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Summary 20 

Human antibody responses are established by the generation of combinatorial sequence diversity 21 

in antibody variable domains, followed by iterative rounds of mutation and selection via T cell 22 

recognition of antigen peptides presented on MHC-II. Here, we report that MHC-II peptide epitope 23 

deletion from B cell receptors (BCRs) correlates with antibody development in vivo. Large-scale 24 

antibody sequence analysis and experimental validation of peptide binding revealed that MHC-II 25 

epitope removal from BCRs is linked to genetic signatures of T cell help, and donor-specific 26 

antibody repertoire modeling demonstrated that somatic hypermutation selectively targets the 27 

personalized MHC-II epitopes in antibody variable regions. Mining of class-switched sequences 28 

and serum proteomic data revealed that MHC-II epitope deletion is associated with antibody class 29 

switching and long-term secretion into serum. These data suggest that the MHC-II peptide epitope 30 

content of a BCR is an important determinant of antibody maturation that shapes the composition 31 

and durability of humoral immunity. 32 
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Highlights 37 

• Antibody somatic hypermutation selectively removes MHC-II peptide epitopes from B 38 

cell receptors. 39 

• Antibodies with lower MHC-II epitope content show evidence of greater T cell help, 40 

including class-switching. 41 

• MHC-II peptide epitope removal from a BCR is linked to long-term antibody secretion in 42 

serum. 43 

• MHC-II genotype provides a personalized selection pressure on human antibody 44 

development.  45 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2021. ; https://doi.org/10.1101/2021.01.15.426750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Introduction 46 

Human antibody adaptive immune responses are somatically generated by a Darwinian 47 

selection process via the generation of high genetic diversity in B lineage cells, followed by 48 

iterative rounds of selection with continued diversification. As B cells develop, first heavy chain 49 

V-(D)-J recombination occurs, followed by the light chain V-J recombination, to achieve 50 

tremendous combinatorial antibody diversity. The selection of antibodies with optimal 51 

characteristics from this highly diverse pool is achieved by several well-described mechanisms. 52 

First, self-reactive antibodies are negatively selected prior to the generation of the fully mature B 53 

cells (also called the naïve B cell population) [1]. Next, B cells migrate to germinal centers and 54 

capture foreign protein antigens via B cell receptor (BCR)-mediated endocytosis and present 55 

antigen-derived peptides on Major Histocompatibility Class II (MHC-II) to CD4+ helper T cells 56 

in the course of classical T cell-dependent antibody maturation [2, 3]. In this process, captured 57 

antigen and BCR are endocytosed together and shuttled into the MHC-II peptide processing 58 

pathway for cell surface presentation as linear peptides in the peptide-binding grooves of MHC-II 59 

proteins [4, 5]. T cells recognize the peptides displayed on MHC-II proteins via T cell receptor 60 

(TCR) interactions. The display of peptide:MHC-II (pMHC-II) on B cells provides the critical 61 

molecular targets for the TCRs of activating CD4+ helper T cells to recognize and provide 62 

stimulatory signals that induce somatic hypermutation, antibody class-switching, and eventual 63 

transition to plasmablasts/plasma cells for long-lived antibody production [3, 5].  64 

Despite decades of study related to B cell developmental checkpoints, several critical questions 65 

remain in B cell development mechanisms. In particular, it is unclear why only some of the 66 

antibodies that bind to foreign antigens with high affinity are selected for clonal expansion, class-67 

switching, and maturation to plasma cells. The humoral immune compartment is highly polarized 68 
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and has capacity to contain relatively few (<10,000) representatives of unique antibody clones at 69 

a concentration above their affinity constant (KD); the vast majority of the >107 unique antibody 70 

sequences present in our cellular immune repertoires are not present in serum at an adequate 71 

concentration for functional activity [6, 7]. These data also suggest that the memory B cell (mBC) 72 

population targets a broader range of antigens than are recognized by serum antibodies [6, 8]. 73 

Plasma cells constitute the last stage in B cell development, when plasma cells stop dividing, 74 

downregulate surface MHC-II expression, and can persist in bone marrow and secrete antibodies 75 

continuously for many years. It remains unclear what molecular mechanisms lead to robust 76 

selection for long-lived serum antibodies versus memory B cell persistence in the cellular 77 

repertoire, although available evidence strongly suggests that some type of B cell imprinting 78 

process determines B cell fate [9-12]. 79 

Surface display of antigen-derived MHC-II epitopes is one critical determinant of B cell fate 80 

due to the need for B cells to obtain help from antigen-specific CD4+ helper T cells. The affinity 81 

of antigen peptides for binding to MHC-II plays a major role in regulating immune responses to 82 

foreign proteins, including monoclonal antibody drugs [13-15]. MHC-II molecules are encoded 83 

by three human leukocyte antigen (HLA) loci:  HLA-DR, -DQ, and -DP. Of these, HLA-DR is the 84 

most polymorphic [16], and is usually expressed at higher levels [17, 18]. It is unclear why anti-85 

antibody (or anti-idiotype) immune responses are not highly prevalent due to the very high 86 

diversity of somatically mutated human antibodies, including the substantial untemplated diversity 87 

of CDR3 regions, although highly homologous antibody sequences (including T regulatory cell 88 

epitopes, or Tregitopes) have been suggested to play a role in reducing anti-antibody immunity 89 

[19-21]. Methods for computational MHC binding prediction have continually improved in recent 90 

years, particularly for HLA-DR [22], and recent high-throughput proteomic elution data have 91 
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provided large experimental datasets as benchmarks to enhance prediction accuracy [23, 24]. 92 

Moreover, peptides derived from BCR proteins are commonly detected as self-peptides in MHC-93 

II elution experiments [25-27]. Despite these advances, the landscape of potential MHC-II peptide 94 

epitope content in healthy antibody repertoires has not yet been evaluated, partially due to the 95 

relevantly recent invention of methods for repertoire-scale analysis of complete, natively paired 96 

antibody heavy and light chains [28, 29].  97 

Given the high importance of MHC-II epitopes in controlling B cell selection via MHC-II 98 

interactions, we hypothesized that MHC-II epitopes in BCR-encoded peptides could influence 99 

antibody selection and maturation. To explore these features, we analyzed potential MHC-II 100 

epitopes in the variable region sequences of human antibody repertoires to understand how 101 

antibody repertoire features correlate with MHC-II epitopes and may be influenced by a person9s 102 

unique HLA gene profile. Our analysis of seven natively paired heavy and light chain antibody 103 

repertoires from healthy human donors revealed that antibodies show hallmarks of selective 104 

removal of MHC-II peptide epitopes via somatic hypermutation throughout antibody 105 

development. By studying the MHC-II epitope content of BCRs along with molecular signatures 106 

of CD4+ T cell help (e.g., somatic hypermutation, antibody isotype class-switching, and serum 107 

proteomic detection), we found that the preferential deletion of MHC-II epitopes from the antibody 108 

variable regions was associated with B cells achieving the critical T cell help needed for robust 109 

and long-lived antibody immune memory. These data reveal a new mechanism regulating human 110 

antibody immunity and provide insights for the design of new vaccines and therapeutics associated 111 

with long-term immune memory.  112 

  113 
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Results 114 

We began by characterizing MHC-II peptide epitope content in healthy human antibody 115 

variable region sequences using high-throughput computational MHC-II peptide epitope 116 

prediction. We collected seven paired heavy and light chain datasets from antigen-experienced B 117 

cells of healthy donors, with a total of 250,645 high-quality consensus sequences of natively paired 118 

heavy and light chain antibody lineages. We analyzed these immune repertoires using multiple 119 

pMHC-II affinity prediction algorithms to determine how the features of antibody development 120 

correlated with changes in potential MHC-II peptide epitope content of BCRs (Fig. 1A). First, we 121 

used the commercially available EpiMatrix MHC-II epitope prediction platform to characterize 122 

aggregate predicted HLA-DR epitope content based on eight human HLA-DR gene supertypes. 123 

EpiMatrix reports a T cell epitope score, where a higher score indicates higher content of putative 124 

MHC-II peptide epitopes within the analyzed protein sequence [30]. Strikingly, we noted that all 125 

donors showed reduced MHC-II peptide epitope content (i.e., reduced EpiMatrix scores) that was 126 

correlated with increasing somatic hypermutation (SHM), and the correlation was statistically 127 

significant in all donors (Spearman correlation test, adjusted p-value < 0.05). These data 128 

demonstrated that SHM reduces pMHC-II affinities in antibody peptides at a repertoire level (Figs. 129 

1B, S1A). Subsequent analysis of antibody repertoire data fractionated by paired antibody heavy 130 

and light chain V-genes showed that changes in MHC-II peptide epitope content were concentrated 131 

in certain V-gene combinations (Figs. 1C, 1D, S1B, S1C), and each V-gene shows a different 132 

initial distribution of MHC-II peptide epitope content (Fig. S2). While each donor showed a unique 133 

pattern of V-genes with the highest reductions in MHC-II peptide epitope content, some V-genes 134 

were repeatedly observed as statistically significant across donors. Nearly all statistically 135 
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significant V-gene changes showed removal of MHC-II peptide epitopes as SHM levels increased 136 

