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Abstract 30 

Transcriptome profiling and differential gene expression constitute a ubiquitous tool in biomedical 31 

research and clinical application. Linear dimensionality reduction methods especially principal 32 

component analysis (PCA) are widely used in detecting sample-to-sample heterogeneity in bulk 33 

transcriptomic datasets so that appropriate analytic methods can be used to correct batch effects, 34 

remove outliers and distinguish subgroups. In response to the challenge in analysing transcriptomic 35 

datasets with large sample size such as single-cell RNA-sequencing (scRNA-seq), non-linear 36 

dimensionality reduction methods were developed. t-distributed stochastic neighbour embedding (t-37 

SNE) and uniform manifold approximation and projection (UMAP) show the advantage of preserving 38 

local information among samples and enable effective identification of heterogeneity and efficient 39 

organisation of clusters in scRNA-seq analysis. However, the utility of t-SNE and UMAP in bulk 40 

transcriptomic analysis has not been carefully examined. Therefore, we compared major 41 

dimensionality reduction methods (linear: PCA; nonlinear: multidimensional scaling (MDS), t-SNE, 42 

and UMAP) in analysing 71 bulk transcriptomic datasets with large sample sizes. UMAP was found 43 

superior in preserving sample level neighbourhood information and maintaining clustering accuracy, 44 

thus conspicuously differentiating batch effects, identifying pre-defined biological groups and 45 

revealing in-depth clustering structures. We further verified that new clustering structures visualised 46 

by UMAP were associated with biological features and clinical meaning. Therefore, we recommend 47 

the adoption of UMAP in visualising and analysing of sizable bulk transcriptomic datasets. 48 

  49 
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Introduction 50 

Bulk transcriptome profiling quantifies the transcripts in a given biological sample, achieved by 51 

technologies including microarray [1, 2] and RNA sequencing (RNA-seq) [3, 4]. This tool is 52 

ubiquitously adopted in modern biomedical research and application to reveal unique features of gene 53 

expression for specific cell or tissue type and biological process. The principal task of bulk 54 

transcriptome profiling is to analyse differential gene expression (DGE) of samples between biological 55 

groups. When statistically modelling DGE, an implicit assumption is that data of individual samples 56 

within a given group are relatively homogeneous. For instance, to investigate the biomarker for a 57 

certain disease, the group comparison between patient and healthy control cohorts presumes that the 58 

biological characteristics of individual patients are largely indistinguishable when compared to healthy 59 

controls, and vice versa. However, there exists heterogeneity within a group, which can lie in samples9 60 

distinct biological states. For example, patients with systemic lupus erythematosus (SLE) show distinct 61 

disease activities and can be classified based on the levels of disease activity index [5]. Other 62 

heterogeneity can result from different sample preparation or processing conditions, often referred to 63 

as batch effects [6, 7]. Therefore, it is crucial to scrutinise sample-to-sample heterogeneity within 64 

groups so that subgroups or outliers can be identified. Only with such information, appropriate analytic 65 

methods can be used to correct batch effects, remove outliers and distinguish subgroups. In contrast, 66 

DGE analysis simply in given groups without the knowledge of sample-to-sample heterogeneity within 67 

groups can often lead to biased or even wrong conclusion.  68 

To detect among-sample heterogeneity in bulk transcriptome profiling, individual samples are 69 

visualised in embedded space by dimensionality reduction methods. Principal component analysis 70 

(PCA, [8]) and multidimensional scaling (MDS, [9]) have been thoroughly exploited to obtain an 71 

overview of sample relationship in a low-dimensional space [10-13]. Both methods succeeded in 72 

visualising biological or technical variation among samples by uncovering the overall structure of the 73 

sample-to-sample relationship, which represents the key information of among-sample heterogeneity.   74 

Since 2009 [14], the new era of characterising transcriptome at single-cell level has arrived. Numerous 75 

single-cell RNA sequencing (scRNA-seq) technologies enable simultaneous profiling of thousands of 76 

cells9 transcriptomes in a given sample so that the analysis of population heterogeneity can identify 77 

complex compositions, reveal rare cell populations, detect differentially expressed genes between 78 

multiple cell populations or between samples for cell types, uncover cell differentiation trajectories, 79 

and so force [15, 16]. However, PCA and MDS show inefficient performance for dimensionality 80 

reduction of scRNA-seq data while two non-linear methods, t-distributed stochastic neighbour 81 
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embedding (t-SNE) [17] and uniform manifold approximation and projection (UMAP) [18, 19] exhibit 82 

better capability due to the advantage of maintaining cell-to-cell neighbour information and visualising 83 

local structure. Compared to t-SNE, UMAP can not only distinguish neighbouring clusters but also 84 

retain the global structure in scRNA-seq data analysis [18, 19].    85 

The continuous improvement and invention of sequencing platforms has hugely improved the 86 

efficiency and throughput of DNA sequencing and resulted in a dramatic reduction in costs, which 87 

enable to generate a large number of samples and datasets of bulk transcriptome profiling. For example, 88 

the landmark cancer genomics program 3 The Cancer Genome Atlas (TCGA) has profiled over 20,000 89 

primary cancer and matched normal samples spanning 33 cancer types and generated over 2.5 90 

petabytes of genomic, epigenomic, transcriptomic, and proteomic data [20-22]. While PCA remains 91 

as the mainstream tool recommended detecting among-sample heterogeneity in bulk transcriptome 92 

profiling, such as by TCGA Batch Effects [6, 7], we hypothesis that, for datasets with large sample 93 

sizes, local structure of sample-to-sample relationship becomes more prominent for sample 94 

heterogeneity analysis. Therefore, non-linear methods t-SNE and UMAP might outperform PCA and 95 

