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Abstract

Transcriptome profiling and differential gene expression constitute a ubiquitous tool in biomedical
research and clinical application. Linear dimensionality reduction methods especially principal
component analysis (PCA) are widely used in detecting sample-to-sample heterogeneity in bulk
transcriptomic datasets so that appropriate analytic methods can be used to correct batch effects,
remove outliers and distinguish subgroups. In response to the challenge in analysing transcriptomic
datasets with large sample size such as single-cell RNA-sequencing (scRNA-seq), non-linear
dimensionality reduction methods were developed. t-distributed stochastic neighbour embedding (t-
SNE) and uniform manifold approximation and projection (UMAP) show the advantage of preserving
local information among samples and enable effective identification of heterogeneity and efficient
organisation of clusters in scRNA-seq analysis. However, the utility of t-SNE and UMAP in bulk
transcriptomic analysis has not been carefully examined. Therefore, we compared major
dimensionality reduction methods (linear: PCA; nonlinear: multidimensional scaling (MDS), t-SNE,
and UMAP) in analysing 71 bulk transcriptomic datasets with large sample sizes. UMAP was found
superior in preserving sample level neighbourhood information and maintaining clustering accuracy,
thus conspicuously differentiating batch effects, identifying pre-defined biological groups and
revealing in-depth clustering structures. We further verified that new clustering structures visualised
by UMAP were associated with biological features and clinical meaning. Therefore, we recommend

the adoption of UMAP in visualising and analysing of sizable bulk transcriptomic datasets.
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Introduction

Bulk transcriptome profiling quantifies the transcripts in a given biological sample, achieved by
technologies including microarray [1, 2] and RNA sequencing (RNA-seq) [3, 4]. This tool is
ubiquitously adopted in modern biomedical research and application to reveal unique features of gene
expression for specific cell or tissue type and biological process. The principal task of bulk
transcriptome profiling is to analyse differential gene expression (DGE) of samples between biological
groups. When statistically modelling DGE, an implicit assumption is that data of individual samples
within a given group are relatively homogeneous. For instance, to investigate the biomarker for a
certain disease, the group comparison between patient and healthy control cohorts presumes that the
biological characteristics of individual patients are largely indistinguishable when compared to healthy
controls, and vice versa. However, there exists heterogeneity within a group, which can lie in samples’
distinct biological states. For example, patients with systemic lupus erythematosus (SLE) show distinct
disease activities and can be classified based on the levels of disease activity index [5]. Other
heterogeneity can result from different sample preparation or processing conditions, often referred to
as batch effects [6, 7]. Therefore, it is crucial to scrutinise sample-to-sample heterogeneity within
groups so that subgroups or outliers can be identified. Only with such information, appropriate analytic
methods can be used to correct batch effects, remove outliers and distinguish subgroups. In contrast,
DGE analysis simply in given groups without the knowledge of sample-to-sample heterogeneity within

groups can often lead to biased or even wrong conclusion.

To detect among-sample heterogeneity in bulk transcriptome profiling, individual samples are
visualised in embedded space by dimensionality reduction methods. Principal component analysis
(PCA, [8]) and multidimensional scaling (MDS, [9]) have been thoroughly exploited to obtain an
overview of sample relationship in a low-dimensional space [10-13]. Both methods succeeded in
visualising biological or technical variation among samples by uncovering the overall structure of the

sample-to-sample relationship, which represents the key information of among-sample heterogeneity.

Since 2009 [14], the new era of characterising transcriptome at single-cell level has arrived. Numerous
single-cell RNA sequencing (scRNA-seq) technologies enable simultaneous profiling of thousands of
cells’ transcriptomes in a given sample so that the analysis of population heterogeneity can identify
complex compositions, reveal rare cell populations, detect differentially expressed genes between
multiple cell populations or between samples for cell types, uncover cell differentiation trajectories,
and so force [15, 16]. However, PCA and MDS show inefficient performance for dimensionality

reduction of scRNA-seq data while two non-linear methods, z-distributed stochastic neighbour
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embedding (-SNE) [17] and uniform manifold approximation and projection (UMAP) [18, 19] exhibit
better capability due to the advantage of maintaining cell-to-cell neighbour information and visualising
local structure. Compared to t-SNE, UMAP can not only distinguish neighbouring clusters but also
retain the global structure in scRNA-seq data analysis [18, 19].

The continuous improvement and invention of sequencing platforms has hugely improved the
efficiency and throughput of DNA sequencing and resulted in a dramatic reduction in costs, which
enable to generate a large number of samples and datasets of bulk transcriptome profiling. For example,
the landmark cancer genomics program — The Cancer Genome Atlas (TCGA) has profiled over 20,000
primary cancer and matched normal samples spanning 33 cancer types and generated over 2.5
petabytes of genomic, epigenomic, transcriptomic, and proteomic data [20-22]. While PCA remains
as the mainstream tool recommended detecting among-sample heterogeneity in bulk transcriptome
profiling, such as by TCGA Batch Effects [6, 7], we hypothesis that, for datasets with large sample
sizes, local structure of sample-to-sample relationship becomes more prominent for sample
heterogeneity analysis. Therefore, non-linear methods t-SNE and UMAP might outperform PCA and
MDS.