(Fig. 1, Fig. S1). 137 

We next sought to understand the molecular drivers of decreased MHC-II peptide epitope 138 

content based on personalized HLA gene profiles. We applied the netMHCIIpan algorithm to 139 

model individual MHC-II binding affinities of every peptide in our antibody datasets, according 140 

to the known HLA gene profiles that were available for donors 1 to 5 (Fig. 2) [31]. We found that 141 

several predicted high-affinity HLA-DR-binding peptides were encoded by antibody germline 142 

genes, and these MHC-II peptide epitopes were being mutated during antibody somatic 143 

hypermutation (Fig. 2A, S3). Thus, somatic hypermutation caused deletion of MHC-II peptide 144 

epitopes from B cell receptors, and the correlations that we observed in Figure 1 could be traced 145 

to specific peptides with a high germline (unmutated) affinity for the donor9s MHC-II genes. When 146 

comparing V-genes between germline and high SHM antibody sequences, the removal of high-147 

affinity MHC-II peptide epitopes by SHM was readily apparent (Figs. 2B, 2C, 2D, 2E, S4A, S4B, 148 

S4C, S4D). Thus, the reduction in MHC-II peptide epitope content that we observed with 149 

increasing SHM was predominantly driven by the deletion of high-affinity peptides that had been 150 

present since the earliest stages of antibody development.  151 

We next sought to experimentally confirm the loss of peptide affinities that were observed via 152 

in silico affinity modeling. We validated peptide affinity changes for key driver epitopes of MHC-153 

II epitope deletion using in vitro pMHC-II affinity assays (Fig. 2G). These data showed that, as in 154 

prior studies, large-scale in silico predictions of peptide binding to MHC-II are generally accurate, 155 

especially for the DRB1 gene used in the current study [31]. Next, we mined the Immune Epitope 156 

Database (IEDB) to identify antibody peptides eluted from human MHC-II in immunopeptidomic 157 

assays to see if our detected peptides successfully process inside endosomes and displayed on 158 
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MHC-II in vivo [32, 33]. We identified a large number of naturally-processed peptides that were 159 

experimentally confirmed in IEDB and appeared to be targets of preferential mutations that reduce 160 

peptide affinity via SHM, including peptides that were mutated in antibody sequence data such as 161 

IGHV3-2373-93 and IGHV1-1873-92 (Fig. 2E, Fig. S5A, S5B). Interestingly, donor antibody 162 

repertoires also contained some of the same peptides that were eluted from HLA-DP and HLA-163 

DQ molecules(Fig. S5B); numerous IEDB-validated peptides overlapped between DRB and 164 

DP/DQ binding (Fig. S5C). Thus we confirmed that some of the key peptides analyzed in our 165 

study are presented on human MHC-II in previously reported proteomic datasets.  166 

Once we realized that antibody peptides with high affinity for DRB binding were being 167 

targeted for mutations and MHC-II epitope removal, we shifted our focus to patient-specific 168 

analyses to explore these high-affinity MHC-II peptide epitopes encoded by germline IGHV and 169 

IGKV/IGLV genes (Fig. S6). MHC-II peptide epitopes often require multiple amino acid matches 170 

with appropriate spacing for binding to the MHC-II cleft, and we reasoned that the reduced T cell 171 

content observed with increasing SHM could be introduced as an indirect consequence of SHM 172 

mutational pattern preferences, rather than by active selection pressure. To test this alternate 173 

hypothesis, we reasoned that if MHC-II peptide epitopes are removed by SHM to a greater degree 174 

in experimentally-derived patient repertoires than in carefully matched in silico simulations (which 175 

account for SHM DNA motif targets, but not for any HLA-dependent MHC-II peptide epitope 176 

selection pressure), then we could conclude that MHC-II epitope removal was a result of active 177 

selection in vivo. We thus began large-scale in silico experiments simulating antibody repertoires 178 

using established somatic hypermutation models (Figs. 3, S7). We compared two different SHM 179 

models to the experimentally-derived sequence data:  one in silico SHM model customized by the 180 

5-mer DNA base targeting patterns in each individual patient9s experimentally-derived antibody 181 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2021. ; https://doi.org/10.1101/2021.01.15.426750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426750
http://creativecommons.org/licenses/by-nd/4.0/


 

 

repertoire, and a second in silico model based on 5-mer DNA bases in universal out-of-frame 182 

human B cell receptor data. Our out-of-frame model controls for the nucleotide targeting 183 

preferences of human activation-induced cytidine deaminase (AID), the enzyme responsible for 184 

SHM, as antibody DNA sequences with out-of-frame V-(D)-J junctions cannot be expressed or 185 

functionally selected, and it was constructed from approximately 56,000 genomic out-of-frame 186 

antibody sequences compiled from 114 donors [34, 35]. In contrast, the patient-specific in-frame 187 

antibody SHM model encompassed local AID 5-mer nucleotide preferences, in addition to 188 

biophysical restrictions on permissible DNA/amino acid mutations in functional B cell receptors, 189 

as along with any positive selection for 5-mer DNA mutations within a patient9s immune system. 190 

By comparing MHC-II peptide epitope deletion metrics in experimentally-derived antibody data 191 

versus in silico simulations, we found that in most cases the replacement-silent (R-S) model and 192 

universal out-of-frame (OoF) models showed a lower number of statistically significant IGHV and 193 

IGKV/IGLV gene pairs with decreased MHC-II peptide epitope content compared to 194 

experimentally-derived donor data (Figs. 3C, 3D, S8). Often, one donor HLA-DRB1 allele showed 195 

a greater degree of MHC-II epitope loss than the other allele. Comprehensive SHM computational 196 

models did not recreate the same degree of personalized MHC-II peptide epitope deletion observed 197 

in experimentally-derived donor data (Fig. 3E), confirming that the SHMs deleting pMHC-II 198 

epitopes in vivo were functionally selected and would not arise simply as a consequence of AID 199 

targeting preference. These data demonstrate the SHM preferentially deletes pMHC-II epitopes 200 

from BCR variable regions. 201 

Next, we tested whether MHC-I peptide epitopes were also being preferentially deleted. We 202 

predicted peptide KD for donor-matched MHC-I molecules to compare relative MHC-I and MHC-203 

II peptide affinity changes as a result of antibody somatic hypermutation. Because some peptides 204 
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bind to both MHC-I and MHC-II, we binned peptide epitopes according to binding for MHC-I, 205 

MHC-II, or both MHC-I+MHC-II to determine how T cell epitope removal via SHM affected the 206 

different MHC classes separately. In contrast to our analyses of MHC-II, the peptides predicted to 207 

bind to MHC-I showed very few statistically significantly changes when removing peptides that 208 

were shared epitopes with MHC-II (p<0.001, Wilcoxon rank sum test, Fig. 3F, upper panel). 209 

Moreover, unique MHC-I peptides showed a weaker correlation between KD fold-change and 210 

SHM compared to shared MHC-I/MHC-II peptides (p < 0.05, Wilcoxon rank sum test, Fig. 3F, 211 

lower panel). In contrast, we observed no significant difference between shared MHC-I/MHC-II 212 

peptides and MHC-II-restricted peptides. These data demonstrated that peptides binding to MHC-213 

II were targeted for preferential deletion from antibody variable regions via SHM, but peptides 214 

that bound to MHC-I did not show similar preferential removal via SHM. Thus, SHM appears to 215 

selectively target MHC-II peptide epitopes for deletion.  216 

Next, we analyzed our data by antibody isotype bins to further understand how MHC-II peptide 217 

epitope removal correlated with key markers of B cell development and CD4+ T cell help. Like 218 

SHM, antibody class switching is induced by AID and is strongly correlated with CD4+ T cell 219 

help obtained via pMHC-II:TCR interactions [36]. We found that the greatest correlation of MHC-220 

II peptide epitope deletion with SHM was observed in class-switched IgG and IgA repertoires 221 

(Figs. 4A, 4B). Analysis of class-switched data provided a clear association between MHC-II 222 

peptide epitope removal from antibody gene sequences with antibody class-switching, an 223 

important hallmark of effective CD4+ T cell help. 224 

Finally, we sought to understand how MHC-II peptide epitope content in BCRs is associated 225 

with elicitation of antibodies into the serum immune compartment. Serum antibodies are secreted 226 

by plasmablasts and long-lived plasma cells, and recent advances in antibody sequencing, 227 
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computational mining of BCR NGS data, and proteomic mass spectrometry have enabled the 228 

identification of individual antibody clonal lineages in human serum [7, 37-39]. We performed 229 

