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Abstract (250 words maximum)

Background: Metabolomics is a powerful and sensitive approach for investigating low molecular weight
metabolite profiles present in rumen biofluids to identify potential roles of metabolites in rumen microbiome
and understanding host-level regulatory mechanisms associated with animal production.

Findings: Rumen samples from sheep grazed on a mixed ryegrass and clover pasture diet, were fractionated
based on molecular weight and analysed using metabolomics and lipidomics to detect the small molecules
present in ovine rumen fluid fractions.

Conclusions: Untargeted metabolomics provides a detailed snapshot of the ovine ruminal fluid metabolome
that can be used as reference for future studies on ovine rumen fluid or as a comparator for other ruminant

species. All data and metadata are available for download in the MetaboLights database.
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Data description

Ruminant livestock are an important component of feeding the growing human population while also being
sources of global greenhouse gas emissions. Rumen microbiota breakdown and convert plant polysaccharides
from feed into energy sources but also result in methane formation that affect ruminant productivity. As such,
characterisation of the low molecular weight metabolites is key to improving our understanding of the rumen
metabolome and our pursuit of developing a system-wide picture of rumen metabolism and biology.
Metabolomics facilitates our ability to rapidly detect hundreds to thousands of metabolites within a single
sample and enables accurate measurement of end-products of complex, genetic, epigenetic and environmental
interactions. While rapid developments in genomics have accelerated our knowledge of rumen biology at the
molecular level [1-8], there has been less work focusing on the low molecular weight molecules that stem
from rumen fermentation of feed, and a complete absence of metabolomics studies on ovine rumen samples
[9-11]. To date, only the bovine rumen fluid has been characterised using metabolomics [12-17].

Moreover, past studies on the rumen metabolome have used a ‘freeze dry/grind/extract/inject’ approach, which
ignores the highly biodiverse ecology that is the rumen, with bacteria, fungi, higher order microbes, plant
material at different stages of breakdown, all encased in a mammalian environment. As such, there is a need
to address these major research and literature gaps as it is the rumen microbial communities that underlie
variations in undesirable methane formation and conversion of feed to useful animal products. The presented
dataset was initially collected to study the metabolic signatures of the ovine rumen with the purpose of
increasing rumen digestibility of various forages and enhancing animal performance. However, significant
challenges exist for analysing ruminal biochemistry and identifying metabolites within the chemically
complex and heterogenous rumen fluid that have been shown to vary greatly based on dietary factors and host
species [1, 10]. Also, an important consideration for metabolome studies is the impact of sample collection
prior to extraction.

As such, we performed an analysis of the rumen metabolome using a newly developed in vitro system, using
different molecular weight cut-off points that represent different fractions of the rumen in vitro and could lead
to better understanding of how different components of the rumen interact. Studies were conducted with an in

vitro simulation of the rumen fermentation using a simple in vitro artificial rumen system of permeable
3
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continuous culture type which would simulate both the removal of end-products of fermentation and flow of
ingesta. Experiments were made to determine the effects of dialysis on the fermentation and microbial
population in the continuous culture. In addition we accounted for the macro components of rumen fluid such
as large degraded plant material associated with the digestion of common fibrous feeds or associated microbial
features and proteins, by obtaining filtrates from dialysis of rumen fluid through membranes with molecular
weight cut-offs of 20 kDa, 8-10 kDa and 100 Da. These three fractions are expected to exclude large tannin-
rich plants extracts and proteins respectively. We then performed metabolomic profiling of the enriched low
molecular weight dialyzed rumen fluid (DRF) fractions to investigate biologically relevant molecules such as
phenolics, phospholipids, amino acids, dicarboxylic acids, fatty acids, volatile fatty acids, glycerides,
carbohydrates and cholesterol esters. In this study, an untargeted approach using multimodal methodologies
including polar and semi-polar-retention chromatographies coupled to mass spectrometry, have been used to

detect a wide-range of metabolites encompassing polar, semi-polar compounds and lipid species. A basic

overview of the datasets and experimental design is shown in Figure 1.

