identification and characterisation of high affinity nucleoside and nucleobase transporters in *Toxoplasma gondii*. *International Journal for Parasitology* **33**, 821-831, doi:[https://doi.org/10.1016/S0020-7519\(03\)00091-2](https://doi.org/10.1016/S0020-7519(03)00091-2) (2003).

80 Fox, B. A. *et al.* Type II *Toxoplasma gondii* KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. *Eukaryot Cell* **10**, 1193-1206, doi:10.1128/ec.00297-10 (2011).

81 Painter, H. J., Morrisey, J. M., Mather, M. W. & Vaidya, A. B. Specific role of mitochondrial electron transport in blood-stage *Plasmodium falciparum*. *Nature* **446**, 88-91, doi:10.1038/nature05572 (2007).

82 Hortua Triana, M. A. *et al.* Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from *Toxoplasma gondii*. *Mol Biochem Parasitol* **184**, 71-81, doi:10.1016/j.molbiopara.2012.04.009 (2012).

83 Lin, S. S., Gross, U. & Bohne, W. Type II NADH dehydrogenase inhibitor 1-hydroxy-2-dodecyl-4(1H)quinolone leads to collapse of mitochondrial inner-membrane potential

and ATP depletion in *Toxoplasma gondii*. *Eukaryot Cell* **8**, 877-887, doi:10.1128/EC.00381-08 (2009).

84 Doggett, J. S. *et al.* Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. *Proceedings of the National Academy of Sciences of the United States of America* **109**, 15936-15941, doi:10.1073/pnas.1208069109 (2012).

85 Malinska, D., Kudin, A. P., Bejtka, M. & Kunz, W. S. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. *Mitochondrion* **12**, 144-148, doi:10.1016/j.mito.2011.06.015 (2012).

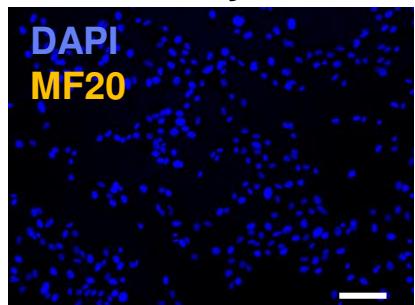
86 Radke, J. R. *et al.* Changes in the expression of human cell division autoantigen-1 influence *Toxoplasma gondii* growth and development. *PLoS pathogens* **2**, e105, doi:10.1371/journal.ppat.0020105 (2006).

87 Swierzy, I. J. & Lüder, C. G. K. Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation of *Toxoplasma gondii* towards the bradyzoite stage. *Cellular Microbiology* **17**, 2-17, doi:10.1111/cmi.12342 (2015).

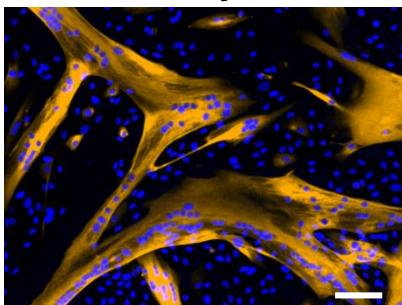
88 Roos, D. S. Primary structure of the dihydrofolate reductase-thymidylate synthase gene from *Toxoplasma gondii*. *J Biol Chem* **268**, 6269-6280 (1993).

89 Bajohr, L. L. *et al.* In vitro and in vivo activities of 1-hydroxy-2-alkyl-4(1H)quinolone derivatives against *Toxoplasma gondii*. *Antimicrob Agents Chemother* **54**, 517-521, doi:10.1128/AAC.01001-09 (2010).

90 Ferguson, D. J., Huskinson-Mark, J., Araujo, F. G. & Remington, J. S. A morphological study of chronic cerebral toxoplasmosis in mice: comparison of four different strains of *Toxoplasma gondii*. *Parasitol Res* **80**, 493-501, doi:10.1007/bf00932696 (1994).

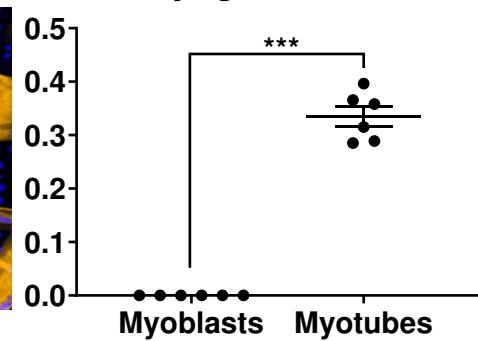

91 Yap, G. S. *et al.* Partially protective vaccination permits the development of latency in a normally virulent strain of *Toxoplasma gondii*. *Infect Immun* **66**, 4382-4388 (1998).

92 Bakkeren, E., Diard, M. & Hardt, W.-D. Evolutionary causes and consequences of bacterial antibiotic persistence. *Nature Reviews Microbiology* **18**, 479-490, doi:10.1038/s41579-020-0378-z (2020).