HLA-DRB1 MHC-II peptide binding affinity predictions using cellular-derived and serum-230 

derived antibody repertoire data from recent studies of influenza vaccination [40, 41]. We found 231 

that antibodies identified in serum exhibited lower MHC-II peptide epitope content than the 232 

antibodies present in the donor-matched cellular repertoire (Figs. 4C). Thus, a lower MHC-II 233 

epitope content in the BCR was associated with B cell maturation to plasmablasts and plasma cells 234 

for secretion of antibodies at appreciable concentrations into the blood compartment. We also 235 

tracked the MHC-II peptide epitope content of anti-influenza antibodies with different temporal 236 

persistence in human serum. We found that antibodies detected in serum at multiple time points 237 

showed lower MHC-II peptide epitope content relative to antibodies observed only at a single time 238 

point (Fig. 4D), implying that lower MHC-II peptide epitope content is associated with longer 239 

antibody-secreting cell life spans in vivo. These analyses of serum antibody data, together with our 240 

observations that class-switched IgG and IgA compared with donor-matched IgM repertoires, 241 

suggested that human BCRs are functionally selected to remove MHC-II epitopes via somatic 242 

hypermutation as a component of natural human antibody development. 243 

 244 

Discussion 245 

This study reveals that antibody maturation and somatic hypermutation are closely associated 246 

with the removal of MHC-II peptide epitope content in antibody and BCR molecules. We observed 247 

strong selection for the removal of MHC-II peptide epitopes by SHM in class-switched BCRs, and 248 

also in antibodies secreted persistently in human serum. These data reveal a previously unreported 249 
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mechanism for the personalization of antibody immune responses via functional selection 250 

according to each individual9s unique HLA MHC-II gene profile (Fig. 4E). 251 

Our study employed in silico and statistical techniques using computational HLA-DRB1 252 

MHC-II peptide binding predictions, which have been demonstrated to be generally accurate in 253 

several recent studies [42, 43]. To validate in silico results, we confirmed our findings with 254 

experimental validation of key MHC-II peptide predictions (Fig. 2G), by analysis of eluted 255 

peptides reported in the IEDB (Fig. S5), and by retrospective analysis of serum antibody data 256 

reported in prior studies (Figs. 4C, 4D) [40]. We focused on HLA-DRB1 genes, which have the 257 

highest observed prevalence among MHC-II receptor genes in immunopeptidome assays and 258 

IEDB datasets, and are the best-characterized MHC-II receptor genes for computational peptide 259 

affinity predictions. We note that not all donors showed the same extent of HLA-DRB1 genetic 260 

selection (Fig. 3). Variability between individuals could result from the influence of HLA-DP and 261 

HLA-DQ genes providing additional MHC-II epitope selection pressures, that were not 262 

encompassed by our study of HLA-DRB1 peptide epitopes. Many T-dependent antigens can elicit 263 

HLA-DP and HLA-DQ responses, although we also note that some peptide binding overlap exists 264 

between different HLA molecules. Improved in silico tools for predicting peptide processing, as 265 

well as the incorporation of HLA-DP and HLA-DQ modeling, will enhance future large-scale 266 

studies of pMHC-II content in antibody repertoires.  267 

Our data suggest that reduced MHC-II epitope content in BCRs could be an important correlate 268 

of durable human antibody immunity. These findings are supported by our observations that BCRs 269 

in class-switched isotypes (e.g., IgA and IgG that require high levels of T cell help) show stronger 270 

rates of MHC-II peptide epitope removal than the IgM compartment (Figs. 3A, 3B, S9). We also 271 

observed that lower BCR MHC-II peptide epitope content was associated with higher serum 272 
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antibody prevalence, suggesting that HLA-DRB1 peptide epitope deletion may support B cell 273 

trafficking to a long-lived plasma cell niche by enhancing the acquisition of T cell help (Fig. 4E) 274 

[44]. Certain heavy and light chain V-genes showed higher rates of HLA-DRB1 peptide epitope 275 

removal than other V-gene pairs (Fig. 2B), reflecting the different baseline levels of MHC-II 276 

peptide epitopes in antibody germline genes (Figs. S2, S3). These data suggest that MHC-II 277 

epitope deletion is targeted toward those V-genes that contain germline-encoded MHC-II epitopes, 278 

as would be expected to occur in a functional selection mechanism. Low MHC-II epitope content 279 

in a B cell receptor could help that B cell present more MHC-II epitopes from antigen, thereby 280 

enhancing CD4+ T cell help for that B cell (Fig. 4E). This selection mechanism offers several 281 

important advantages in vivo. First, selection of lower MHC-II peptide epitope content reduces the 282 

propensity of an individual9s secreted antibodies to induce CD4+ T-cell dependent anti-idiotype 283 

antibody immune responses in non-templated regions (e.g., from pMHC-II derived from CDR3 284 

loops, or that may arise as a result of SHM), reducing the risk of immune responses to somatically 285 

generated antibody proteins. Perhaps more importantly, low MHC-II peptide epitope content in an 286 

antibody could help dendritic cells present a greater fraction of MHC-II peptides derived from 287 

antigen (and fewer peptides derived from the BCR) after immune complex capture and processing. 288 

These findings have important implications for vaccine design and antibody drug therapeutics. As 289 

one example in HIV vaccine development, where targeted elicitation of specific lineage mutations 290 

are being pursued, these data suggest an important HLA-dependent selection pressure guiding 291 

SHM, and that antibody mutations may accumulate differently in patients with different HLA gene 292 

profiles due to MHC-II-based selection pressure [45, 46]. In addition, our findings lend further 293 

support to ongoing efforts to mitigate anti-drug antibody responses by removal of MHC-II peptide 294 

epitopes from the monoclonal antibody drug variable regions [47, 48] 295 
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One limitation of our study is that we analyzed only the HLA-DRB1 gene, due to its high 296 

representation in quantitative peptide:MHC-II proteomic elution studies and established predictive 297 

peptide binding accuracy [31]. Future studies will further analyze human HLA-DP and HLA-DQ 298 

genes, which have lower peptide elution prevalence in immunopeptidomic assays but still make 299 

important contributions to human immunity. We will also study the influence of SHM on 300 

previously reported regulatory MHC-II epitopes [19]. We recognize that T-cell independent B cell 301 

activation pathways also exist (especially for antigens with repeated structural motifs and that lack 302 

MHC-II epitopes, for example the regularly ordered polysaccharides in bacterial cell walls). 303 

However, most foreign antigens generate T-dependent immunity and we anticipate that the 304 

majority of human B cells are selected via T-dependent mechanisms. Follow-up studies will 305 

investigate dysregulation of MHC-II antibody selection pathways for specific antigens (including 306 

T-dependent and T-independent) in mouse models, and similar analyses of clinical samples from 307 

patients with autoimmune diseases known to disrupt antibody developmental checkpoints [49-51]. 308 

In summary, here we identified a previously unreported correlation between lower MHC-II 309 

peptide epitope content in BCRs and the signatures of T cell help throughout antibody 310 

development. These data suggest that an MHC-II-based selection pressure influences antibody 311 

selection in vivo, and may represent an important factor shaping the durability of serological 312 

immunity in humans [9, 44, 52].   313 
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Methods 332 

 333 

Resource Availability  334 

Lead Contact 335 

Further information and requests for resources and reagents should be directed to and will be 336 

fulfilled by the Lead Contact, Dr. Brandon DeKosky (dekosky@ku.edu).  337 

 338 

Materials Availability 339 

No new reagents were generated in this study. 340 

 341 

Data and Code Availability 342 

Raw NGS antibody sequence data used for the study are deposited in the NCBI Short Read Archive 343 

under accession numbers: XXXX, XXXX, XXXX, XXXX. 344 

 345 

Experimental Model and Subject Details 346 

Human Subjects 347 

For cellular antibody MHC-II content, a total of seven datasets were analyzed. These include 348 

previously published data (Donors 1,2,4,6 and 7) [53][Fahad, DeKosky et al., Front. Immunol., 349 

Accepted 2021], and new unpublished datasets (Donors 3 and 5). All human samples were 350 

collected under the Vaccine Research Center9s (VRC)/National Institutes of Allergy and Infectious 351 

Diseases (NIAID)/ National Institutes of Health (NIH) sample collection protocol, VRC 200 352 

(NCT00067054) in compliance with the NIH IRB approved procedures. All subjects met protocol 353 

eligibility criteria and agreed to participate in the study by signing the NIH IRB approved informed 354 
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consent. Research studies with these samples were conducted by protecting the rights and privacy 355 

of the study participants.  356 

For cellular and serum antibody datasets, data was retrieved from previously published Ig-Seq 357 

and BCR-Seq data [40, 41]. The first dataset consists of IgG/A/M from B cell receptors and serum 358 

IgG antibody sequences that were obtained from donors after influenza vaccination, and is 359 

available in MassIVE (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) under accession 360 

ID MSV000080184. The published dataset comprise serum antibodies that were purified by 361 

affinity chromatography with inactivated components of the 2011–2012 IIV3 vaccine at days 0, 362 

28 and 180 post-vaccination and analyzed via proteomic mass spectrometry [40]. The second 363 

dataset contains clonotypes that were detected in serum as a response to repeated flu vaccinations 364 

during several years (MassIVE ID MSV000083120). In this case, the original study contemplated 365 

persistent, intermediate and transient categories; which were changed to single observation 366 

