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Summary

Human antibody responses are established by the generation of combinatorial sequence diversity
in antibody variable domains, followed by iterative rounds of mutation and selection via T cell
recognition of antigen peptides presented on MHC-II. Here, we report that MHC-II peptide epitope
deletion from B cell receptors (BCRs) correlates with antibody development in vivo. Large-scale
antibody sequence analysis and experimental validation of peptide binding revealed that MHC-II
epitope removal from BCRs is linked to genetic signatures of T cell help, and donor-specific
antibody repertoire modeling demonstrated that somatic hypermutation selectively targets the
personalized MHC-II epitopes in antibody variable regions. Mining of class-switched sequences
and serum proteomic data revealed that MHC-II epitope deletion is associated with antibody class
switching and long-term secretion into serum. These data suggest that the MHC-II peptide epitope
content of a BCR is an important determinant of antibody maturation that shapes the composition

and durability of humoral immunity.

Keywords
B cell development, antibodies, B cell sequencing, somatic hypermutation, MHC-II peptide

epitopes
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Highlights

e Antibody somatic hypermutation selectively removes MHC-II peptide epitopes from B
cell receptors.

o Antibodies with lower MHC-II epitope content show evidence of greater T cell help,
including class-switching.

o MHC-II peptide epitope removal from a BCR is linked to long-term antibody secretion in
serum.

o MHC-II genotype provides a personalized selection pressure on human antibody

development.
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Introduction

Human antibody adaptive immune responses are somatically generated by a Darwinian
selection process via the generation of high genetic diversity in B lineage cells, followed by
iterative rounds of selection with continued diversification. As B cells develop, first heavy chain
V-(D)-J recombination occurs, followed by the light chain V-J recombination, to achieve
tremendous combinatorial antibody diversity. The selection of antibodies with optimal
characteristics from this highly diverse pool is achieved by several well-described mechanisms.
First, self-reactive antibodies are negatively selected prior to the generation of the fully mature B
cells (also called the naive B cell population) [1]. Next, B cells migrate to germinal centers and
capture foreign protein antigens via B cell receptor (BCR)-mediated endocytosis and present
antigen-derived peptides on Major Histocompatibility Class II (MHC-II) to CD4+ helper T cells
in the course of classical T cell-dependent antibody maturation [2, 3]. In this process, captured
antigen and BCR are endocytosed together and shuttled into the MHC-II peptide processing
pathway for cell surface presentation as linear peptides in the peptide-binding grooves of MHC-II
proteins [4, 5]. T cells recognize the peptides displayed on MHC-II proteins via T cell receptor
(TCR) interactions. The display of peptide:MHC-II (pMHC-II) on B cells provides the critical
molecular targets for the TCRs of activating CD4+ helper T cells to recognize and provide
stimulatory signals that induce somatic hypermutation, antibody class-switching, and eventual
transition to plasmablasts/plasma cells for long-lived antibody production [3, 5].

Despite decades of study related to B cell developmental checkpoints, several critical questions
remain in B cell development mechanisms. In particular, it is unclear why only some of the
antibodies that bind to foreign antigens with high affinity are selected for clonal expansion, class-

switching, and maturation to plasma cells. The humoral immune compartment is highly polarized
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and has capacity to contain relatively few (<10,000) representatives of unique antibody clones at
a concentration above their affinity constant (Kp); the vast majority of the >107 unique antibody
sequences present in our cellular immune repertoires are not present in serum at an adequate
concentration for functional activity [6, 7]. These data also suggest that the memory B cell (mBC)
population targets a broader range of antigens than are recognized by serum antibodies [6, 8].
Plasma cells constitute the last stage in B cell development, when plasma cells stop dividing,
downregulate surface MHC-II expression, and can persist in bone marrow and secrete antibodies
continuously for many years. It remains unclear what molecular mechanisms lead to robust
selection for long-lived serum antibodies versus memory B cell persistence in the cellular
repertoire, although available evidence strongly suggests that some type of B cell imprinting
process determines B cell fate [9-12].

Surface display of antigen-derived MHC-II epitopes is one critical determinant of B cell fate
due to the need for B cells to obtain help from antigen-specific CD4+ helper T cells. The affinity
of antigen peptides for binding to MHC-II plays a major role in regulating immune responses to
foreign proteins, including monoclonal antibody drugs [13-15]. MHC-II molecules are encoded
by three human leukocyte antigen (HLA) loci: HLA-DR, -DQ, and -DP. Of these, HLA-DR is the
most polymorphic [16], and is usually expressed at higher levels [17, 18]. It is unclear why anti-
antibody (or anti-idiotype) immune responses are not highly prevalent due to the very high
diversity of somatically mutated human antibodies, including the substantial untemplated diversity
of CDR3 regions, although highly homologous antibody sequences (including T regulatory cell
epitopes, or Tregitopes) have been suggested to play a role in reducing anti-antibody immunity
[19-21]. Methods for computational MHC binding prediction have continually improved in recent

years, particularly for HLA-DR [22], and recent high-throughput proteomic elution data have
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92  provided large experimental datasets as benchmarks to enhance prediction accuracy [23, 24].
93  Moreover, peptides derived from BCR proteins are commonly detected as self-peptides in MHC-
94 Il elution experiments [25-27]. Despite these advances, the landscape of potential MHC-II peptide
95  epitope content in healthy antibody repertoires has not yet been evaluated, partially due to the
96 relevantly recent invention of methods for repertoire-scale analysis of complete, natively paired
97  antibody heavy and light chains [28, 29].
98 Given the high importance of MHC-II epitopes in controlling B cell selection via MHC-II
99 interactions, we hypothesized that MHC-II epitopes in BCR-encoded peptides could influence
100  antibody selection and maturation. To explore these features, we analyzed potential MHC-II
101  epitopes in the variable region sequences of human antibody repertoires to understand how
102 antibody repertoire features correlate with MHC-II epitopes and may be influenced by a person’s
103 unique HLA gene profile. Our analysis of seven natively paired heavy and light chain antibody
104  repertoires from healthy human donors revealed that antibodies show hallmarks of selective
105 removal of MHC-II peptide epitopes via somatic hypermutation throughout antibody
106  development. By studying the MHC-II epitope content of BCRs along with molecular signatures
107  of CD4+ T cell help (e.g., somatic hypermutation, antibody isotype class-switching, and serum
108  proteomic detection), we found that the preferential deletion of MHC-II epitopes from the antibody
109  variable regions was associated with B cells achieving the critical T cell help needed for robust
110  and long-lived antibody immune memory. These data reveal a new mechanism regulating human
111 antibody immunity and provide insights for the design of new vaccines and therapeutics associated

112 with long-term immune memory.

113
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114 Results

115 We began by characterizing MHC-II peptide epitope content in healthy human antibody
116  variable region sequences using high-throughput computational MHC-II peptide epitope
117  prediction. We collected seven paired heavy and light chain datasets from antigen-experienced B
118  cells of healthy donors, with a total of 250,645 high-quality consensus sequences of natively paired
119  heavy and light chain antibody lineages. We analyzed these immune repertoires using multiple
120  pMHCH-II affinity prediction algorithms to determine how the features of antibody development
121  correlated with changes in potential MHC-II peptide epitope content of BCRs (Fig. 1A). First, we
122 used the commercially available EpiMatrix MHC-II epitope prediction platform to characterize
123 aggregate predicted HLA-DR epitope content based on eight human HLA-DR gene supertypes.
124  EpiMatrix reports a T cell epitope score, where a higher score indicates higher content of putative
125  MHC-II peptide epitopes within the analyzed protein sequence [30]. Strikingly, we noted that all
126 donors showed reduced MHC-II peptide epitope content (i.e., reduced EpiMatrix scores) that was
127  correlated with increasing somatic hypermutation (SHM), and the correlation was statistically
128  significant in all donors (Spearman correlation test, adjusted p-value < 0.05). These data
129  demonstrated that SHM reduces pMHC-II affinities in antibody peptides at a repertoire level (Figs.
130 1B, S1A). Subsequent analysis of antibody repertoire data fractionated by paired antibody heavy
131  and light chain V-genes showed that changes in MHC-II peptide epitope content were concentrated
132 in certain V-gene combinations (Figs. 1C, 1D, S1B, S1C), and each V-gene shows a different
133 initial distribution of MHC-II peptide epitope content (Fig. S2). While each donor showed a unique
134 pattern of V-genes with the highest reductions in MHC-II peptide epitope content, some V-genes

135  were repeatedly observed as statistically significant across donors. Nearly all statistically
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136  significant V-gene changes showed removal of MHC-II peptide epitopes as SHM levels increased
137  (Fig. 1, Fig. S1).

138 We next sought to understand the molecular drivers of decreased MHC-II peptide epitope
139  content based on personalized HLA gene profiles. We applied the netMHClIpan algorithm to
140  model individual MHC-II binding affinities of every peptide in our antibody datasets, according
141  to the known HLA gene profiles that were available for donors 1 to 5 (Fig. 2) [31]. We found that
142 several predicted high-affinity HLA-DR-binding peptides were encoded by antibody germline
143 genes, and these MHC-II peptide epitopes were being mutated during antibody somatic
144  hypermutation (Fig. 2A, S3). Thus, somatic hypermutation caused deletion of MHC-II peptide
145  epitopes from B cell receptors, and the correlations that we observed in Figure 1 could be traced
146  to specific peptides with a high germline (unmutated) affinity for the donor’s MHC-II genes. When
147  comparing V-genes between germline and high SHM antibody sequences, the removal of high-
148  affinity MHC-II peptide epitopes by SHM was readily apparent (Figs. 2B, 2C, 2D, 2E, S4A, S4B,
149  S4C, S4D). Thus, the reduction in MHC-II peptide epitope content that we observed with
150  increasing SHM was predominantly driven by the deletion of high-affinity peptides that had been
151  present since the earliest stages of antibody development.

152 We next sought to experimentally confirm the loss of peptide affinities that were observed via
153 in silico affinity modeling. We validated peptide affinity changes for key driver epitopes of MHC-
154  II epitope deletion using in vitro pMHC-II affinity assays (Fig. 2G). These data showed that, as in
155  prior studies, large-scale in silico predictions of peptide binding to MHC-II are generally accurate,
156  especially for the DRB1 gene used in the current study [31]. Next, we mined the Immune Epitope
157  Database (IEDB) to identify antibody peptides eluted from human MHC-II in immunopeptidomic

158  assays to see if our detected peptides successfully process inside endosomes and displayed on
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159  MHC-II in vivo [32, 33]. We identified a large number of naturally-processed peptides that were
160  experimentally confirmed in IEDB and appeared to be targets of preferential mutations that reduce
161  peptide affinity via SHM, including peptides that were mutated in antibody sequence data such as
162 IGHV3-2373.93 and IGHV1-1873.92 (Fig. 2E, Fig. SSA, S5B). Interestingly, donor antibody
163  repertoires also contained some of the same peptides that were eluted from HLA-DP and HLA-
164  DQ molecules(Fig. S5B); numerous IEDB-validated peptides overlapped between DRB and
165 DP/DQ binding (Fig. SSC). Thus we confirmed that some of the key peptides analyzed in our
166  study are presented on human MHC-II in previously reported proteomic datasets.

