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Abstract

The transcriptional regulators of arsenic-induced gene expression remain largely
unknown. Sulfur assimilation is tightly linked with arsenic detoxification. Here we
report that mutant alleles in the SLIMI1 transcription factor are substantially more
sensitive to arsenic than cadmium. Arsenic treatment caused high levels of oxidative
stress in the sliml mutants, and slim1 alleles were impaired in both thiol and sulfate
accumulation. We further found enhanced arsenic accumulation in roots of sliml
mutants. Transcriptome analyses indicate an important role for SLIMI1 in arsenic-
induced tolerance mechanisms. The present study identifies the SLIM1 transcription
factor as an essential component in arsenic tolerance and arsenic-induced gene
expression. Our results suggest that the severe arsenic sensitivity of the s/lim I mutants is

caused by altered redox status.
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Introduction

Many advanced technologies used by modern society rely on heavy metals and arsenic.
These elements are toxic and pose a significant risk to the environment and human
health if consumed. However, unlike animals, plants are often partially tolerant to heavy
metals and arsenic and can accumulate large amounts in diverse tissues [1]. Arsenic is a
highly toxic substance commonly found in anthropogenic wastes (electronics and
fertilizers) and can also be found at high levels in certain rocks, soils, and waters
globally [2-5]. While this toxic metalloid has no recognized role in plant or animal
nutrition, plant-based products are the main entry point for arsenic into the food chain
[6]. Thus, understanding the molecular mechanisms underlying plant uptake, transport,
detoxification, and accumulation of arsenic is vital for enhancing the nutritional value

and safety of our food.

We previously described the development of a plant genetic reporter line that fused the
promoter of a cadmium and arsenic-inducible high-affinity sulfate transporter to firefly
luciferase (pSULTRI;2::LUC) to identify mutants in signaling [7]. A major goal of this
work was to identify the transcriptional regulators mediating rapid arsenic-induced gene
expression in Arabidopsis. This approach was successful in identifying new alleles of
the glutathione biosynthesis genes gamma-glutamylcysteine synthetase (y-ECS) and
glutathione synthetase (GS), as being required for cadmium and arsenic-induced gene
expression [7]. Glutathione is necessary for the synthesis of phytochelatins, which
detoxify many toxic compounds, including cadmium and arsenic, by chelation and

sequestration in the vacuole[1,8—11]. Phytochelatins are short polymers of glutathione
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75  synthesized in the cytosol in response to toxic metal(loid)s. Thus, arsenic exposure can
76  rapidly deplete glutathione levels, creating a high demand for glutathione in plant cells.
77

78  Because the tripeptide glutathione (Glu-Cys-Gly) contains the sulfur-containing amino
79  acid cysteine, the sulfate assimilation pathway is inextricably linked to glutathione

80  biosynthesis. Sulfate assimilation takes oxidized sulfur in the form of sulfate and,

81  through a series of energy-dependent reducing steps, produces sulfide. Due to the

82  toxicity of sulfide, this intermediate quickly reacts with O-acetylserine to produce the
83  amino acid cysteine[12]. Thus, unlike animals, plants do not require exogenous sulfur-
84  containing amino acids and proteins for survival[13]. More importantly, this creates a
85  direct link between the sulfate assimilation pathway and the ability of plants to detoxify
86  arsenic.

87

88  While our luciferase genetic reporter approach has not identified transcriptional

89  regulators of arsenic-induced gene induction to date, a similar reporter gene approach
90 successfully identified a transcriptional regulator of the sulfur deficiency response in
91  Arabidopsis. This genetic screen used the same high-affinity sulfate transporter

92  promoter element fused to the green fluorescent protein (pSULTRI;2::GFP) and

93  identified four allelic mutants in an ethylene insensitive-like transcription factor called
94  Sulfur Limitation 1 (SLIM1) that failed to induce the reporter construct under sulfur

95  limiting conditions [14]. All of the allelic s/im/ mutants identified in this screen resulted
96  in missense mutations altering single amino acid residues [14]. In slimI-1 and sliml-2,

97  high-affinity sulfate uptake was decreased by ~60%, and sulfur-dependent microarray
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analyses on slim1-1 and slim1-2 showed a decrease in the induction of many sulfur
limitation-induced transcripts compared to controls suggesting that SLIMI is a positive

regulator of sulfate uptake and assimilation [14].

While the transcription factors that control arsenic-induced gene expression remain
largely unknown, arsenic exposure is known to rapidly deplete cellular glutathione
levels, increasing the demand for reduced sulfur compounds from the sulfur assimilation
pathway[7,15,16]. A similar situation occurs under sulfur deficiency. As sulfate supply
decreases, cellular levels of cysteine and glutathione become depleted. Thus, because of
the similarities in glutathione depletion and subsequent upregulation of the high-affinity
sulfate transporter SULTR 1,2 under arsenic stress [7] and sulfur limitation [14], we
investigated the hypothesis that SLIM1 plays a role in arsenic-induced transcriptional
responses. Interestingly, we found that slim-1 and slim1-2 seedlings were highly
sensitive to arsenic. Here, we show that under arsenic treatment, s/im/ mutants
accumulate arsenic, experience high levels of oxidative stress, and fail to induce sulfate
uptake and assimilation. Our results suggest that SLIM1 appears to play an important
role in arsenic sensitivity due primarily to its role in regulating sulfur metabolism and

the cellular redox state.