(transient in the original study) and multiple observations (persistent and intermediate) [41]. 367 

 368 

Cell Lines 369 

Drosophila S2 cells were grown at 100 rpm in 27 C incubator, with SF900 II serum-free medium 370 

(Thermo Fisher cat #10902096) and penicillin-streptomycin (100 U/ml Thermo Fisher cat # 371 

15140148). HLA-DR1 protein production was induced by addition of 1mM CuSO4 and culture 372 

supernatants were collected after 6 days.  373 
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Method Details 374 

Emulsion Overlap Extension RT-PCR 375 

 Natively paired antibody heavy and light chains sequencing was carried out as previously 376 

described [54]. B cell isolation from cryopreserved PBMCs was carried out using Memory B cells 377 

Isolation Kit (MACS/Miltenyi Biotec, Bergisch Gladbach, Germany). Next, cells were stimulated 378 

in vitro using IL-2, IL-21, and co-cultured with 3T3-CD40L fibroblasts for 5 days [55]. Following 379 

cell stimulation, single cells were captured in emulsion droplets, lysed, and their mRNA captured 380 

with oligo(dT)-coated magnetic beads. Native heavy and light chains were obtained by an overlap-381 

extension RT-PCR and resulting cDNA libraries were sent for Illumina sequencing.  382 

 383 

Antibody Sequence Analysis 384 

Illumina 2x300 bp sequencing was analyzed as previously described [55]. Briefly, Illumina 385 

reads were quality filtered and aligned into full reads. V(D)J annotation was carried out using 386 

IgBlast [56], and productive sequences were paired by CDR-H3 match. Isotype assignment was 387 

carried out by matching of constant region sequences to isotype barcodes. Consensus sequences 388 

of paired heavy and light chain clusters were generated as previously reported to remove NGS 389 

errors prior to MHC-II peptide epitope content predictions [29, 54, 57]. 390 

For serum and cellular antibody repertoire data, reported protein sequences were mapped to 391 

clonotypes by generating consensus VH sequences using the reported cluster identifier in the data, 392 

with a 80% identity threshold using usearch version 6.1.544 [58], and V(D)J annotation was 393 

carried out using IgBlast. Serum antibodies were retrieved from BCR-seq data by matching 394 

reported CDR-H3 sequences with the available BCR-seq data.  395 

 396 
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MHC Peptide Epitope Content Prediction 397 

The EpiMatrix tool (EpiVax, Rhode Island, USA) was used for aggregate MHC-II peptide 398 

epitope / T cell epitope predictions [30]. EpiMatrix uses main HLA II DRB1 <supertypes= to 399 

predict overall protein epitope content [59]. Higher scores in the EpiMatrix output indicate a higher 400 

probability of T cell dependent immunogenicity of foreign protein antigens. The alleles analyzed 401 

were DRB1*01:01, DRB1*03:01, DRB1*04:01,DRB1*07:01, DRB1*08:01, DRB1*09:01, 402 

DRB1*11:01, DRB1*1302 and DRB1*15:01. The output data includes aggregate epitope score 403 

by chain, normalized by length, and total antibody epitope content. We used the complete antibody 404 

epitope content, not corrected for Treg epitope content as a measure of immunogenicity. Spearman 405 

Rho correlations between complete antibody epitope scores and SHM were calculated, and a linear 406 

model was fitted to calculate slopes.  407 

For individual MHC-II peptide epitopes, netMHCIIpan 3.1 with default options was used, 408 

working with a subset of 38 representative HLA-DRB1 molecules DRB1*01:01, DRB1*01:02, 409 

DRB1*01:03, DRB1*03:01, DRB1*03:02, DRB1*04:01, DRB1*04:02, DRB1*04:03, 410 

DRB1*04:04, DRB1*04:05, DRB1*04:06, DRB1*04:07, DRB1*04:08, DRB1*07:01, 411 

DRB1*08:01, DRB1*08:02, DRB1*08:03, DRB1*08:04, DRB1*09:01, DRB1*10:01, 412 

DRB1*11:01, DRB1*11:02, DRB1*11:03, DRB1*11:04, DRB1*12:01, DRB1*12:02, 413 

DRB1*13:01, DRB1*13:02, DRB1*13:03, DRB1*13:05, DRB1*14:01, DRB1*14:02, 414 

DRB1*14:06, DRB1*15:01, DRB1*15:02, DRB1*15:03, DRB1*16:01, and DRB1*16:02 [31]. 415 

netMHCIIpan output was parsed using pandas for further processing. The equilibrium dissociation 416 

constant (KD) or rank of 15-mers was considered for analysis. As a consequence of this, higher 417 

netMHCIIpan KD reflect a lower level of MHC-II peptide epitope content. Peptide KD9s were 418 

predicted for donor repertoire MHC-II peptide epitopes, and for a database of germline heavy and 419 
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light chain V genes. Germline (unmutated) peptides with KD <1,000 nM for tested alleles were 420 

used as a search database for peptides in antibody repertoires by matching V-gene usage and index 421 

position within the protein [60]. Peptides hits were grouped according to parent antibody, 422 

considering heavy or light chains, and the geometric mean of KD fold-change between donor and 423 

germline peptides was calculated. The same procedure for calculating the geometric mean of KD 424 

fold-change was applied in a grouping by complete antibody (paired heavy and light chain) 425 

sequences. Next, data was grouped by common VH gene and VK/L gene pairs, and Spearman 426 

correlation between the geometric mean of KD fold-change and SHM was calculated for each 427 

allele.  428 

For position-based MHC-II peptide epitope content, we selected the top 5% of sequences in 429 

terms of SHM burden from the selected V-gene subset, and the geometric mean of the rank of each 430 

peptide at the same position was calculated for a subset of the antibody repertoire. The same 431 

approach was carried out for germline sequences. This information was also retrieved for selection 432 

of candidate peptides, shown as logo plots. 433 

For MHC-I peptide epitope prediction, netMHCpan 4.1 [24] was used, using donor-matched 434 

HLA-A, -B and -C genes and predicting binding affinity for 9-mers. Germline (unmutated) 435 

peptides with KD<500 nM for tested alleles were used as a search database for peptides in antibody 436 

repertoires by matching V-gene usage and index position within the protein [61].  437 

Determination of MHC-I/MHC-II shared epitopes was done by matching 9-mer peptides 438 

(MHC-I peptide epitopes, 6 HLA-I alleles) into 15-mers (MHC-II peptide epitopes, 2 HLA-II 439 

DRB1 alleles). Epitopes with a positive match were considered as shared epitopes and the 440 

unmatched peptides were considered as exclusively MHC-I or MHC-II peptide epitopes. From 441 

MHC-I or MHC-II all (no matching), shared and unique databases, peptides were aggregated into 442 
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parent antibodies as described previously. The number of significant VH:VL gene pairs was 443 

compared for MHC-I and MHC-II peptides separately.  444 

 445 

In silico Repertoire Modeling and Analysis 446 

Repertoire modeling was carried out with immuneSIM for V(D)J recombination modeling, 447 

and ShaZam for SHM modeling [62, 63]. First, V gene frequency was extracted from donor data 448 

and used to build V gene distribution table. This table was used to modify the vdj_list parameter 449 

in the immuneSIM function, which controls the frequency of different V-genes in the modeled 450 

repertoire. D and J gene distributions were maintained in their default settings. Using the custom 451 

V gene distribution frequencies, a naïve repertoire of the same size of the parent repertoire was 452 

generated, using the immuneSIM function, with no mutations allowed. Heavy and light chains 453 

were generated separately. The naïve dataset was mutated using SHM models from repertoire data 454 

generated by ShaZam, using the createTargetingModel function, which allows the determination 455 

of a 5-mer targeting model based on sequence data and gene annotation. Two SHM models were 456 

generated, one considering donor antibody repertoire data, and other built from out-of-frame (OoF) 457 

sequences from genomic antibody sequencing studies, comprising 115 donors, and 56,278 458 

sequences [34, 35]. Briefly, data from two genomic antibody sequencing studies were retrieved 459 

for the generation of a new OoF targeting mutational model. One dataset comprised large-scale 460 

genomic BCR sequencing of healthy donors (NCBI BioProject Accession number PRJNA491287) 461 

and another from a genomic B cell sequencing study of CAPRISA cohort donor CAP256 462 