Sample collection

Whole rumen content samples were collected post-mortem and pooled from five sheep grazing ad libitum on
aryegrass and clover pasture diet. Approximately 5 L of rumen contents were collected from each animal and
filtered through 4 layers of cheesecloth (335 um mesh) to remove plant material present in the digesta (Figure
1A). The pH of each sample was determined immediately after sampling using a pH meter (6.6). Filtered
rumen fluid was immediately processed so as not to alter the fermentative capacity of the ruminal fluid.
Sampling was conducted in December 2018 at AgResearch Grasslands Research Centre (Palmerston North,
New Zealand) under the approval of the AgResearch Grasslands Animal Ethics Committee.

A method was developed to acquire DRF fractions that enrich for different sized components of rumen fluid
for metabolomics and lipidomics analyses (Figure 1B). DRF fractions based on three molecular weight cut-
offs (MWCO) were obtained using Spectra-Por® Float-A-Lyzer® G2 dialysis systems with MWCOs of 20
kDa (2726931, Sigma-Aldrich), 8-10 kDa (Z726605, Sigma-Aldrich) and 100 Da (Z727253, Sigma-Aldrich).
Briefly, the pooled and filtered RF contents were mixed and divided evenly into four Schott gas washing

bottles fitted with Drechsel type head connections (GL 14, DURAN). The analytical conditions in vitro were
4
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identical to the animal’s physiological conditions, with a temperature of 39°C in anaerobic conditions obtained
by insufflating a stream of Ox-free CO; inside the container with constant mixing. To obtain each DRF
fraction, five replicates of each individual MWCO apparatus were dialyzed against 10mL of autoclaved
phosphate buffered saline (1x PBS, 137 mM NaCl, 2.7 mM KCI, 8 mM Na,HPOs, and 2 mM KH>PO4, pH
7.4) buffer overnight at 39°C in a water bath. Additional containers were prepared in parallel containing only
PBS and distilled water as control treatments. The principles of dialysis allowed small compounds to migrate
from high concentration (rumen fluid contents) to low concentration (dialysis systems containing saline). DRF

fractions and samples of digesta obtained from different phases of the process were snap-frozen in liquid

nitrogen and kept on dry ice until long term storage at -80°C.

Extractions for non-targeted metabolomic and lipidomic profiling

A combination of multiple metabolomics platforms, or ‘multi-modal’ strategy, were applied in parallel to the
same batch of biological samples to facilitate interpretation and provide extensive coverage of the rumen
metabolome. To comprehensively elucidate metabolites associated with DRF fractions we used: hydrophilic
interaction liquid chromatography (HILIC) to separate polar compounds [18], ultra-high-performance liquid
chromatography (UHPLC) with C18 chromatography to separate semi-polar compounds and a modified C18
phase (CSH-C18) for separation of lipids [19-20]. LC-MS analyses were done in both positive and negative
electrospray ionization (ESI) modes.

Upon collection, the DRF fractions were snap-frozen in liquid nitrogen, transferred to glass vials and stored
at -80°C until further use. Seven aliquots of 1 mL each (5 for analyses and two for quality control samples
(QQO)) of each sample were transferred into microcentrifuge tubes. The two QC samples (12) were pooled and
solely used for monitoring sample degradation, tracking run-order effects within a batch, and quality control
purposes only. Briefly, samples were thawed overnight at 4°C, centrifuged (4°C, 11,000 x g) for 10 min and
200 pL of supernatant transferred into a 2 mL micro-centrifuge tube. An extraction solvent comprising 800
uL of chloroform:methanol (1:1; v/v) was added and samples were vortexed (1 min). Sample was diluted with
water (400 uL), again vortexed (1 min), and centrifuged (4°C, 11,000 x g) for 15 min.