MDS. 96 

In this study, we visually and quantitatively compared the capabilities of PCA, MDS, t-SNE, and 97 

UMAP in heterogeneity exploration of bulk transcriptome profiling. By visualising and interpreting 98 

71 sizeable datasets of bulk transcriptome profiling, we found that UMAP was superior in preserving 99 

sample level neighbourhood information and maintaining clustering accuracy, thus conspicuously 100 

differentiating batch effects, identifying pre-defined biological groups and identifying new clustering 101 

structures associated with biological features and clinical meaning.  102 

 103 

Result 104 

Overview of the evaluation 105 

The bulk-transcriptome profiling datasets were collected from the Gene Expression Omnibus (GEO) 106 

database within past five years (Table S1). To minimize the cell type effects interacting with our 107 

results which are usually strong and very easy to be identified, we only chose the datasets of human 108 

samples from peripheral blood mononuclear cells (PBMCs) or whole blood for bulk transcriptome 109 

analysis, that are among most frequent cell populations. Datasets with the size less than 100 samples 110 

were excluded in order to generate observable and meaningful clusters. The collection covered a 111 

diverse range of biomedical research including the investigations on disease features such as SLE [23-112 
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29] and influenza infection [30-32], and the evaluation on interventions such as therapies and 113 

vaccination [33-37]. 114 

The research design flowchart is shown in Figure 1a. Among a total collection of 71 datasets based 115 

on the above procedure, there were 41 datasets revealing clustering structures in plots of two-116 

dimensional embedding space by the dimensionality reduction methods PCA, MDS, t-SNE and UMAP. 117 

UMAP reported all clustering (41/71) and, together with t-SNE (37/71), performed significantly better 118 

than PCA (11/71) and MDS (13/71) (Figure 1b). The 41 datasets were classified into three categories 119 

by incorporating available features (Figure 1b). As in Figure 1b, three plots in the two-dimensional 120 

embedding space from the dimension reduction methods showed clusters related to batches (batch 121 

effect) described in studies for these datasets while 9 plots showed clusters related to biological groups 122 

designated by study designs. In addition, 29 plots revealed new clustering not related to batch 123 

information or biological group by study design, suggesting significant sample-to-sample 124 

heterogeneity in bulk transcriptome analysis. We identified the relationship of new clustering 125 

structures with known sample features for 9 plots. The clustering structures of the rest of 20 plots could 126 

result from hidden batch effect or biological features not reported by publications, thus referred to as 127 

new clustering with hidden features (Figure 1b).  128 

With clustering structures generated by PCA, MDS, t-SNE and UMAP, we could evaluate individual 129 

methods9 performance for clustering accuracy, local information preservation, and computational 130 

efficiency. For datasets with clustering structure by batch effect or biological group, we would then 131 

compare the separability of each method in detecting distinct groups. For new clustering structures, 132 

we would investigate the relationships of clustering structures with sample features. Based on these 133 

quantitative and qualitative assessments, we could provide the recommendation of the best performing 134 

method for dimensionality reduction in sizeable bulk transcriptome analysis (Figure 1a).    135 

 136 

Comparison of dimensionality reduction methods by quantitative analysis 137 

Clustering accuracy  138 

The foremost objective of dimensionality reduction for bulk transcriptomic analysis is to 139 

conspicuously distinguish clustering structures of samples which associate biological meaning. We 140 

applied five clustering algorithms (k-means, hierarchical clustering, spectral clustering, Gaussian 141 

mixture model and hdbscan, with details of five algorithms in Table S3) to low-dimensional spaces 142 

projected by dimensionality reduction methods and compared the clustering accuracy. 143 
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The five clustering algorithms were performed on the embedding two-dimensional coordinates of 22 144 

datasets which have available label information for groups (labelled in Table S1). To assess clustering 145 

accuracy of dimensionality reduction methods, we then computed Normalized Mutual Information 146 

(NMI) [38] and Adjusted Rand Index (ARI) [39] for comparing the true group labels and inferred 147 

group labels obtained by clustering algorithms based on the low-dimensional components, and the 148 

lager score indicates better clustering accuracy. UMAP was scored the highest for both NMI and ARI, 149 

no matter what clustering algorithm used, achieving the best accuracy for clustering (Figure 2a and 150 

S1). t-SNE was scored slightly lower than UMAP but well outperformed MDS and PCA (Figure 2a 151 

and S1).  152 

Neighbourhood preserving  153 

We then evaluated the performance of different dimensionality reduction methods in retaining local 154 

information from original datasets, which was assessed by comparing the fidelity of local 155 

neighbourhood structures between the reduced low-dimensional space and the original space using a 156 

Jaccard index (details in 8Methods9) [40] . The Jaccard indexes were computed for 15 neighbours 157 

(Figure 2b) and 30 neighbours (Figure S2), respectively. PCA exhibited the worst performance in 158 

preserving neighbourhood information (averaged 0.19 ± 0.067), followed by MDS (averaged 0.26 ± 159 