(Accession number SRP124539) [35]. After aggregating data form the 115 donors, all NGS reads 463 

were quality filtered and aligned using MiXCR [64] to identify a combined total of 56,278 out-of-464 

frame antibody sequences that were used to build a mutational targeting model using ShaZam. 465 
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First, nucleotide sequences were analyzed with IgBlast , and the output was parsed into a Shazam-466 

compatible database using Change-O [62]. Compiled out-of-frame aggregate donor data and 467 

personalized in-frame donor antibody databases were transformed individually into a 5-mer 468 

mutational targeting model using the create TargetingModel function from ShaZam to generate 469 

the out-of-frame model (OoF) or the personalized replacement-silent mutational models, 470 

respectively. After mutational model generation, each sequence was mutated individually using 471 

the shmulateSeq function from ShaZam. The number of mutations per sequence was selected to 472 

match the distribution of SHM observed in personalized donor data, on an individual donor dataset 473 

basis. After each repertoire generation, sequences were annotated using IgBlast and paired 474 

following donor distributions of SHM between heavy and light chains. Each simulation was 475 

compared to parent repertoire to verify appropriate V-gene distributions and SHM content to match 476 

the experimental data. From the IgBlast output, amino acid sequences were extracted for MHC-II 477 

peptide epitope prediction using netMHCIIpan. 478 

We generated 30 complete simulated antibody repertoires for each of donors #1-5, for each of 479 

the two mutational models generated as described in the previous paragraphs. Thus we simulated 480 

a total of 150 personalized replacement-silent antibody repertoires in silico, and 150 out-of-frame 481 

mutational model antibody repertoires, for a total of 300 simulated repertoires with an average of 482 

27,000 antibodies each. Thus, we generated approximately 8,100,000 antibodies in silico and used 483 

the resulting data to explore hypotheses related to mutational targeting in experimental antibody 484 

data compared with simulated datasets. 485 

 486 

Personalized MHC-II Peptide Epitope Content Analysis 487 
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netMHCIIpan MHC-II peptide epitope content predictions were analyzed following the same 488 

procedures as donor repertoires. Isotype assignments for modeled repertoire subsets were made by 489 

matching the SHM distribution by isotype observed in donor-matched experimental data. Next, 490 

heavy and light chain V-gene pairs with n<9 antibodies were removed from analysis. To compare 491 

MHC-II peptide epitope removal in experimental and computationally modeled antibody 492 

repertoire data, isotype-switched, statistically significant VH:VKL gene pairs were retrieved from 493 

donor data and modeled repertoires. These pairs in donor and modeled data were matched in 494 

modeled and donor data, respectively. The number of significant VH:VKL pairs was also 495 

compared between donor and modeled repertoires. For modeled data, the average number of 496 

statistically significant pairs was calculated by dividing the total number of statistically significant 497 

pairs across all modeled repertoires by the number of repertoires (n=30 modeled repertoires per 498 

donor & model type). Volcano plots of modeled repertoires in Figure 3D and S8 were made by 499 

selecting the modeled replicate with an average Spearman Rho value closest to the median 500 

Spearman Rho value of the 30 modeled repertoires from that donor and model type. Statistical 501 

significance was determined by calculating the Spearman correlation and retrieving p-values, that 502 

were adjusted for multiple comparisons using the Benjamini-Holchberg method. For donor 503 

matched vs. mismatched HLA comparisons in Figure S8, the mean Spearman Rho for all V-gene 504 

pairs was calculated for each of the 38 analyzed HLA alleles. The mean Spearman rho for all 38 505 

alleles was shown, with each allele colored according to its supertype family.  506 

 507 

IEDB Data Mining 508 

We searched for experimentally validated antibody-derived peptides in the Immune Epitope 509 

Database (www.iedb.org). The search was limited to linear epitopes from human origin, with 510 
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experimental validation of the binding to MHC II, and from immunoglobulin sequences. After 511 

removing peptides derived from constant regions and T cell receptors, and selecting assays for 512 

HLA-DRB1 molecules, a final database of 448 peptides was obtained. These peptides were 513 

searched for matches in the germline and donor database. As IEDB-validated peptides are of 514 

variable length and whereas our germline/donor peptide databases are exclusively 15-mers, the 515 

presence of validated peptides as substrings in 15-mers was considered a match that is certain to 516 

contain the MHC-II peptide binding core. The same procedure was carried out for HLA-DP and 517 

HLA-DQ molecules, and a total of 187 peptides were found in the IEDB-validated peptide 518 

database.  519 

 520 

Serum Antibody Analysis 521 

From consensus sequences, MHC-II peptide epitope prediction was carried out using 522 

netMHCIIpan and processed as previously indicated. For the cellular and serum antibody analysis 523 

in Fig. 4C [40], data were mined from a recent study of serum antibody prevalence in healthy 524 

donors and antibodies with an total extracted-ion chromatogram (XIC) peak area on the top 50% 525 

for any of the time points analyzed.  526 

Since the HLA alleles for these donors are unknown, all 38 alleles were considered for analysis. 527 

To this end, mean KD was compared between cellular and serum repertoires, and between multiple 528 

observation and single observation antibodies .  529 

 530 

HLA-DR1 Binding Assay 531 

HLA-DR1 (DRA*01:01/DRB1*01:01) extracellular domains were expressed in Drosophila 532 

S2 cells and purified by immunoaffinity chromatography with LB3.1 antibody followed by 533 
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Superdex200 (GE Healthcare) size exclusion chromatography as described [65, 66]. Ig-derived 534 

peptides and influenza HA306-318-derived probe peptide Ac-PRYVKQNTLRLAT were 535 

synthesized (21st Century Biochemicals, Marlboro, MA). The probe peptide was labeled with 536 

Alexa Fluor 488 tetrafluorophenyl ester (Invitrogen, Eugene, OR) through primary amine of K5. 537 

Peptide binding was monitored using a fluorescence polarization assay [67]. The DR1 538 

concentration used was selected by titrating DR1 against fixed labeled peptide concentration (25 539 

nM) and choosing the concentration of DR1 that showed ~50% maximum binding. For calculating 540 

IC50 values, 100 nM DR1 was incubated with 25 nM Alexa488-labeled HA306–318 probe 541 

peptide, in combination with a serial dilution of test peptides, beginning at 100 µM followed by 2-542 

fold dilutions. The reaction mixture was incubated at 37 °C. The capacity of each test peptide to 543 

compete for binding of probe peptide was measured by FP after 72 h at 37 °C. FP values were 544 

converted to fraction bound by calculating [(FP_sample - FP_free)/(FP_no_comp - FP_free)], 545 

where FP_sample represents the FP value in the presence of test peptide; FP_free represents the 546 

value for free Alexa488-conjugated HA306–318; and FP_no_comp represents values in the 547 

absence of competitor peptide. We plotted fraction bound versus concentration of test peptide and 548 

fit the curve to the equation y = bottom + (top – bottom)/(1 +[pep]/IC50), where [pep] is the 549 

concentration of test peptide, y is the fraction of probe peptide bound at that concentration of test 550 

peptide, IC50 is the 50% inhibitory concentration of the test peptide, top is the maximum fraction 551 

of probe peptide bound, and bottom is the minimum fraction of probe peptide bound. 552 

 553 

Quantification and Statistical Analysis 554 

Statistical analyses were performed using R. When multiple comparisons were performed, we 555 

adjusted the p values using the Benjamini-Horchberg method from the stats package. Sample 556 
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distributions were compared using the Kolmorogov-Smirnov test from the stats package. All 557 

correlations were calculated using the Spearman method from the stats package. Levenshtein 558 

distances between donor and germline peptide were calculated using the stringdist package. 559 

Peptide binding curve fitting was carried out using the nls() function from the stats package, 560 

following the equation y = bottom + (top – bottom)/(1 +[pep]/IC50), as previously described. IC50 561 

and standard deviation values were reported. Differences in the mean Spearman correlation for 562 

VH:VL matched gene pairs was carried out using a paired t-test from the stats package. Differences 563 

in the number of significant VH:VL gene pairs for MHC-I and MHC-II were calculated using the 564 

Wilcoxon rank sum test from the stats package.  565 

 566 

Key Resources Table 567 

 568 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

LB3.1 ATCC Cat#ATCC® HB-298 

   

Bacterial and Virus Strains  

   

Biological Samples   

Healthy adult PMBC (Donors 3 and 5) Vaccine Research Center 

(VRC) 

Sample collection 

protocol, VRC 200 

(NCT00067054) 

   

Chemicals, Peptides, and Recombinant Proteins 

HA306-318-derived probe peptide Ac-PRYVKQNTLRLAT 21st Century 

Biochemicals, Marlboro, 

MA 

http://www.21stcentur

ybio.com/custom_pept

ide_synthesis.htm 

Alexa Fluor 488 tetrafluorophenyl ester Invitrogen, Eugene, OR Cat#A37570 

Ig-derived peptides 21st Century 

Biochemicals, Marlboro, 

MA 

http://www.21stcentur

ybio.com/custom_pept

ide_synthesis.htm 

   

Critical Commercial Assays 

Memory B cells Isolation Kit MACS/Miltenyi Biotec, 

Bergisch Gladbach, 

Germany 

Cat#130-093-546 
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Deposited Data 

Paired VH:VL sequencing from two healthy donors (Donors 6 

and 7) 

DeKosky, BJ. , Lungu, 

OI. et al (2015) 

BioProject 

(PRNJA315079) 

Paired VH:VL sequencing from three healthy donors (Donors 

1, 2 and 4) 