To evaluate the lipidome of the DRF fractions, the lower, organic layer was taken (200 puL), evaporated to

dryness under a continuous stream of nitrogen (30°C), and the dried extract was reconstituted in 200 puL of
5
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chloroform:methanol (2:1; v/v), with 16:0 d3i-18:1 phosphatidylethanolamine (10 pg/mL) as an internal
standard. Finally, samples were vortexed (1 min), and 100 uL was transferred to a glass insert in an auto-
sampler vial for LC-MS analysis. For polar and semi-polar compounds, hydrophilic interaction liquid
chromatography (HILIC) and C18 chromatography were applied, respectively [18-20]. For these analyses,
supernatants (200 pL) were mixed with 800 uL of pre-chilled chloroform:methanol (1:1, v/v) containing 1.6
mg/L of internal standards; d5-Ltryptophan, d4-citric acid, d10-leucine, d2-tyrosine, d35-stearic acid, d5-
benzoic acid, 13C2-glucose, and d7-alanine. Two aliquots of the upper aqueous layer (200 uL) was taken and

evaporated as above, then reconstituted in 200 uL of the extraction solvents (acetonitrile:water containing

0.1% formic acid;1:1 for HILIC and 1:9 for C18, v/v).

Chromatography and mass spectrometry spectral acquisition

The chromatographic gradient and other conditions were selected to detect metabolites over a wide polarity
range for the non-targeted LC-MS and lipid analyses as previously described [18-20]. For semi-polar
compounds, C18 conditions were set as described [18], with extract (2 pL) injected into a 100 mm X 2.1 mm
Thermo Hypersil Gold C18 column with 1.9 um particle size and eluted over a 16 min gradient with a flow
rate of 400 puL/min. The mobile phase was a mixture of water with 0.1% formic acid (solvent A), and
acetonitrile with 0.1% formic acid (solvent B). Chromatographic gradient and other LC-MS conditions have
been previously described [20-21]. For polar compounds, HILIC conditions were set as described [18], with
extract (2 uL) injected onto a 100 mm X 2.1 mm ZIC-pHILIC column with 5 um particle size and eluted over
17 min with solvent gradient from 97% solvent A (1 min), 97%-70% solvent A (1-12 min), 70-10% solvent
A (12-14.5 min) to 10% solvent A (14.5-17 min). Mobile phase solvent A was a mixture of acetonitrile with
0.1% formic acid, solvent B was a mixture of water with 16 mM ammonium formate and flowrate was 250

uL/min. Chromatographic gradient and other LC-MS conditions have been previously described [18, 22].

C18 and HILIC column effluents were connected to a high-resolution mass spectrometer (Exactive
Orbitrap™, ThermoFisher Scientific, Waltham, MA, USA) mass spectrometer with electrospray ionization,
and lipid analysis was conducted on a Q-Exactive quadrupole-high resolution mass spectrometer

(ThermoFisher Scientific, Waltham, MA, USA). Both full and data dependent MS? (ddMS?) scans were
6
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collected in profile data acquisition mode. For full scan mode, a mass resolution setting of 35,000 was set to
record a mass range of m/z 200-2000 with a maximum trap fill time of 250 ms. In ddMS?, MS? measurements
are activated when a set peak intensity threshold is achieved. For ddMS? scan mode, the same mass resolution
setting was maintained with a maximum trap fill time of 120 ms. The isolation window of selected MS! scans
was + 1.5 m/z with a normalized collision energy of 30. Samples were run in both positive and negative
ionization modes separately. Positive ion mode parameters were as follows: spray voltage, 4.0 kV; capillary
temperature, 275 °C; capillary voltage, 90 V; tube lens 120 V. Negative ion mode parameters were as follows:
spray voltage, -2.5 kV; capillary temperature, 275 °C; capillary voltage, -90 V; tube lens, -100 V. The nitrogen
source gas desolvation settings were the same for both modes (arbitrary units): sheath gas, 40; auxiliary gas,
10; sweep gas, 5.
Pooled sample from all conditioned DRF fraction extracts and internal standards were used as controls and
samples were run in randomised order to avoid bias due to any inherent variation due to run order. Blank
subtraction was applied after internal standard correction. To verify and maintain data quality, the QC sample
was injected once every 10 samples. Retention time, signal intensity, and mass error of the internal standard

were constantly monitored during the runs. Fragmentation data on approximately 4 samples in total per

1onization mode (positive and negative) were used for identification of metabolite ions/classes.