In this study, we visually and quantitatively compared the capabilities of PCA, MDS, t-SNE, and
UMAP in heterogeneity exploration of bulk transcriptome profiling. By visualising and interpreting
71 sizeable datasets of bulk transcriptome profiling, we found that UMAP was superior in preserving
sample level neighbourhood information and maintaining clustering accuracy, thus conspicuously
differentiating batch effects, identifying pre-defined biological groups and identifying new clustering

structures associated with biological features and clinical meaning.

Result

Overview of the evaluation

The bulk-transcriptome profiling datasets were collected from the Gene Expression Omnibus (GEO)
database within past five years (Table S1). To minimize the cell type effects interacting with our
results which are usually strong and very easy to be identified, we only chose the datasets of human
samples from peripheral blood mononuclear cells (PBMCs) or whole blood for bulk transcriptome
analysis, that are among most frequent cell populations. Datasets with the size less than 100 samples
were excluded in order to generate observable and meaningful clusters. The collection covered a

diverse range of biomedical research including the investigations on disease features such as SLE [23-


https://doi.org/10.1101/2021.01.12.426467
http://creativecommons.org/licenses/by-nc-nd/4.0/

113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426467; this version posted January 14, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

29] and influenza infection [30-32], and the evaluation on interventions such as therapies and

vaccination [33-37].

The research design flowchart is shown in Figure 1a. Among a total collection of 71 datasets based
on the above procedure, there were 41 datasets revealing clustering structures in plots of two-
dimensional embedding space by the dimensionality reduction methods PCA, MDS, t-SNE and UMAP.
UMAP reported all clustering (41/71) and, together with t-SNE (37/71), performed significantly better
than PCA (11/71) and MDS (13/71) (Figure 1b). The 41 datasets were classified into three categories
by incorporating available features (Figure 1b). As in Figure 1b, three plots in the two-dimensional
embedding space from the dimension reduction methods showed clusters related to batches (batch
effect) described in studies for these datasets while 9 plots showed clusters related to biological groups
designated by study designs. In addition, 29 plots revealed new clustering not related to batch
information or biological group by study design, suggesting significant sample-to-sample
heterogeneity in bulk transcriptome analysis. We identified the relationship of new clustering
structures with known sample features for 9 plots. The clustering structures of the rest of 20 plots could
result from hidden batch effect or biological features not reported by publications, thus referred to as

new clustering with hidden features (Figure 1b).

With clustering structures generated by PCA, MDS, t-SNE and UMAP, we could evaluate individual
methods’ performance for clustering accuracy, local information preservation, and computational
efficiency. For datasets with clustering structure by batch effect or biological group, we would then
compare the separability of each method in detecting distinct groups. For new clustering structures,
we would investigate the relationships of clustering structures with sample features. Based on these
quantitative and qualitative assessments, we could provide the recommendation of the best performing

method for dimensionality reduction in sizeable bulk transcriptome analysis (Figure 1a).

Comparison of dimensionality reduction methods by quantitative analysis

Clustering accuracy

The foremost objective of dimensionality reduction for bulk transcriptomic analysis is to
conspicuously distinguish clustering structures of samples which associate biological meaning. We
applied five clustering algorithms (k-means, hierarchical clustering, spectral clustering, Gaussian
mixture model and hdbscan, with details of five algorithms in Table S3) to low-dimensional spaces

projected by dimensionality reduction methods and compared the clustering accuracy.
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The five clustering algorithms were performed on the embedding two-dimensional coordinates of 22
datasets which have available label information for groups (labelled in Table S1). To assess clustering
accuracy of dimensionality reduction methods, we then computed Normalized Mutual Information
(NMI) [38] and Adjusted Rand Index (ARI) [39] for comparing the true group labels and inferred
group labels obtained by clustering algorithms based on the low-dimensional components, and the
lager score indicates better clustering accuracy. UMAP was scored the highest for both NMI and ARI,
no matter what clustering algorithm used, achieving the best accuracy for clustering (Figure 2a and
S1). t-SNE was scored slightly lower than UMAP but well outperformed MDS and PCA (Figure 2a
and S1).