0.114). The performance of UMAP (averaged 0.35 ± 0.091) appeared comparable to that of t-SNE 160 

(averaged 0.36 ± 0.095), and both were better than PCA and MDS. Pairwise t-test was performed 161 

between every two methods (Figure 2b), and statistically significant differences were detected 162 

between group means by one-way ANOVA (F(3, 280) = 57.88,  p < 0.001). This was conceivable 163 

since UMAP and t-SNE are designed to utilise local information for dimensionality reduction.  164 

Computational efficiency 165 

We next measured the execution time of each dimensionality reduction method on data with sample 166 

size ranging from 200 to 10,000. The varied scales of data were generated by randomly sampling with 167 

replacement from the three largest datasets (GSE36382, GSE65391 and GSE65907). As shown in 168 

Figure 2c, the variability of consumed time among different datasets was negligible. PCA performed 169 

consistently faster than the other three methods while MDS ran slowest (Figure 2c). For 200 and 500 170 

samples, consumed time was similar between t-SNE and UMAP but UMAP gained an advantage for 171 

data with larger sample sizes. For processing a data with 10,000 samples, UMAP (~3 minutes) was 172 

more than 25-time faster than t-SNE (~ 1.5 hours), although still slower than PCA (~20 seconds) 173 

(Figure 2c). PCA and UMAP appeared more time-efficient than MDS and t-SNE for computing large-174 

sized data.  175 
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Technically, UMAP not only identified more clustering structure in 71 datasets of bulk transcriptome 176 

analysis (Figure 1b), but was also superior to the other three methods for the overall performance by 177 

assessing the three quantitative criteria. We next compared four dimensionality reduction methods for 178 

uncovering biological meaning. 179 

 180 

Comparison of dimensionality reduction methods by qualitative analysis 181 

Identification of batch effects 182 

Batch effects are common in many types of high-throughput sequencing experiments, which are 183 

systematic technical variations introduced by processing samples in different batches [6, 41]. As for 184 

high-throughput sequencing experiments, it is essential to remove unwanted variations in the 185 

transcriptomic analysis by normalisation [42, 43] to avoid biased analysis and distorted results [6]. The 186 

first step is to identify batch effects among samples. PCA is the most used tool, such as by The Cancer 187 

Genome Atlas (TCGA) project [21]. It generates the clustering structure of samples in two-188 

dimensional embedding space to facilitate the visualisation for batch information. Among the 41 189 

datasets with explicit clustering structures, three datasets showed clustering structures related to batch 190 

effects reported by publications (Figure 1b). Each dimensionality reduction method was used to 191 

visualise batch effects for the three datasets (one in Figure 3a and two in S3). UMAP and t-SNE 192 

showed better segregation between samples from different batches. To assess the ability of each 193 

method to separate batch effects in two-dimensional embeddings, we trained random forests to predict 194 

batch effects from sample points in embedding space and calculated the prediction accuracy on held-195 

out data (details in 8Method9). Consistent with the visualisation, UMAP and t-SNE performed better 196 

than MDS and PCA, leading to random-forest accuracies around 90% (Figure 3b). 197 

Validation of biological groups by experimental design 198 

One major purpose of bulk transcriptome analysis is for the DGE analysis between biological groups 199 

defined by experimental design. Visualising the segregation of samples from groups with distinct 200 

biological features by dimensionality reduction is often applied to the validation of group-to-group 201 

distinction. Among the 41 datasets with explicit clustering structures, 9 datasets showed clustering 202 

structures related to biological groups by experimental designs (Figure 1b). We compared four 203 

dimensionality reduction methods in visualizing biological group and found that UMAP and t-SNE 204 

outperformed MDS or PCA in visually separating biological groups in 9 datasets (one in Figure 3c 205 

and eight in S4). To measure the separability of each method in group validation, we again deployed 206 

random forests to train embedding data with group features as labels and computed the prediction 207 
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accuracy on held-out data (details in 8Method9). UMAP achieved the best accuracy (> 80%) than t-208 

SNE (p < 0.05), MDS (p < 0.001) and PCA (p < 0.001) in separating biological groups (Figure 3d).  209 

Uncovering new associations between clustering structures and sample features 210 

Only 12 out of 41 datasets showed clustering structures explained by batch effects or biological groups 211 

(Figure 1b). The appearance of new clustering structures in 29 plots demonstrated significant 212 

heterogeneity existing in bulk transcriptome profiling, which could be efficiently revealed by UMAP. 213 

We next investigated the causes underlying new clustering structures. The clustering structures in 9 214 

datasets were found associated with certain sample features reported by publications (Figure S5). 215 

These features were not used for the classification of sample groups in experimental designs, 216 

suggesting certain biological features with major impacts on sample heterogeneity were not included 217 

in experimental designs or data analyses. A good case was the dataset GSE71220, which was designed 218 

to determine the impact of cigarette smoking (former v.s. current smoker) on gene expression in 219 

peripheral blood of patients with chronic obstructive pulmonary diseases (COPD) [44]. Dimensionality 220 

reduction methods of UMAP and t-SNE generated plots showing clustering structures (right part in 221 

Figure 4a). However, such clustering was not associated with smoking status (Figure 4b). We applied 222 

other sample features including age and disease status to the two-dimensional plots. Surprisingly, the 223 

sample feature of gender demonstrated clear association with clusters in the plots generated by UMAP 224 

and, to less extent, t-SNE (Figure 4c). In the UMAP plot, one cluster was highly enriched of females 225 