167 Once we realized that antibody peptides with high affinity for DRB binding were being
168  targeted for mutations and MHC-II epitope removal, we shifted our focus to patient-specific
169  analyses to explore these high-affinity MHC-II peptide epitopes encoded by germline IGHV and
170  IGKV/IGLV genes (Fig. S6). MHC-II peptide epitopes often require multiple amino acid matches
171  with appropriate spacing for binding to the MHC-II cleft, and we reasoned that the reduced T cell
172 content observed with increasing SHM could be introduced as an indirect consequence of SHM
173  mutational pattern preferences, rather than by active selection pressure. To test this alternate
174 hypothesis, we reasoned that if MHC-II peptide epitopes are removed by SHM to a greater degree
175  inexperimentally-derived patient repertoires than in carefully matched in silico simulations (which
176  account for SHM DNA motif targets, but not for any HLA-dependent MHC-II peptide epitope
177  selection pressure), then we could conclude that MHC-II epitope removal was a result of active
178  selection in vivo. We thus began large-scale in silico experiments simulating antibody repertoires
179  using established somatic hypermutation models (Figs. 3, S7). We compared two different SHM
180  models to the experimentally-derived sequence data: one in silico SHM model customized by the

181  5-mer DNA base targeting patterns in each individual patient’s experimentally-derived antibody
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182  repertoire, and a second in silico model based on 5-mer DNA bases in universal out-of-frame
183  human B cell receptor data. Our out-of-frame model controls for the nucleotide targeting
184  preferences of human activation-induced cytidine deaminase (AID), the enzyme responsible for
185  SHM, as antibody DNA sequences with out-of-frame V-(D)-J junctions cannot be expressed or
186  functionally selected, and it was constructed from approximately 56,000 genomic out-of-frame
187  antibody sequences compiled from 114 donors [34, 35]. In contrast, the patient-specific in-frame
188  antibody SHM model encompassed local AID 5-mer nucleotide preferences, in addition to
189  biophysical restrictions on permissible DNA/amino acid mutations in functional B cell receptors,
190  as along with any positive selection for 5-mer DNA mutations within a patient’s immune system.
191 By comparing MHC-II peptide epitope deletion metrics in experimentally-derived antibody data
192 versus in silico simulations, we found that in most cases the replacement-silent (R-S) model and
193 universal out-of-frame (OoF) models showed a lower number of statistically significant IGHV and
194 IGKV/IGLV gene pairs with decreased MHC-II peptide epitope content compared to
195  experimentally-derived donor data (Figs. 3C, 3D, S8). Often, one donor HLA-DRB1 allele showed
196  a greater degree of MHC-II epitope loss than the other allele. Comprehensive SHM computational
197  models did not recreate the same degree of personalized MHC-II peptide epitope deletion observed
198  in experimentally-derived donor data (Fig. 3E), confirming that the SHMs deleting pMHC-II
199  epitopes in vivo were functionally selected and would not arise simply as a consequence of AID
200  targeting preference. These data demonstrate the SHM preferentially deletes pMHC-II epitopes
201  from BCR variable regions.

202 Next, we tested whether MHC-I peptide epitopes were also being preferentially deleted. We
203  predicted peptide Kp for donor-matched MHC-I molecules to compare relative MHC-I and MHC-

204  II peptide affinity changes as a result of antibody somatic hypermutation. Because some peptides
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205  bind to both MHC-I and MHC-II, we binned peptide epitopes according to binding for MHC-I,
206  MHC-II, or both MHC-I+MHCH-II to determine how T cell epitope removal via SHM affected the
207  different MHC classes separately. In contrast to our analyses of MHC-II, the peptides predicted to
208  bind to MHC-I showed very few statistically significantly changes when removing peptides that
209  were shared epitopes with MHC-II (p<0.001, Wilcoxon rank sum test, Fig. 3F, upper panel).
210  Moreover, unique MHC-I peptides showed a weaker correlation between Kp fold-change and
211  SHM compared to shared MHC-I/MHC-II peptides (p < 0.05, Wilcoxon rank sum test, Fig. 3F,
212 lower panel). In contrast, we observed no significant difference between shared MHC-I/MHC-II
213 peptides and MHC-II-restricted peptides. These data demonstrated that peptides binding to MHC-
214  1II were targeted for preferential deletion from antibody variable regions via SHM, but peptides
215  that bound to MHC-I did not show similar preferential removal via SHM. Thus, SHM appears to
216  selectively target MHC-II peptide epitopes for deletion.

217 Next, we analyzed our data by antibody isotype bins to further understand how MHC-II peptide
218  epitope removal correlated with key markers of B cell development and CD4+ T cell help. Like
219  SHM, antibody class switching is induced by AID and is strongly correlated with CD4+ T cell
220  help obtained via pMHC-II: TCR interactions [36]. We found that the greatest correlation of MHC-
221  II peptide epitope deletion with SHM was observed in class-switched IgG and IgA repertoires
222 (Figs. 4A, 4B). Analysis of class-switched data provided a clear association between MHC-II
223  peptide epitope removal from antibody gene sequences with antibody class-switching, an
224 important hallmark of effective CD4+ T cell help.

225 Finally, we sought to understand how MHC-II peptide epitope content in BCRs is associated
226  with elicitation of antibodies into the serum immune compartment. Serum antibodies are secreted

227 by plasmablasts and long-lived plasma cells, and recent advances in antibody sequencing,
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228  computational mining of BCR NGS data, and proteomic mass spectrometry have enabled the
229  identification of individual antibody clonal lineages in human serum [7, 37-39]. We performed
230 HLA-DRB1 MHC-II peptide binding affinity predictions using cellular-derived and serum-
231  derived antibody repertoire data from recent studies of influenza vaccination [40, 41]. We found
232 that antibodies identified in serum exhibited lower MHC-II peptide epitope content than the
233  antibodies present in the donor-matched cellular repertoire (Figs. 4C). Thus, a lower MHC-II
234 epitope content in the BCR was associated with B cell maturation to plasmablasts and plasma cells
235  for secretion of antibodies at appreciable concentrations into the blood compartment. We also
236  tracked the MHC-II peptide epitope content of anti-influenza antibodies with different temporal
237  persistence in human serum. We found that antibodies detected in serum at multiple time points
238  showed lower MHC-II peptide epitope content relative to antibodies observed only at a single time
239  point (Fig. 4D), implying that lower MHC-II peptide epitope content is associated with longer
240  antibody-secreting cell life spans in vivo. These analyses of serum antibody data, together with our
241  observations that class-switched IgG and IgA compared with donor-matched IgM repertoires,
242 suggested that human BCRs are functionally selected to remove MHC-II epitopes via somatic
243 hypermutation as a component of natural human antibody development.

244

245  Discussion

246 This study reveals that antibody maturation and somatic hypermutation are closely associated
247  with the removal of MHC-II peptide epitope content in antibody and BCR molecules. We observed
248  strong selection for the removal of MHC-II peptide epitopes by SHM in class-switched BCRs, and

249  also in antibodies secreted persistently in human serum. These data reveal a previously unreported
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250 mechanism for the personalization of antibody immune responses via functional selection
251  according to each individual’s unique HLA MHC-II gene profile (Fig. 4E).

252 Our study employed in silico and statistical techniques using computational HLA-DRBI1
253  MHCH-II peptide binding predictions, which have been demonstrated to be generally accurate in
254  several recent studies [42, 43]. To validate in silico results, we confirmed our findings with
255  experimental validation of key MHC-II peptide predictions (Fig. 2G), by analysis of eluted
256  peptides reported in the IEDB (Fig. SS), and by retrospective analysis of serum antibody data
257  reported in prior studies (Figs. 4C, 4D) [40]. We focused on HLA-DRB1 genes, which have the
258  highest observed prevalence among MHC-II receptor genes in immunopeptidome assays and
259 IEDB datasets, and are the best-characterized MHC-II receptor genes for computational peptide
260  affinity predictions. We note that not all donors showed the same extent of HLA-DRB1 genetic
261  selection (Fig. 3). Variability between individuals could result from the influence of HLA-DP and
262 HLA-DQ genes providing additional MHC-II epitope selection pressures, that were not
263  encompassed by our study of HLA-DRBI1 peptide epitopes. Many T-dependent antigens can elicit
264 HLA-DP and HLA-DQ responses, although we also note that some peptide binding overlap exists
265  between different HLA molecules. Improved in silico tools for predicting peptide processing, as
266  well as the incorporation of HLA-DP and HLA-DQ modeling, will enhance future large-scale
267  studies of pMHC-II content in antibody repertoires.

268 Our data suggest that reduced MHC-II epitope content in BCRs could be an important correlate
269  of durable human antibody immunity. These findings are supported by our observations that BCRs
270  in class-switched isotypes (e.g., [gA and IgG that require high levels of T cell help) show stronger
271  rates of MHC-II peptide epitope removal than the [gM compartment (Figs. 3A, 3B, S9). We also

272  observed that lower BCR MHC-II peptide epitope content was associated with higher serum
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273  antibody prevalence, suggesting that HLA-DRB1 peptide epitope deletion may support B cell
274  trafficking to a long-lived plasma cell niche by enhancing the acquisition of T cell help (Fig. 4E)
275  [44]. Certain heavy and light chain V-genes showed higher rates of HLA-DRB1 peptide epitope
276  removal than other V-gene pairs (Fig. 2B), reflecting the different baseline levels of MHC-II
277  peptide epitopes in antibody germline genes (Figs. S2, S3). These data suggest that MHC-II
278  epitope deletion is targeted toward those V-genes that contain germline-encoded MHC-II epitopes,
279  as would be expected to occur in a functional selection mechanism. Low MHC-II epitope content
280 in a B cell receptor could help that B cell present more MHC-II epitopes from antigen, thereby
281  enhancing CD4+ T cell help for that B cell (Fig. 4E). This selection mechanism offers several
282  important advantages in vivo. First, selection of lower MHC-II peptide epitope content reduces the
283  propensity of an individual’s secreted antibodies to induce CD4+ T-cell dependent anti-idiotype
284  antibody immune responses in non-templated regions (e.g., from pMHC-II derived from CDR3
285  loops, or that may arise as a result of SHM), reducing the risk of immune responses to somatically
286  generated antibody proteins. Perhaps more importantly, low MHC-II peptide epitope content in an
287  antibody could help dendritic cells present a greater fraction of MHC-II peptides derived from
288  antigen (and fewer peptides derived from the BCR) after immune complex capture and processing.
289  These findings have important implications for vaccine design and antibody drug therapeutics. As
290  one example in HIV vaccine development, where targeted elicitation of specific lineage mutations
291  are being pursued, these data suggest an important HLA-dependent selection pressure guiding
292 SHM, and that antibody mutations may accumulate differently in patients with different HLA gene
293  profiles due to MHC-II-based selection pressure [45, 46]. In addition, our findings lend further
294 support to ongoing efforts to mitigate anti-drug antibody responses by removal of MHC-II peptide

295  epitopes from the monoclonal antibody drug variable regions [47, 48]
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296 One limitation of our study is that we analyzed only the HLA-DRB1 gene, due to its high
297  representation in quantitative peptide:MHC-II proteomic elution studies and established predictive
298  peptide binding accuracy [31]. Future studies will further analyze human HLA-DP and HLA-DQ
299  genes, which have lower peptide elution prevalence in immunopeptidomic assays but still make
300 important contributions to human immunity. We will also study the influence of SHM on
301  previously reported regulatory MHC-II epitopes [19]. We recognize that T-cell independent B cell
302  activation pathways also exist (especially for antigens with repeated structural motifs and that lack
303  MHC-II epitopes, for example the regularly ordered polysaccharides in bacterial cell walls).
304 However, most foreign antigens generate T-dependent immunity and we anticipate that the
305 majority of human B cells are selected via T-dependent mechanisms. Follow-up studies will
306 investigate dysregulation of MHC-II antibody selection pathways for specific antigens (including
307  T-dependent and T-independent) in mouse models, and similar analyses of clinical samples from
308  patients with autoimmune diseases known to disrupt antibody developmental checkpoints [49-51].
309 In summary, here we identified a previously unreported correlation between lower MHC-II
310 peptide epitope content in BCRs and the signatures of T cell help throughout antibody
311  development. These data suggest that an MHC-II-based selection pressure influences antibody
312  selection in vivo, and may represent an important factor shaping the durability of serological

313  immunity in humans [9, 44, 52].
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Methods

Resource Availability
Lead Contact
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Dr. Brandon DeKosky (dekosky @ku.edu).

Materials Availability

No new reagents were generated in this study.

Data and Code Availability
Raw NGS antibody sequence data used for the study are deposited in the NCBI Short Read Archive

under accession numbers: XXXX, XXXX, XXXX, XXXX.

Experimental Model and Subject Details
Human Subjects

For cellular antibody MHC-II content, a total of seven datasets were analyzed. These include
previously published data (Donors 1,2,4,6 and 7) [53][Fahad, DeKosky et al., Front. Immunol.,
Accepted 2021], and new unpublished datasets (Donors 3 and 5). All human samples were
collected under the Vaccine Research Center’s (VRC)/National Institutes of Allergy and Infectious
Diseases (NIAID)/ National Institutes of Health (NIH) sample collection protocol, VRC 200
(NCT00067054) in compliance with the NIH IRB approved procedures. All subjects met protocol

eligibility criteria and agreed to participate in the study by signing the NIH IRB approved informed
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355 consent. Research studies with these samples were conducted by protecting the rights and privacy
356  of the study participants.