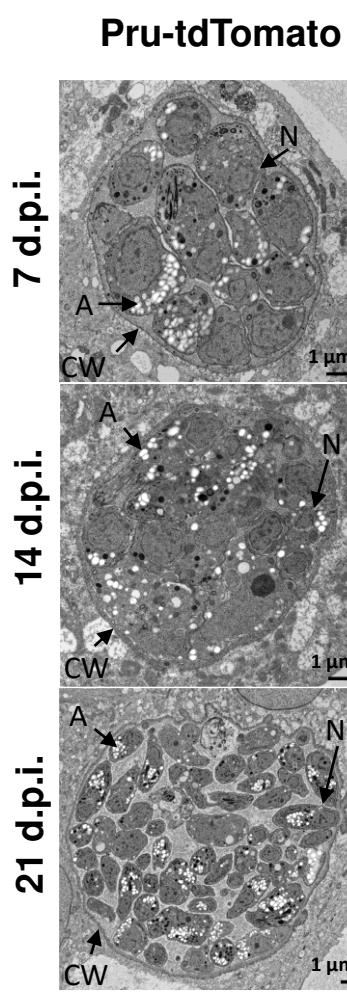

Fig. 1

A

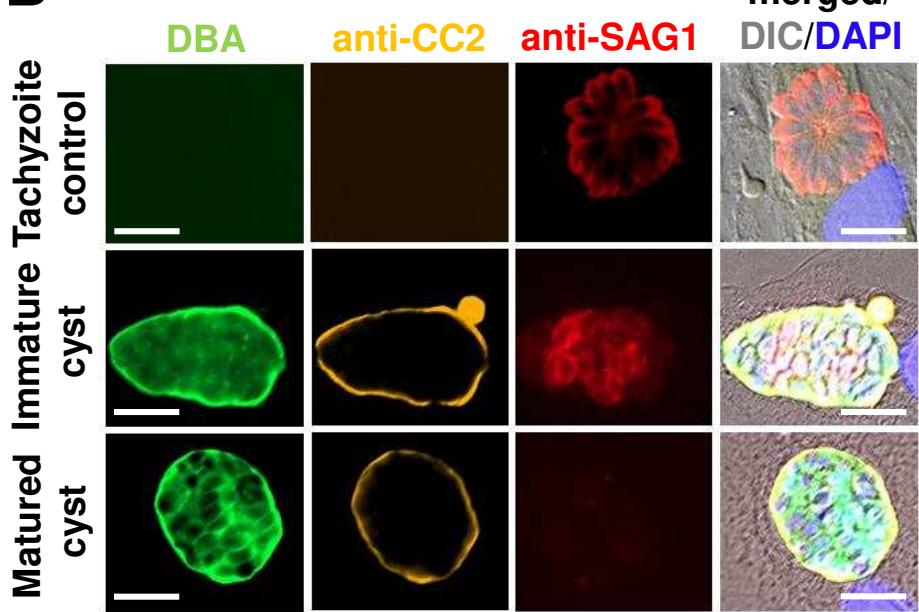
Human myoblasts

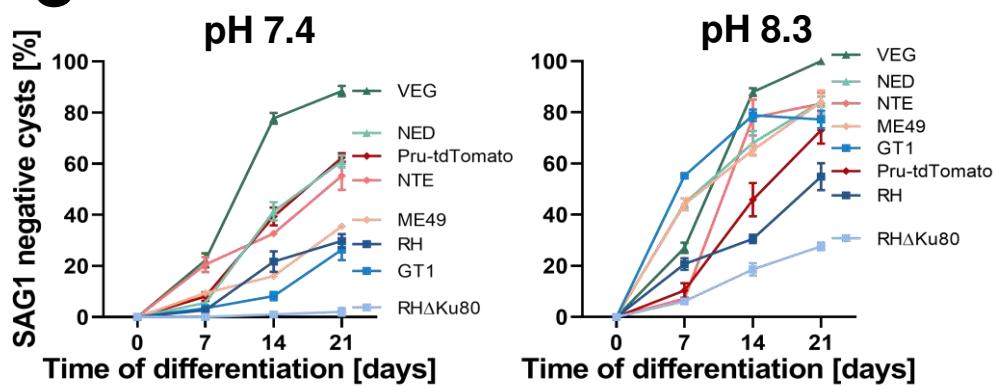


Human myotubes

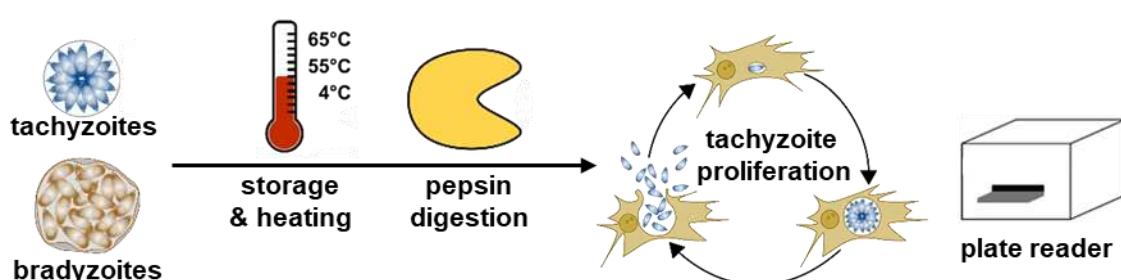


B


Myogenic index


A

B



C

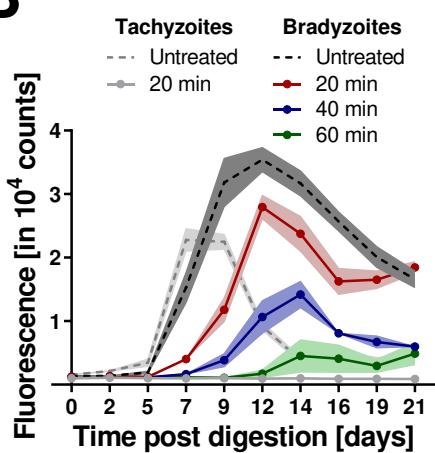
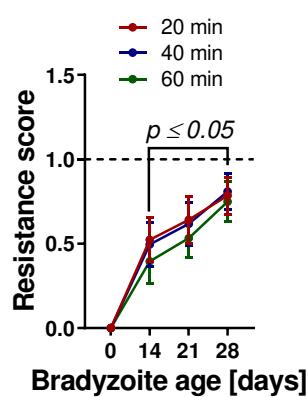
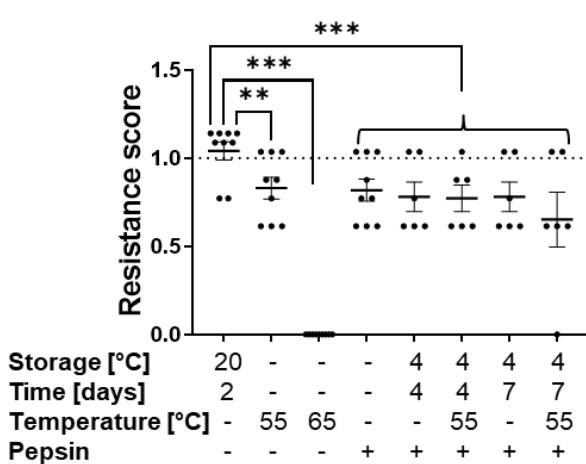
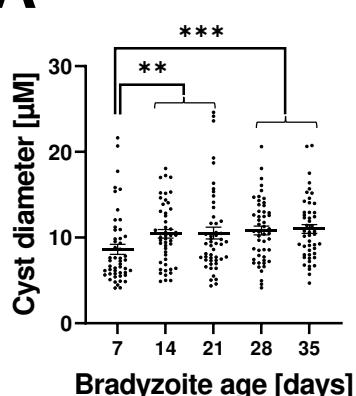
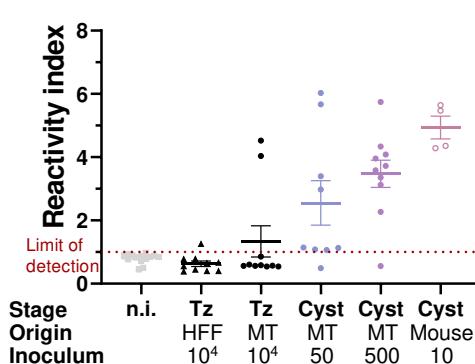