Neighbourhood preserving

We then evaluated the performance of different dimensionality reduction methods in retaining local
information from original datasets, which was assessed by comparing the fidelity of local
neighbourhood structures between the reduced low-dimensional space and the original space using a
Jaccard index (details in ‘Methods’) [40] . The Jaccard indexes were computed for 15 neighbours
(Figure 2b) and 30 neighbours (Figure S2), respectively. PCA exhibited the worst performance in
preserving neighbourhood information (averaged 0.19 £ 0.067), followed by MDS (averaged 0.26 +
0.114). The performance of UMAP (averaged 0.35 £+ 0.091) appeared comparable to that of t-SNE
(averaged 0.36 £+ 0.095), and both were better than PCA and MDS. Pairwise t-test was performed
between every two methods (Figure 2b), and statistically significant differences were detected
between group means by one-way ANOVA (F(3, 280) = 57.88, p < 0.001). This was conceivable

since UMAP and t-SNE are designed to utilise local information for dimensionality reduction.

Computational efficiency

We next measured the execution time of each dimensionality reduction method on data with sample
size ranging from 200 to 10,000. The varied scales of data were generated by randomly sampling with
replacement from the three largest datasets (GSE36382, GSE65391 and GSE65907). As shown in
Figure 2¢, the variability of consumed time among different datasets was negligible. PCA performed
consistently faster than the other three methods while MDS ran slowest (Figure 2¢). For 200 and 500
samples, consumed time was similar between t-SNE and UMAP but UMAP gained an advantage for
data with larger sample sizes. For processing a data with 10,000 samples, UMAP (~3 minutes) was
more than 25-time faster than t-SNE (~ 1.5 hours), although still slower than PCA (~20 seconds)
(Figure 2¢). PCA and UMAP appeared more time-efficient than MDS and t-SNE for computing large-

sized data.
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Technically, UMAP not only identified more clustering structure in 71 datasets of bulk transcriptome
analysis (Figure 1b), but was also superior to the other three methods for the overall performance by
assessing the three quantitative criteria. We next compared four dimensionality reduction methods for

uncovering biological meaning.

Comparison of dimensionality reduction methods by qualitative analysis

Identification of batch effects

Batch effects are common in many types of high-throughput sequencing experiments, which are
systematic technical variations introduced by processing samples in different batches [6, 41]. As for
high-throughput sequencing experiments, it is essential to remove unwanted variations in the
transcriptomic analysis by normalisation [42, 43] to avoid biased analysis and distorted results [6]. The
first step is to identify batch effects among samples. PCA is the most used tool, such as by The Cancer
Genome Atlas (TCGA) project [21]. It generates the clustering structure of samples in two-
dimensional embedding space to facilitate the visualisation for batch information. Among the 41
datasets with explicit clustering structures, three datasets showed clustering structures related to batch
effects reported by publications (Figure 1b). Each dimensionality reduction method was used to
visualise batch effects for the three datasets (one in Figure 3a and two in S3). UMAP and t-SNE
showed better segregation between samples from different batches. To assess the ability of each
method to separate batch effects in two-dimensional embeddings, we trained random forests to predict
batch effects from sample points in embedding space and calculated the prediction accuracy on held-
out data (details in ‘Method’). Consistent with the visualisation, UMAP and t-SNE performed better
than MDS and PCA, leading to random-forest accuracies around 90% (Figure 3b).

Validation of biological groups by experimental design

One major purpose of bulk transcriptome analysis is for the DGE analysis between biological groups
defined by experimental design. Visualising the segregation of samples from groups with distinct
biological features by dimensionality reduction is often applied to the validation of group-to-group
distinction. Among the 41 datasets with explicit clustering structures, 9 datasets showed clustering
structures related to biological groups by experimental designs (Figure 1b). We compared four
dimensionality reduction methods in visualizing biological group and found that UMAP and t-SNE
outperformed MDS or PCA in visually separating biological groups in 9 datasets (one in Figure 3¢
and eight in S4). To measure the separability of each method in group validation, we again deployed

random forests to train embedding data with group features as labels and computed the prediction
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accuracy on held-out data (details in ‘Method’). UMAP achieved the best accuracy (> 80%) than t-
SNE (p < 0.05), MDS (p <0.001) and PCA (p <0.001) in separating biological groups (Figure 3d).