357 For cellular and serum antibody datasets, data was retrieved from previously published Ig-Seq
358  and BCR-Seq data [40, 41]. The first dataset consists of IgG/A/M from B cell receptors and serum
359 IgG antibody sequences that were obtained from donors after influenza vaccination, and is
360 available in MassIVE (https://massive.ucsd.edu/ProteoS AFe/static/massive.jsp) under accession
361 ID MSV000080184. The published dataset comprise serum antibodies that were purified by
362  affinity chromatography with inactivated components of the 2011-2012 IIV3 vaccine at days 0,
363 28 and 180 post-vaccination and analyzed via proteomic mass spectrometry [40]. The second
364  dataset contains clonotypes that were detected in serum as a response to repeated flu vaccinations
365  during several years (MassIVE ID MSV000083120). In this case, the original study contemplated
366  persistent, intermediate and transient categories; which were changed to single observation
367 (transient in the original study) and multiple observations (persistent and intermediate) [41].

368

369  Cell Lines

370  Drosophila S2 cells were grown at 100 rpm in 27 °C incubator, with SFO00 II serum-free medium
371  (Thermo Fisher cat #10902096) and penicillin-streptomycin (100 U/ml Thermo Fisher cat #
372 15140148). HLA-DRI1 protein production was induced by addition of ImM CuSO4 and culture

373  supernatants were collected after 6 days.
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374  Method Details

375  Emulsion Overlap Extension RT-PCR

376 Natively paired antibody heavy and light chains sequencing was carried out as previously
377  described [54]. B cell isolation from cryopreserved PBMCs was carried out using Memory B cells
378  Isolation Kit (MACS/Miltenyi Biotec, Bergisch Gladbach, Germany). Next, cells were stimulated
379  invitro using IL-2, IL-21, and co-cultured with 3T3-CD40L fibroblasts for 5 days [55]. Following
380  cell stimulation, single cells were captured in emulsion droplets, lysed, and their mRNA captured
381  with oligo(dT)-coated magnetic beads. Native heavy and light chains were obtained by an overlap-
382  extension RT-PCR and resulting cDNA libraries were sent for [llumina sequencing.

383

384  Antibody Sequence Analysis

385 INlumina 2x300 bp sequencing was analyzed as previously described [55]. Briefly, Illumina
386  reads were quality filtered and aligned into full reads. V(D)J annotation was carried out using
387  IgBlast [56], and productive sequences were paired by CDR-H3 match. Isotype assignment was
388  carried out by matching of constant region sequences to isotype barcodes. Consensus sequences
389  of paired heavy and light chain clusters were generated as previously reported to remove NGS
390  errors prior to MHC-II peptide epitope content predictions [29, 54, 57].

391 For serum and cellular antibody repertoire data, reported protein sequences were mapped to
392  clonotypes by generating consensus VH sequences using the reported cluster identifier in the data,
393  with a 80% identity threshold using usearch version 6.1.544 [58], and V(D)J annotation was
394  carried out using IgBlast. Serum antibodies were retrieved from BCR-seq data by matching
395  reported CDR-H3 sequences with the available BCR-seq data.

396
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397  MHC Peptide Epitope Content Prediction

398 The EpiMatrix tool (EpiVax, Rhode Island, USA) was used for aggregate MHC-II peptide
399  epitope / T cell epitope predictions [30]. EpiMatrix uses main HLA II DRB1 “supertypes” to
400  predict overall protein epitope content [59]. Higher scores in the EpiMatrix output indicate a higher
401  probability of T cell dependent immunogenicity of foreign protein antigens. The alleles analyzed
402 were DRBI1*01:01, DRB1*03:01, DRB1*04:01,DRB1*07:01, DRB1*08:01, DRB1*09:01,
403 DRBI1*11:01, DRB1*1302 and DRB1*15:01. The output data includes aggregate epitope score
404 by chain, normalized by length, and total antibody epitope content. We used the complete antibody
405  epitope content, not corrected for Treg epitope content as a measure of immunogenicity. Spearman
406  Rho correlations between complete antibody epitope scores and SHM were calculated, and a linear
407  model was fitted to calculate slopes.

408 For individual MHC-II peptide epitopes, netMHClIpan 3.1 with default options was used,
409  working with a subset of 38 representative HLA-DRB1 molecules DRB1*01:01, DRB1*01:02,
410 DRBI1*01:03, DRBI1%*03:01, DRBI1%*03:02, DRB1*04:01, DRB1%04:02, DRB1*04:03,
411 DRBI1*04:04, DRBI1%*04:05, DRBI1*04:06, DRB1*04:07, DRB1%*04:08, DRB1*07:01,
412 DRB1*08:01, DRB1*08:02, DRBI1*08:03, DRBI1*08:04, DRB1*09:01, DRB1*10:01,
413  DRBI1*11:01, DRBI1*11:02, DRBI1*11:03, DRBI1*11:04, DRB1*12:01, DRB1%12:02,
414  DRBI1*¥13:01, DRBI1*13:02, DRBI1*13:03, DRB1%*13:05, DRB1*14:01, DRB1%*14:02,
415 DRBI1*¥14:06, DRB1*15:01, DRB1*¥15:02, DRB1*15:03, DRB1*16:01, and DRB1*16:02 [31].
416  netMHClIIpan output was parsed using pandas for further processing. The equilibrium dissociation
417  constant (Kp) or rank of 15-mers was considered for analysis. As a consequence of this, higher
418 netMHClIIpan Kbp reflect a lower level of MHC-II peptide epitope content. Peptide Kp’s were

419  predicted for donor repertoire MHC-II peptide epitopes, and for a database of germline heavy and
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420  light chain V genes. Germline (unmutated) peptides with Kp <1,000 nM for tested alleles were
421  used as a search database for peptides in antibody repertoires by matching V-gene usage and index
422  position within the protein [60]. Peptides hits were grouped according to parent antibody,
423  considering heavy or light chains, and the geometric mean of Kp fold-change between donor and
424  germline peptides was calculated. The same procedure for calculating the geometric mean of Kp
425  fold-change was applied in a grouping by complete antibody (paired heavy and light chain)
426  sequences. Next, data was grouped by common VH gene and VK/L gene pairs, and Spearman
427  correlation between the geometric mean of Kp fold-change and SHM was calculated for each
428  allele.

429 For position-based MHC-II peptide epitope content, we selected the top 5% of sequences in
430  terms of SHM burden from the selected V-gene subset, and the geometric mean of the rank of each
431  peptide at the same position was calculated for a subset of the antibody repertoire. The same
432 approach was carried out for germline sequences. This information was also retrieved for selection
433 of candidate peptides, shown as logo plots.

434 For MHC-I peptide epitope prediction, netMHCpan 4.1 [24] was used, using donor-matched
435 HLA-A, -B and -C genes and predicting binding affinity for 9-mers. Germline (unmutated)
436  peptides with Kp<500 nM for tested alleles were used as a search database for peptides in antibody
437  repertoires by matching V-gene usage and index position within the protein [61].

438 Determination of MHC-I/MHC-II shared epitopes was done by matching 9-mer peptides
439  (MHC-I peptide epitopes, 6 HLA-I alleles) into 15-mers (MHC-II peptide epitopes, 2 HLA-II
440 DRBI alleles). Epitopes with a positive match were considered as shared epitopes and the
441  unmatched peptides were considered as exclusively MHC-I or MHC-II peptide epitopes. From

442  MHC-I or MHC-II all (no matching), shared and unique databases, peptides were aggregated into
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443  parent antibodies as described previously. The number of significant VH:VL gene pairs was
444 compared for MHC-I and MHC-II peptides separately.

445

446  In silico Repertoire Modeling and Analysis

447 Repertoire modeling was carried out with immuneSIM for V(D)J recombination modeling,
448  and ShaZam for SHM modeling [62, 63]. First, V gene frequency was extracted from donor data
449  and used to build V gene distribution table. This table was used to modify the vdj_list parameter
450  in the immuneSIM function, which controls the frequency of different V-genes in the modeled
451  repertoire. D and J gene distributions were maintained in their default settings. Using the custom
452 'V gene distribution frequencies, a naive repertoire of the same size of the parent repertoire was
453  generated, using the immuneSIM function, with no mutations allowed. Heavy and light chains
454  were generated separately. The naive dataset was mutated using SHM models from repertoire data
455  generated by ShaZam, using the createTargetingModel function, which allows the determination
456  of a 5-mer targeting model based on sequence data and gene annotation. Two SHM models were
457  generated, one considering donor antibody repertoire data, and other built from out-of-frame (OoF)
458  sequences from genomic antibody sequencing studies, comprising 115 donors, and 56,278
459  sequences [34, 35]. Briefly, data from two genomic antibody sequencing studies were retrieved
460  for the generation of a new OOF targeting mutational model. One dataset comprised large-scale
461  genomic BCR sequencing of healthy donors (NCBI BioProject Accession number PRINA491287)
462  and another from a genomic B cell sequencing study of CAPRISA cohort donor CAP256
463  (Accession number SRP124539) [35]. After aggregating data form the 115 donors, all NGS reads
464  were quality filtered and aligned using MiXCR [64] to identify a combined total of 56,278 out-of-

465  frame antibody sequences that were used to build a mutational targeting model using ShaZam.
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466  First, nucleotide sequences were analyzed with IgBlast , and the output was parsed into a Shazam-
467  compatible database using Change-O [62]. Compiled out-of-frame aggregate donor data and
468  personalized in-frame donor antibody databases were transformed individually into a 5-mer
469  mutational targeting model using the create TargetingModel function from ShaZam to generate
470  the out-of-frame model (OoF) or the personalized replacement-silent mutational models,
471  respectively. After mutational model generation, each sequence was mutated individually using
472  the shmulateSeq function from ShaZam. The number of mutations per sequence was selected to
473  match the distribution of SHM observed in personalized donor data, on an individual donor dataset
474  basis. After each repertoire generation, sequences were annotated using IgBlast and paired
475  following donor distributions of SHM between heavy and light chains. Each simulation was
476  compared to parent repertoire to verify appropriate V-gene distributions and SHM content to match
477  the experimental data. From the IgBlast output, amino acid sequences were extracted for MHC-II
478  peptide epitope prediction using netMHClIIpan.

479 We generated 30 complete simulated antibody repertoires for each of donors #1-5, for each of
480  the two mutational models generated as described in the previous paragraphs. Thus we simulated
481  atotal of 150 personalized replacement-silent antibody repertoires in silico, and 150 out-of-frame
482  mutational model antibody repertoires, for a total of 300 simulated repertoires with an average of
483 27,000 antibodies each. Thus, we generated approximately 8,100,000 antibodies in silico and used
484  the resulting data to explore hypotheses related to mutational targeting in experimental antibody
485  data compared with simulated datasets.

486

487  Personalized MHC-II Peptide Epitope Content Analysis
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488 netMHClIIpan MHC-II peptide epitope content predictions were analyzed following the same
489  procedures as donor repertoires. Isotype assignments for modeled repertoire subsets were made by
490  matching the SHM distribution by isotype observed in donor-matched experimental data. Next,
491  heavy and light chain V-gene pairs with n<9 antibodies were removed from analysis. To compare
492  MHC-II peptide epitope removal in experimental and computationally modeled antibody
493  repertoire data, isotype-switched, statistically significant VH: VKL gene pairs were retrieved from
494  donor data and modeled repertoires. These pairs in donor and modeled data were matched in
495 modeled and donor data, respectively. The number of significant VH:VKL pairs was also
496  compared between donor and modeled repertoires. For modeled data, the average number of
497  statistically significant pairs was calculated by dividing the total number of statistically significant
498  pairs across all modeled repertoires by the number of repertoires (n=30 modeled repertoires per
499  donor & model type). Volcano plots of modeled repertoires in Figure 3D and S8 were made by
500 selecting the modeled replicate with an average Spearman Rho value closest to the median
501  Spearman Rho value of the 30 modeled repertoires from that donor and model type. Statistical
502  significance was determined by calculating the Spearman correlation and retrieving p-values, that
503  were adjusted for multiple comparisons using the Benjamini-Holchberg method. For donor
504  matched vs. mismatched HLA comparisons in Figure S8, the mean Spearman Rho for all V-gene
505  pairs was calculated for each of the 38 analyzed HLA alleles. The mean Spearman rho for all 38
506  alleles was shown, with each allele colored according to its supertype family.