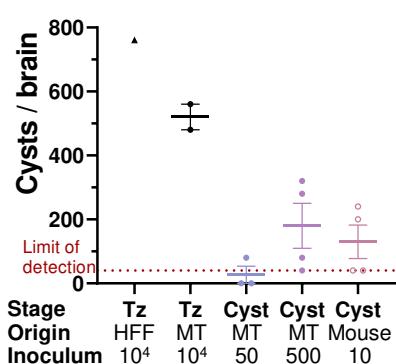
Fig. 3


A


B

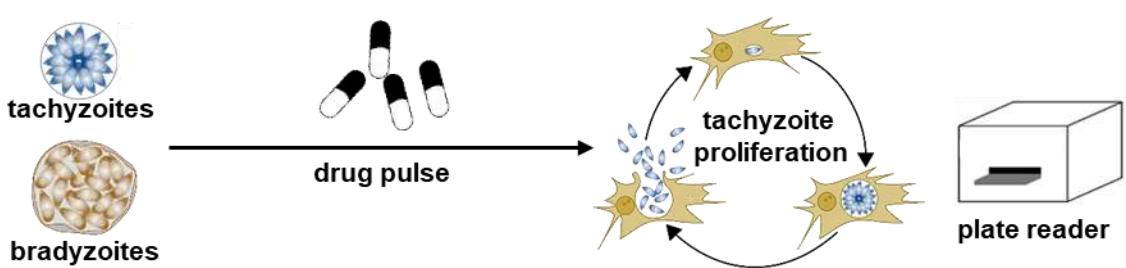

C


D


A

B

C



D

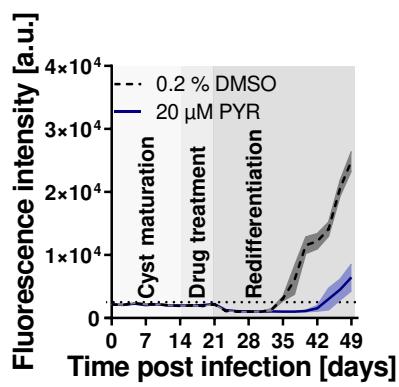
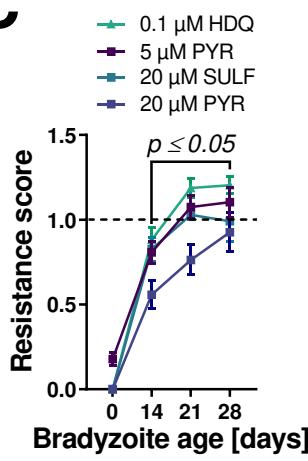
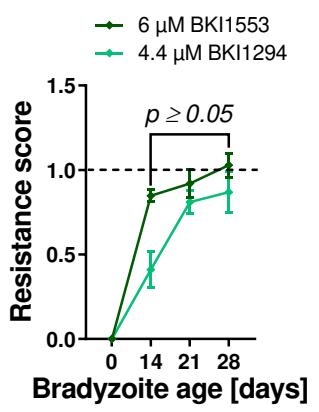
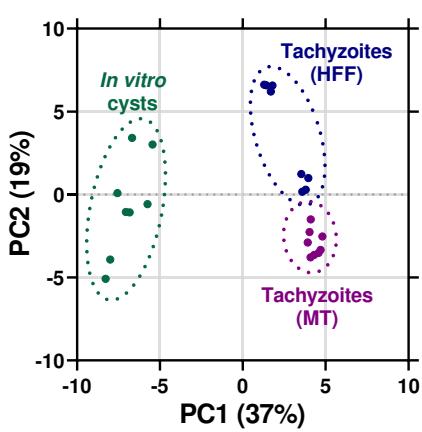

Stage	Tz	Tz	Cyst	Cyst	Cyst
Origin	HFF	MT	MT	MT	Mouse
Inoculum	10^4	10^4	50	500	10
Seroconversion	1/10	2/10	8/10†*	9/10†*	4/5†
Brain cysts**	1/1	2/2	1/3	4/4	4/4