Uncovering new associations between clustering structures and sample features

Only 12 out of 41 datasets showed clustering structures explained by batch effects or biological groups
(Figure 1b). The appearance of new clustering structures in 29 plots demonstrated significant
heterogeneity existing in bulk transcriptome profiling, which could be efficiently revealed by UMAP.
We next investigated the causes underlying new clustering structures. The clustering structures in 9
datasets were found associated with certain sample features reported by publications (Figure S5).
These features were not used for the classification of sample groups in experimental designs,
suggesting certain biological features with major impacts on sample heterogeneity were not included
in experimental designs or data analyses. A good case was the dataset GSE71220, which was designed
to determine the impact of cigarette smoking (former v.s. current smoker) on gene expression in
peripheral blood of patients with chronic obstructive pulmonary diseases (COPD) [44]. Dimensionality
reduction methods of UMAP and t-SNE generated plots showing clustering structures (right part in
Figure 4a). However, such clustering was not associated with smoking status (Figure 4b). We applied
other sample features including age and disease status to the two-dimensional plots. Surprisingly, the
sample feature of gender demonstrated clear association with clusters in the plots generated by UMAP
and, to less extent, t-SNE (Figure 4c). In the UMAP plot, one cluster was highly enriched of females
(in orange colour) and another cluster was highly enriched by males (in blue colour), with the third
cluster showing the pattern of a mixture (Figure 4c¢). By deploying spectral clustering (details in
‘Methods’), samples were divided into three clusters with distinct gender composition: C1-97%
females, C2-93% males, and C3-mixed (Figure 4d, e). This indicated that the transcriptomes of
samples in this study were highly influenced by gender difference. Indeed, the heatmap of the top 100
differentially expressed genes demonstrated that the clustering of samples was strongly associated with
gender (Figure 4f). Therefore, the heterogeneity uncovered by the dimensionality reduction using
UMAP indicated that the gender difference should have been critically treated as a latent variable in

downstream transcriptomic analysis.

Discovering new associations between clustering structures and hidden features

By dimensionality reduction using UMAP, 41 datasets showed clustering structures in two-
dimensional embedding spaces in which the associations with batch effects, biological groups by
experimental designs or specific sample features reported by publications were identified in 21 datasets

(Figure 1b). For the rest 20 datasets, clustering structures might derive from obscure heterogeneity of
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samples, biologically or technically (Figure S6). We made efforts to explore the biological meanings
of clustering structures of these datasets and herein present the dataset GSE121239 as an example to
support the notion that new clustering structures generated by UMAP can reinforce sample

heterogeneity analysis of bulk transcriptome data to reveal important biological meaning.

Dataset GSE121239 originated from the study of systemic lupus erythematosus (SLE) which is the
prototype of systemic autoimmune diseases with highly diverse manifestations in multiple tissues and
organs, such as skin, kidney and lung [45]. As a chronic disease, SLE patients often experience
unpredictable occurrence of disease flares [46]. In order to identify the heterogeneity of SLE patients
and stratify patient groups of disease activity progression, the dataset GSE121239 collected
longitudinal transcriptome profiles of 65 SLE patients with more than three clinical visits and 20
healthy individuals as controls [47]. Data collected at each visit contributed to one sample in the dataset.
Dimensionality reductions plot by UMAP and t-SNE, but not PCA or MDS, demonstrated clearly
separated clusters for SLE patients (in orange colour) and healthy controls (in blue colour) (Figure Sa,
b). In the UMAP plot, we noticed more than one cluster for patient samples (Figure 5¢). To understand
the biological meaning of clusters representing subgroups of SLE patients, we examined feature
information of patients reported by the publication including gender and patient ID but found no direct
association with the clustering structure of patient subgroups. Since the samples of patients were
collected longitudinally from multiple clinical visits, we set samples collected at the first clinical visit
as day 1 then labelled subsequently collected samples from the same patient with the period between
two visits. The resulted contour plot showed samples in the chronological order (Figure 5d).
Importantly, the gradient from light to dark orange spreads from the middle of the plot to two sides,
indicating the clustering structure generated by UMAP was associated with the timing evolution of
clinical visits. For example, the bottom-right cluster in Figure 5c represents samples collected from a
subgroup of patients at their late clinical visits, indicated by dark orange in Figure 5d. This intriguing
discovery suggested that new clustering structures revealed by UMAP could facilitate the exploration
of samples’ hidden features.

To generate UMAP plots, there are several options for metric space, with ‘euclidean’ distance as
default [18]. We tested ‘euclidean’ and another two representative metrics ‘canberra’ and ‘cosine’ and
observed that the metric ‘canberra’ led to more explicit clustering on UMAP projection, with patients’
samples clustered into three subgroups: sGO0, sG1, sG2 (Figure Se).

According to the timing evolution (Figure 5d), samples of sGO were collected earlier while samples
of sG1 or sG2 were collected later. The clear separation of late collected samples into two clusters of

sG1 and sG2 suggested a biological divergence. To interpret the biological difference between sG1
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and sG2, we applied gene set enrichment analysis (GSEA) using R package EGSEA [48], resulting in
the top 20 differentially regulated molecular pathways between sG1 v.s. sGO and sG2 v.s. sGO (Figure
6b, S7). Comparing to sGO, sG1 and sG2 were common in 6 upregulated pathways (in red colour) and
2 down-regulated pathways (in blue colour). However, 7 upregulated and 5 downregulated pathways
in sG1 showed opposite trends in sG2, suggesting the biological distinction between them.