507

508 IEDB Data Mining

509 We searched for experimentally validated antibody-derived peptides in the Immune Epitope

510 Database (www.iedb.org). The search was limited to linear epitopes from human origin, with
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511  experimental validation of the binding to MHC II, and from immunoglobulin sequences. After
512  removing peptides derived from constant regions and T cell receptors, and selecting assays for
513 HLA-DRBI1 molecules, a final database of 448 peptides was obtained. These peptides were
514  searched for matches in the germline and donor database. As IEDB-validated peptides are of
515  variable length and whereas our germline/donor peptide databases are exclusively 15-mers, the
516  presence of validated peptides as substrings in 15-mers was considered a match that is certain to
517  contain the MHC-II peptide binding core. The same procedure was carried out for HLA-DP and
518 HLA-DQ molecules, and a total of 187 peptides were found in the IEDB-validated peptide
519  database.

520

521  Serum Antibody Analysis

522 From consensus sequences, MHC-II peptide epitope prediction was carried out using
523  netMHClIpan and processed as previously indicated. For the cellular and serum antibody analysis
524  in Fig. 4C [40], data were mined from a recent study of serum antibody prevalence in healthy
525  donors and antibodies with an total extracted-ion chromatogram (XIC) peak area on the top 50%
526  for any of the time points analyzed.

527 Since the HLA alleles for these donors are unknown, all 38 alleles were considered for analysis.
528  To this end, mean Kp was compared between cellular and serum repertoires, and between multiple
529  observation and single observation antibodies .

530

531 HLA-DRI Binding Assay

532 HLA-DR1 (DRA*01:01/DRB1*#01:01) extracellular domains were expressed in Drosophila

533  S2 cells and purified by immunoaffinity chromatography with LB3.1 antibody followed by
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534 Superdex200 (GE Healthcare) size exclusion chromatography as described [65, 66]. Ig-derived
535 peptides and influenza HA306-318-derived probe peptide Ac-PRYVKQNTLRLAT were
536  synthesized (21st Century Biochemicals, Marlboro, MA). The probe peptide was labeled with
537  Alexa Fluor 488 tetrafluorophenyl ester (Invitrogen, Eugene, OR) through primary amine of KS5.
538  Peptide binding was monitored using a fluorescence polarization assay [67]. The DRI
539  concentration used was selected by titrating DR1 against fixed labeled peptide concentration (25
540  nM) and choosing the concentration of DR1 that showed ~50% maximum binding. For calculating
541  IC50 values, 100 nM DR1 was incubated with 25 nM Alexa488-labeled HA306-318 probe
542 peptide, in combination with a serial dilution of test peptides, beginning at 100 uM followed by 2-
543  fold dilutions. The reaction mixture was incubated at 37 °C. The capacity of each test peptide to
544  compete for binding of probe peptide was measured by FP after 72 h at 37 °C. FP values were
545  converted to fraction bound by calculating [(FP_sample - FP_free)/(FP_no_comp - FP_free)],
546  where FP_sample represents the FP value in the presence of test peptide; FP_free represents the
547  value for free Alexa488-conjugated HA306-318; and FP_no_comp represents values in the
548  absence of competitor peptide. We plotted fraction bound versus concentration of test peptide and
549  fit the curve to the equation y = bottom + (top — bottom)/(1 +[pep]/IC50), where [pep] is the
550  concentration of test peptide, y is the fraction of probe peptide bound at that concentration of test
551  peptide, IC50 is the 50% inhibitory concentration of the test peptide, top is the maximum fraction
552 of probe peptide bound, and bottom is the minimum fraction of probe peptide bound.

553

554  Quantification and Statistical Analysis

555 Statistical analyses were performed using R. When multiple comparisons were performed, we

556  adjusted the p values using the Benjamini-Horchberg method from the stats package. Sample
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557  distributions were compared using the Kolmorogov-Smirnov test from the stats package. All
558  correlations were calculated using the Spearman method from the stats package. Levenshtein
559  distances between donor and germline peptide were calculated using the stringdist package.
560 Peptide binding curve fitting was carried out using the nls() function from the stats package,
561  following the equation y = bottom + (top — bottom)/(1 +[pep]/IC50), as previously described. IC50
562  and standard deviation values were reported. Differences in the mean Spearman correlation for
563  VH:VL matched gene pairs was carried out using a paired t-test from the stats package. Differences
564  in the number of significant VH:VL gene pairs for MHC-I and MHC-II were calculated using the
565  Wilcoxon rank sum test from the stats package.

566

567 Key Resources Table

568
REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
LB3.1 ATCC Cat#ATCC® HB-298

Bacterial and Virus Strains

Biological Samples

Healthy adult PMBC (Donors 3 and 5) Vaccine Research Center | Sample collection
(VRCO) protocol, VRC 200
(NCT00067054)

Chemicals, Peptides, and Recombinant Proteins

HA306-318-derived probe peptide Ac-PRYVKQNTLRLAT 21st Century http://www.21stcentur
Biochemicals, Marlboro, | ybio.com/custom_pept
MA ide_synthesis.htm

Alexa Fluor 488 tetrafluorophenyl ester Invitrogen, Eugene, OR | Cat#A37570

Ig-derived peptides 21st Century http://www.21stcentur
Biochemicals, Marlboro, | ybio.com/custom_pept
MA ide_synthesis.htm

Critical Commercial Assays
Memory B cells Isolation Kit MACS/Miltenyi Biotec, | Cat#130-093-546
Bergisch Gladbach,
Germany
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Deposited Data
Paired VH: VL sequencing from two healthy donors (Donors 6 | DeKosky, BJ. , Lungu, BioProject
and 7) OL. et al (2015) (PRNJA315079)
Paired VH: VL sequencing from three healthy donors (Donors | Ahmed, F., DeKosky, PRINAG682833
1,2 and 4) BJ., et al. (2021,
Accepted)
Paired VH: VL sequencing from three healthy donors (Donors | This study XXXXXXXX
3 and 5)
VH sequencing from cellular and serum antibodies (Serum Lee, J., Boutz, DR.etal | MassIVE
study 1) (2016) (MSV000080184)
Longitudinal VH sequencing of serum antibodies (Serum Lee, J., Paparoditis, P. et | MassIVE
study 2) al (2019) (MSV000083120)

Experimental Models: Cell Lines

Drosophila S2 cells

Experimental Models: Organisms/Strains

Oligonucleotides

See Table S1

McDaniel, JR., DeKosky, BJ,.
et al (2016)

McDaniel, JR., DeKosky,
BJ,. et al (2016)

Recombinant DNA

Software and Algorithms

R version 3.53

R Core Team (2019)

https://www.R-
project.org/

Pandas version 0.25.3

The pandas development
team (2020)

https://pandas.pydata.o
rg

Tidyverse version 1.3.0

Wickham et al., (2019)

https://www.tidyverse.
org

MixCR version 3.012

Bolotin, D.A. (2015)

https://mixcr.readthedo
cs.io/en/master/index.h
tml

IgBlast version 1.16

Ye, J., et al (2013)

https://www.ncbi.nlm.

nih.gov/igblast/
Usearch version 6.1.544 R.C. Edgar (2010) https://drive5.com/usea
rch/
netMHClIIpan version 3.1 Andreatta, M., et al http://www.cbs.dtu.dk/
(2015) services/NetMHClIpan
-3.1/
netMHCpan version 4.1 Reynisson, B., et al http://www.cbs.dtu.dk/
(2020) services/NetMHCpan/

EpiMatrix

Schafer, J.R., et al
(1998)

https://epivax.com/i

ImmuneSim version 0.8.7

Weber, C.R., et al (2020)

https://immunesim.rea
dthedocs.io/en/latest/

ShaZam version 0.23

Gupta, N.T., et al (2015)

https://shazam.readthe
docs.io/en/stable/
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Stringdist version 0.9.5.5 MP]J van der Loo (2014) | https://github.com/mar
kvanderloo/stringdist

Other
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571  Main Figures

572

573  Figure 1. Decreased MHC-II peptide epitope content is correlated with SHM in B cell
574  receptors, with stronger effects in certain V-genes. A. Overview of MHC-II peptide epitope
575  characterization in natively paired heavy and light chain human antibody sequence repertories.
576  Paired heavy and light chain antibody repertoire data were generated by ultra-high throughput
577  single cell sequencing of B cells from healthy donor PBMCs. An overlap-extension RT-PCR pairs
578  antibody heavy and light chain variable region (VH and VL) transcripts for NGS analysis. V(D)J
579  annotation and somatic hypermutation (SHM) assignment was carried out using IgBlast. MHC-II
580  peptide epitope content of BCR variable regions was analyzed for antibody sequence repertoires
581  using the EpiMatrix and netMHClIIpan algorithms. MHC-II peptide epitope content metrics were
582  cross-referenced with SHM and antibody isotype to characterize relationships between MHC-II
583  peptide epitope content and sequence-based markers of B cell development. B. Scatter plots of
584  EpiMatrix MHC-II binding prediction scores vs. SHM, based on aggregate data for human
585  supertype alleles DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*07:01, DRB1*08:01,
586 DRBI1*11:01, DRB1*13:02 and DRB1*15:01. Each point represents an antibody sequence; points
587  are colored according to data density (yellow: high, purple: low). Linear regressions are shown in
588 red. p-value of the Spearman correlation is indicated. C. Volcano plots of spearman p vs.
589  Benjamini-Hochberg adjusted p-values for MHC-II peptide epitope content vs. SHM, for antibody
590  repertoires binned by IGHV and IGKV/IGLV gene pairs. Statistically significant pairs are shown
591 in blue, and other gene pairs are shown in gray. D. Scatter plots of selected IGHV gene and
592  IGKV/IGLV gene pairs for SHM vs. predicted binding scores. Linear regression lines are shown
593  inblue.

594

595 Figure 2. V-gene dependence is driven by the deletion of high affinity peptides present in
596  germline sequences. A. Repertoire-scale data analysis schematic using netMHClIIpan to identify
597  patient-specific MHC-II peptide epitopes according to known donor HLA genes. B. Volcano plots
598  of Spearman p vs. Benjamini-Hochberg adjusted p-values for antibody SHM vs. geometric mean
599 Kb fold-change from germline Kp, as predicted by netMHClIIpan. Data were grouped by IGHV
600 gene and IGKV/IGLV gene pairings and analyzed for peptides derived from germline-encoded
601  MHC-II binding peptides (predicted germline Kp <1,000 nM). Statistically significant IGHV gene
602  and IGKV/IGLV combinations are shown in blue, other gene pairs are shown in gray. C. Scatter
603  plots of antibody data for selected IGHV and IGKV/IGLV gene pairs displaying antibody SHM
604  vs. predicted peptide geomean Kp fold-change from germline Kp. Linear regressions are shown in
605  blue. D. Geometric mean of the rank percentage, as defined by netMHClIpan of each putative
606  peptide across the IGHV sequence, comparing germline IGHV gene (black) and high SHM (top
607 5%, blue) from the IGHV gene-controlled repertoire. E. Logograms of high affinity germline-
608 encoded peptide residues comparing germline and high SHM antibodies at those residues (top
609  5%). n represents the number of unique peptides displayed in the high SHM subset. F.
610 netMHClIpan Kb prediction for peptides shown in the logograms, using one of the donor-specific
611 HLA-DRBI alleles. Peptides from Donors 1-3 are shown. G. Experimental validation of peptide
612  binding affinity to HLA II DRB1 molecules, using a competition assay with peptides derived from
613  Donor 1. ICso was calculated using a log-logistic equation. Somatic hypermutations are highlighted
614  in bold script.