Fig. 5


A


B

C



D

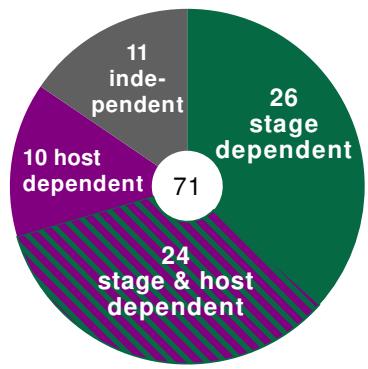
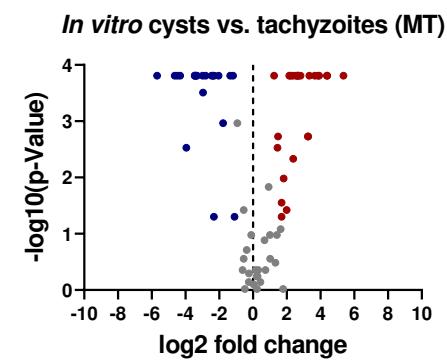
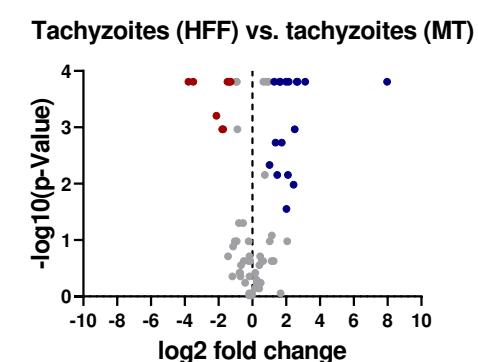
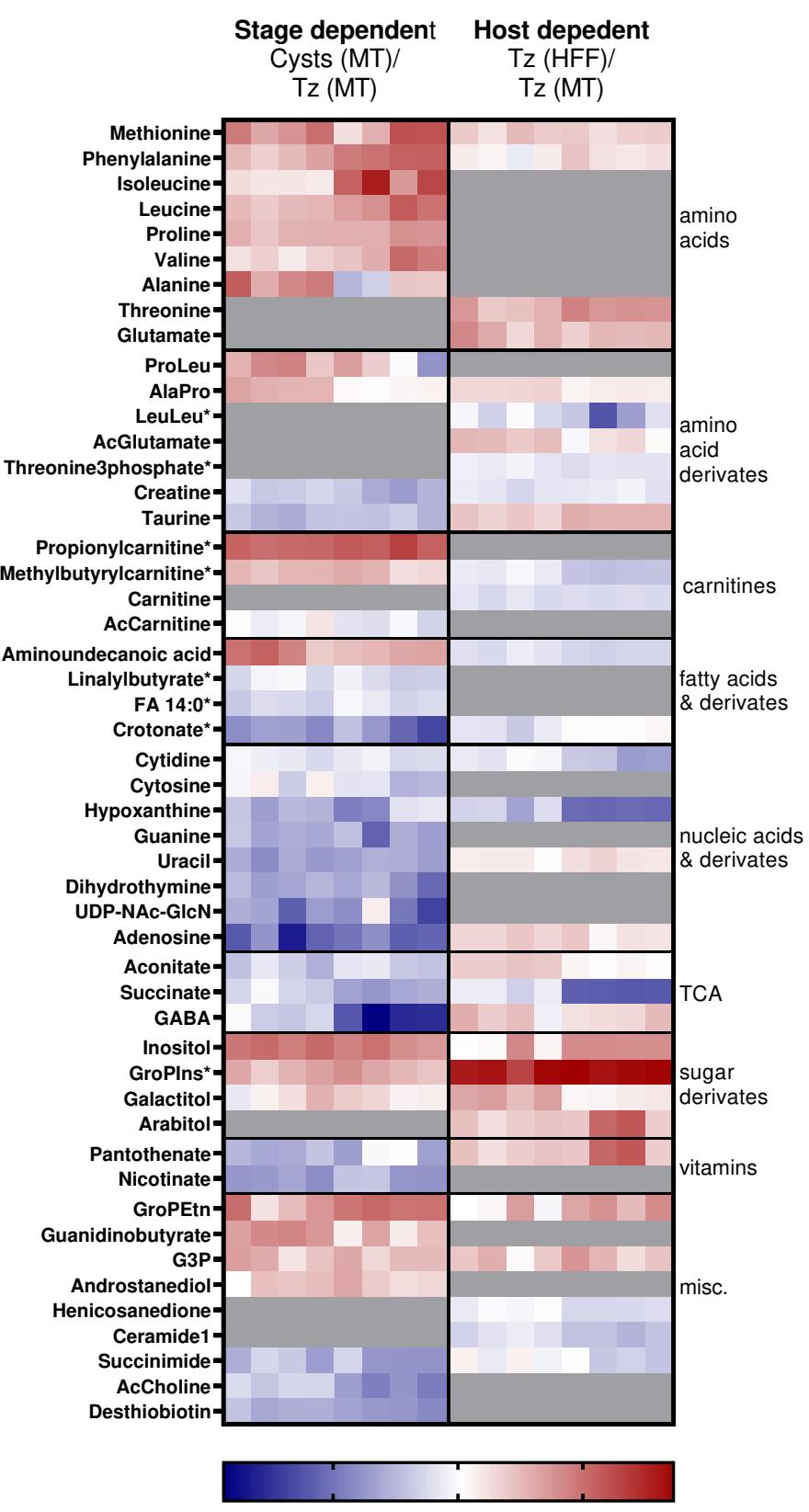


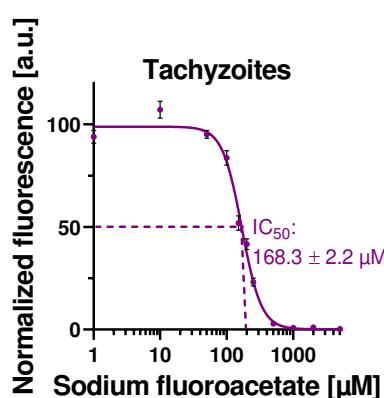
Fig. 6


A


B


C

D



E

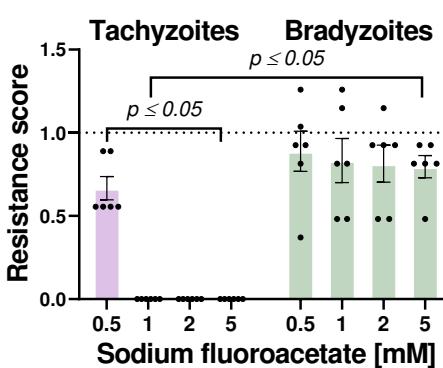
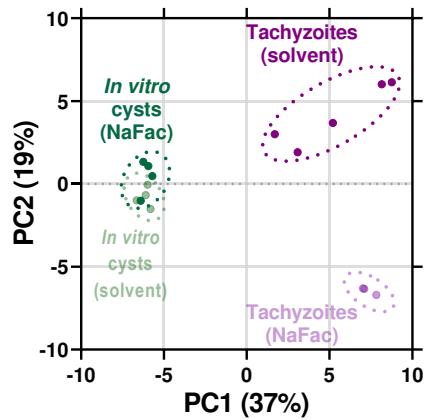
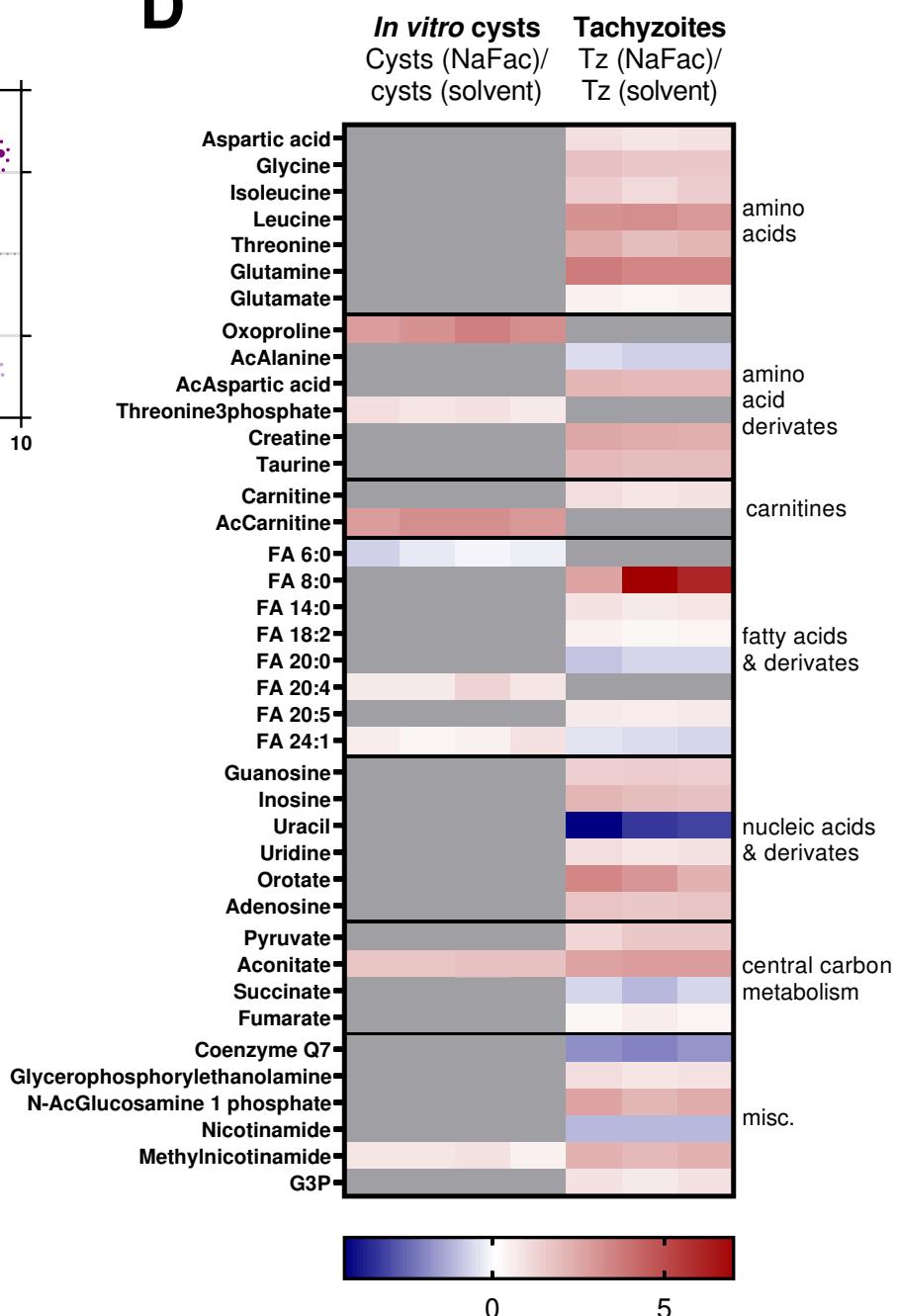