Results
slim] mutants are sensitive to arsenic in root growth assays
In a previous screen for regulators of cadmium and arsenic-induced gene expression

using a pSULTRI;2::LUC reporter construct, we identified new alleles in well-
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121 characterized glutathione biosynthesis genes that play an essential role in cadmium and
122 arsenic detoxification [7]. Because glutathione is a significant sink of reduced sulfur in
123 plants, we hypothesized that the transcriptional regulator of sulfur deficiency, SLIM1,
124  might also play a role in regulating cadmium and arsenic sensitivity in plants. To test
125  this hypothesis, we performed root growth assays to evaluate the sensitivity of the slim!-
126 [ and slimI-2 mutant alleles [14] to cadmium and arsenic (Figure 1A-1D).

127

128  The root lengths of wild-type (WT) (3.06 £ 0.09 cm, n=22), slimI-1 (3.19 £ 0.07 cm,
129 n=19), and slimI-2 (3.10 £ 0.11 cm, n=21) were not different in the control nutrient

130  media (see Methods) [17] without addition of cadmium or arsenic (Figure 1; p=0.99997
131 sliml-1 & p=1.0 sliml-2, one-way ANOVA). When grown on plates containing 30 uM
132 cadmium, WT root growth was inhibited growing only 1.88 + 0.15 cm (n=10). This

133 inhibition was similar to that observed for slim/-1 with a final root length of 1.86 +0.13
134  cm (n=12) and slimI-2 having a root length of 1.82 + 0.11 cm (p=1.0 for slimI-1 &

135  p=0.99998 for slimi-2, n=13) (Figure 1A-1D, Table S1). However, when grown on

136  minimal media plates containing 10 uM arsenite (As (III)), the root length of WT (1.72
137  £0.12 cm, n=14) was longer than both slim1-1 (0.68 + 0.06 cm, p=7x10-9, n=14) and
138  sliml-2 (0.75 £ 0.06 cm, p=1.2x10-6, n=10). These observations suggested that SLIM1
139  is involved in arsenic signaling. Thus, we further investigated possible mechanisms

140  underlying sliml sensitivity to arsenic.

141

142 Arsenic accumulation and antioxidant responses of slim1 mutants
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To determine if arsenic accumulates in the slim/ mutants, we measured root and shoot
arsenic levels using ICP-MS. In As(IIl) treated seedlings, we observed no significant
increase in the accumulation of arsenic in the shoots of slim/-1 (174.8 + 1.97 mg/Kg
DW, n=3) or sliml-2 (189.7 + 3.78 mg/Kg DW, n=3) compared to WT (173.9 £ 4.32
mg/Kg DW, n=3, p=1) (Figure 2A). However, in As(V) treated seedlings, both slim1-1
(309.0 £47.5 mg/Kg DW, n=3, p=0.01) and slimI-2 (253.9 + 19.9 mg/Kg DW, n=3,
p=0.6) accumulated more arsenic in shoots than WT (205.6 + 11.6 mg/Kg DW, n=3),
although the difference was only significant in slim/-1 (Figure 2A). These results

suggest an increased root-to-shoot translocation of As(V) in the slim/ mutants.

In the roots, we found arsenic accumulation in slimI-1 (1420.0 = 281.3 mg/Kg DW,
n=3, p=6.77E-3) and slimI-2 (1473.0 £ 187.9 mg/Kg DW, n=3, p=3.69E-3) compared to
WT (420.1 £ 17.1 mg/Kg DW, n=3) in As(IIl) treated seedlings (Figure 2B, Table S3).
In comparison, there was no difference in root arsenic accumulation in As(V) treated

seedlings (Figure 2B, Table S3).