(in orange colour) and another cluster was highly enriched by males (in blue colour), with the third 226 

cluster showing the pattern of a mixture (Figure 4c). By deploying spectral clustering (details in 227 

8Methods9), samples were divided into three clusters with distinct gender composition: C1-97% 228 

females, C2-93% males, and C3-mixed (Figure 4d, e). This indicated that the transcriptomes of 229 

samples in this study were highly influenced by gender difference. Indeed, the heatmap of the top 100 230 

differentially expressed genes demonstrated that the clustering of samples was strongly associated with 231 

gender (Figure 4f). Therefore, the heterogeneity uncovered by the dimensionality reduction using 232 

UMAP indicated that the gender difference should have been critically treated as a latent variable in 233 

downstream transcriptomic analysis. 234 

Discovering new associations between clustering structures and hidden features  235 

By dimensionality reduction using UMAP, 41 datasets showed clustering structures in two-236 

dimensional embedding spaces in which the associations with batch effects, biological groups by 237 

experimental designs or specific sample features reported by publications were identified in 21 datasets 238 

(Figure 1b). For the rest 20 datasets, clustering structures might derive from obscure heterogeneity of 239 
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samples, biologically or technically (Figure S6). We made efforts to explore the biological meanings 240 

of clustering structures of these datasets and herein present the dataset GSE121239 as an example to 241 

support the notion that new clustering structures generated by UMAP can reinforce sample 242 

heterogeneity analysis of bulk transcriptome data to reveal important biological meaning.  243 

Dataset GSE121239 originated from the study of systemic lupus erythematosus (SLE) which is the 244 

prototype of systemic autoimmune diseases with highly diverse manifestations in multiple tissues and 245 

organs, such as skin, kidney and lung [45]. As a chronic disease, SLE patients often experience 246 

unpredictable occurrence of disease flares [46]. In order to identify the heterogeneity of SLE patients 247 

and stratify patient groups of disease activity progression, the dataset GSE121239 collected 248 

longitudinal transcriptome profiles of 65 SLE patients with more than three clinical visits and 20 249 

healthy individuals as controls [47]. Data collected at each visit contributed to one sample in the dataset. 250 

Dimensionality reductions plot by UMAP and t-SNE, but not PCA or MDS, demonstrated clearly 251 

separated clusters for SLE patients (in orange colour) and healthy controls (in blue colour) (Figure 5a, 252 

b). In the UMAP plot, we noticed more than one cluster for patient samples (Figure 5c). To understand 253 

the biological meaning of clusters representing subgroups of SLE patients, we examined feature 254 

information of patients reported by the publication including gender and patient ID but found no direct 255 

association with the clustering structure of patient subgroups. Since the samples of patients were 256 

collected longitudinally from multiple clinical visits, we set samples collected at the first clinical visit 257 

as day 1 then labelled subsequently collected samples from the same patient with the period between 258 

two visits. The resulted contour plot showed samples in the chronological order (Figure 5d). 259 

Importantly, the gradient from light to dark orange spreads from the middle of the plot to two sides, 260 

indicating the clustering structure generated by UMAP was associated with the timing evolution of 261 

clinical visits. For example, the bottom-right cluster in Figure 5c represents samples collected from a 262 

subgroup of patients at their late clinical visits, indicated by dark orange in Figure 5d. This intriguing 263 

discovery suggested that new clustering structures revealed by UMAP could facilitate the exploration 264 

of samples9 hidden features. 265 

To generate UMAP plots, there are several options for metric space, with 8euclidean9 distance as 266 

default [18]. We tested 8euclidean9 and another two representative metrics 8canberra9 and 8cosine9 and 267 

observed that the metric 8canberra9 led to more explicit clustering on UMAP projection, with patients9 268 

samples clustered into three subgroups: sG0, sG1, sG2 (Figure 5e).  269 

According to the timing evolution (Figure 5d), samples of sG0 were collected earlier while samples 270 

of sG1 or sG2 were collected later. The clear separation of late collected samples into two clusters of 271 

sG1 and sG2 suggested a biological divergence. To interpret the biological difference between sG1 272 
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and sG2, we applied gene set enrichment analysis  (GSEA) using R package EGSEA [48], resulting in 273 

the top 20 differentially regulated molecular pathways between sG1 v.s. sG0 and sG2 v.s. sG0 (Figure 274 

6b, S7). Comparing to sG0, sG1 and sG2 were common in 6 upregulated pathways (in red colour) and 275 

2 down-regulated pathways (in blue colour). However, 7 upregulated and 5 downregulated pathways 276 

in sG1 showed opposite trends in sG2, suggesting the biological distinction between them.  277 

Given longitudinal sampling of individual patients, we next investigated the visit trajectories of 278 

individual patients. Connection of samples from each patient demonstrated that most patients (N = 279 

47/65) showed one-directional trajectories from sG0 to sG1 or sG0 to sG2 (Figure 6c), in agreement 280 

with the timing evolution of patients9 sample (Figure 5d). When initially admitted to the clinic to take 281 

samples (visit 1, Figure 6d), patients with distinct trajectories had comparable disease activities (SLE 282 

disease activity index (SLEDAI), mean±SD, sG0 to sG1: 2.6±2.71; sG0 to sG2: 2.6±2.85). Widely 283 

used in clinical practice and research, SLEDAI is a global index that was developed as a clinical index 284 

for the assessment of lupus disease activity and larger SLEDAI indicates worse disease conditions [5]. 285 