Fig. 7

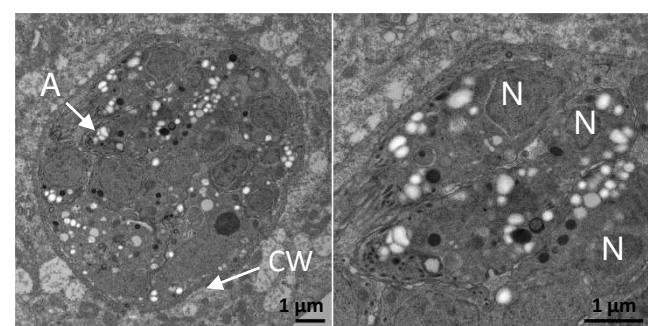

A


B

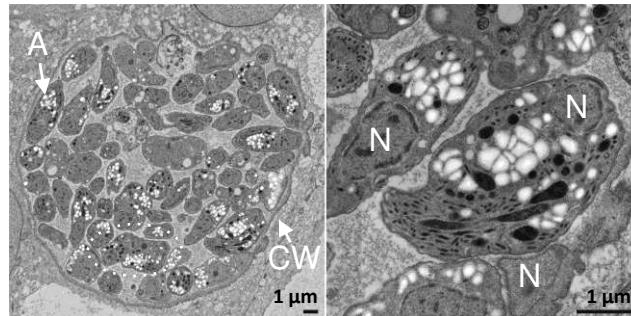
C


D

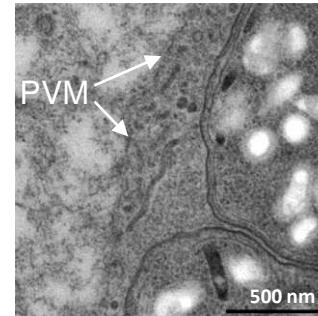
Fig. S1


A

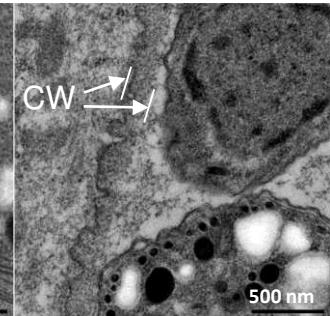
7 days p.i.


B

14 days p.i.

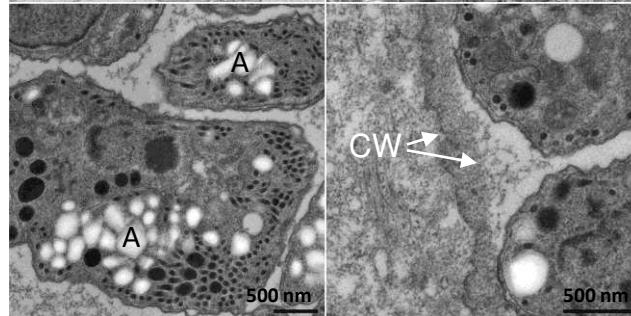

C

21 days p.i.