Given longitudinal sampling of individual patients, we next investigated the visit trajectories of
individual patients. Connection of samples from each patient demonstrated that most patients (N =
47/65) showed one-directional trajectories from sGO to sG1 or sGO to sG2 (Figure 6¢), in agreement
with the timing evolution of patients’ sample (Figure Sd). When initially admitted to the clinic to take
samples (visit 1, Figure 6d), patients with distinct trajectories had comparable disease activities (SLE
disease activity index (SLEDAI), meantSD, sGO to sG1: 2.6£2.71; sGO to sG2: 2.6+2.85). Widely
used in clinical practice and research, SLEDALI is a global index that was developed as a clinical index
for the assessment of lupus disease activity and larger SLEDALI indicates worse disease conditions [5].
Importantly, we noticed that the average SLEDAI at the following visits increased for patients with
the trajectory from sGO to sG1 (in blue colour, Figure 6d), indicating the disease deterioration of these
patients, whereas the average SLEDALI at the following visits decreased for patients with the trajectory
from sGO to sG2 (in green colour, Figure 6d), indicating the disease improvement of these patients.
The opposite disease progression between two trajectories was also supported by GSEA, which
showed the key pathogenic pathways for SLE including apoptosis [49], type I interferon [50] and type
IT interferon [51] were increased in sG1 but decreased in sG2 (Figure 6b). Taken together, the deep
exploration of the biological and clinical meaning of the new clustering structure of dataset
GSE121239 revealed by UMAP supports the future application of dimensionality reduction methods

such as UMAP to reinforce sample heterogeneity analysis of bulk transcriptome data.

Recommendation

Although PCA is often used in identifying sample-to-sample heterogeneity in bulk transcriptome
analysis, our study demonstrated that the nonlinear dimensionality reduction method UMAP improved
the identification, visualisation and interpretation of clustering structures in sizeable datasets. The
analysis of the dataset GSE121239 suggested that the choice of the parameter ‘metric’ in UMAP could
affect the visualisation of clustering structures of UMAP plots (Figure 6a). We then thoroughly
evaluate ‘euclidean’, ‘canberra’ and ‘cosine’ metrics of UMAP in all 71 bulk transcriptomic datasets,
which respectively revealed clustering structures in 41, 44 and 42 datasets and had 39 datasets in

common (Figure 7a). Without any ‘metric’ showing a clear advantage, we recommend trying the three
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representative metrics for UMAP in visualising the bulk transcriptomic data and being integrated into
the pipeline for bulk transcriptomic analysis (Figure 7b). The analysis starts with transcript counts as
the input, followed by applying UMAP to visualise potential clustering structures. If no clustering
structure is detected, DGE analysis can be performed. With clustering structures that may correspond
to known or unknown batch effects, the first consideration is to identify and remove batch effects. The
clustering structure should next be tested for the association with biological groups assigned by
experimental design. The explicit association of the clustering structure with biological groups can
ensure robust DGE analysis among different biological groups. If the clustering structure is related to
specific sample features rather than biological groups, that feature should be treated as latent covariates
in DGE analysis. On the other hand, the clustering structure might reveal new biological subgroups or

hidden factor to be analysed separately for DGE analysis.

Discussion

Sample heterogeneity in bulk transcriptomic data reflects both biological and technical variation
among samples. It is crucial to detect among-sample heterogeneity before DGE analysis for bulk
transcriptomic data so that appropriate analytic methods can be subsequently used to correct batch
effects, remove outliers and distinguish subgroups. Sample heterogeneity analysis by dimensionality
reduction should consider both local and global information of datasets to congregate similar samples
and distinguish different samples. PCA is the current mainstream tool of dimensionality reduction to
visualise and detect among-sample heterogeneity, adopted by widely used analytic packages limma
and edgeR [11, 12]. PCA produces linear combinations of the original variables to generate the
principal components [52], and visualisation is generated by projecting the original data to the first
two principal components, thus PCA plot linearly shows global distance among data points. Similarly,
MDS method places each data point into two-dimensional space such that the between-point distances
are preserved according to the pairwise distance of original data points [53]. Both PCA and MDS focus
more on maintaining global information, which can fail to compactly cluster similar data points and

face a major challenge with the rapid increase in sample sizes of bulk transcriptomic profiling datasets.

On the other hand, t-SNE and UMAP model the pairwise distance by adopting the concept from k-
nearest neighbour (kNN) graph [17, 18] whereby two points are connected by an edge if their distance
is among the k-th smallest distances compared to distances to other points [54]. For dimensionality
reduction by t-SNE or UMAP, all pairs of two points have edge weights indicating the probability for
them being connected (connection probability). If the distance between two points is among the k-th

smallest distances compared to distances to other points, the connection probability between these two
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points is high. If the distance between two points is much greater than the k-th smallest distance, the
connection probability between these two points is low [17, 18]. Therefore, t-SNE and UMAP can
efficiently preserve local distance information and cluster similar sample points. For large sample size
in dataset resulting in the quadratic increase of pairwise comparisons, t-SNE and UMAP not only
retain pairwise interaction but also focus on local information, thus outperforming PCA and MDS in
detecting sample heterogeneity. Compared with t-SNE using random initialisation and KL-divergence
object function, UMAP utilises Laplacian Eigenmaps initialisation and cross-entropy object function
[18, 55] which contribute to the global structure preservation. This might explain the overall better
performance of UMAP than t-SNE. We tested three presentative parameters for the distance ‘metric’
of UMAP - ‘euclidean’, ‘canberra’ and ‘cosine’ and found consistent outcomes with only minor

variation (Figure 7a).