Because arsenic is known to cause oxidative stress and induce reactive oxygen species
(ROS) production, we also tested the activity of the key antioxidant enzymes peroxidase
(POD) and superoxide dismutase (SOD) in the slim1-1 and slim1-2 mutants. Basal
superoxide dismutase activity in seedlings was similar between WT (70.9 £ 9.65 units/g
FW, n=3), slimI-1 (77.7 £ 9.44 units/g FW, p=1.0, n=3), and slimI-2 (Figure 2C; 75.8 +
4.20 units/g FW, p=1.0, n=3, p=1.0 slim1-1 and p=1.0 slimI-2) grown under control

conditions. When exposed to arsenite (As(IIl)), WT superoxide dismutase increased to
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166  306.2 £ 7.78 units/g FW (n=3) while the superoxide dismutase activity in the slim/

167  mutants increased dramatically to 709.5 + 4.85 units/g FW (p=3.6x10-6, n=3) in slim1-1
168 and 621.1 £ 17.7 units/g FW in slim1-2 (p=2.0x10-8, n=3). Similarly, arsenate (As(V))
169  treatment increased the WT superoxide dismutase activity to 234.8 + 27.2 units/g FW
170  while the slim1-1 superoxide dismutase activity increased to 543.2 + 39.4 units/g FW
171 (p=2.9x10-8, n=3) and the slimI-2 superoxide dismutase activity increased to 492.1 +
172 17.7 units/g FW (p=4.7x10-7, n=3) (Figure 2C, Table S4).

173

174  In seedlings, the peroxidase activity was higher under control conditions in slim1-1

175  (94.8 £5.95 units/g FW, p=0.009, n=3) and slim1-2 (120.6 £ 6.04 units/g FW,

176  p=5.4x10-5, n=3) compared to WT (50.7 £ 1.51 units/g FW, n=3) (Figure 2D). As (III)
177  exposure increased the peroxidase activity in WT to 107.5 + 8.91 units/g FW (n=3)

178  (Figure 2D), while the peroxidase activity in slimI-1 seedlings increased to 173.6 + 1.79
179  units/g FW (p=0.0001, n=3) (Figure 2D). Similar values were observed for As (III)-

180 treated slim1-2 seedlings (139.3 £ 4.49 units/g FW, p=0.10, n=3) (Figure 2D, Table S2).
181  Peroxidase activities showed similar trends under As(V) treatment (Figure 2D, Table
182  S5).

183

184  Decreased shoot glutathione in arsenic-treated slim1-1 and slim1-2

185  To determine if thiol production might also be altered by arsenic treatment in the slim/
186  mutants, we measured root and shoot cysteine and glutathione levels using fluorescence
187  HPLC of seedlings exposed to arsenite (As(IIl)) or arsenate (As(V)) for 48 hours

188  (Figure 3A-3D). Shoot cysteine levels were lower in sliml-1 (10.2 £ 0.5 pmol/mg FW,
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189  p=0.04, n=3) and slimI-2 (12.2 £ 1.0 pmol/mg FW, 0.19, n=3) than WT (23.7 £ 2.7

190 pmol/mg FW, n=3) in control conditions (Figure 3A, Table S6). No clear decrease in
191  the cysteine concentration was observed in response to As(IIl) or As(V) treatment

192  (Figure 3A, Table S6).

193

194  Root cysteine levels were statistically similar for WT, slim1-1, and slim1-2 in control
195  conditions and were not significantly changed by As(III) or As(V) treatments (Figure
196 3B, Table S7; One-way ANOVA, Tukey HSD).

197

198 Under control conditions, shoot glutathione levels were lower in sliml-1 (163.6 £ 24.2
199  pmol/mg FW, n=8) and s/imI-2 (190.2 + 34.4 pmol/mg FW, n=8) than in WT (382.4 +
200  36.2 pmol/mg FW, n=8) (Figure 3C; p=4.99x10-5 for slimI-1 and p=3.9x10-4 for slim1-
201 2). Shoot glutathione levels decreased in WT from 382.4 + 36.2 pmol/mg FW (n=8) in
202  control conditions to 278.1 £+ 23.2 pmol/mg FW (n=3) in the As(III) treatment and 269.4
203 £ 12.2 pmol/mg FW (n=3) in the As(V) treatment (Figure 3C). Similarly, shoot

204  glutathione decreased in the slim I mutants under As(IIl) and As(V) treatments with

205  sliml-1 having only 110.4 + 17.5 pmol/mg FW of glutathione in As(IIl) and 31.4 +1.62
206  pmol/mg FW of glutathione in As(V). Furthermore, slimI-2 had 83.8 + 30.9 pmol/mg
207  FW (n=3) shoot glutathione in As(IIl) treatment and 43.5 £ 14.7 pmol/mg FW (n=3) in
208  As(V) treatment — an 80% decrease compared to control (Figure 3C, Table S8).

209

210  Root glutathione levels decreased under both As(IIl) and As(V) treatments for all

211  genotypes. However, glutathione levels in roots showed no differences between

10
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genotypes within each treatment (Figure 3D, Table S9; One-way ANOVA, Tukey
HSD). In summary, thiol measurements showed that while cysteine and glutathione
levels were not dramatically decreased in the roots of the slim/ mutant alleles compared
to WT (Figure 3B and D), glutathione levels were decreased in shoots of sliml-1 and

slimI-2 compared to WT plants (Figure 3C).