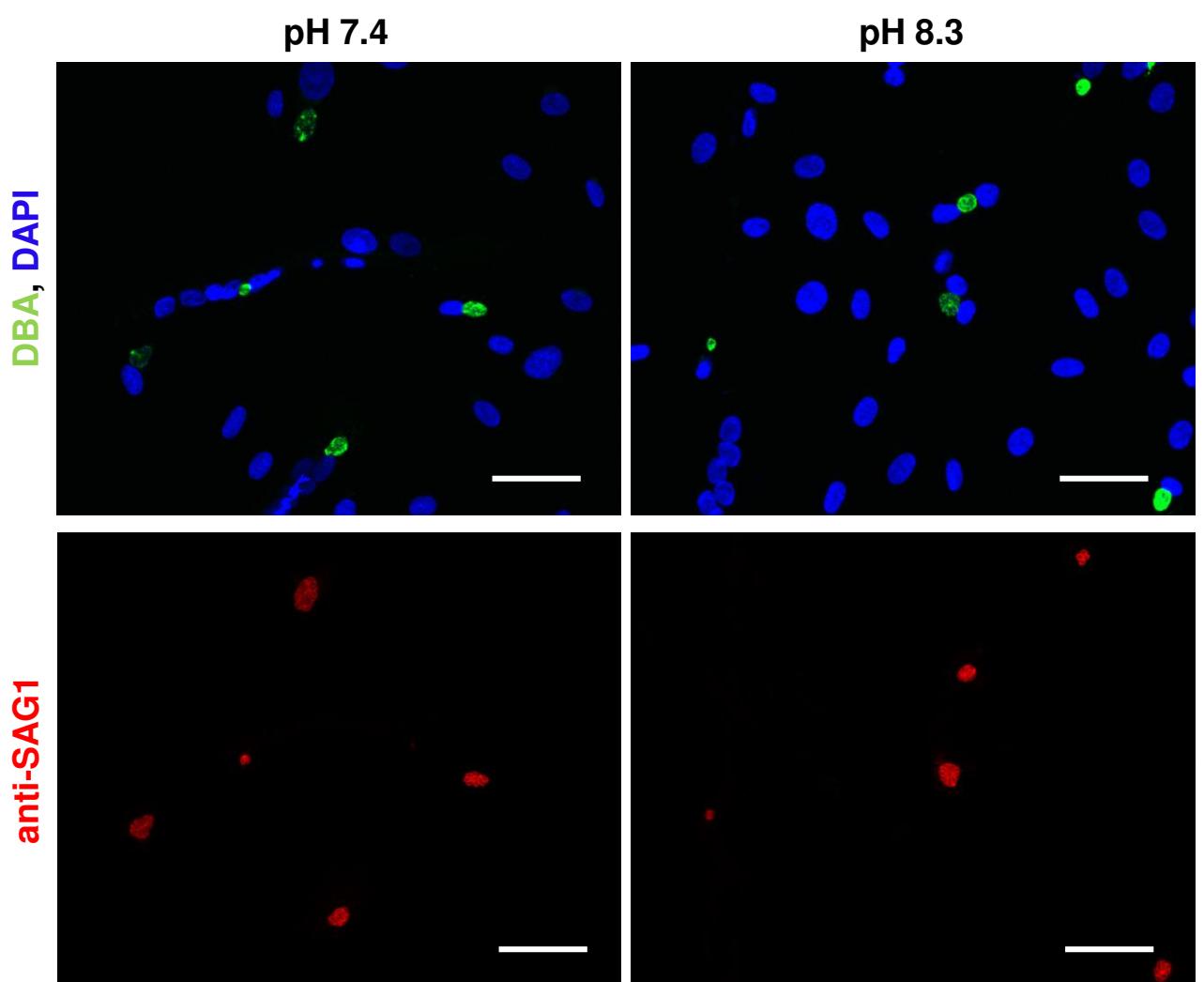


D

7 days p.i.



21 days p.i.