615
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616  Figure 3. Sequence data comparisons with in silico SHM models, and a separate analysis of
617 MHC-I vs. MHC-II epitope content, both demonstrate the preferential deletion of human
618  MHC-II peptide epitopes by SHM. A. VH gene usage between experimentally-derived Donor 1
619 data and Donor 1 modeled antibody repertoires, incorporating both the donor-specific
620  Replacement-Silent (R-S) SHM model based on Donor 1’s repertoire data, and the universal Out-
621  of-Frame (OoF) SHM model. Gene usage is shown as frequency of the total antibody repertoire.
622  The same data for additional donors is provided in Figure S7A. B. Distribution of SHM between
623  Donor 1 experimentally-derived data and in silico modeled repertoires. Black dots represent
624  outliers. The same data for additional donors is provided in Figure S7B. C. Number of statistically
625  significant (adjusted p<0.05) IGHV and IGKV/IGLV gene pairs in experimentally-derived donor
626  data, divided by the average number of significant gene pairs in donor-matched modeled R-S
627  repertoires (n=30 modeled RS repertoires for each donor). Values >1 indicate that experimentally-
628  derived donor data has more statistically significant heavy:light gene pairs with deleted MHC-II
629  peptide epitopes from the antibody variable region via SHM. D. Volcano plots of Spearman p vs.
630 Benjamini-Hochberg adjusted p-values for SHM vs. geometric mean Kp fold-change from
631 germline Kp.in IGHV and IGKV/IGLV gene pairs, as predicted by netMHClIpan, for isotype-
632  switched antibody sequences. Data were calculated for peptides derived from germline-encoded
633  high-affinity binders (<1,000 nM). Statistically significant IGHV and IGKV/IGLV gene pairs are
634  shown in blue, other gene pairs are shown in gray. Experimental donor data and R-S models are
635  shown. For R-S simulations, 30 repertoires were modeled for each donor for each simulation type,
636  and the model closest to the median Spearman Rho of all 30 simulations is shown. E. Isotype-
637  switched VH:VKL gene pairs with a significant correlation between Kp change and SHM in donor
638 data and modeled repertoires were retrieved. For donor data, the gene pair list was matched in the
639  modeled repertoires, and vice versa. The Spearman rho correlation was compared between donor
640  and modeled repertoires using a paired t-test. F. Upper: The number of significant VH:VL gene
641  pairs for MHC-I vs. MHC-II peptide epitopes; each point is a different MHC gene:donor
642  combination. Peptide epitopes were binned as being both an MHC-I+MHC-II (shared) epitope, a
643  unique MHC-I, or a unique MHC-II epitope, based on donor genotype. Lower: Comparison of
644  Spearman correlations (Kp fold-change vs SHM) between MHC peptide epitope bins for
645  significant VH:VL gene pairs. *:p<0.05, ***:p < (0.001, N.S: Not significant, Wilcoxon rank sum
646  test.

647

648  Figure 4. Isotype class switching and antibody secretion as long-lived serum IgG are
649  correlated with lower MHC-II peptide epitope content in BCRs. A. Antibody repertoires were
650 fractionated by isotype, and Spearman correlations were calculated for each repertoire subset.
651  EpiMatrix binding scores are shown as aggregate binding score for supertype alleles DRB1#01:01,
652 DRBI1*03:01, DRB1*04:01, DRB1*07:01, DRB1*08:02, DRB1*11:01, DRB1*13:02 and
653 DRBI1*15:01. Each point represents a BCR sequence, and points are colored by data density
654  (yellow: high, purple: low). Linear regressions are shown in red; p-value of the Spearman
655  correlation is indicated. B. Volcano plot of Spearman p vs. Benjamini-Hochberg adjusted p-values
656  for SHM vs. MHC-II binding score for repertoires grouped by isotype. Data are shown for all
657  seven donors. C. Geometric mean of the Kp comparison for antibody variable region peptides
658 encoded by cellular vs. serum antibody repertoires, determined using netMHClIIpan. Kp for
659  complete antibodies was obtained from peptides derived from germline peptides with Kp <1,000
660 nM. ‘Serum’ antibody clones were detected in human blood via serum proteomics in a previously
661  reported study; ‘Cellular’ antibody sequences were restricted to the cellular compartment [40].
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662  Differences between groups were analyzed using a t-test. Each point represents the BCR repertoire
663  MHC-II peptide geomean Kp for a human HLA allele (modeled for 38 human alleles, because
664  donor HLAs are unknown); and alleles with adjusted p<0.05 are shown in red. D. Left Single vs.
665  Multiple observation antibodies from longitudinal serum repertoire data, plotted as described in
666  Panel C. Multiple observation antibody clones were detected at multiple time points via serum
667  proteomics, whereas single observation antibodies were detected only at a single time point [41].
668  Right Geomean Kp fold-change comparison between Multiple vs. Single observation serum
669 antibodies E. Proposed mechanism of in vivo selection for BCRs with lower MHC-II peptide
670 epitopes. Unmutated B cells in germinal centers often express unmutated BCRs that encode high-
671  affinity MHC-II peptides. These high-affinity MHC-II peptides from the BCR can display on
672  surface MHC-II after endocytosis of the BCR-antigen complex and compete with antigen-derived
673  peptides for MHC-II surface presentation. Competition between BCR MHC-II peptides and
674  antigen MHC-II peptides provides a selective pressure for B cells to mutate high-affinity MHC-II
675  peptide epitopes in the BCR variable region to enhance CD4+ T cell help. Efficient T cell help
676 leads to further SHM, isotype switching, and the generation of long-lived plasma cells that secrete
677  an antibody repertoire with decreased MHC-II peptide epitope content.
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678  Supplementary Figures

679

680 Figure S1. SHM correlates with decreased MHC-II peptide epitope content in B cell
681  receptors, with stronger effects in certain V-genes. A. Scatter plots of somatic hypermutation
682 levels (SHM) and EpiMatrix prediction of MHC II binding, as aggregate binding score for
683  supertype alleles DRBI1*01:01, DRB1*03:01, DRB1*04:01, DRB1*07:01, DRB1%*08:02,
684 DRBI1*11:01, DRB1*13:02 and DRB1*15:01. Each point represents an antibody sequence; points
685  are colored according to data density (yellow: high, purple: low). Linear regressions are shown in
686 red. p-value of the Spearman correlation is indicated. B. Volcano plots of spearman p vs.
687  Benjamini-Hochberg adjusted p-values for SHM vs. MHC-II peptide epitope content, for
688  antibodies repertoires grouped by IGHV and IGKV/IGLV gene pairs. Statistically significant pairs
689  are shown in blue, and other gene pairs are shown in gray. C. Scatter plots of selected IGHV gene
690 and IGKV/IGLV gene pairs for SHM vs. predicted binding scores. Linear regression lines are
691  shown in blue.

692

693  Figure S2. Germline MHC-II peptide epitope content varies by IGHV and IGLV/IGKV
694  genes. Predicted MHC-II binding score was calculated using EpiMatrix for complete donor
695  repertoires, and divided into V-gene subsets. Higher scores indicate higher content of MHC-II
696 DRBI peptide epitopes in the germline V-gene. V-genes were plotted in alphanumerical order,
697  and the mean of scores (black points) and range (gray lines) are displayed together.

698

699  Figure S3. Germline MHC-II peptide epitope content varies according to HLA-DRB1 gene
700  profile. MHC-II peptide epitope content was predicted for a database of germline-encoded VH,
701  VKand VL genes for each HLA-DRBI allele encoded by donors in this study netMHClIpan. The
702  geometric means of the rank percentage for all IGHV- and IGKV/IGLV genes were calculated
703 (black line) and the range of ranks (0.01%-100%) for peptides centered in each residue is shown
704  in shaded gray. A lower rank indicates higher peptide:MHC-II binding affinity.

705

706  Figure S4. V-gene dependence is driven by deletion of high affinity peptides present in
707  germline sequences. A. Volcano plots of Spearman p vs. Benjamini-Hochberg adjusted p-values
708  for antibody SHM vs. geometric mean Kp fold-change from germline Kp, as predicted by
709  netMHClIpan. Data were grouped by IGHV gene and IGKV/IGLYV gene pairings and analyzed for
710  peptides derived from germline-encoded MHCII binding peptides (predicted germline Kp <1,000
711  nM). Statistically significant IGHV gene and IGKV/IGLV combinations are shown in blue, other
712 gene pairs are shown in gray. B. Scatter plots of antibody data for selected IGHV and IGKV/IGLV
713 gene pairs displaying antibody SHM vs. predicted peptide geomean Kp fold-change from germline
714 Kb. Linear regressions are shown in blue. C. Geometric mean of the rank percentage, as defined
715 by netMHClIIpan of each putative peptide across the IGHV sequence, comparing germline IGHV
716  gene (black) and high SHM (top 5%, blue) from the IGHV gene-controlled repertoire. D.
717  Logograms of high affinity germline-encoded peptide residues comparing germline and high SHM
718  antibodies at those residues (top 5%). n represents the number of unique peptides displayed in the
719  high SHM subset. E. netMHClIpan Kbp prediction for peptides shown in the logograms, using one
720  of the donor-specific HLA-DRBI alleles. Donors 4 and 5 are shown. Figure SS. Experimental
721  observation of key antibody peptides in immunopeptidomic assay data in IEDB. A.
722 Observations of IGHV-derived peptides experimentally confirmed to be immune epitopes and
723  displayed by residue position. Data was retrieved from the Immune Epitope Database and analysis
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724 resource (IEDB, www.iedb.org). B. Presence of confirmed MHC-II peptide epitopes in antibody
725  repertoires. Peptides eluted from MHC-II molecules were retrieved from IEDB and used as a
726  search database to mine donor repertoire data. IEDB peptides present both as substrings entirely
727  contained within antibody 15-mers, and complete 15-mer matches, were accepted. C. Overlap
728  between confirmed HLA-DRBI1 peptides and HLA-DP/DQ peptides from antibody V-genes found
729  in IEDB. Antibody peptides detected in the [IEDB HLA-DRB1 database were searched in the HLA-
730  DP/DQ database, accepting only complete matches.

731

732 Figure S6. netMHClIIpan data analysis, computational repertoire modeling, and

733 personalized repertoire analytics. A. Data processing using netMHClIpan. Upper panel The
734 presence of MHC-II peptide epitopes was determined in donor data for the complete set of 38
735  HLA alleles. HLA typing was also carried out. Middle panel Somatic hypermutation models

736 ShaZam and immuneSIM were used to simulate 30 repertoires, with the same number of BCR
737  sequences as experimentally-derived donor data. SHM distribution and V-gene frequencies were
738  calculated. Lower panel The subset of peptides with MHC-II Kp<1,000 nM to any of the 38

739 alleles were selected to generate a database of potential predicted binders. B. Using the germline
740  peptide database, peptides at the same position within the V-region were extracted from

741  experimentally-derived donor data or simulated repertoires and grouped according to parent

742 antibody V-gene. The fold-change between repertoire-scale BCR geomean[peptide:MHC-II Kp]
743  and germline geomean[peptide:MHC-II Kp] was calculated and aggregated by V-gene. The

744 Spearman correlation between Kp fold-change and SHM was calculated for each V-gene. These
745  data was used for the plots shown in Figure 2A. C. Using correlation data from B, significant
746 (adjusted p <0.05) and strong (p > 0.5 ) correlations were extracted and averaged by allele.

747  Alleles were plotted according to their individual geomean Spearman p scores, with the larger
748  circles corresponding to each of the donor’s two HLA-DRBI alleles.

749

750  Figure S7. IGHV gene usage and SHM distribution for each experimentally-derived BCR
751  repertoire data, universal Out-of-frame (OoF) modeled repertoire data, and donor-specific
752  Replacement-Silent (RS) modeled repertoire data. A. IGHV gene usage between Donors 2-5
753  experimentally-derived repertoires and OoF and RS modeled repertoires. Gene usage is shown as
754  frequency of total repertoire. B. SHM distribution for Donors 2-5 experimentally-derived
755  repertoires and OoF and RS modeled repertoires. Black dots represent outliers.