Shoot sulfate and phosphate accumulation in slim I mutants

Arsenic is thought to be actively taken up by phosphate transporters as As(V); however,
once inside plant cells, it is reduced to As(I1II) and can move within plants through
aquaporins [18,19]. Mutants in SLIM1 were previously shown to be impaired in root-to-
shoot translocation of sulfate [14], but the translocation of other anions, including
phosphate, was not reported. Thus, based on the slight arsenic accumulation in shoots of
As(V) treated plants noted by ICP-MS (Figure 2 A and B), we hypothesized that

phosphate transport might also be impaired in the slim/ mutants.

To determine if phosphate and sulfate translocation are impaired in the sl/im/ mutants
under arsenic treatment, we measured sulfate and phosphate accumulation in both roots
and shoots of plants treated with As (V) for 48 hours. Interestingly, shoot phosphate
accumulation was higher in slim1-1 and slim1-2 than WT in all treatments (Figure 4A,
Table S10; p=5x10-6 for sliml-1 and p=0.004 for slimI-2; One-way ANOVA, Tukey

HSD).

11
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Root phosphate accumulation was similar for WT (5.03 + 0.27 nmol/mg FW, n=5),
sliml-1 (4.95 £ 1.07 nmol/mg FW, n=3), and slim1-2 (6.33 = 0.80 nmol/mg FW, n=4) in
control conditions and was not different under As(V) treatment (Figure 4B). Thus, the
enhanced root-vs.-shoot phosphate accumulation observed in slimI-1 and sliml-2
suggests an indirect role for SLIM1 in regulating phosphate and arsenate transport

(Figure 4A, 4B, Table S11).

Furthermore, sulfate accumulation in shoots was impaired in slim-1 (0.73 £ 0.10
nmol/mg FW, p=1.7x10-6, n=5) and slimI-2 (0.61 = 0.20 nmol/mg FW, p=7.3x10-7,
n=5) relative to WT (3.09 £ 0.18 nmol/mg FW, n=5) in control conditions (Figure 4A),
consistent with previous findings [14]. WT seedlings showed a decrease in shoot sulfate
upon As(V) treatment decreasing to 1.86 £+ 0.44 nmol/mg FW (n=5) (Figure 4C, Table

S12, p=0.008, One-way ANOVA, Tukey HSD).

Root sulfate accumulation was similar between WT (2.11 £ 0.14 nmol/mg FW, n=5),
slimlI-1 (1.95 £ 0.43 nmol/mg FW, n=3), and slimI-2 (1.45 £ 0.21 nmol/mg FW, n=4) in
control conditions. Furthermore, WT (2.04 £ 0.16 nmol/mg FW, n=4), sliml-1 (1.72 +
0.13 nmol/mg FW, n=5), and slimI-2 (1.85 £ 0.15 nmol/mg FW, n=3) root sulfate were

not different in the As(V) treatment (Figure 4D, Table S13).

Microarray analyses of slim1 mutants under As treatment

12
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The current model for arsenic uptake and tolerance in plants suggests that arsenic is
taken up from the soil in the form of arsenate (As(V)). Once it has entered the plant, it is
rapidly reduced to arsenite (As(IIl)) by the arsenate reductase HAC1[20]. It has been
proposed that As(II) can be removed from the root by an unidentified efflux
transporter[21]. In rice, the aquaporin LSI1 is known to mediate As(Ill) efflux; however,
additional efflux transporters remain elusive[21]. A recent RNA-seq experiment using a
T-DNA mutant allele of SLIM1 (eil3) did not find misregulation of any aquaporin genes
in the roots of the sl/im/ mutant under control or sulfur deficiency conditions[22]. Thus,
due to the observed arsenic accumulation in the roots of slim/ mutants, we hypothesized
that the elusive As(IIl) efflux transporter, or alternatively an As(IIl) uptake transporter,

might be disrupted in an arsenic-dependent manner in the s/im/ mutant background.

To test this hypothesis and uncover genes disrupted in an arsenic-dependent manner in
the slim1-1 mutant, we performed microarray analyses on WT and slim-1 seedlings
exposed to arsenite for 48 hours. Raw expression values were normalized via the R
‘affy’ package using the Robust Multi-Array Average (RMA) Expression Measure.
Differential gene expression was evaluated using the R package ‘limma’, including a
multiple test correction. We then performed a significance analysis to identify genes
disrupted under arsenic treatment and compared these to previously published putative

targets of SLIM1 obtained by DNA affinity purification sequencing (DAP-seq) [23].

From the microarray analyses, we identified 11 genes significantly differentially

upregulated by arsenic (WT +As vs. sliml-1 + As) (Supplemental Table S14). Ten of

13
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the 11 genes (AT3G49580, AT1G04770, AT1G12030, AT4G04610, AT4G21990,
AT5G24660, AT5G26220, AT5G48850, AT4G20820, AT1G36370) were identified as
putative targets of SLIM1 by DNA affinity purification sequencing (DAP-Seq)
(Supplemental Table S14). Many of the 11 upregulated genes in sliml-1 are associated

with sulfur metabolism.