Among 71 bulk transcriptome profiling datasets with > 100 samples tested in this study, UMAP and
t-SNE clearly outperformed PCA and MDS in identifying clusters associated with batch effects and
biological groups pre-defined in study designs. It should be noted that, within 41 of 71 datasets that
UMAP identified clustering structures, new fine-scale clustering structures were revealed and
accounted for more than half (29 out of 41) (Figure 1). The important question is whether the new
clustering structures discovered by UMAP represent biological significance. This question was then
addressed in case studies of datasets with new clustering structures. One case is the study that was
initially designed to investigate how smoking influence blood gene expression of patients with COPD
and utilised bulk transcriptomic profiling and DGE analysis (GSE71220 [44]). Intriguingly, the PCA
plot showed no clustering structure while the UMAP plot revealed new clustering structures, which
was related to gender rather than smoking status (Figure 4). This information discovered by
dimensionality reduction using UMAP suggests the gender feature should be treated as an important
latent covariate in DGE analysis. Another example is the study that was designed to stratify patients
with SLE, a highly complex autoimmune disease with heterogeneous clinical presentation, according
to longitudinal disease activity and blood gene expression (GSE121239 [47]). This study calculated a
gene-by-patient correlation matrix computing a stringent Pearson correlation coefficient between gene
expression data and SLEDAI scores across each patient's visits and then selected genes with the highest
absolute correlation values by rank-sum method [47]. Instead of this multiple-step process, dimension
reduction by UMAP revealed the separation of samples by visit timestamp (Figure 5), which enabled
to identify two groups of patients with opposite changes of longitudinal disease activity (Figure 6).
These results thus validate the application of UMAP in dimensionality reduction in stratifying SLE

patients. Using several datasets as examples, we demonstrated that the new clustering structures were
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associated with certain sample features and enabled to uncover unappreciated sample subgroups with

specific biological and clinical features.

In analysing 71 datasets, we demonstrated that UMAP was able to visualise the among-sample
heterogeneity in two-dimensional space. Based on the low-dimensional embedding space of UMAP,
clustering methods were deployed to define clusters of the data points (Figure 4d and Figure 5e). The
biological significance of resulting clusters was validated by subsequent exploration and evaluation
(Figure 4 and Figure 6). For scRNA-seq data, clustering algorithm is generally applied on low-
dimensional space, for example in the commonly used scRNA-seq package Seurat [57], a graph-based
clustering algorithm to low dimensional space by PCA projection. The rationale of applying clustering
method to low-dimensional projected space mainly arises from the curse of dimensionality [56]. When
computing distance (e.g., Euclidean distance) in high-dimensional data, the difference in the distances
between different pairs of samples becomes less precise, which hinders discriminating near and far
points. Thus, applying clustering methods to low-dimensional embedding space is better to define
clusters of data points. Therefore, we suggest that UMAP can be applied as a pre-processing step

before generating clusters from bulk transcriptomic datasets.

Although UMAP has shown significant advantages in detecting among-sample heterogeneity. PCA
has a unique property not present by other methods. PCA compresses the data by top-ranked principal
components and computes the PCA score for each sample. Therefore, it can calculate the variable
weight corresponding to new coordinate system (PCA loadings), which explains the contribution of
each variable to sample points. In contrast, the nonlinear methods, including MDS, t-SNE and UMAP,
do not involve the variable weight such that dimensionality reduction embedding cannot be
immediately explainable by variable weight. This might represent an area for the future improvement

of UMAP or methods of similar kind.

Though commonly used for scRNA-seq, UMAP has been repurposed in large scale genotype datasets
to explore the fine structure and visualise genetic interactions [59, 60]. Based on the quantitative and
qualitative results of the comparison among dimensionality reduction methods, we highly recommend
UMAP as the visualisation tool in the pipeline for bulk transcriptomic profiling and DGE analysis. It

can particularly reinforce sample heterogeneity analysis for datasets with large sample sizes.
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Methods

Datasets

The total RNA datasets were collected from the Gene Expression Omnibus (GEO) database with query
conditions set as follows: the dataset type was expression profiling by array or by high throughput
sequencing; the number of samples ranged from 100 to 10,000; organism was homo sapiens; the
publication date was from 2015/01/01 to 2020/03/01; sample source was PBMC or whole blood.
Applying the query to the GEO database, we gained 214 results. We further manually removed the

datasets in which each group owned less than 100 samples, resulting in 71 datasets.