756

757  Figure S8. Somatic hypermutations selectively delete MHC-II peptide epitopes. A.
758  Levenshtein distance between donor and germline peptide was calculated as a measure of
759  mutational load. The number of mutations was plotted against the Kp fold-change between donor
760  and germline peptides for donor-matched alleles. Outliers were removed for visualization but not
761  for calculation of quartiles for boxplot generation B. Volcano plots of Spearman p vs. Benjamini-
762  Hochberg adjusted p-values for SHM vs. geometric mean Kp fold-change from germline Kb, as
763  predicted by netMHClIIpan. Data were calculated for peptides derived from germline-encoded
764 high-affinity binders (< 1,000 nM). Statistically significant IGHV and IGKV/IGLV gene pairs are
765  shown in blue, other gene pairs are shown in gray. Donor, OoF and R-S models are shown. For
766  OoF and R-S simulations, 30 repertoires were modeled for each donor, and the model closest to
767  the median Spearman Rho of all 30 simulations is shown. C. Number of statistically significant
768  (adjusted p < 0.05) IGHV and IGKV/IGLV gene pairs in experimentally-derived donor data,
769  divided by the average number of significant gene pairs in donor-matched modeled OoF
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770  repertoires (n=30 modeled OoF repertoires for each donor). Values >1 indicate that
771  experimentally-derived donor data has more statistically significant gene pairs that show decreased
772  MHC-II peptide epitope content by SHM. “All alleles” reports the average of all 10 HLA-DRBI1
773  alleles from the 5 donors, “Top alleles” reports the average of the top HLA-DRB1 allele collected
774  from each donor. D. Spearman Rho comparison of aggregated HLA molecules. Alleles were
775  clustered according to supertypes as defined in [60]. The Spearman p geometric mean was
776  calculated for every allele, and then for all supertypes. Each color represents a different supertype.
777  Supertypes with donor-matched HLA molecules are shown as bigger circles. E. Isotype-switched
778  VH:VKL gene pairs with a significant correlation between Kp change and SHM in donor data and
779  modeled repertoires were retrieved. For donor data, the gene pair list was matched in the modeled
780  repertoires, and vice versa. Spearman rho correlations were compared between donor and modeled
781  repertoires using a paired t-test.

782

783  Figure S9. Isotype class switching is correlated with preferential removal of MHC-II peptide
784  epitopes from BCRs. A. Antibody repertoires were fractionated by isotype, and Spearman
785  correlations were calculated for each repertoire subset. EpiMatrix binding scores are shown as
786  aggregate binding score for supertype alleles DRB1*01:01, DRB1*03:01, DRB1*04:01,
787  DRB1*07:01, DRB1*#08:01, DRB1*11:01, DRB1*#13:02 and DRB1*15:01. Each point represents
788 a BCR sequence, and points are colored by data density (yellow: high, purple: low). Linear
789  regressions are shown in red; p-value of the Spearman correlation is indicated.

790

791  Supplementary Table 1 Primers used for paired heavy and light chain overlap extension RT-
792 PCR

793
794
Oligonucleotide name Oligonucleotide sequence Source
IgM Constant Region CGCAGTAGCGGTAAACGGCCACAGGAGACGAGGGGGAAA McDaniel, JR., DeKosky, BJ,. et al
IgG Constant Region CGCAGTAGCGGTAAACGGCAGGGYGCCAGGGGGAAGAC ﬁgllfzi)niel, JR., DeKosky, BJ,. et al
IgA Constant Region CGCAGTAGCGGTAAACGGCCGGGAAGACCTTGGGGCTGG i\%[glljfi)niel, JR., DeKosky, BJ,. et al
IgLC Constant Region GCGGATAACAATTTCACACAGGTCCTCAGAGGAGGGYGGGA ;/2[2]1)621)11&1, JR., DeKosky, BJ,. et al
IgKC Constant Region ?}CGGATAACAATTTCACACAGGGATGAAGACAGATGGTGCA ﬁgll)(;)niel, JR., DeKosky, BJ,. et al
VHI FR1 Region l(:,ATTCCCATCGCGGCGCCAGGTCCAGCTKGTRCAGTCTGG %/2[8]]3621)11&1, JR., DeKosky, BJ,. et al
VH157 FR1 Region TATTCCCATCGCGGCGCCAGGTGCAGCTGGTGSARTCTGG %/2[2]1)6a)niel, JR., DeKosky, BJ,. et al
VH2 FR1 Region TATTCCCATCGCGGCGCCAGRTCACCTTGAAGGAGTCTG ﬁg]gfi)niel, JR., DeKosky, BJ,. et al
VH3 FR1 Region TATTCCCATCGCGGCGCGAGGTGCAGCTGKTGGAGWCY %\%[2]136:1)11161, JR., DeKosky, BJ,. et al
VH4 FR1 Region TATTCCCATCGCGGCGCCAGGTGCAGCTGCAGGAGTCSG ﬁ(c)llil)niel, JR., DeKosky, BJ,. et al
VH4-DP63 FR1 Region TATTCCCATCGCGGCGCCAGGTGCAGCTACAGCAGTGGG §\/21(0)1136a)nie1, JR., DeKosky, BJ,. et al
VH6 FR1 Region TATTCCCATCGCGGCGCCAGGTACAGCTGCAGCAGTCA %/2[8]]3621)11&1, JR., DeKosky, BJ,. et al
VH3N FR1 Region TATTCCCATCGCGGCGCTCAACACAACGGTTCCCAGTTA %/Zlgll)i)niel, JR., DeKosky, BJ,. et al
VK1 FR1 Region GCGCCGCGATGGGAATAGCTAGCCGACATCCRGDTGACCCA i\%l(c)lljfi)niel, JR., DeKosky, BJ,. et al
GTCTCC (2016)
VK2 FR1 Region GCGCCGCGATGGGAATAGCTAGCCGATATTGTGMTGACBCA McDaniel, JR., DeKosky, BJ,. et al

GWCTCC (2016)
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795

VK3 FR1 Region
VKS FR1 Region

VLI FR1 Region
VL1459 FR1 Region
VL15910 FR1 Region
VL2 FR1 Region

VL3 FR1 Region
VL-DPL16 FR1 Region
VL3-38 FR1 Region
VL6 FR1 Region
VL78 FR1 Region
IgG Constant Region
nested

IgM Constant Region
nested

IgA Constant Region
nested

IgKC Constant Region
nested

IgL.C Constant Region
nested

available under aCC-BY-ND 4.0 International license.

GCGCCGCGATGGGAATAGCTAGCCGAAATTGTRWTGACRCA
GTCTCC
GCGCCGCGATGGGAATAGCTAGCCGAAACGACACTCACGCA
GTCTC
GCGCCGCGATGGGAATAGCTAGCCCAGTCTGTSBTGACGCAG
CCGCC
GCGCCGCGATGGGAATAGCTAGCCCAGCCTGTGCTGACTCAR
YC
GCGCCGCGATGGGAATAGCTAGCCCAGCCWGKGCTGACTCA
GCCMCC
GCGCCGCGATGGGAATAGCTAGCCCAGTCTGYYCTGAYTCA
GCCT
GCGCCGCGATGGGAATAGCTAGCCTCCTATGWGCTGACWCA
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NNNNGTGCGGCCGCAGATGGTGCAGCCACAGTTC

NNNNGTGCGGCCGCGAGGGYGGGAACAGAGTGAC

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

McDaniel, JR., DeKosky, BJ,.

(2016)

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

et al

et al

et al

et al

et al

et al

et al

et al

et al

et al

et al

et al

et al

et al

et al

et al


https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

available under aCC-BY-ND 4.0 International license.

References

Nemazee, D., Mechanisms of central tolerance for B cells. Nat Rev Immunol, 2017.
17(5): p. 281-294.

Gitlin, A.D., Z. Shulman, and M.C. Nussenzweig, Clonal selection in the germinal centre
by regulated proliferation and hypermutation. Nature, 2014. 509(7502): p. 637-40.
Mesin, L., J. Ersching, and G.D. Victora, Germinal Center B Cell Dynamics. Immunity,
2016. 45(3): p. 471-482.

Batista, F.D. and M.S. Neuberger, B cells extract and present immobilized antigen:
implications for affinity discrimination. EMBO J, 2000. 19(4): p. 513-20.

Cyster, J.G. and C.D.C. Allen, B Cell Responses: Cell Interaction Dynamics and
Decisions. Cell, 2019. 177(3): p. 524-540.

Wine, Y., et al., Serology in the 21st century: the molecular-level analysis of the serum
antibody repertoire. Curr Opin Immunol, 2015. 35: p. 89-97.

Lavinder, J.J., et al., Identification and characterization of the constituent human serum
antibodies elicited by vaccination. Proc Natl Acad Sci U S A, 2014. 111(6): p. 2259-64.
Purtha, W.E., et al., Memory B cells, but not long-lived plasma cells, possess antigen
specificities for viral escape mutants. J Exp Med, 2011. 208(13): p. 2599-606.

Amanna, I.J., N.E. Carlson, and M.K. Slifka, Duration of humoral immunity to common
viral and vaccine antigens. N Engl J Med, 2007. 357(19): p. 1903-15.

Amanna, I.J. and M.K. Slifka, Mechanisms that determine plasma cell lifespan and the
duration of humoral immunity. Immunol Rev, 2010. 236: p. 125-38.

Melchers, F., Checkpoints that control B cell development. J Clin Invest, 2015. 125(6): p.
2203-10.

Slifka, M.K. and I.J. Amanna, Role of Multivalency and Antigenic Threshold in
Generating Protective Antibody Responses. Front Immunol, 2019. 10: p. 956.

Cassotta, A., et al., A single T cell epitope drives the neutralizing anti-drug antibody
response to natalizumab in multiple sclerosis patients. Nat Med, 2019. 25(9): p. 1402-
1407.

Jurewicz, M.M. and L.J. Stern, Class Il MHC antigen processing in immune tolerance
and inflammation. Immunogenetics, 2019. 71(3): p. 171-187.

Lamberth, K., et al., Post hoc assessment of the immunogenicity of bioengineered factor
Vila demonstrates the use of preclinical tools. Sci Transl Med, 2017. 9(372).

Robinson, J., et al., IPD-IMGT/HLA Database. Nucleic Acids Res, 2020. 48(D1): p.
D948-D955.

Alcaide-Loridan, C., et al., Differential expression of MHC class Il isotype chains.
Microbes Infect, 1999. 1(11): p. 929-34.

Peretti, M., et al., Expression of the three human major histocompatibility complex class
11 isotypes exhibits a differential dependence on the transcription factor RFXAP. Mol
Cell Biol, 2001. 21(17): p. 5699-709.

De Groot, A.S., et al., Activation of natural regulatory T cells by IgG Fc-derived peptide
"Tregitopes". Blood, 2008. 112(8): p. 3303-11.

Jawa, V., et al., T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical
Assessment and Mitigation-Updated Consensus and Review 2020. Front Immunol, 2020.
11: p. 1301.


https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

841  21. Cousens, L.P., et al., In vitro and in vivo studies of IgG-derived Treg epitopes

842 (Tregitopes): a promising new tool for tolerance induction and treatment of

843 autoimmunity. J Clin Immunol, 2013. 33 Suppl 1: p. S43-9.

844  22. Peters, B., M. Nielsen, and A. Sette, T Cell Epitope Predictions. Annu Rev Immunol,
845 2020. 38: p. 123-145.

846  23. Barra, C., et al., Footprints of antigen processing boost MHC class II natural ligand
847 predictions. Genome Med, 2018. 10(1): p. 84.

848  24. Reynisson, B., et al., NetMHCpan-4.1 and NetMHClIpan-4.0: improved predictions of
849 MHC antigen presentation by concurrent motif deconvolution and integration of MS
850 MHC eluted ligand data. Nucleic Acids Res, 2020. 48(W1): p. W449-W454.

851  25. Wang, Q., et al., Immunogenic HLA-DR-Presented Self-Peptides ldentified Directly from
852 Clinical Samples of Synovial Tissue, Synovial Fluid, or Peripheral Blood in Patients with
853 Rheumatoid Arthritis or Lyme Arthritis. J Proteome Res, 2017. 16(1): p. 122-136.

854  26. Sordé, L., et al., Tregitopes and impaired antigen presentation: Drivers of the

855 immunomodulatory effects of IVIg? Immun Inflamm Dis, 2017. 5(4): p. 400-415.

856  27. Huszthy, P.C., et al., B cell receptor ligation induces display of V-region peptides on
857 MHC class Il molecules to T cells. Proc Natl Acad Sci U S A, 2019. 116(51): p. 25850-
858 25859.

859  28. DeKosky, B.J., et al., In-depth determination and analysis of the human paired heavy-
860 and light-chain antibody repertoire. Nat Med, 2015. 21(1): p. 86-91.

861  29. Wang, B, et al., Functional interrogation and mining of natively paired human V. Nat
862 Biotechnol, 2018. 36(2): p. 152-155.

863  30. Schafer, J.R., et al., Prediction of well-conserved HIV-1 ligands using a matrix-based
864 algorithm, EpiMatrix. Vaccine, 1998. 16(19): p. 1880-4.