Data quality, processing and analysis

The MS raw data files (Thermo .raw files) were converted to mzXML files using MSConvert function of
ProteoWizard' " [23]. These files were uploaded to XCMS Online [24, 25] with suitable parameters for data
processing including peak detection, retention time alignment, profile alignment, isotope annotation, grouping
and gap filling. The type of adducts generated are dependent on the solvents and eluting conditions used. For
this study, [M+H] and [M+NH4] adducts were selected for negative and positive ionisation modes,
respectively. Finally, a retention time tolerance of 0.1 min, and mass error tolerance of + 10 ppm was allowed.
The filtered matrix was normalized by a QC based on LOESS signal correction (QC-RLSC) [26] and all
subsequent m/z features and retention times with relative standard deviation (RSD) [27] > 0.3 were eliminated.

The resultant data matrix was used for downstream statistical analyses and metabolite identification.
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Statistical analysis and metabolite annotation/identification

Following the metabolomics data analysis pipeline [28] the raw data from the lipid stream (Figure 1C) were
processed and subjected to peak detection, quality control, statistical analysis, and the annotation of the top-
ranking peaks. Metabolite features were initially confirmed by matching source-induced fragmentation data
against standard MS/MS spectra in the METLIN MS? spectral library using XCMS Online [24, 25]. The fold
change (FC > 2), p-value (p < 0.1), and intensity thresholds (10,000) were defined for peak ranking. The
identity of significantly differential peaks were further determined from the exact mass composition using
HMDB [29], LIPID MAPS [30], METLIN [31], LMDB [9], BMDB [32], PubChem and mzCloud databases.
All the raw data and metadata reported in this study have been submitted to the MetaboLights database
(www.ebi.ac.uk/metabolights) with the study identifier: MTBLS1717.

Because only sparse fragmentation spectra (MS?) were collected for positive mode ions and no MS? for
negative mode ions in this study we used the correlation structure of peaks for metabolite identification. Unless
otherwise specified, we carried out MSI (Metabolomics Standards Initiative) level 2 metabolite annotation as
evidenced by chromatographic behaviour, library search based on accurate mass (< 10 ppm error) and the
match of isotopic peak intensity between experimental and theoretical spectrum. For peaks detected with C18
and HILIC chromatography, after the filtering of '*C isotopic peaks and early eluting peaks (<1 min) were left
for annotation in each ionization stream. Metabolite identification was based on the match of m/z ([M+H],
[M+NH4] or [M-H], within 5 ppm accuracy) with those in HMDB and in-house retention time databases. In
addition, we exploited the correlation structure of top peaks to assist the annotation. Correlated peaks due to
coelution may indicate the similar physio-chemical properties of eluting metabolites, or in-source fragment
ions [28]. The presence of in-source fragment peaks helps identify the molecular ion for correct annotation of
the metabolite. On the other hand, peak correlation among biological samples may suggest the origin of
candidate metabolites, providing additional information for annotation.

For identifying significant peaks (FDR corrected p value < 0.05, FC > 1) as potential ovine rumen fluid
metabolome products, a multi-group comparison between the DRF fractions (20 kDa, 8-10 kDa, 100 Da)
groups was performed (Figure 2). An initial prerequisite for our downstream comparative multimodal analyses

was that a peak needed to be present in > 3 of the 5 biological replicates across each of the metabolomics
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analysis. Univariate hypothesis testing of the peaks was carried out using Permutation ANOVAs as
implemented in the ImPerm R package version 2.1 [33] with 1 million permutations, after which, significance
was determined for the peaks using the Benjamini-Hochberg FDR-corrected [34] p-values (FDR p value <
0.05). A total of 675 peaks for HILIC, 144 C18 peaks and 454 peaks for LIPID were identified (both positive
and negative modes), with putative annotations were quantified with varying degree of confidence. Overall, a
combined total of 1,454 peaks were identified with no putative annotations across all metabolomics analyses.