Ahmed, F., DeKosky, 

BJ., et al. (2021, 

Accepted) 

PRJNA682833 

Paired VH:VL sequencing from three healthy donors (Donors 

3 and 5) 

This study XXXXXXXX 

VH sequencing from cellular and serum antibodies (Serum 

study 1) 

Lee, J., Boutz, DR. et al 

(2016) 

MassIVE 

(MSV000080184) 

Longitudinal VH sequencing of serum antibodies (Serum 

study 2) 

Lee, J., Paparoditis, P. et 

al (2019) 

MassIVE 

(MSV000083120) 

   

Experimental Models: Cell Lines 

Drosophila S2 cells   

   

Experimental Models: Organisms/Strains 

   

Oligonucleotides 

See Table S1 McDaniel, JR., DeKosky, BJ,. 

et al (2016) 
McDaniel, JR., DeKosky, 

BJ,. et al (2016) 
   

Recombinant DNA 

   

Software and Algorithms 

R version 3.53 R Core Team (2019) https://www.R-

project.org/ 

Pandas version 0.25.3 The pandas development 

team (2020) 

 

https://pandas.pydata.o

rg 

Tidyverse version 1.3.0 Wickham et al., (2019) 

 

https://www.tidyverse.

org 

MixCR version 3.012 Bolotin, D.A. (2015) https://mixcr.readthedo

cs.io/en/master/index.h

tml 

IgBlast version 1.16 Ye, J., et al (2013) https://www.ncbi.nlm.

nih.gov/igblast/ 

Usearch version 6.1.544 R.C. Edgar (2010) https://drive5.com/usea

rch/ 

netMHCIIpan version 3.1 Andreatta, M., et al 

(2015) 

http://www.cbs.dtu.dk/

services/NetMHCIIpan

-3.1/ 

netMHCpan version 4.1 Reynisson, B., et al 

(2020) 

http://www.cbs.dtu.dk/

services/NetMHCpan/ 

EpiMatrix Schafer, J.R., et al 

(1998) 

https://epivax.com/i 

ImmuneSim version 0.8.7 Weber, C.R., et al (2020) https://immunesim.rea

dthedocs.io/en/latest/ 

ShaZam version 0.23 Gupta, N.T., et al (2015) https://shazam.readthe

docs.io/en/stable/ 
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Stringdist version 0.9.5.5 MPJ van der Loo (2014) https://github.com/mar

kvanderloo/stringdist 

   

Other   

 

 569 
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Main Figures 571 

 572 

Figure 1. Decreased MHC-II peptide epitope content is correlated with SHM in B cell 573 

receptors, with stronger effects in certain V-genes. A. Overview of MHC-II peptide epitope 574 

characterization in natively paired heavy and light chain human antibody sequence repertories. 575 

Paired heavy and light chain antibody repertoire data were generated by ultra-high throughput 576 

single cell sequencing of B cells from healthy donor PBMCs. An overlap-extension RT-PCR pairs 577 

antibody heavy and light chain variable region (VH and VL) transcripts for NGS analysis. V(D)J 578 

annotation and somatic hypermutation (SHM) assignment was carried out using IgBlast. MHC-II 579 

peptide epitope content of BCR variable regions was analyzed for antibody sequence repertoires 580 

using the EpiMatrix and netMHCIIpan algorithms. MHC-II peptide epitope content metrics were 581 

cross-referenced with SHM and antibody isotype to characterize relationships between MHC-II 582 

peptide epitope content and sequence-based markers of B cell development. B. Scatter plots of 583 

EpiMatrix MHC-II binding prediction scores vs. SHM, based on aggregate data for human 584 

supertype alleles DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*07:01, DRB1*08:01, 585 

DRB1*11:01, DRB1*13:02 and DRB1*15:01. Each point represents an antibody sequence; points 586 

are colored according to data density (yellow: high, purple: low). Linear regressions are shown in 587 

red. p-value of the Spearman correlation is indicated. C. Volcano plots of spearman ρ vs. 588 

Benjamini-Hochberg adjusted p-values for MHC-II peptide epitope content vs. SHM, for antibody 589 

repertoires binned by IGHV and IGKV/IGLV gene pairs. Statistically significant pairs are shown 590 

in blue, and other gene pairs are shown in gray. D. Scatter plots of selected IGHV gene and 591 

IGKV/IGLV gene pairs for SHM vs. predicted binding scores. Linear regression lines are shown 592 

in blue. 593 

 594 

Figure 2. V-gene dependence is driven by the deletion of high affinity peptides present in 595 

germline sequences. A. Repertoire-scale data analysis schematic using netMHCIIpan to identify 596 

patient-specific MHC-II peptide epitopes according to known donor HLA genes. B. Volcano plots 597 

of Spearman ρ vs. Benjamini-Hochberg adjusted p-values for antibody SHM vs. geometric mean 598 

KD fold-change from germline KD, as predicted by netMHCIIpan. Data were grouped by IGHV 599 

gene and IGKV/IGLV gene pairings and analyzed for peptides derived from germline-encoded 600 

MHC-II binding peptides (predicted germline KD <1,000 nM). Statistically significant IGHV gene 601 

and IGKV/IGLV combinations are shown in blue, other gene pairs are shown in gray. C. Scatter 602 

plots of antibody data for selected IGHV and IGKV/IGLV gene pairs displaying antibody SHM 603 

vs. predicted peptide geomean KD fold-change from germline KD. Linear regressions are shown in 604 

blue. D. Geometric mean of the rank percentage, as defined by netMHCIIpan of each putative 605 

peptide across the IGHV sequence, comparing germline IGHV gene (black) and high SHM (top 606 

5%, blue) from the IGHV gene-controlled repertoire. E. Logograms of high affinity germline-607 

encoded peptide residues comparing germline and high SHM antibodies at those residues (top 608 

5%). n represents the number of unique peptides displayed in the high SHM subset. F. 609 

netMHCIIpan KD prediction for peptides shown in the logograms, using one of the donor-specific 610 

HLA-DRB1 alleles. Peptides from Donors 1-3 are shown. G. Experimental validation of peptide 611 

binding affinity to HLA II DRB1 molecules, using a competition assay with peptides derived from 612 

Donor 1. IC50 was calculated using a log-logistic equation. Somatic hypermutations are highlighted 613 

in bold script.  614 

 615 
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Figure 3. Sequence data comparisons with in silico SHM models, and a separate analysis of 616 

MHC-I vs. MHC-II epitope content, both demonstrate the preferential deletion of human 617 

MHC-II peptide epitopes by SHM. A. VH gene usage between experimentally-derived Donor 1 618 

data and Donor 1 modeled antibody repertoires, incorporating both the donor-specific 619 

Replacement-Silent (R-S) SHM model based on Donor 19s repertoire data, and the universal Out-620 

of-Frame (OoF) SHM model. Gene usage is shown as frequency of the total antibody repertoire. 621 

The same data for additional donors is provided in Figure S7A. B. Distribution of SHM between 622 

Donor 1 experimentally-derived data and in silico modeled repertoires. Black dots represent 623 

outliers. The same data for additional donors is provided in Figure S7B. C. Number of statistically 624 

significant (adjusted p<0.05) IGHV and IGKV/IGLV gene pairs in experimentally-derived donor 625 

data, divided by the average number of significant gene pairs in donor-matched modeled R-S 626 

repertoires (n=30 modeled RS repertoires for each donor). Values >1 indicate that experimentally-627 

derived donor data has more statistically significant heavy:light gene pairs with deleted MHC-II 628 

peptide epitopes from the antibody variable region via SHM. D. Volcano plots of Spearman ρ vs. 629 

Benjamini-Hochberg adjusted p-values for SHM vs. geometric mean KD fold-change from 630 

germline KD in IGHV and IGKV/IGLV gene pairs, as predicted by netMHCIIpan, for isotype-631 

switched antibody sequences. Data were calculated for peptides derived from germline-encoded 632 

high-affinity binders (<1,000 nM). Statistically significant IGHV and IGKV/IGLV gene pairs are 633 

shown in blue, other gene pairs are shown in gray. Experimental donor data and R-S models are 634 

shown. For R-S simulations, 30 repertoires were modeled for each donor for each simulation type, 635 

and the model closest to the median Spearman Rho of all 30 simulations is shown. E. Isotype-636 

switched VH:VKL gene pairs with a significant correlation between KD change and SHM in donor 637 

data and modeled repertoires were retrieved. For donor data, the gene pair list was matched in the 638 

modeled repertoires, and vice versa. The Spearman rho correlation was compared between donor 639 

and modeled repertoires using a paired t-test. F. Upper: The number of significant VH:VL gene 640 

pairs for MHC-I vs. MHC-II peptide epitopes; each point is a different MHC gene:donor 641 

combination. Peptide epitopes were binned as being both an MHC-I+MHC-II (shared) epitope, a 642 

unique MHC-I, or a unique MHC-II epitope, based on donor genotype. Lower: Comparison of 643 