865  3l. Andreatta, M., et al., Accurate pan-specific prediction of peptide-MHC class Il binding
866 affinity with improved binding core identification. Immunogenetics, 2015. 67(11-12): p.
867 641-50.

868  32. Dhanda, S.K., et al., IEDB-AR: immune epitope database-analysis resource in 2019.
869 Nucleic Acids Res, 2019. 47(W1): p. W502-W506.

870  33. Roche, P.A. and K. Furuta, The ins and outs of MHC class 1I-mediated antigen

871 processing and presentation. Nat Rev Immunol, 2015. 15(4): p. 203-16.

872  34. Nielsen, S.C.A., et al., Shaping of infant B cell receptor repertoires by environmental
873 factors and infectious disease. Sci Transl Med, 2019. 11(481).

874  35. Johnson, E.L., et al., Sequencing HIV-neutralizing antibody exons and introns reveals
875 detailed aspects of lineage maturation. Nat Commun, 2018. 9(1): p. 4136.

876  36. Honjo, T., K. Kinoshita, and M. Muramatsu, Molecular mechanism of class switch

877 recombination: linkage with somatic hypermutation. Annu Rev Immunol, 2002. 20: p.
878 165-96.

879  37. Wine, Y., et al., Molecular deconvolution of the monoclonal antibodies that comprise the
880 polyclonal serum response. Proc Natl Acad Sci U S A, 2013. 110(8): p. 2993-8.

881  38. Lavinder, J.J., et al., Next-generation sequencing and protein mass spectrometry for the
882 comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin
883 Chem Biol, 2015. 24: p. 112-20.

884  39. Chen, J., et al., Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger,
885 More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics. Cell

886 Rep, 2017. 18(1): p. 237-247.


https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

887  40. Lee, J., et al., Molecular-level analysis of the serum antibody repertoire in young adults
888 before and after seasonal influenza vaccination. Nat Med, 2016. 22(12): p. 1456-1464.
889  41. Lee, J., et al., Persistent Antibody Clonotypes Dominate the Serum Response to Influenza
890 over Multiple Years and Repeated Vaccinations. Cell Host Microbe, 2019. 25(3): p. 367-
891 376.e5.

892  42. Andreatta, M., et al., An automated benchmarking platform for MHC class Il binding
893 prediction methods. Bioinformatics, 2018. 34(9): p. 1522-1528.

894 43, Zhao, W. and X. Sher, Systematically benchmarking peptide-MHC binding predictors:
895 From synthetic to naturally processed epitopes. PLoS Comput Biol, 2018. 14(11): p.
896 e1006457.

897 44, Halliley, J.L., et al., Long-Lived Plasma Cells Are Contained within the CD19(-

898 )JCD38(hi)CD138(+) Subset in Human Bone Marrow. Immunity, 2015. 43(1): p. 132-45.
899  45. Kwong, P.D. and J.R. Mascola, HIV-1 Vaccines Based on Antibody Identification, B Cell
900 Ontogeny, and Epitope Structure. Immunity, 2018. 48(5): p. 855-871.

901  46. Bonsignori, M., et al., Antibody-virus co-evolution in HIV infection: paths for HIV

902 vaccine development. Immunol Rev, 2017. 275(1): p. 145-160.

903 47. De Groot, A.S. and W. Martin, Reducing risk, improving outcomes: bioengineering less
904 immunogenic protein therapeutics. Clin Immunol, 2009. 131(2): p. 189-201.

905 48. Vaisman-Mentesh, A., et al., The Molecular Mechanisms That Underlie the Immune
906 Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal

907 Antibodies. Front Immunol, 2020. 11: p. 1951.

908  49. Suurmond, J., et al., Loss of an 1gG plasma cell checkpoint in patients with lupus. J

909 Allergy Clin Immunol, 2019. 143(4): p. 1586-1597.

910 50. Yurasov, S., et al., Defective B cell tolerance checkpoints in systemic lupus

911 erythematosus. J Exp Med, 2005. 201(5): p. 703-11.

912 51. Meftre, E. and K.C. O'Connor, Impaired B-cell tolerance checkpoints promote the

913 development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev,

914 2019. 292(1): p. 90-101.

915  52. Antia, A., et al., Heterogeneity and longevity of antibody memory to viruses and

916 vaccines. PLoS Biol, 2018. 16(8): p. €2006601.

917 53. DeKosky, B.J., et al., Large-scale sequence and structural comparisons of human naive
918 and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A, 2016. 113(19):
919 p. E2636-45.

920 54. McDaniel, J.R., et al., Ultra-high-throughput sequencing of the immune receptor

921 repertoire from millions of lymphocytes. Nat Protoc, 2016. 11(3): p. 429-42.

922  55. Lagerman, C.E., et al., Ultrasonically-guided flow focusing generates precise emulsion
923 droplets for high-throughput single cell analyses. J Biosci Bioeng, 2019. 128(2): p. 226-
924 233.

925  56. Ye, J., etal., IgBLAST: an immunoglobulin variable domain sequence analysis tool.

926 Nucleic Acids Res, 2013. 41(Web Server issue): p. W34-40.

927  57. DeKosky, B.J., et al., High-throughput sequencing of the paired human immunoglobulin
928 heavy and light chain repertoire. Nat Biotechnol, 2013. 31(2): p. 166-9.

929  358. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST.

930 Bioinformatics, 2010. 26(19): p. 2460-1.

931 59. Lund, O., et al., Definition of supertypes for HLA molecules using clustering of specificity
932 matrices. Immunogenetics, 2004. 55(12): p. 797-810.


https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

60.

61.

62.

63.

64.

65.

66.

67.

available under aCC-BY-ND 4.0 International license.

Southwood, S., et al., Several common HLA-DR types share largely overlapping peptide
binding repertoires. ] Immunol, 1998. 160(7): p. 3363-73.

Sette, A., et al., The relationship between class I binding affinity and immunogenicity of
potential cytotoxic T cell epitopes. J Immunol, 1994. 153(12): p. 5586-92.

Gupta, N.T., et al., Change-O: a toolkit for analyzing large-scale B cell immunoglobulin
repertoire sequencing data. Bioinformatics, 2015. 31(20): p. 3356-8.

Weber, C.R., et al., immuneSIM: tunable multi-feature simulation of B- and T-cell
receptor repertoires for immunoinformatics benchmarking. Bioinformatics, 2020. 36(11):
p. 3594-3596.

Bolotin, D.A., et al., MiXCR: software for comprehensive adaptive immunity profiling.
Nat Methods, 2015. 12(5): p. 380-1.

Stern, L.J. and D.C. Wiley, The human class Il MHC protein HLA-DRI assembles as
empty alpha beta heterodimers in the absence of antigenic peptide. Cell, 1992. 68(3): p.
465-717.

Sloan, V.S., et al., Mediation by HLA-DM of dissociation of peptides from HLA-DR.
Nature, 1995. 375(6534): p. 802-6.

Yin, L. and L.J. Stern, Measurement of Peptide Binding to MHC Class Il Molecules by
Fluorescence Polarization. Curr Protoc Immunol, 2014. 106: p. 5.10.1-5.10.12.


https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A VH:VL sequencing Prediction of MHC-II epitope MHC-II epitope changes correlated

of single B cells content in B cell receptors with B cell genetic signatures
2 v e Heavy Chain Light Chain MHC-II binding data BCR gene features
: v { s o Y — seq1 1] + SHM, V-(D)-J genes,
O EpiMatrix: DRB1 supertype binding sean I Isotype (IgG/AM)
CJV v oDiC [ ] [ HEO Multivariate statistical ~ Mutated peptide
[Cigh Link Heavy, netMHCllIpan: Individual pMHC K, analyses epiiopes
Gene annotation EDEE EED . . MIQDSPSSLSE
SHM quantification Allele 1 = e MTQLSPSSLSL
Isotype assignment . . . . Allele n . D [:| e 1) e RTQDSPESLSE
B MHCII binding score of repertoire data; each point is one antibody
Donor 1 Donor 2 Donor 3
0@ 1004 p value < 0.001 1004 p value < 0.001 1004 p value < 0.001
83 ‘re=-0.059 i rs=-0.071 rs=-0.108
P 172
> o2 50+ 50 50+
835
o9 04 0 01
o=
8L ‘
O % -501 n=28,887 -50 n=16,325 % -n=43,498
0 10 20 30 0 10 20 30 10 20 30
SHM (%) SHM (%) SHM (%)
C Statistical analysis of MHCII binding score data, aggregated by heavy:light gene pairs
151 154 154
(<)) /IGHV3-23, IGKV1-39
=] //IGHV3-30, IGKV1-39 oA GHY 2, IGKVA 0, IGHV3-23, IGKV3-20
© 10 //1GHV4-59, 1GKV1-38 104 104
= o/ FAACHYE0, IOKVS o——1GHV4-61, IGKV1-39 IGHV3-30, IGLV2-14
o 4 o---—1GHV3-23, IGKV1-5 1GHV3-11, IGLV2-14
~— .3 .IQHVZ!—ZCL IGLV2-14
S 5| e - 5y gIGHV3S3. I6KVI-39 54 %)
(o] o . "
o “b . Fad . 250
T -‘ v »® A & ®
0 S S e— O N 01, Gt ——_t
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Aggregate binding score Aggregate binding score Aggregate binding score
vs. SHM, Spearman p vs. SHM, Spearman p vs. SHM, Spearman p

D Data for statistically significant heavy:light V-gene pairs; each point is one antibody

o © 1201 1204 1204
- 5 IGHV4-59/1GKV1-39 IGHV3-23/IGKV1-5 IGHV3-23/IGKV3-20
g 3 slope = -2 slope =-3.2 slope =-4.9
o P p yalue < 0.001 p value < 0.001 p value < 0.001
52 80 804 80+
83 :
T =
L2 404 40 X 407 -,
Oi= ¢ 4 '?i\« 0 !
SO .
T $ .
as 0 0+ 0
0 5 10 15 0 5 10 15 0 5 10 15
SHM (%) SHM (%) SHM (%)
o = IGHV3-48/IGKY1-27 Ty IGHV1-46/IGKV1-39 IGHV3-11/1GLV2-14
© 8 slope=-3.9 slope=-1.2 754 slope =-6.6
g ) p value < 0.001 p value < 0.001 p value < 0.001
‘5‘! o 807 “v.- . 80+ .
o.E
© 2 .
o= "
o8 ::\. 40
o = & satd
39 \- =
(4] Siels Tt
b
as O 0] &9
0 5 10 15 0 5 10 15 0 5 10 15

SHM (%) SHM (%) SHM (%)


https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

A 1 R ALY oo 1%&%@%@%@@ o Wl RETRERDIRA Sy 18 change
to MHC-II in germline V-genes available yndenaffaitiody Inspratioisense. from germline vs SHM for
donor-matched HLA alleles

IGHV1-18 Seq 1 I N K
IGHV1-2 : Seiq 2 I - I Allele fo/d-change SHM
IGH\/7-81 - Seq n N I . DRB1*01:01
e m m om His e m DIDIDD
Higher affinity hits - - - Mutated peptides Tl DRB1*15:03 .. DD . .
B  Statistical analysis of netMHCII peptide affinity data, aggregated by heavy:light gene pairs
Donor 1 Donor 2 Donor 3
= 15{DRBT*711.01 15{DRB1*13:02 = 15{DRBT*01.01 15{ DRB1*04.02 = 15{DRB71*15.02 15{DRB1*13:05
S 2 3 3
T 101 101 K 2 104 - 104 T 101 *. 104
é : : g é ® 3, 3 é
6"? 51 Ve o 5 ° 8o 6)‘3 51 ‘,"_'., 51 :‘ ' 63? 51 1 :‘;
. - 0 o . 0 & '’ .
ke <3 . wo. O 5 ~ ke) . P
Y01 wamﬁ#’ 0 QN__J@ e m&.ﬂm [0 M MMM T 04 01" wm’
-10 -05 00 05 10 10 -05 00 05 10 -1.0 05 00 05 10 -1.0 -05 0.0 05 1.0 -1.0 05 00 05 1( -10 -05 00 05 10