Clustering accuracy (NMI, ARI)

For clustering accuracy analysis, we applied five clustering methods to the embedded low-dimensional
space by dimensionality reduction methods. The clustering methods included k-means clustering
(Python function KMeans), hierarchical clustering (Python function AgglomerativeClustering),
spectral clustering (Python function SpectralClustering), hdbscan (Python function hdbscan) and
Gaussian mixture model (Python function GaussianMixture). In these clustering methods, the number
of clusters k was set to be the known number of different groups in the data, except for hdbscan which
is a density-based clustering algorithm (we set the min cluster size as 10). We applied the five
clustering methods to the embedded space of 26 datasets with available features for groups. The
retained partitions inferred using the low-dimensional components were compared to the true clusters.
The level of agreement between the clustering partition and the true clusters was measured by two
criteria: the Adjusted Rand Index (ARI) [39] and the Normalized Mutual Information (NMI) [38].
Given two partitions X = {X;,..., X, }andY = {V;,...,Y,}, the ARI and NMI are defined as:

nl-j

25("Y) - mCH MG

2MI(X,Y)
ARI(X)Y) = . - . , and NMI(X, Y)=—=
) +2,CH - H 5N/ H(X)+H(Y)
where n;; = |Xl- N Y}l is the number of common data points between X; and Y}, a; = ¥;n;;, b; =

Yinij, MI(X,Y) is the mutual information between cluster labels X and ¥, H(X) and H(Y) are the

entropy function for cluster labelling. We used Python function adjusted rand score and

normalized _mutual info score to calculate ARI and NMI, respectively.

Neighbourhood preserving evaluation
The evaluation of neighbourhood preserving is to assess how the reduced low-dimensional space
retains the local information compared with the original high dimensional dataset. For the original

space and embedded space, the k-nearest neighbours (kNNs) for each data point were computed
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respectively (denoted as sets X and Y). The Jaccard index (JI) [40] was used to calculate the
neighbourhood similarity between original and embedded space: JI=|XNY|/|XUY| where |-| means set
cardinality, then the average Jaccard index (AJI) across all data points were computed to measure the

neighbourhood preserving.

Running time

We measured the running time of PCA, MDS, t-SNE and UMAP on a single thread of an Intel Xeon

E5-2698 v4 2.20GHz processor. The running time was determined in R using the “elapsed” (wall clock)
time measurements, which allows for consistent timing across methods. For total-RNA datasets, the

number of samples is moderately large with hundreds of data points. We generated datasets with

sample size ranging from 200 to 10000 by random sampling to evaluate the computation efficiency.

The data were generated by randomly sampling with replacement from the three largest datasets

(GSE36382, GSE65391 and GSE65907).

Separability of batch effects and biological groups

To evaluate the capability of each dimensionality reduction method in separating the groups by the
embeddings, we first assigned batch labels to 3 datasets and biological group labels to 9 datasets. For
each dataset, we used Python function train_test split with parameter test size = (.3 to divide the
dataset into 70% training set and 30% test set. For each algorithm, a random-forest classifier by Python
function RandomForestClassifier was trained using the group labels as target variable and the
embedding's coordinates as training variables. We then utilized these classifiers to predict cluster
identities on the test set and computed the accuracy of these predictions, thus assessing the ability of

each method to separate groups.

Statistical test

We applied two-tailed t-test to compare the performance of dimensionality reduction methods. The
frequency difference of categorical variables was examined by y? test. The p-value less than 0.05 is
considered statistically significant. We used R (3.6.3) package /imma [11, 13] for differential gene
expression (DGE) analysis. Top 100 differential expressed genes were chosen to be included in the
heatmap among control and experimental groups. We applied gene set enrichment analysis (GSEA)
by R package EGSEA, where the Molecular Signatures Database (MSigDB) was set as H: hallmark
gene sets [61].

Data availability
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The datasets supporting the conclusions of this article are available in Gene Expression Omnibus
repository (https://www.ncbi.nlm.nih.gov) with the GEO accession numbers in Table S1, including
four columns (UMAP, t-SNE, MDS and PCA) showing which feature information explains the

clustering structure of each dataset.

Code availability
All scripts used for dimensionality reduction and clustering are available through Github

https://github.com/yulmmuGroup/umap_on_bulk transcriptomic_analysis; differential gene

expression and gene set enrichment analysis are available in

https://github.com/yulmmuGroup/transcriptomic_analysis DGE_and GSEA.
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Figure 1
a Schematic overview.
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Figure 4
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Figure 5
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Figure Legends

Figure 1. Evaluation overview for four dimensionality reduction methods.

(a) Schematic overview of the evaluation. Bulk transcriptomic datasets were collected from GEO
database, followed by applying four methods to the datasets for visualization. The methods were
evaluated in both technical and biological aspects. Finally, we presented the recommendation on
UMAP for visualization.