Genes that appear to be negatively regulated by SLIM1 include CGCT2;1
(AT5G26220), APR1 (AT4G04610) and APR3 (AT4G21990), which were upregulated
in sliml-1 compared to WT in the presence of arsenic (WT +As vs. sliml-1 + As).
APR1 and APR3 are involved in the reduction of sulfate into sulfide [24] and have been
shown to be induced by toxic metal stress [7]. Similarly, the LOW SULFUR 1 (LSU1,
AT3G49580) and LOW SULFUR 2 (LSU2, AT5G24660) genes were expressed at
higher levels in slim1-1 than WT under arsenic treatment (WT +As vs. sliml-1 + As).
Interestingly, Six of the 11 genes (GGCT?2;1, APR3, LSUI, LSU2, SDI1, & SHM?7)
belong to a highly co-regulated cluster of genes that respond to O-acetylserine

treatment[25].

Microarray analyses also identified 10 significantly down-regulated genes under arsenic
treatment compared to WT (WT +As vs. sliml-1 +As) (Supplemental Figure S1)
(p<0.05, Fold Change >2). Only one gene - SULTRI1; 2 (At1G78000) - was identified as
a putative target of SLIM1 by DAP-Seq (Supplemental Table S14). Thus, our analyses
confirm the reported function of SLIM1 as a transcriptional activator of SULTRI,;2 and

show that this role is conserved under arsenic treatment and sulfur deficiency. The
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remaining ten genes are involved in hormone signaling (AT1G63030, AT5G13220 &
AT5G52050), redox regulation (AT3G06590 & AT1G03020), iron homeostasis
(AT3G25190 & AT5G01600), glucosinolate biosynthesis (AT5G23020), ubiquitination
(AT1G24330), and an uncharacterized protein (AT2G17660). Based on their putative
functions, these genes encode stress response-related genes. More experiments are
needed to determine if SLIM1 is a direct transcriptional regulator of these genes under

arsenic stress.

The present transcriptome data suggest that SLIM1 can function as both a transcriptional
enhancer as well as a transcriptional repressor of specific genes in a condition-specific
manner. Furthermore, the present study provides evidence that SLIM1 plays an essential

role in the regulation of sulfur metabolism gene expression in response to arsenic.

Discussion

Plant exposure to arsenic causes rapid changes in gene expression [7,26,27]. However,
the transcription factors that function in arsenic-induced gene expression remain largely
unknown. The few transcriptional regulators that have been identified, such as WRKY6,
WRKY45, and OsARM1 (Arsenite-Responsive Myb1) [27-29], have been implicated in
the regulation of arsenic transporters while regulators of arsenic detoxification remain
unknown. To test the hypothesis that the SLIM1 transcription factor is involved in
arsenic resistance and signaling, we evaluated the sensitivity of sliml-1 and slimlI-2 to
arsenic exposure. We found the slim/ mutants were more sensitive to arsenic than

control plants. Arsenic treatment caused high levels of oxidative stress in the slim/
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mutant alleles based on superoxide dismutase and peroxidase activities. Furthermore,
thiol and sulfate measurements show that s/im/ mutants are impaired in both thiol and
sulfate accumulation. Arsenic treatment did not further decrease sulfate levels in roots.
In contrast, the concentration of the thiol GSH was greatly decreased in slim ] mutant
alleles. Furthermore, peroxidase and superoxide dismutase measurements show that

arsenic treatments cause increased levels of oxidative stress in the s/im/ mutants.

We also observed a slight increase in arsenic accumulation in the shoots of slim1
mutants treated with arsenic. This arsenic accumulation was accompanied by a
significant increase in shoot phosphate translocation in the sl/im/ mutants. Because of
the chemical similarity between phosphate and arsenic oxyanions, future research could
investigate the hypothesis that the misregulation of phosphate transporters may
contribute to the observed increase in shoot arsenic in the slim/ mutants. A recent study
identified mutants in Ethylene Response Factor genes (ERF34 & ERF35) that are
sensitive to both arsenite (As(IIl)) and arsenate (As(V)) [30]. Interestingly, similar to the
slimI mutants, the double erf34erf35 mutants were far less sensitive to cadmium than
arsenic suggesting the arsenic sensitivity is not exclusively due to thiol accumulation.
Furthermore, gene expression studies showed that several phosphate transporters were
down-regulated in erf34erf35 suggesting PHTs may play a role in both As(IIl) and

As(V) sensitivity and/or transport [30].