Spearman correlations (KD fold-change vs SHM) between MHC peptide epitope bins for 644 

significant VH:VL gene pairs. *:p<0.05, ***:p < 0.001, N.S: Not significant, Wilcoxon rank sum 645 

test. 646 

 647 

Figure 4. Isotype class switching and antibody secretion as long-lived serum IgG are 648 

correlated with lower MHC-II peptide epitope content in BCRs. A. Antibody repertoires were 649 

fractionated by isotype, and Spearman correlations were calculated for each repertoire subset. 650 

EpiMatrix binding scores are shown as aggregate binding score for supertype alleles DRB1*01:01, 651 

DRB1*03:01, DRB1*04:01, DRB1*07:01, DRB1*08:02, DRB1*11:01, DRB1*13:02 and 652 

DRB1*15:01. Each point represents a BCR sequence, and points are colored by data density 653 

(yellow: high, purple: low). Linear regressions are shown in red; p-value of the Spearman 654 

correlation is indicated. B. Volcano plot of Spearman ρ vs. Benjamini-Hochberg adjusted p-values 655 

for SHM vs. MHC-II binding score for repertoires grouped by isotype. Data are shown for all 656 

seven donors. C. Geometric mean of the KD comparison for antibody variable region peptides 657 

encoded by cellular vs. serum antibody repertoires, determined using netMHCIIpan. KD for 658 

complete antibodies was obtained from peptides derived from germline peptides with KD <1,000 659 

nM. 8Serum9 antibody clones were detected in human blood via serum proteomics in a previously 660 

reported study; 8Cellular9 antibody sequences were restricted to the cellular compartment [40]. 661 
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Differences between groups were analyzed using a t-test. Each point represents the BCR repertoire 662 

MHC-II peptide geomean KD for a human HLA allele (modeled for 38 human alleles, because 663 

donor HLAs are unknown); and alleles with adjusted p<0.05 are shown in red. D. Left Single vs. 664 

Multiple observation antibodies from longitudinal serum repertoire data, plotted as described in 665 

Panel C. Multiple observation antibody clones were detected at multiple time points via serum 666 

proteomics, whereas single observation antibodies were detected only at a single time point [41]. 667 

Right Geomean KD fold-change comparison between Multiple vs. Single observation serum 668 

antibodies E. Proposed mechanism of in vivo selection for BCRs with lower MHC-II peptide 669 

epitopes. Unmutated B cells in germinal centers often express unmutated BCRs that encode high-670 

affinity MHC-II peptides. These high-affinity MHC-II peptides from the BCR can display on 671 

surface MHC-II after endocytosis of the BCR-antigen complex and compete with antigen-derived 672 

peptides for MHC-II surface presentation. Competition between BCR MHC-II peptides and 673 

antigen MHC-II peptides provides a selective pressure for B cells to mutate high-affinity MHC-II 674 

peptide epitopes in the BCR variable region to enhance CD4+ T cell help. Efficient T cell help 675 

leads to further SHM, isotype switching, and the generation of long-lived plasma cells that secrete 676 

an antibody repertoire with decreased MHC-II peptide epitope content.  677 
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Supplementary Figures 678 

 679 

Figure S1. SHM correlates with decreased MHC-II peptide epitope content in B cell 680 

receptors, with stronger effects in certain V-genes. A. Scatter plots of somatic hypermutation 681 

levels (SHM) and EpiMatrix prediction of MHC II binding, as aggregate binding score for 682 

supertype alleles DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*07:01, DRB1*08:02, 683 

DRB1*11:01, DRB1*13:02 and DRB1*15:01. Each point represents an antibody sequence; points 684 

are colored according to data density (yellow: high, purple: low). Linear regressions are shown in 685 

red. p-value of the Spearman correlation is indicated. B. Volcano plots of spearman ρ vs. 686 

Benjamini-Hochberg adjusted p-values for SHM vs. MHC-II peptide epitope content, for 687 

antibodies repertoires grouped by IGHV and IGKV/IGLV gene pairs. Statistically significant pairs 688 

are shown in blue, and other gene pairs are shown in gray. C. Scatter plots of selected IGHV gene 689 

and IGKV/IGLV gene pairs for SHM vs. predicted binding scores. Linear regression lines are 690 

shown in blue. 691 

 692 

Figure S2. Germline MHC-II peptide epitope content varies by IGHV and IGLV/IGKV 693 

genes. Predicted MHC-II binding score was calculated using EpiMatrix for complete donor 694 

repertoires, and divided into V-gene subsets. Higher scores indicate higher content of MHC-II 695 

DRB1 peptide epitopes in the germline V-gene. V-genes were plotted in alphanumerical order, 696 

and the mean of scores (black points) and range (gray lines) are displayed together.  697 

 698 

Figure S3. Germline MHC-II peptide epitope content varies according to HLA-DRB1 gene 699 

profile. MHC-II peptide epitope content was predicted for a database of germline-encoded VH, 700 

VK and VL genes for each HLA-DRB1 allele encoded by donors in this study netMHCIIpan. The 701 

geometric means of the rank percentage for all IGHV- and IGKV/IGLV genes were calculated 702 

(black line) and the range of ranks (0.01%-100%) for peptides centered in each residue is shown 703 

in shaded gray. A lower rank indicates higher peptide:MHC-II binding affinity.  704 

  705 

Figure S4. V-gene dependence is driven by deletion of high affinity peptides present in 706 

germline sequences. A. Volcano plots of Spearman ρ vs. Benjamini-Hochberg adjusted p-values 707 

for antibody SHM vs. geometric mean KD fold-change from germline KD, as predicted by 708 

netMHCIIpan. Data were grouped by IGHV gene and IGKV/IGLV gene pairings and analyzed for 709 

peptides derived from germline-encoded MHCII binding peptides (predicted germline KD <1,000 710 

nM). Statistically significant IGHV gene and IGKV/IGLV combinations are shown in blue, other 711 

gene pairs are shown in gray. B. Scatter plots of antibody data for selected IGHV and IGKV/IGLV 712 

gene pairs displaying antibody SHM vs. predicted peptide geomean KD fold-change from germline 713 

KD. Linear regressions are shown in blue. C. Geometric mean of the rank percentage, as defined 714 

by netMHCIIpan of each putative peptide across the IGHV sequence, comparing germline IGHV 715 

gene (black) and high SHM (top 5%, blue) from the IGHV gene-controlled repertoire. D. 716 

Logograms of high affinity germline-encoded peptide residues comparing germline and high SHM 717 

antibodies at those residues (top 5%). n represents the number of unique peptides displayed in the 718 

high SHM subset. E. netMHCIIpan KD prediction for peptides shown in the logograms, using one 719 

of the donor-specific HLA-DRB1 alleles. Donors 4 and 5 are shown. Figure S5. Experimental 720 

observation of key antibody peptides in immunopeptidomic assay data in IEDB. A. 721 

Observations of IGHV-derived peptides experimentally confirmed to be immune epitopes and 722 

displayed by residue position. Data was retrieved from the Immune Epitope Database and analysis 723 
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resource (IEDB, www.iedb.org). B. Presence of confirmed MHC-II peptide epitopes in antibody 724 

repertoires. Peptides eluted from MHC-II molecules were retrieved from IEDB and used as a 725 

search database to mine donor repertoire data. IEDB peptides present both as substrings entirely 726 

contained within antibody 15-mers, and complete 15-mer matches, were accepted. C. Overlap 727 

between confirmed HLA-DRB1 peptides and HLA-DP/DQ peptides from antibody V-genes found 728 

in IEDB. Antibody peptides detected in the IEDB HLA-DRB1 database were searched in the HLA-729 

DP/DQ database, accepting only complete matches.  730 

 731 

Figure S6. netMHCIIpan data analysis, computational repertoire modeling, and 732 

personalized repertoire analytics. A. Data processing using netMHCIIpan. Upper panel The 733 

presence of MHC-II peptide epitopes was determined in donor data for the complete set of 38 734 

HLA alleles. HLA typing was also carried out. Middle panel Somatic hypermutation models 735 

ShaZam and immuneSIM were used to simulate 30 repertoires, with the same number of BCR 736 

sequences as experimentally-derived donor data. SHM distribution and V-gene frequencies were 737 

calculated. Lower panel The subset of peptides with MHC-II KD<1,000 nM to any of the 38 738 

alleles were selected to generate a database of potential predicted binders. B. Using the germline 739 

peptide database, peptides at the same position within the V-region were extracted from 740 

experimentally-derived donor data or simulated repertoires and grouped according to parent 741 

antibody V-gene. The fold-change between repertoire-scale BCR geomean[peptide:MHC-II KD] 742 

and germline geomean[peptide:MHC-II KD] was calculated and aggregated by V-gene. The 743 

Spearman correlation between KD fold-change and SHM was calculated for each V-gene. These 744 

data was used for the plots shown in Figure 2A. C. Using correlation data from B, significant 745 

(adjusted p <0.05) and strong ( > 0.5 ) correlations were extracted and averaged by allele. 746 