Geometric mean affinity fold-change from germline vs SHM, Spearman p
C Significant heavy:light V-gene pairs; each point is one sequenced antibody

o2 o2 o @
L E 3{DRBT*11.01 3{DRB71*13:02 ‘ig 3{DRBT*071.01 3{DRBT1*04:02 E.E 3{DRBT*13:05 3{DRBT1*15:02
>N e A e * .
28 i e . E=
£ 924 . 2 £ 221 2 e 22 e 2 e
%5 e 55 ' cabl 55 | aEd e
=20 . - I = & ] e 1 g TR i 1| R
GEJ % IGHI\/3-42/‘G}(6\4(1-5 IGH;./3»42/IGI§‘|€1-5 GEJ % IGHVS 23/[GKV1 39 IGH\{S 23/![?5‘\‘/1 -39 g o IGHVIZ) 188/IGKV1 -39 IGHV1 IB/IGKV‘X 39
8 %0- . sloge‘_ogq? . oL, S."E‘ib.(?):g . 8 §0'. v' R0 %861 . o4, p\:a?ue(lo . 8 éo _ pualie<001 01, Dval 2<% .
oS 0 3 6 9 0 3 6 9 000369 0 3 6 9 oo 0 3 6 9 0 3 6 9
D 15-mer peptide MHCII epitope content for IGHV genes SHM (%)
20.01- O -20 DRETTOT) 0.01IGRYS e DRETIS02] | R0.01-TGHV3-23 DRETOT07|  0.01{IGRV3-23 DRET02) R0.01 IGRY3-30 DRBTT502]0.01{ GYT 16 DRETT305]
£ 0.1- _ High 0.1] _High x — Germline — Germline €< 0.4-_ High 011 High
8§ Tshm “ |7 sHm §c 017 Hob 0.11—High g5 > —shu M—siu
EX 1y 1 SF 4 1 EX  1- 14
< 10 10 32 32 40 16
g Wl 88 ,
A et O e g 1001 | 8 gt VY Ly oV WM Y L
6 40 8 120 0 40 80 120 0 40 80 120 o 40 80 120 0 40 80 120 0O 40 80 120
Residue
E 1.001 F — G
2 So7s . 30007 1.00| ¢ 1.00
g ggoso gg,ooo-
|38 g o G
| B 000 e £ 3001 ‘ = o =
w o X \ (o] [e]
o 40 61
Sl 3= 100 32 | = + 2
° g 55075 A %:100- i 8050 + 8050
alEF GLE e  f e | E
21" 0.251 LV IGRE - L] =
i 0.004 PGK [ LRiL G'fgi{\he S — w0254 54 Germline L= 0.25] 4 52 - Germline
1 Germline High SHM 4 S1 - Peptide 1 4 S2 - Peptide 1
eptides 4 S1 - Peptide 2 + 52 - Peptide 2
o 1001 1,0004 J— —) 0.00! * S1 - Peptide 3 . 0.00 4 S2 - Peptide 3
c C *
ESom] 5 107 10° 10" 10? 10° 10* 10° 10" 10° 10" 10° 10° 10* 10°
N2 EE So Competitor Peptide (nM) Competitor Peptide (nM)
NE R %
o . B .3 .
c| g 93 gx Peptide Sequence IC50 £+ S.D
[o] I = 1004 o ‘O_ .
Q| 8 Fc,q é’ 5 S1 - Germline NTLYLOMNSLRAE 62.3 +14.6
23 o 5 .
® 30 S & $1 - Peptide 1 1100 + 301
2T 0.254 Iy v P NTVFLOMHSLRDE
F 0.004 tseetial " Germline High'SHM i
on SHM S1 - Peptide 2 2077 £ 1106
72 n=668 peptides — P SSVYLOMNDLRVE *
® :;32 s S1- F’eptlde 3 NTLYLHMSGI.RDE 863 + 296
=0 [as]
=5 € o] :
ol g §§222 S'I's DTA 3 = 1,000 82 - Germline TLYLOMNSLRAED 56.3+8.5
= T £ 3
1 v &Y S2-Peptide 1 [ySLOLNSLRADD 490 + 111
ol 3| = oo B8 100 ﬂ .
[m) ) % 5075 % A ‘ L& S2 - Peptlde 2 TLYLQMNRLRADD 387 + 91
325 0.501 & .
gl 02s . . S2 - Peptide 3 71H1.OVSSVRADD 537 + 129
F o000 .

R p—
Germline High SHM



https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

A IGHV Gene Frequency of Donor and Modeled Repertoires B SHM Distribution Among Donor
and Modeled Repertoires
Donor VH:VL data | Donor Replacement-Silent (RS) model - Out of frame (Oof) Model 25
H
>.‘0.08 L = 20 E 5
)
Cl0.06 " i s i i
[ |
S 0.04 s ' =,
o i ¥ T 10
[} . i i " . & M %) [ | | | ] ]
i 0.02{ i : i 51 | | | ‘ | | ]
YB3 IR RTS8 3890 YYBI 8 RN 23831530888 5657 Donor Donor Out of
Y—>'—>'—1—v—'—(‘D>N>N‘C’)O’)WW€'}V)(‘)q)C’)N,C'JC'JC'J!'J‘(')(SI)>C')E'JC')C’)>‘ervq)q)wvt?ﬂ‘)ﬂ‘vv—'.—lﬂ)' 3 .
22352222 5252222223207 2072270205272250805233373252259252 VH:VL Replacement- frame
C~¥0~-0C00I~0~0I00C0000I0O0IC000I0TI 0000~ IOF0TIIO0OIO~C0FI0O~ data Silent (Oof)
o 5] % e 0] o= 6s2 56" "6 ST ©
= = = z%T T = o (RS) Model
Cc 2= = model
D Isotype-Switched VH:VL Gene Pairs
-~ € o0 A o
[ 1 .
S o 04:01 Donor 1 Donor 3 Donor 5
oL T 11:01 DRB1*11:01 DRB1*13:05 DRB1*12:01
a - T T T
c CICJ { ] . = 6 S 6 S 6
- o © © ©
£8 8% 5 &4 &4 54
g o & 1007 13:05 12:01 o = = e
Yo o2 o>» 2 o> 2 g
OS> © [ ] ® o - o - )
c N - - -
o T 0 e i 0 — 0 —
0>73 Top alleles 10 05 00 05 10 70 05 00 05 10 70 05 00 05 10
= = () Geomean affinity fold Geomean affinity fold Geomean affinity fold
g S 8 Y change from germline change from germline change from germline
> 8 o All alleles vs SHM, Spearman p vs SHM, Spearman p vs SHM, Spearman p
T E = 501 DRB1*11:01 DRB1*13:05 DRB1*12:01
c - - — —
> o9 L 3% Ss B
c W o ‘g g g
8 I+ S &4 & 4 &4
= o 0w " = =
S % 01:01 11:02 m' > 2 > 2 > 2
.UQ)’ 5 13:02 e 1502 1501 1% S S s
1 1 1
> O Ratio=7"""®"7, 7Y RRRRh bbb A Shhhbh ®--- = —— —
*H < afio —04:02 i i : 40 05 00 05 10 70 05 00 05 10 10 65 00 05 10
Ave rage 1 2 3 4 5 Geomean affinity fold Geomean affinity fold Geomean affinity fold
change from germline change from germline change from germline
All Donors Donor vs SHM, Spearman p vs SHM, Spearman p vs SHM, Spearman p
F MHC-I vs. MHC-II Comparison
E Donor 1 __ Donor2 __ Donor3 - 3
_— MHC-I Affinity MHC-II Affinity
NS.
DRB1*11:01 DRB1*13:02 DRB1*01:01 DRB1*04:02 DRB1*13:05 DRB1*15:02 ” 5 I » ; [—
- p 4 T k2 & %
_ — — — — o o e )
= 10 10 2200 2 3
cH ' R 1.0 1.0 10 g 0 3 8
S ! : : o < 20 o
9 i i i > =z .
0o H H T I fay 2
32 Uz 05 > 100 2 ‘
915 05 E 0.5 05 E! 0.5 : a0 o, 5
e = = | E!
X : c
£ 00 . k=) 2 )
55 : 0.0 (722 i 2] & o
Q0 : . v ool 0.0 0o{ !} 0.0 ’ p
%) % 5 i . ’ : : H Al Shared Unique Al Shared Unique
& 05 . MHC-l  MHC-I/ll MHC-I MHC-Il MHC-Ill  MHC-II
= . 05 : :
TR Doror RS Doror RS BT Soor RS SRS Affinity Fold-Change w/ SHM, MHC-I vs. MHC-II
* ~ NS.
5 S0 =10
—_ — N. 12— N.S 12] — I f A - & 1\ /T\ m
/I M\ L | A
=10 1.0 < 1.0 S JI\ B £ LN, = ’@1
= y o : . : i Ego.sl__@%%z ( h | N
S : 08 0.8 2 I £ o 09 | L —
S 5o ST~ 3% ANV
° > O ® c \
0 o 0.5 0.5 oS Qo /
£ 05 ] | =3 0 0.0 c |
o C 0.5 0.4 0.4 c 4 S
Ooa [ T 7 g% 00
a§ [ [ B E¢ 5 &
< o 0.0 0.0 B (O3]
8 , e : 0.0 ! : 0.0 I g oos &E
£ ] 2 : (7]
5800 0o i : : 8 305
3 [} i ! [} 9 = {
2] g ! -0.5 -04 @ -0.5 -04f 1.0
8 ' Al Shared Unique Al Shared Unique
.05 : a . . . . MHC-l  MHC-I/ll MHC-I MHC-Il MHC-IIl  MHC-II
Donor  OoF Donor  OoF Donor OoF Donor  OoF Donor OoF Donor OoF Epitopes Epitopes


https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426750; this version posted January 17, 2021. The copyright holder for this preprint
(which was not certified by pﬁbrﬁg?w) is the author/funder, who has granted bioRxiv a license to display the pBgﬁblP Qerpetuity. It is made

A available under aCC-BY-ND 4.0 International license
IgM lgG IgA IgM IgG IgA
% 100 + [RValUs0:243 % 100 pazalues=0.001 § 100 pivalues Q:001 % 100 p value < 0.001 % 100 p value < 0.001 g 100 p value < 0.001
B £ s0 3£ 50 3£ w0 E-ué 50 E-é 50 Eé’ 50
= =E = jS =] (St T
Bsa b 25 B3 g5 B £ v £
as o0 : as O -~ ax o0 £= £= o = o
o (&} (&) [ T T
T T I o o = : s
= 50{ n=13,103 = .50 n=7,620 = 50 "7 n=8152 = 5 = n=5679 = .50 n=3.324
6 10 20 30 6 10 20 30 & 10 20 30
SHM (%) SHM (%) SHM (%) %0 Smiy P O Smey ¥
B C Repertoire comparison for 38 DRB1 alleles D Serum Study 2 - Donor A
A Serum Study 1
30 Isotype y _ s 12501 8
- H IgM Donor B 21 000 Qo
0 A IgG . c [S)e) °
3 °* | S 4000 = o 5§ 1.200
T 20 s 1, N I 4
' A 5 - 800 £ .21.150
£ [} XD m nxl
s ° - = 800 2 600 35
210 . 4 5 g 221100 g
T e (] e
P 4 600 5l = g
ol palue =005 g g 400 = 1.050
01 00 01 & 400 - : : 1.000] e
y Ej)_onor repertOIrgHM 8 . Single Multiple —
O eamman Cellular Serum Celiular Serum Observation Observations
E MHCII peptide
from antigen —— L4
o8 8 ga
High-affinity MHCII D
peplide Jrom BCR™ — Lower affinity MHCII peptide %g Be
Antigen ‘ from mutated BCR o &
— of . G
N b @
)

Plasma cell

| |
w v =4 8 %«,

Germinal

Center . CD4+T,cell - &
Baell Secreted antibodies with
- reduced MHCII content
e 2. GC B cells are selected for their ability to 3. T cell help also leads to plasmabast
a%#gm“xﬁé?ﬁng&zgiﬂ'zlI:::r:‘g:ete secure T cell help. Mutations that reduce MHCII plasma cell differentiation. The sreum
with antigen-derived peptides for affinity of BCR peptides allow greater Ag antibody repertoire has reduced CD4 T cell
MHCII display on the cell surface. presentation on MHCII, for enhanced CD4+ T epitope affinity, resultin gin lower patient-

cell help and clonal expansion. specific immunogenicity of secreted mAbs.



https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/