Thiol measurements confirmed the role of SLIM1 in sulfate metabolism and thiol

production [14,22,31], as slimI mutants contained lower cysteine and glutathione levels
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in shoots than WT. We hypothesized that the weaker cadmium sensitivity of slim/
mutant alleles might be linked to thiol accumulation, but we observed no significant
differences decrease in shoot GSH in the slim/ mutants under Cd treatment
(Supplemental Figure S2). However, SLIM1 upregulates the root-to-shoot transport of
sulfate, which restricts sulfate assimilation mainly to the roots in s/im/ mutants. Root
sulfate levels are maintained by the high-affinity sulfate transporter SULTR1;1, which is
regulated in a SLIM1-independent manner [14]. Thus cysteine and glutathione
biosynthesis can occur in the roots. As described previously, glutathione is essential for
producing phytochelatins —arsenic chelating compounds necessary for detoxification and
storage. The heavy metal cadmium also binds to phytochelatins. Interestingly, recent
research has shown a less dramatic effect of cadmium exposure in s/im/ mutants than
wild-type controls [31], which we have also observed (Figure 1C, D). Thus, the present
study shows that the SLIM1 transcription factor plays a more central role in mediating
arsenic resistance relative to cadmium resistance. A possible hypothesis that may
contribute to this observation is that cadmium can be sequestered in vacuoles via two
independent transport pathways: via phytochelatin transport [8,32] and via thiol-

independent HM A3-mediated cadmium transport [33].

Sulfate measurements confirmed that SLIM1 is a major transcriptional regulator of
sulfate uptake and translocation [14]. Our microarray analyses also identified 11 genes
significantly differentially upregulated by arsenic (Supplemental Table S14), of which
ten of the 11 genes were identified as putative targets of SLIM1 by DNA affinity

purification sequencing (DAP-Seq). Interestingly, nine of these genes are involved in
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sulfur assimilation or redox signaling. One of these genes, GGCT2;1, is involved in
glutathione recycling and has also been implicated in arsenic tolerance[34—36]
Furthermore, six of these sulfur metabolism genes belong to a highly co-regulated
cluster of genes that respond to O-acetylserine treatment [25]. While previous studies
show these genes can regulate sulfur assimilation in a SLIM1 independent manner
[25,37], results from DAP-Seq and microarray results from the current study suggest

SLIM1 may act as a negative regulator of these genes during arsenic stress

Shoot sulfate accumulation was significantly lower in the s/im/ mutants under all
conditions tested. Decreased shoot sulfate was accompanied by an increase in shoot
phosphate in the sl/im/ mutants. Similar anion compensation was noted in the
Arabidopsis phrl mutant, which accumulates higher sulfate levels when grown under
low phosphate conditions indicating crosstalk between phosphate and sulfate transport
[38]. In fact, PHRI has been proposed to act both positively in the regulation of root-to-
shoot sulfate translocation via the sulfate transporter SULTRI;3, and negatively to
repress other sulfate transporters under phosphate deficiency [39]. We did not identify
any significantly misregulated phosphate transporters (PHTS) in our microarray
analyses. One possible explanation is that PHTs belong to a large gene family and
demonstrate a high degree of genetic redundancy. Thus, a small decrease in the
expression of several PHTs may result in measurable changes in phosphate
accumulation without any individual transcript misregulation meeting the stringent
criteria used in our microarray analyses. Xie et al. identified an artificial microRNA

mutant targeting three high-affinity phosphate transporters showing a similar sensitivity
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to arsenite [30]. A recent study showing that sulfate deficiency increases phosphate

accumulation in Arabidopsis further supports this hypothesis [40].

In summary, we show here that the SLIM1 transcription factor plays an important role
in mediating arsenic resistance and in arsenic-induced gene expression. Our results
suggest that the arsenic sensitivity of s/im/ mutants can be explained by decreased thiol
production resulting in increased oxidative stress and in increased arsenic accumulation.
Interestingly, we found that the s/im/ mutant alleles do not show a strong cadmium
sensitivity, consistent with a recent study [31] indicating a difference in the rate-limiting
functions of the thiol synthesis pathway in processing arsenic and cadmium that we
discuss here. We also identify a number of genes regulated by SLIM1 in an arsenic-
dependent manner with DAP-seq data set analyses indicating direct binding of SLIM1 to
arsenic-dependent differentially-expressed genes. Taken together, our data support a
model in which SLIM1 is both a positive and negative regulator of gene expression in

response to arsenic.

Experimental Procedures

Arabidopsis accessions

The WT Arabidopsis thaliana ecotype used in this study is Columbia (Col-0).

The slimI-1 and slimI-2 mutants were generated in the Col-0 genetic background and

were kindly provided by Dr. Akiko Maruyama-Nakashita [14].