Alleles were plotted according to their individual geomean Spearman ρ scores, with the larger 747 

circles corresponding to each of the donor9s two HLA-DRB1 alleles.  748 

 749 

Figure S7. IGHV gene usage and SHM distribution for each experimentally-derived BCR 750 

repertoire data, universal Out-of-frame (OoF) modeled repertoire data, and donor-specific 751 

Replacement-Silent (RS) modeled repertoire data. A. IGHV gene usage between Donors 2-5 752 

experimentally-derived repertoires and OoF and RS modeled repertoires. Gene usage is shown as 753 

frequency of total repertoire. B. SHM distribution for Donors 2-5 experimentally-derived 754 

repertoires and OoF and RS modeled repertoires. Black dots represent outliers. 755 

 756 

Figure S8. Somatic hypermutations selectively delete MHC-II peptide epitopes. A. 757 

Levenshtein distance between donor and germline peptide was calculated as a measure of 758 

mutational load. The number of mutations was plotted against the KD fold-change between donor 759 

and germline peptides for donor-matched alleles. Outliers were removed for visualization but not 760 

for calculation of quartiles for boxplot generation B. Volcano plots of Spearman ρ vs. Benjamini-761 

Hochberg adjusted p-values for SHM vs. geometric mean KD fold-change from germline KD, as 762 

predicted by netMHCIIpan. Data were calculated for peptides derived from germline-encoded 763 

high-affinity binders (< 1,000 nM). Statistically significant IGHV and IGKV/IGLV gene pairs are 764 

shown in blue, other gene pairs are shown in gray. Donor, OoF and R-S models are shown. For 765 

OoF and R-S simulations, 30 repertoires were modeled for each donor, and the model closest to 766 

the median Spearman Rho of all 30 simulations is shown. C. Number of statistically significant 767 

(adjusted p < 0.05) IGHV and IGKV/IGLV gene pairs in experimentally-derived donor data, 768 

divided by the average number of significant gene pairs in donor-matched modeled OoF 769 
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repertoires (n=30 modeled OoF repertoires for each donor). Values >1 indicate that 770 

experimentally-derived donor data has more statistically significant gene pairs that show decreased 771 

MHC-II peptide epitope content by SHM. <All alleles= reports the average of all 10 HLA-DRB1 772 

alleles from the 5 donors, <Top alleles= reports the average of the top HLA-DRB1 allele collected 773 

from each donor. D. Spearman Rho comparison of aggregated HLA molecules. Alleles were 774 

clustered according to supertypes as defined in [60]. The Spearman ρ geometric mean was 775 

calculated for every allele, and then for all supertypes. Each color represents a different supertype. 776 

Supertypes with donor-matched HLA molecules are shown as bigger circles. E. Isotype-switched 777 

VH:VKL gene pairs with a significant correlation between KD change and SHM in donor data and 778 

modeled repertoires were retrieved. For donor data, the gene pair list was matched in the modeled 779 

repertoires, and vice versa. Spearman rho correlations were compared between donor and modeled 780 

repertoires using a paired t-test.  781 

 782 

Figure S9. Isotype class switching is correlated with preferential removal of MHC-II peptide 783 

epitopes from BCRs. A. Antibody repertoires were fractionated by isotype, and Spearman 784 

correlations were calculated for each repertoire subset. EpiMatrix binding scores are shown as 785 

aggregate binding score for supertype alleles DRB1*01:01, DRB1*03:01, DRB1*04:01, 786 

DRB1*07:01, DRB1*08:01, DRB1*11:01, DRB1*13:02 and DRB1*15:01. Each point represents 787 

a BCR sequence, and points are colored by data density (yellow: high, purple: low). Linear 788 

regressions are shown in red; p-value of the Spearman correlation is indicated.  789 

 790 

Supplementary Table 1  Primers used for paired heavy and light chain overlap extension RT-791 

PCR 792 

 793 

 794 
Oligonucleotide name Oligonucleotide sequence Source 

IgM Constant Region CGCAGTAGCGGTAAACGGCCACAGGAGACGAGGGGGAAA McDaniel, JR., DeKosky, BJ,. et al 
(2016) 

IgG Constant Region CGCAGTAGCGGTAAACGGCAGGGYGCCAGGGGGAAGAC McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

IgA Constant Region CGCAGTAGCGGTAAACGGCCGGGAAGACCTTGGGGCTGG McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

IgLC Constant Region GCGGATAACAATTTCACACAGGTCCTCAGAGGAGGGYGGGA

A 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

IgKC Constant Region GCGGATAACAATTTCACACAGGGATGAAGACAGATGGTGCA

G 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VH1 FR1 Region TATTCCCATCGCGGCGCCAGGTCCAGCTKGTRCAGTCTGG McDaniel, JR., DeKosky, BJ,. et al 
(2016) 

VH157 FR1 Region TATTCCCATCGCGGCGCCAGGTGCAGCTGGTGSARTCTGG McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VH2 FR1 Region TATTCCCATCGCGGCGCCAGRTCACCTTGAAGGAGTCTG McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VH3 FR1 Region TATTCCCATCGCGGCGCGAGGTGCAGCTGKTGGAGWCY McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VH4 FR1 Region TATTCCCATCGCGGCGCCAGGTGCAGCTGCAGGAGTCSG McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VH4-DP63 FR1 Region TATTCCCATCGCGGCGCCAGGTGCAGCTACAGCAGTGGG McDaniel, JR., DeKosky, BJ,. et al 
(2016) 

VH6 FR1 Region TATTCCCATCGCGGCGCCAGGTACAGCTGCAGCAGTCA McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VH3N FR1 Region TATTCCCATCGCGGCGCTCAACACAACGGTTCCCAGTTA McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VK1 FR1 Region GCGCCGCGATGGGAATAGCTAGCCGACATCCRGDTGACCCA

GTCTCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VK2 FR1 Region GCGCCGCGATGGGAATAGCTAGCCGATATTGTGMTGACBCA

GWCTCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 
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VK3 FR1 Region GCGCCGCGATGGGAATAGCTAGCCGAAATTGTRWTGACRCA

GTCTCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VK5 FR1 Region GCGCCGCGATGGGAATAGCTAGCCGAAACGACACTCACGCA

GTCTC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VL1 FR1 Region GCGCCGCGATGGGAATAGCTAGCCCAGTCTGTSBTGACGCAG

CCGCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VL1459 FR1 Region GCGCCGCGATGGGAATAGCTAGCCCAGCCTGTGCTGACTCAR
YC 

McDaniel, JR., DeKosky, BJ,. et al 
(2016) 

VL15910 FR1 Region GCGCCGCGATGGGAATAGCTAGCCCAGCCWGKGCTGACTCA

GCCMCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VL2 FR1 Region GCGCCGCGATGGGAATAGCTAGCCCAGTCTGYYCTGAYTCA

GCCT 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VL3 FR1 Region GCGCCGCGATGGGAATAGCTAGCCTCCTATGWGCTGACWCA

GCCAA 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VL-DPL16 FR1 Region GCGCCGCGATGGGAATAGCTAGCCTCCTCTGAGCTGASTCAG

GASCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VL3-38 FR1 Region GCGCCGCGATGGGAATAGCTAGCCTCCTATGAGCTGAYRCAG
CYACC 

McDaniel, JR., DeKosky, BJ,. et al 
(2016) 

VL6 FR1 Region GCGCCGCGATGGGAATAGCTAGCCAATTTTATGCTGACTCAG

CCCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

VL78 FR1 Region GCGCCGCGATGGGAATAGCTAGCCCAGDCTGTGGTGACYCA

GGAGCC 

McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

IgG Constant Region 

nested 

NNNNATGGGCCCTGSGATGGGCCCTTGGTGGARGC McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

IgM Constant Region 

nested 

NNNNATGGGCCCTGGGTTGGGGCGGATGCACTCC McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

IgA Constant Region 
nested 

NNNNATGGGCCCTGCTTGGGGCTGGTCGGGGATG McDaniel, JR., DeKosky, BJ,. et al 
(2016) 

IgKC Constant Region 

nested 

NNNNGTGCGGCCGCAGATGGTGCAGCCACAGTTC McDaniel, JR., DeKosky, BJ,. et al 

(2016) 

IgLC Constant Region 

nested 

NNNNGTGCGGCCGCGAGGGYGGGAACAGAGTGAC McDaniel, JR., DeKosky, BJ,. et al 

(2016) 
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Donor 1 Donor 3Donor 2

rs = -0.059 rs = -0.071 rs = -0.108

B

A

D Data for statistically significant heavy:light V-gene pairs; each point is one antibody

C

MHCII binding score of repertoire data; each point is one antibody

Statistical analysis of MHCII binding score data, aggregated by heavy:light gene pairs
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B

Donor 1 Donor 2 Donor 3

C

Statistical analysis of netMHCII peptide affinity data, aggregated by heavy:light gene pairs

Significant heavy:light V-gene pairs; each point is one sequenced antibody

15-mer peptide MHCII epitope content for IGHV genes
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