Developing cyst wall

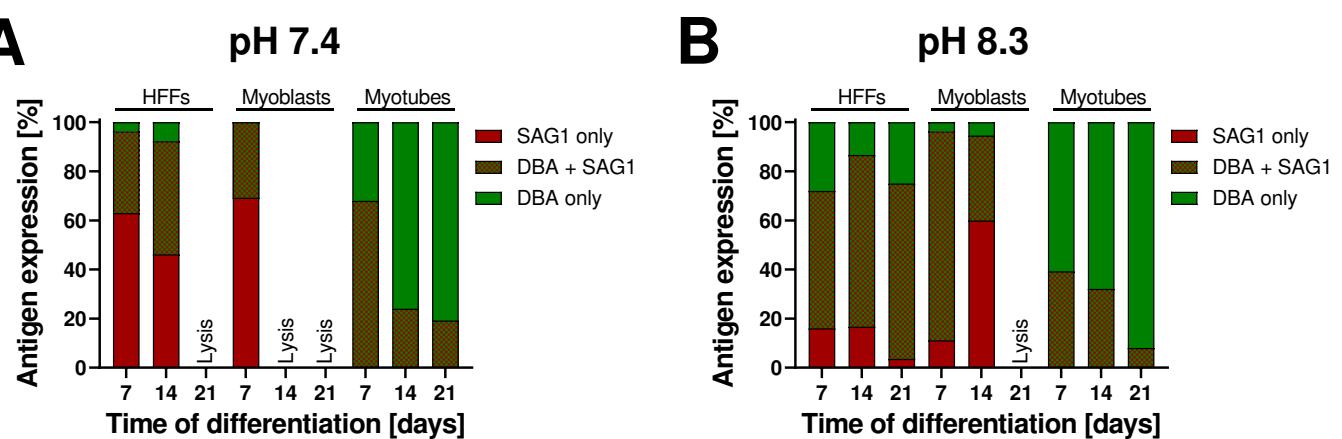

Mature cyst wall

Fig. S2

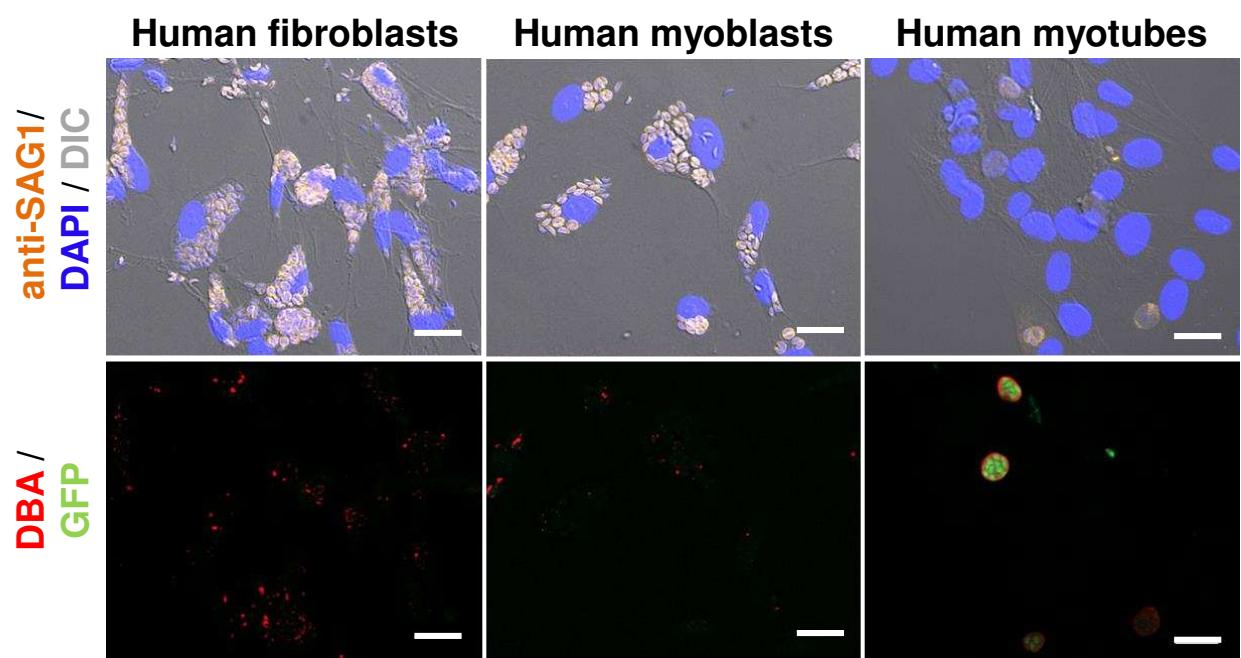


Fig. S3

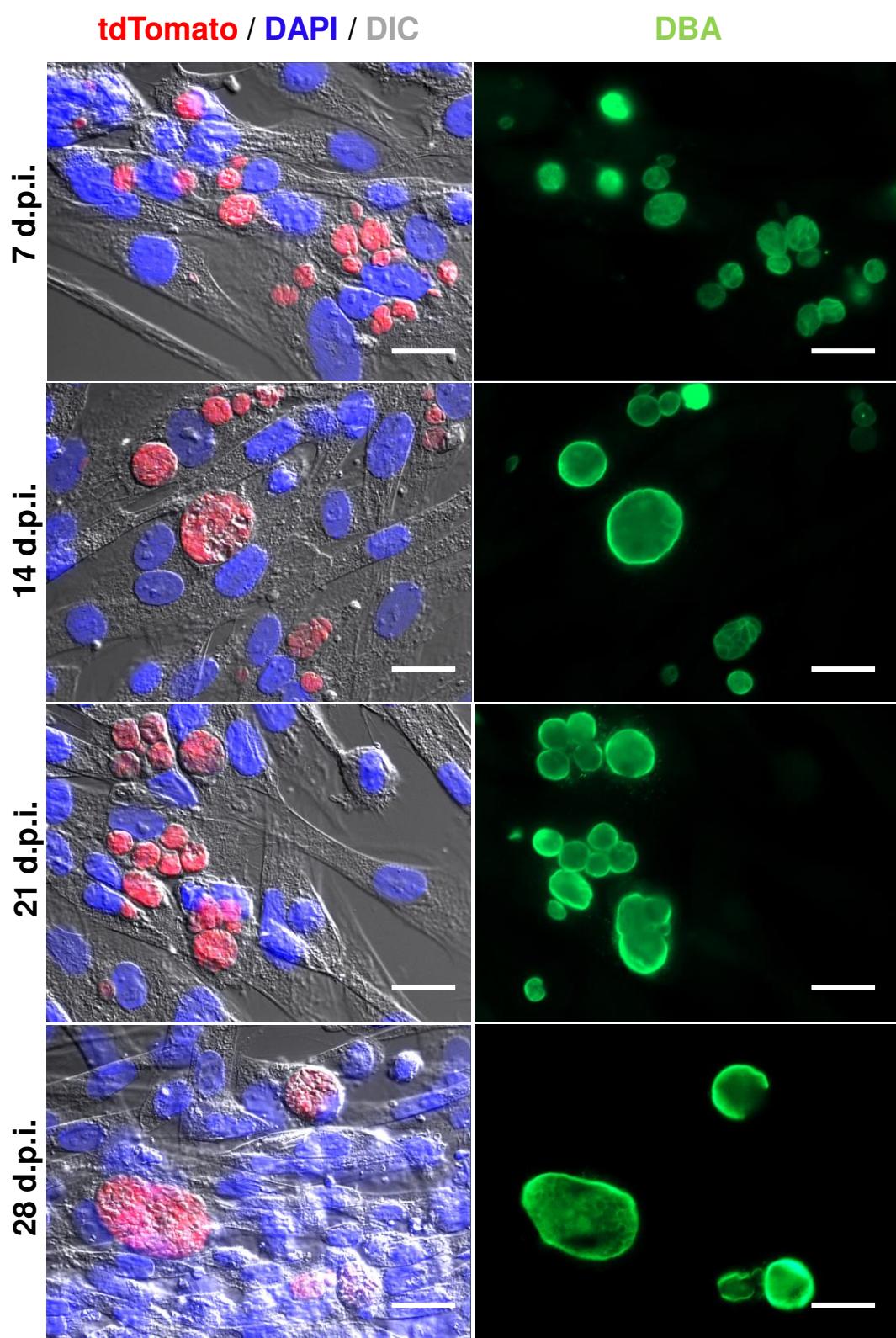


Fig. S4

+ T. gondii

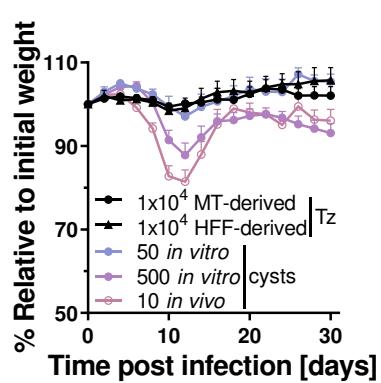


Fig. S5

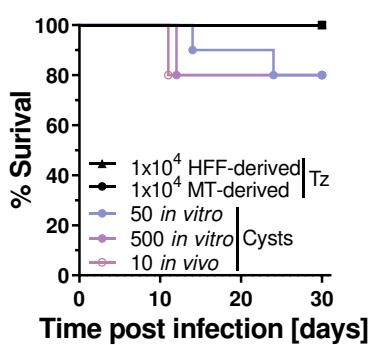
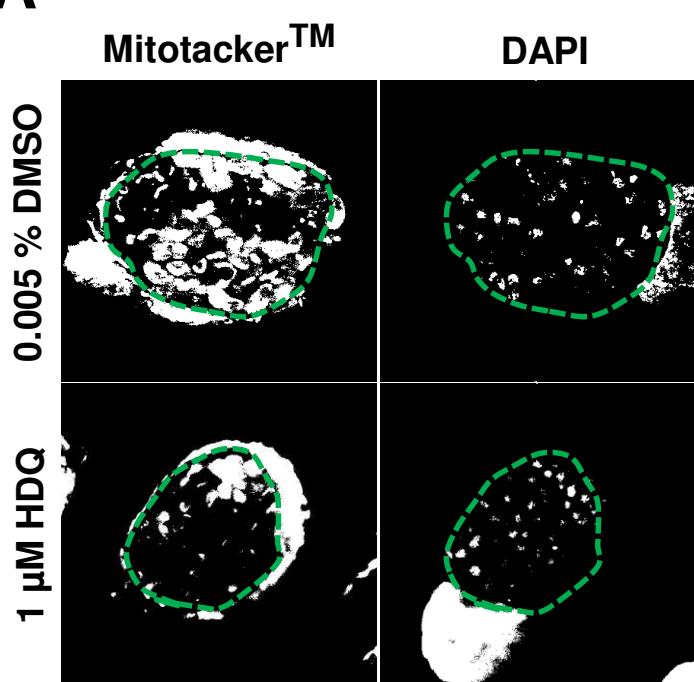