Importantly, we noticed that the average SLEDAI at the following visits increased for patients with 286 

the trajectory from sG0 to sG1 (in blue colour, Figure 6d), indicating the disease deterioration of these 287 

patients, whereas the average SLEDAI at the following visits decreased for patients with the trajectory 288 

from sG0 to sG2 (in green colour, Figure 6d), indicating the disease improvement of these patients. 289 

The opposite disease progression between two trajectories was also supported by GSEA, which 290 

showed the key pathogenic pathways for SLE including apoptosis [49], type I interferon [50] and type 291 

II interferon [51] were increased in sG1 but decreased in sG2 (Figure 6b). Taken together, the deep 292 

exploration of the biological and clinical meaning of the new clustering structure of dataset 293 

GSE121239 revealed by UMAP supports the future application of dimensionality reduction methods 294 

such as UMAP to reinforce sample heterogeneity analysis of bulk transcriptome data.  295 

 296 

Recommendation 297 

Although PCA is often used in identifying sample-to-sample heterogeneity in bulk transcriptome 298 

analysis, our study demonstrated that the nonlinear dimensionality reduction method UMAP improved 299 

the identification, visualisation and interpretation of clustering structures in sizeable datasets. The 300 

analysis of the dataset GSE121239 suggested that the choice of the parameter 8metric9 in UMAP could 301 

affect the visualisation of clustering structures of UMAP plots (Figure 6a). We then thoroughly 302 

evaluate 8euclidean9, 8canberra9 and 8cosine9 metrics of UMAP in all 71 bulk transcriptomic datasets, 303 

which respectively revealed clustering structures in 41, 44 and 42 datasets and had 39 datasets in 304 

common (Figure 7a). Without any 8metric9 showing a clear advantage, we recommend trying the three 305 
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representative metrics for UMAP in visualising the bulk transcriptomic data and being integrated into 306 

the pipeline for bulk transcriptomic analysis (Figure 7b). The analysis starts with transcript counts as 307 

the input, followed by applying UMAP to visualise potential clustering structures. If no clustering 308 

structure is detected, DGE analysis can be performed. With clustering structures that may correspond 309 

to known or unknown batch effects, the first consideration is to identify and remove batch effects. The 310 

clustering structure should next be tested for the association with biological groups assigned by 311 

experimental design. The explicit association of the clustering structure with biological groups can 312 

ensure robust DGE analysis among different biological groups. If the clustering structure is related to 313 

specific sample features rather than biological groups, that feature should be treated as latent covariates 314 

in DGE analysis. On the other hand, the clustering structure might reveal new biological subgroups or 315 

hidden factor to be analysed separately for DGE analysis. 316 

 317 

Discussion 318 

Sample heterogeneity in bulk transcriptomic data reflects both biological and technical variation 319 

among samples. It is crucial to detect among-sample heterogeneity before DGE analysis for bulk 320 

transcriptomic data so that appropriate analytic methods can be subsequently used to correct batch 321 

effects, remove outliers and distinguish subgroups. Sample heterogeneity analysis by dimensionality 322 

reduction should consider both local and global information of datasets to congregate similar samples 323 

and distinguish different samples. PCA is the current mainstream tool of dimensionality reduction to 324 

visualise and detect among-sample heterogeneity, adopted by widely used analytic packages limma 325 

and edgeR [11, 12]. PCA produces linear combinations of the original variables to generate the 326 

principal components [52], and visualisation is generated by projecting the original data to the first 327 

two principal components, thus PCA plot linearly shows global distance among data points. Similarly, 328 

MDS method places each data point into two-dimensional space such that the between-point distances 329 

are preserved according to the pairwise distance of original data points [53]. Both PCA and MDS focus 330 

more on maintaining global information, which can fail to compactly cluster similar data points and 331 

face a major challenge with the rapid increase in sample sizes of bulk transcriptomic profiling datasets. 332 

On the other hand, t-SNE and UMAP model the pairwise distance by adopting the concept from k-333 

nearest neighbour (kNN) graph [17, 18] whereby two points are connected by an edge if their distance 334 

is among the k-th smallest distances compared to distances to other points [54]. For dimensionality 335 

reduction by t-SNE or UMAP, all pairs of two points have edge weights indicating the probability for 336 

them being connected (connection probability). If the distance between two points is among the k-th 337 

smallest distances compared to distances to other points, the connection probability between these two 338 
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points is high. If the distance between two points is much greater than the k-th smallest distance, the 339 

connection probability between these two points is low [17, 18]. Therefore, t-SNE and UMAP can 340 

efficiently preserve local distance information and cluster similar sample points. For large sample size 341 

in dataset resulting in the quadratic increase of pairwise comparisons, t-SNE and UMAP not only 342 

retain pairwise interaction but also focus on local information, thus outperforming PCA and MDS in 343 

detecting sample heterogeneity. Compared with t-SNE using random initialisation and KL-divergence 344 

object function, UMAP utilises Laplacian Eigenmaps initialisation and cross-entropy object function 345 