(b) Pie chart showing the percentage of datasets by biological explanations for all revealed clustering
structures.

By associating features identified in publications, clustering structures were divided into three

categories: batch effect (coloured green), biological group (coloured orange) and new clustering

(coloured blue). Batch effect was the cluster associated with batch effects. Biological group was related

to experimental design like control and treatment groups, while new clustering was the clusters related

to other predefined features like gender. New clustering was further divided into new clustering with

sample features and new clustering with hidden features by considering available feature information.

Figure 2.

Quantitative analysis of four dimensionality reduction methods.

(a) Radar plot of clustering accuracy (average NMI score) comparison using five clustering methods
on 22 datasets with cluster labels. The input was the embedded two-dimensional coordinates of
each dimensionality reduction methods. Larger scale denotes better clustering accuracy.

(b) Heatmap for evaluating neighbourhood preserving of each method on 71 datasets. The number of
neighbours is set as 15. The darker the colour is, the better the local information is retained. One-
way ANOVA shows significant difference among the four methods (*** p<0.001). R function
heatmap in R package stats was used for Figure 2b.

(c) Running time evaluation of four dimensionality reduction methods with varying sample sizes. Log-
transforming of the time was applied. Different sizes of data were generated by sampling with

replacement from three largest datasets respectively.

Figure 3. Biological explanation of clustering by batch effects and biological group.

(a) Visualization of dataset GSE65391 showing the batch effects (coloured by blue and orange) in
two-dimensional space by dimensionality reduction methods.

(b) Visualization of dataset GSE55447 illustrating biological group by dimensionality reduction

methods. Control group is labelled in blue and trauma group is in orange.
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(c), (d) Classification accuracy on held-out data of random-forest classifiers predicting cluster labels
taking embedded coordinates as input. (c) is for batch effects, while (d) for biological groups. The
average score across datasets is shown, with vertical bars representing s.d.; paired t-test was conducted

on pairwise methods (* p < 0.05, ** p <0.01, *** p <0.001)

Figure 4.

New clustering interpreted by available sample features.

(a)-(c) Visualization of dataset GSE71220 in two-dimensional space by assigning no feature (a), group
labels (b), gender (c).

(d) Spectral clustering on two-dimensional embedded coordinates into three clusters: C1, C2, C3.

(e) Gender proportion among three clusters by y? test showing a significant difference (*** p<0.001).
Male and female are coloured by black and white respectively.

(f) Heatmap of top-100 differentially expressed genes with three clusters C1, C2, C3 and two gender

groups male and female. R function heatmap.2 in R package gplots was used for Figure 4f.

Figure 5. Discovering new associations between clustering structures and hidden features.

(a), (b) Visualization of dataset GSE121239 in two-dimensional space by assigning no feature (a),
group labels (b).

(c) Patient (SLE) group (coloured orange) showing new clustering structure (sG1, lower right).

(d) Contour plot on patient groups by the order of visiting timestamp. Each data point is associated
with one visiting timestamp. Data points are coloured by the order of visiting time with light colours
for early visits and dark colour for late visits. The code to plot Figure 5d is in Code Availability.

(e) Hierarchical clustering of patient group on two-dimensional embedded coordinates by UMAP with

distance metric as ‘euclidean’, ‘canberra’, and ‘cosine’, respectively.

Figure 6. UMAP revealed clustering structure explained by clinical traits.

(a) Hierarchical clustering of patient groups on two-dimensional embedded coordinates by UMAP
with metric as ‘canberra’.

(b) Histogram illustrating gene set enrichment analysis between sG1 v.s. sGO and sG2 v.s. sGO with
top 20 differentially regulated molecular pathways (negative logarithm of the p-value (base 10)).
Colour red denotes upregulation and blue for downregulation. The top two rows are the same
direction of regulation, and the bottom two rows are in the opposite direction.

(c) Visiting trajectories of each patient on UMAP plot with metric = ‘canberra’. Each path connected

data points corresponding to one patient with several visits. Data points in pathes were connected
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by visiting timestamp. The light colour denotes early visit and dark colour for late visits. The paths
were mainly divided into two patterns: from sGO to sG1, from sGO to sG2.

(d) Line chart of average SLEDAI changing along with visits between sGO0 to sG1 and sGO to sG1.
Both started with average SLEDAI around 2.6; from sGO to sG1 (coloured by blue) the average
SLEDAI increased, while from sGO to sG2 (coloured by green) the average SLEDAI decreased.

Figure 7.

Recommendations for UMAP processing bulk transcriptome datasets.

(a) Venn diagram illustrating the overlap in the number of datasets having clustering structure by the
UMAP plot under three different ‘metric’ parameters: ‘euclidean’, ‘canberra’, and ‘cosine’.

(b) The recommendation pipeline for applying UMAP to bulk transcriptome analysis.
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