This suggests that further correlation between metabolomics and transcriptomics data to aid in identifying

these unknown features is required and is an area of active research.

Potential use

To date, the majority of published ruminant metabolomics work has focused on the processed bovine ruminal
fluid metabolome [14-17]. This suggests that greater consideration needs to be given to what components are
extracted for understanding the rumen, as otherwise we may be mainly extracting the degraded pasture
metabolome that is destined for return to the pasture, rather than what is available for uptake by the ruminant.
Our data provides the first view of the ovine rumen metabolome during in vitro continuous culture using
multimodal metabolomics. Separating out these components has important implications for both animal
production, health assessment, disease diagnosis, bioproduct characterization and biomarker discovery for
desirable economic traits (e.g. feed efficiency and milk production). In particular, this dataset will serve as a
valuable resource in greenhouse gas research for future mining of targets for interventions that target the
rumen, including the search for potential vaccine candidates for methane mitigation strategies.

Future studies can employ various comprehensive bioinformatics tools to mine the presented raw data for any
metabolites that may be present in the ovine rumen, rather than focus solely on the top list of peaks. Also,
future efforts can employ more updated and curated databases such as BMDB [32] where Bovine rumen
metabolites and spectral data are archived. In addition, data can also be compiled for the other common
livestock species namely goats, horses and pigs, to compose an open access, comprehensive livestock
metabolome database focused on extremely low molecular weight metabolites. When coupled with the advent

of sequencing technologies and availability of genomic and transcriptomic datasets, is a comprehensive
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approach for the identification of these peaks and characterization of the ovine rumen fluid molecular
mechanisms.

Different molecular weight cut-offs to separate out different components of the rumen led to different
metabolite and lipid profiles. While this finding is not surprising, it does suggest that fractionating rumen fluid
prior to extraction and analysis could give insights into metabolic activity occurring in relation to the solid
residue present compared to the more active liquid matrix. Biologically this may be due to the effects of
dialysis on fermentation patterns and subsequent shifts in microbial population during continuous culture. For
example, accumulation of particular fermentation end-products and variations in the composition of volatile
fatty acids (VFAs) can rapidly inhibit microbial growth within the rumen. Further work is needed to establish
whether higher molecular weight fractions can provide insight into the degree of breakdown of plant material.
This study is the first report of the ovine rumen metabolome, and while due to the collection method used is
not directly comparable to previously published bovine rumen metabolomes, represents an important reference
dataset. Our dataset should enable microbiologists and livestock researchers to conduct more targeted
metabolomic studies to identify low molecular weight features where further metabolome coverage is
required. Further research will be done on this prototype model, including additional data mining and
annotation of the metabolite features and investigation into the microbial community profiles within the

different dialysis contents using next-generation sequencing technology, as these microbiome signatures may

have critical implications into various livestock metabolomics applications.
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Availability of supporting data and materials

Supporting data and corresponding metadata are available in the MetaboLights database [MTBLS1717].
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m/z: Mass-to-charge ratio; MS: Mass spectrometry; DRF: Dialyzed rumen fluid; MWCO: Molecular weight
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330 Figure 1. Overview of the experimental design and multimodal metabolomics workflow. (A) New
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331  Zealand pasture-fed sheep used for this study. (B) Dialyzed rumen fluid (DRF) fractions were obtained under
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333  Schematic of a multimodal metabolomics workflow and statistical analyses used to process data integrated
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Figure 2. Unique and mutual peaks identified across all metabolomics streams. Venn diagrams compiling
the Polar (HILIC), semi-polar (C18) and lipids (LIPID) molecular features determined from all DRF fractions
for the negative (A) and positive (B) streams. UpsetR barchart analysis (C) showing the presence and numbers
of quantified molecular features determined for different metabolomics streams (i.e. HILIC (orange), C18
(purple) and LIPID (blue). Connected dots display shared molecular features between or among metabolomics
streams, and the total number of features in a particular metabolomics stream is shown in the set size. Coloured
connected dots indicate the molecular features identified in both the negative (-) and positive (+) extractions

of a metabolomics stream.
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