[18, 55] which contribute to the global structure preservation. This might explain the overall better 346 

performance of UMAP than t-SNE. We tested three presentative parameters for the distance 8metric9 347 

of UMAP 3 8euclidean9, 8canberra9 and 8cosine9 and found consistent outcomes with only minor 348 

variation (Figure 7a).  349 

Among 71 bulk transcriptome profiling datasets with > 100 samples tested in this study, UMAP and 350 

t-SNE clearly outperformed PCA and MDS in identifying clusters associated with batch effects and 351 

biological groups pre-defined in study designs. It should be noted that, within 41 of 71 datasets that 352 

UMAP identified clustering structures, new fine-scale clustering structures were revealed and 353 

accounted for more than half (29 out of 41) (Figure 1). The important question is whether the new 354 

clustering structures discovered by UMAP represent biological significance. This question was then 355 

addressed in case studies of datasets with new clustering structures. One case is the study that was 356 

initially designed to investigate how smoking influence blood gene expression of patients with COPD 357 

and utilised bulk transcriptomic profiling and DGE analysis (GSE71220 [44]). Intriguingly, the PCA 358 

plot showed no clustering structure while the UMAP plot revealed new clustering structures, which 359 

was related to gender rather than smoking status (Figure 4). This information discovered by 360 

dimensionality reduction using UMAP suggests the gender feature should be treated as an important 361 

latent covariate in DGE analysis. Another example is the study that was designed to stratify patients 362 

with SLE, a highly complex autoimmune disease with heterogeneous clinical presentation, according 363 

to longitudinal disease activity and blood gene expression (GSE121239 [47]). This study calculated a 364 

gene0by0patient correlation matrix computing a stringent Pearson correlation coefficient between gene 365 

expression data and SLEDAI scores across each patient's visits and then selected genes with the highest 366 

absolute correlation values by rank-sum method [47]. Instead of this multiple-step process, dimension 367 

reduction by UMAP revealed the separation of samples by visit timestamp (Figure 5), which enabled 368 

to identify two groups of patients with opposite changes of longitudinal disease activity (Figure 6). 369 

These results thus validate the application of UMAP in dimensionality reduction in stratifying SLE 370 

patients. Using several datasets as examples, we demonstrated that the new clustering structures were 371 
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associated with certain sample features and enabled to uncover unappreciated sample subgroups with 372 

specific biological and clinical features. 373 

In analysing 71 datasets, we demonstrated that UMAP was able to visualise the among-sample 374 

heterogeneity in two-dimensional space. Based on the low-dimensional embedding space of UMAP, 375 

clustering methods were deployed to define clusters of the data points (Figure 4d and Figure 5e). The 376 

biological significance of resulting clusters was validated by subsequent exploration and evaluation 377 

(Figure 4 and Figure 6). For scRNA-seq data, clustering algorithm is generally applied on low-378 

dimensional space, for example in the commonly used scRNA-seq package Seurat [57], a graph-based 379 

clustering algorithm to low dimensional space by PCA projection.  The rationale of applying clustering 380 

method to low-dimensional projected space mainly arises from the curse of dimensionality [56]. When 381 

computing distance (e.g., Euclidean distance) in high-dimensional data, the difference in the distances 382 

between different pairs of samples becomes less precise, which hinders discriminating near and far 383 

points. Thus, applying clustering methods to low-dimensional embedding space is better to define 384 

clusters of data points. Therefore, we suggest that UMAP can be applied as a pre-processing step 385 

before generating clusters from bulk transcriptomic datasets. 386 

Although UMAP has shown significant advantages in detecting among-sample heterogeneity. PCA 387 

has a unique property not present by other methods. PCA compresses the data by top-ranked principal 388 

components and computes the PCA score for each sample. Therefore, it can calculate the variable 389 

weight corresponding to new coordinate system (PCA loadings), which explains the contribution of 390 

each variable to sample points. In contrast, the nonlinear methods, including MDS, t-SNE and UMAP, 391 

do not involve the variable weight such that dimensionality reduction embedding cannot be 392 

immediately explainable by variable weight. This might represent an area for the future improvement 393 

of UMAP or methods of similar kind.  394 

Though commonly used for scRNA-seq, UMAP has been repurposed in large scale genotype datasets 395 

to explore the fine structure and visualise genetic interactions [59, 60]. Based on the quantitative and 396 

qualitative results of the comparison among dimensionality reduction methods, we highly recommend 397 

UMAP as the visualisation tool in the pipeline for bulk transcriptomic profiling and DGE analysis. It 398 

can particularly reinforce sample heterogeneity analysis for datasets with large sample sizes. 399 

 400 

 401 

 402 
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Methods 404 

Datasets 405 

The total RNA datasets were collected from the Gene Expression Omnibus (GEO) database with query 406 

conditions set as follows: the dataset type was expression profiling by array or by high throughput 407 

sequencing; the number of samples ranged from 100 to 10,000; organism was homo sapiens; the 408 

publication date was from 2015/01/01 to 2020/03/01; sample source was PBMC or whole blood. 409 

Applying the query to the GEO database, we gained 214 results. We further manually removed the 410 

datasets in which each group owned less than 100 samples, resulting in 71 datasets.  411 

 412 

Clustering accuracy (NMI, ARI) 413 

For clustering accuracy analysis, we applied five clustering methods to the embedded low-dimensional 414 

space by dimensionality reduction methods. The clustering methods included k-means clustering 415 