Plant Growth Media & Conditions

19


https://doi.org/10.1101/2021.01.12.426316
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426316; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

416  Seeds were surface sterilized by briefly soaking in 70% ethanol before allowing them to
417  dry in a sterile hood. For root growth experiments and enzymatic assay experiments,
418  surface-sterilized seeds were plated on minimal media containing 1/10-strength

419  Hoagland solution, 1% phytoagar (Duchefa, http://www.duchefa.com), pH 5.6. For the
420  microarray experiments, seeds were plated on1/2-strength MS standard medium

421 (M5519; Sigma-Aldrich, http:// www.sigmaaldrich.com) buffered with 1 mm 2-(N-
422  morpholine)-ethanesulphonic acid (MES), 1% phytoagar

423  (Duchefa, http://www.duchefa.com) and the pH was adjusted to 5.6 with 1.0 M KOH.
424  Seeds were then stratified with cold treatment at 4°C for 48 h, and grown under

425  controlled conditions (150 pmol m > s_l, 70% humidity, 16-h light at 21°C/8-h dark at
426  18°C) for the specified time. For toxic metal(loid) treatments, the specified amounts of
427  either cadmium or arsenic were added to the autoclaved base media in a sterile hood
428  prior to pouring the plates. Concentrated stock solutions of cadmium and arsenic were
429 filter-sterilized prior to use.

430

431  Statistical Analyses

432 The root growth, thiol, peroxidase, superoxide, and anion data were all analyzed using
433  one-way ANOVA followed by a Tukey posthoc test to determine significance.

434 Significance groups are indicated in the figures, and key p-values are stated in the text.
435

436

437  Root Length Measurements
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438  For root growth experiments, surface-sterilized seeds of WT, sliml-1, and sliml-2 were
439  plated on minimal media (2.5 mM H;POy4, 5 mM KNO3, 2 mM MgSO,, 1| mM

440 (CaNOs3),, | mM MES, 1% phytoagar pH 5.7) supplemented with 30 uM Cd or 10 uM
441 As (IID) [17]. Plates were placed in the dark two days at 4°C for vernalization and then
442  transferred to a growth chamber. After 7 days of growth, seedlings were photographed,
443  and root length was measured using Image].

444

445  Antioxidant Enzyme Assays

446  Seedling samples were weighed and pulverized in liquid nitrogen after treatment. The
447  powder was dissolved in pre-cooled 50 mM phosphate buffer (pH 7.8) to extract the
448  superoxide dismutase (SOD). The extract was then centrifuged at 12 000g for 10 min,
449  resulting in a crude enzyme supernatant solution. In a separate 10 ml tube, 1.9 ml

450  reaction buffer (50 mM phosphate buffer, pH 7.8, 9.9 mM L-methionine, 57 uM NBT
451  solution, 1 M EDTA-Naj; solution, 0.0044% (w/v) riboflavin) and 0.1 ml enzyme

452  solution were mixed and placed into 250 pmol m-2s-1 light for 20 min. Additionally,
453  another separate 10 ml tube was procured, where the enzyme solution was replaced with
454  water as a control. The reagent was added according to the above steps, where one tube
455  was placed in the light together with the sample, and the other was placed in the dark
456  where the reaction was allowed to complete. The control tube that was placed in the

457  dark was blanked, and the absorbance of each tube was measured at 560 nm. Peroxidase
458  (POD) was extracted in 50 mM phosphate buffer (pH 7.0). 30 ul of enzyme solution was
459  mixed with reaction buffer containing 1.77 mL of 50 mM sodium phosphate buffer (pH

460  7.0), 0.1 mL of 4% guaiacol and 0.1 mL of 1% (v/v) H;O,. Increased absorbance was
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recorded at 470 nm for 1 min. All reported enzyme activities are means of 3-5
biologically independent samples, and error bars indicate the standard error of the mean

(SEM).

Arsenic Determination by ICP-MS

Plant material was harvested, dried at 70°C for at least 48 hours before being aliquoted
and weighed. Approximately 10 mg of dried plant material was mixed with 1 ml of
concentrated nitric acid and digested by heating at 100°C for approximately 30 minutes
or until the solution became transparent and particle-free. These digests were diluted
with deionized water and measured by ICP-MS for total arsenic concentrations at the
University of Cologne Biocenter Mass Spectrometry Platform. All reported ion
quantities are means of 3-5 biologically independent samples, and error bars indicate the

standard error of the mean (SEM).

Anion Extraction and Measurement by lon Chromatography

To quantify the water-soluble anion concentrations (phosphate and sulfate) in plant
tissues, 10-30 mg of fresh tissue was harvested and flash-frozen in liquid nitrogen.
Frozen tissue was then pulverized using a bead mill (make & model), and anions were
extracted by addition of 1000 pL of sterile Milli-Q-water and incubating for 60 minutes
at 4°C while shaking at 1500 rpm. The extraction process was stopped by incubating at
95°C for 15 minutes. Cell debris was removed by centrifugation at 4°C for 15 minutes,
and 100-200uL of supernatant was used for anion exchange chromatography. An

automatic ion analyzer (DX 120, Dionex Corporation, Sunnyvale, CA, United States)
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equipped with an TonPac™ column (AS9-SC, 4 x 250 mm; Dionex, Thermo Fisher
Scientific GmbH; Waltham, MA, United States) was used to separate and quantify the
anions. Anions were eluted with an elution buffer of 2.0 mM Na,CO; and 0.75 mM
NaHCO:s. Ion concentrations were detected using a conductivity detector module (CDM,
Dionex Corporation, CA, United States). All reported anion quantities are means of 3-5
biologically independent samples of tissue pooled from 4-6 individual seedlings (12-30

seedlings in total), and error bars indicate the standard error of the mean (SEM).