Fig. S6

A



B

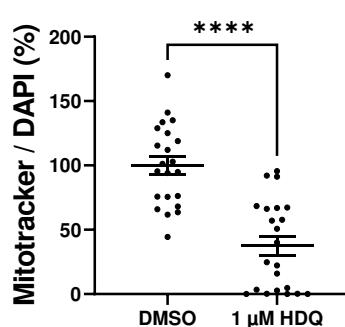
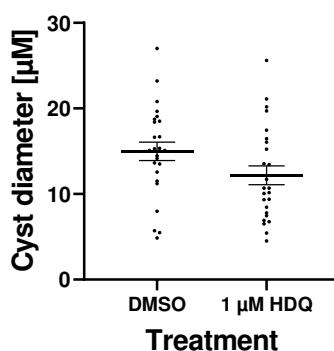
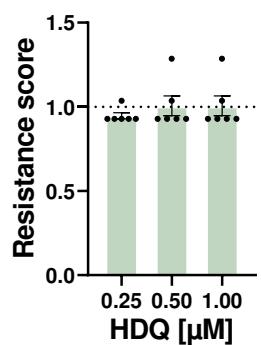
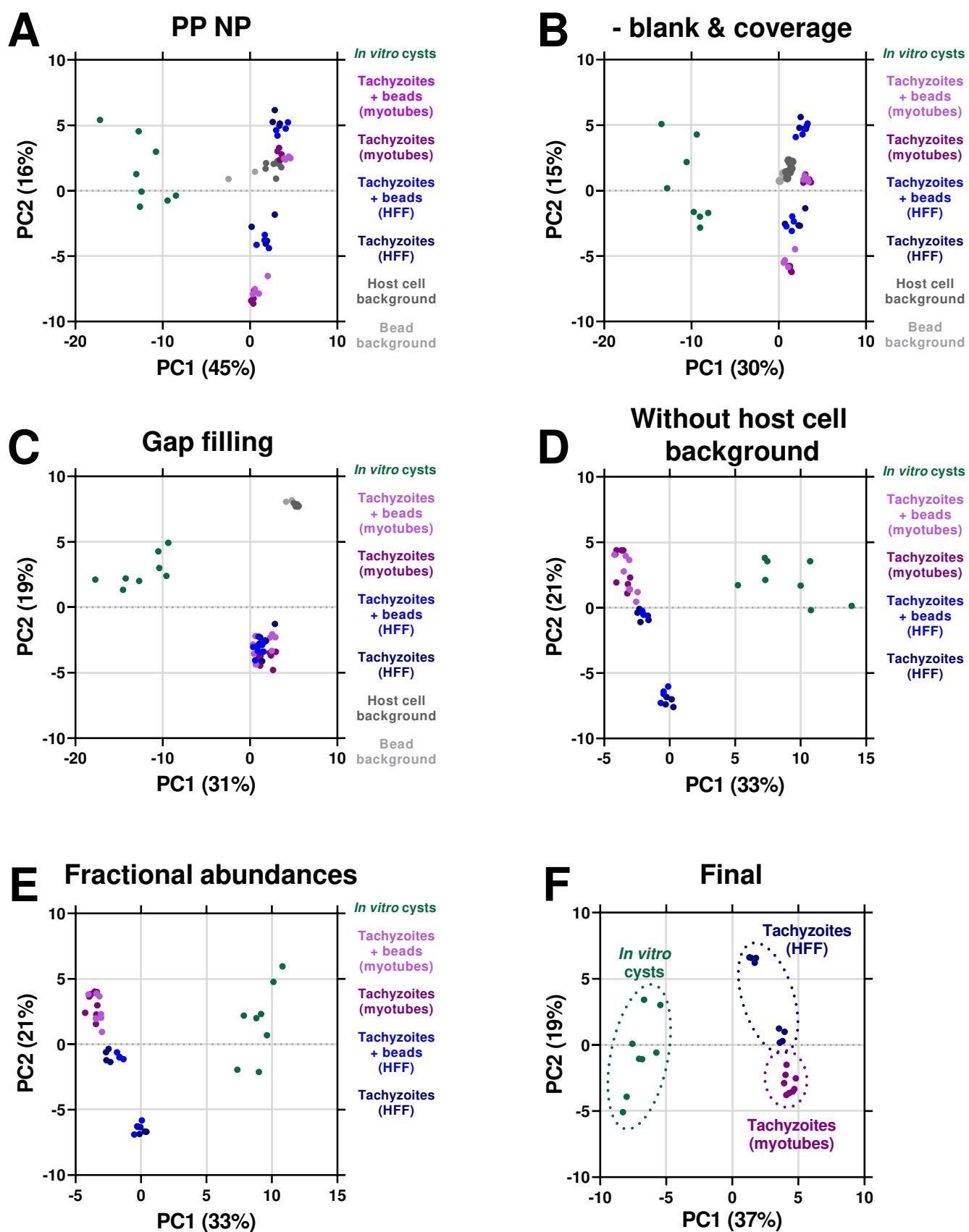


Fig. S7


A


B


C

D

Fig. S8

Fig. S9

Name	Gene ID	Acute infection (10 d.p.i.)	Chronic infection (28 d.p.i.)	chronic/acute
TgAT	TGME49_244440	75.64	3.5	0.05
TgAT1 high affinity	TGME49_233130	27.87	76.36	2.74
TgAT2 high affinity	TGME49_288540	30.4	36.33	1.20
TgApiAT5-3	TGME49_257530	1037.34	283.94	0.27
TgApiAT6-3	TGME49_249580	24.05	8.7	0.36
TgApiAT5-1	TGME49_248610	14.27	6.89	0.48
TgApiAT7-1	TGME49_263230	49.22	25.71	0.52
TgApiAT1	TGME49_215490	83.03	45.73	0.55
TgApiAT6-2	TGME49_290860	30.76	16.92	0.55
TgApiAT3-1	TGME49_318150	13.73	8.06	0.59
TgApiAT7-2	TGME49_263260	71.19	44.06	0.62
TgApiAT2	TGME49_320020	38.62	24.4	0.63
TgApiAT3-2	TGME49_248420	41.93	28.78	0.69
TgApiAT6-1	TGME49_240810	40.39	28.78	0.71
TgApiAT5-5	TGME49_293420	0.01	0.01	1.00
TgApiAT5-6	TGME49_293425	0.01	0.01	1.00
TgApiAT3-3	TGME49_220600	24.69	26.66	1.08
TgApiAT5-4	TGME49_216710	4.26	9.05	2.12
TgApiAT5-2	TGME49_205520	0.01	2.11	211.00