(Python function KMeans), hierarchical clustering (Python function AgglomerativeClustering), 416 

spectral clustering (Python function SpectralClustering), hdbscan (Python function hdbscan) and 417 

Gaussian mixture model (Python function GaussianMixture). In these clustering methods, the number 418 

of clusters k was set to be the known number of different groups in the data, except for hdbscan which 419 

is a density-based clustering algorithm (we set the min_cluster_size as 10). We applied the five 420 

clustering methods to the embedded space of 26 datasets with available features for groups. The 421 

retained partitions inferred using the low-dimensional components were compared to the true clusters. 422 

The level of agreement between the clustering partition and the true clusters was measured by two 423 

criteria: the Adjusted Rand Index (ARI) [39] and the Normalized Mutual Information (NMI) [38]. 424 

Given two partitions �	 = 	 {�!, . . . , �"} and � = 	 {�!, . . . , �#},	the ARI and NMI are defined as: 425 

ARI(X, Y) =
3 %&!"' (	*	[3 (-!' )! 3 (/"' )" ] (&')1!"

#

$
[3 (-!' )! 	23 (/"' )" 	]	*	[3 (-!' )! 3 (/"' )" ] (&')1

  and NMI(X, Y)=
'34(5,7)
8(5)28(7) 426 

where �9: =	 1�9 + �:1 is the number of common data points between �9  and �: , �9 = 3 �9:: ,  �: =427 

3 �9:9 , MI(X, Y) is the mutual information between cluster labels �  and � , H(X) and H(Y) are the 428 

entropy function for cluster labelling. We used Python function adjusted_rand_score and 429 

normalized_mutual_info_score to calculate ARI and NMI, respectively.  430 

 431 

Neighbourhood preserving evaluation 432 

The evaluation of neighbourhood preserving is to assess how the reduced low-dimensional space 433 

retains the local information compared with the original high dimensional dataset. For the original 434 

space and embedded space, the k-nearest neighbours (kNNs) for each data point were computed 435 
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respectively (denoted as sets X and Y). The Jaccard index (JI) [40] was used to calculate the 436 

neighbourhood similarity between original and embedded space: ��=|X+Y|/|X*Y| where |;| means set 437 

cardinality, then the average Jaccard index (AJI) across all data points were computed to measure the 438 

neighbourhood preserving.  439 

 440 

Running time 441 

We measured the running time of PCA, MDS, t-SNE and UMAP on a single thread of an Intel Xeon 442 

E5-2698 v4 2.20GHz processor. The running time was determined in R using the <elapsed= (wall clock) 443 

time measurements, which allows for consistent timing across methods. For total-RNA datasets, the 444 

number of samples is moderately large with hundreds of data points. We generated datasets with 445 

sample size ranging from 200 to 10000 by random sampling to evaluate the computation efficiency. 446 

The data were generated by randomly sampling with replacement from the three largest datasets 447 

(GSE36382, GSE65391 and GSE65907). 448 

 449 

Separability of batch effects and biological groups 450 

To evaluate the capability of each dimensionality reduction method in separating the groups by the 451 

embeddings, we first assigned batch labels to 3 datasets and biological group labels to 9 datasets. For 452 

each dataset, we used Python function train_test_split with parameter test_size = 0.3 to divide the 453 

dataset into 70% training set and 30% test set. For each algorithm, a random-forest classifier by Python 454 

function RandomForestClassifier was trained using the group labels as target variable and the 455 

embedding's coordinates as training variables. We then utilized these classifiers to predict cluster 456 

identities on the test set and computed the accuracy of these predictions, thus assessing the ability of 457 

each method to separate groups.  458 

 459 

Statistical test 460 

We applied two-tailed t-test to compare the performance of dimensionality reduction methods. The 461 

frequency difference of categorical variables was examined by �' test. The p-value less than 0.05 is 462 

considered statistically significant. We used R (3.6.3) package limma [11, 13] for differential gene 463 

expression (DGE) analysis. Top 100 differential expressed genes were chosen to be included in the 464 

heatmap among control and experimental groups.  We applied gene set enrichment analysis (GSEA) 465 

by R package EGSEA, where the Molecular Signatures Database (MSigDB) was set as H: hallmark 466 

gene sets [61]. 467 

 468 

Data availability 469 
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The datasets supporting the conclusions of this article are available in Gene Expression Omnibus 470 

repository (https://www.ncbi.nlm.nih.gov) with the GEO accession numbers in Table S1, including 471 

four columns (UMAP, t-SNE, MDS and PCA) showing which feature information explains the 472 

clustering structure of each dataset. 473 

 474 

Code availability 475 

All scripts used for dimensionality reduction and clustering are available through Github 476 

https://github.com/yuImmuGroup/umap_on_bulk_transcriptomic_analysis; differential gene 477 

expression and gene set enrichment analysis are available in 478 

https://github.com/yuImmuGroup/transcriptomic_analysis_DGE_and_GSEA. 479 

 480 

 481 
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Figure Legends 628 

Figure 1. Evaluation overview for four dimensionality reduction methods.  629 

(a) Schematic overview of the evaluation. Bulk transcriptomic datasets were collected from GEO 630 

database, followed by applying four methods to the datasets for visualization. The methods were 631 

evaluated in both technical and biological aspects. Finally, we presented the recommendation on 632 