Thiol Detection By Fluorescence HPLC

The thiol-containing compounds cysteine and GSH were analyzed using fluorescence
detection HPLC as described by [41]. To analyze the levels of these thiol compounds,
plants were grown on minimal growth media plates for 12 days then transferred to fresh
media plates containing either 20 pM cadmium, 100 uM arsenate, or control minimal
media. To minimize the oxidation of thiol compounds during the extraction, plant
seedlings were flash-frozen in liquid nitrogen immediately after harvesting and then
pulverized using a bead mill and extracted as described by [42]. Thiols were extracted
from homogenized plant material with 1 mL 0.1 M HCI for 40 min at 25°C. After
centrifugation for 5 min at 14,000 g and 4°C, thiols in the supernatant were reduced by
mixing 60 pL of the supernatant with 100 puL 2-(cyclohexylamino)ethanesulfonic acid
(0.25 M, pH 9.4) and 35 uL DTT (10 mM, freshly prepared). The mixture was incubated
at 25°C for 40 min. Thiols were derivatized by adding 5 pLL (25 mM) monobromobimane
(SigmaAldrich, Cat#B4380). Derivatization was stopped by adding 110 pL. methane

sulfonic acid (100 mMm) and clarified by centrifugation for 15 min at 14,000 g and 4°C.
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Forty microliters of the derivatization mix were used for HPLC analysis using the
Dionex Ultimate 3000 HPLC System. Derivatized thiols were separated in a Eurosphere
100-3 C18, 150x4 mm column (Knauer), and were detected by fluorescence detection
with an excitation of 380 nm and emission detection at 480 nm. The peaks of thiol
compounds were identified and quantified by comparison with cysteine and glutathione
standards purchased from Sigma-Aldrich. All reported thiol quantities are statistical
means of 4-5 biologically independent experiments (16-30 seedlings per experiment).

Error bars indicate the standard error of the mean (SEM).

Microarray Analyses

To evaluate transcriptional differences in the slim/ mutants under cadmium and arsenic
stress, we performed microarray analyses. To obtain tissue for the microarray analysis,
plants were grown on Y4 MS plates for 12 days then transferred to fresh media plates
containing either 100 pM cadmium or 20 uM arsenite. Whole seedlings were then
harvested in 2mL Eppendorf tubes, flash-frozen in liquid nitrogen, and stored at -80°C
until further processing. The tissue was subsequently pulverized using a bead mill by
adding three 2.5mm glass beads to each tube and grinding for 15 seconds. RNA was
extracted using the Qiagen RNEasy mini kit (Cat#74104) per the manufacturer’s
instructions (www.qiagen.com). RNA quality was assessed by spectrophotometer and
gel electrophoresis before submission to the University of California, San Diego Gene
Expression Core facility for processing. Results were analyzed using R and the

Bioconductor suite of microarray analytical packages as indicated in the text.
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680
681  Figure 1. Root growth inhibition of sliml mutants grown on cadmium or arsenic-

682  containing media. The slim/-1 and slimI-2 mutant alleles were compared to wild-type
683  controls (WT) grown on control minimal media and media containing 30 uM Cd or 10
684  uM As(III) for 7 days (A - D). Root growth was quantified using ImageJ (one-way

685 ANOVA, Tukey HSD).
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686

687  Figure 2. sliml mutants accumulate arsenic in roots and have high antioxidant
688  activity when exposed to arsenic. s/im/ mutants grown on arsenic-containing media
689  accumulate arsenic in the shoots when grown on As(V) (A) but accumulate arsenic in
690  the roots when grown on As(III) (B). Growth on arsenic-containing media caused an
691 increase in superoxide dismutase (C) enzyme and peroxidase dismutase enzyme (D)

692  activities in both the slim1-1 and slimI-2 mutants compared to WT controls.
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Figure 3. Thiol accumulation of slim1 mutants grown on arsenic. Total shoot

cysteine levels in slim/-1 and slim1-2 compared to WT (A). Total root cysteine levels in
slimlI-1 and slimI-2 compared to WT (B). Total shoot glutathione levels for slim-1 and
slim1-2 compared to WT (C). Total root glutathione levels for WT, slimI-1, and sliml-2

D).
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Figure 4. Anion accumulation in slim1 mutants grown on arsenic. Total shoot
phosphate levels in slim1-1 and slim1-2 compared to WT (A). Total root phosphate
levels in slim1-1 and slim1-2 compared to WT (B). Total shoot sulfate levels for slim1-1
and slimI-2 compared to WT (C). Total root sulfate levels for WT, slim1-1, and slim1-2

D).
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