UMAP for visualization. 633 

(b) Pie chart showing the percentage of datasets by biological explanations for all revealed clustering 634 

structures.  635 

By associating features identified in publications, clustering structures were divided into three 636 

categories: batch effect (coloured green), biological group (coloured orange) and new clustering 637 

(coloured blue). Batch effect was the cluster associated with batch effects. Biological group was related 638 

to experimental design like control and treatment groups, while new clustering was the clusters related 639 

to other predefined features like gender. New clustering was further divided into new clustering with 640 

sample features and new clustering with hidden features by considering available feature information.  641 

 642 

Figure 2.  643 

Quantitative analysis of four dimensionality reduction methods.  644 

(a) Radar plot of clustering accuracy (average NMI score) comparison using five clustering methods 645 

on 22 datasets with cluster labels. The input was the embedded two-dimensional coordinates of 646 

each dimensionality reduction methods. Larger scale denotes better clustering accuracy. 647 

(b) Heatmap for evaluating neighbourhood preserving of each method on 71 datasets. The number of 648 

neighbours is set as 15. The darker the colour is, the better the local information is retained. One-649 

way ANOVA shows significant difference among the four methods (*** p<0.001). R function 650 

heatmap in R package stats was used for Figure 2b. 651 

(c) Running time evaluation of four dimensionality reduction methods with varying sample sizes. Log-652 

transforming of the time was applied. Different sizes of data were generated by sampling with 653 

replacement from three largest datasets respectively. 654 

 655 

Figure 3. Biological explanation of clustering by batch effects and biological group. 656 

(a) Visualization of dataset GSE65391 showing the batch effects (coloured by blue and orange) in 657 

two-dimensional space by dimensionality reduction methods.  658 

(b) Visualization of dataset GSE55447 illustrating biological group by dimensionality reduction 659 

methods. Control group is labelled in blue and trauma group is in orange. 660 
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(c), (d) Classification accuracy on held-out data of random-forest classifiers predicting cluster labels 661 

taking embedded coordinates as input. (c) is for batch effects, while (d) for biological groups. The 662 

average score across datasets is shown, with vertical bars representing s.d.; paired t-test was conducted 663 

on pairwise methods (7 p < 0.05, 77 p < 0.01, 777 p < 0.001) 664 

 665 

Figure 4.  666 

New clustering interpreted by available sample features. 667 

(a)-(c) Visualization of dataset GSE71220 in two-dimensional space by assigning no feature (a), group 668 

labels (b), gender (c).  669 

(d) Spectral clustering on two-dimensional embedded coordinates into three clusters: C1, C2, C3. 670 

(e) Gender proportion among three clusters by �' test showing a significant difference (*** p<0.001). 671 

Male and female are coloured by black and white respectively. 672 

(f) Heatmap of top-100 differentially expressed genes with three clusters C1, C2, C3 and two gender 673 

groups male and female. R function heatmap.2 in R package gplots was used for Figure 4f. 674 

  675 

Figure 5. Discovering new associations between clustering structures and hidden features. 676 

(a), (b) Visualization of dataset GSE121239 in two-dimensional space by assigning no feature (a), 677 

group labels (b). 678 

(c) Patient (SLE) group (coloured orange) showing new clustering structure (sG1, lower right). 679 

(d) Contour plot on patient groups by the order of visiting timestamp. Each data point is associated 680 

with one visiting timestamp. Data points are coloured by the order of visiting time with light colours 681 

for early visits and dark colour for late visits. The code to plot Figure 5d is in Code Availability. 682 

(e) Hierarchical clustering of patient group on two-dimensional embedded coordinates by UMAP with 683 

distance metric as 8euclidean9, 8canberra9, and 8cosine9, respectively. 684 

 685 

Figure 6. UMAP revealed clustering structure explained by clinical traits. 686 

(a) Hierarchical clustering of patient groups on two-dimensional embedded coordinates by UMAP 687 

with metric as 8canberra9. 688 

(b) Histogram illustrating gene set enrichment analysis between sG1 v.s. sG0 and sG2 v.s. sG0 with 689 

top 20 differentially regulated molecular pathways (negative logarithm of the p-value (base 10)). 690 

Colour red denotes upregulation and blue for downregulation. The top two rows are the same 691 

direction of regulation, and the bottom two rows are in the opposite direction. 692 

(c) Visiting trajectories of each patient on UMAP plot with metric = 8canberra9. Each path connected 693 

data points corresponding to one patient with several visits. Data points in pathes were connected 694 
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by visiting timestamp. The light colour denotes early visit and dark colour for late visits. The paths 695 

were mainly divided into two patterns: from sG0 to sG1, from sG0 to sG2.  696 

(d) Line chart of average SLEDAI changing along with visits between sG0 to sG1 and sG0 to sG1. 697 

Both started with average SLEDAI around 2.6; from sG0 to sG1 (coloured by blue) the average 698 

SLEDAI increased, while from sG0 to sG2 (coloured by green) the average SLEDAI decreased. 699 

 700 

Figure 7. 701 

Recommendations for UMAP processing bulk transcriptome datasets. 702 

(a) Venn diagram illustrating the overlap in the number of datasets having clustering structure by the 703 

UMAP plot under three different 8metric9 parameters: 8euclidean9, 8canberra9, and 8cosine9. 704 

(b) The recommendation pipeline for applying UMAP to bulk transcriptome analysis. 705 

 706 
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