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Abstract (250 words maximum) 9 

Background: Metabolomics is a powerful and sensitive approach for investigating low molecular weight 10 

metabolite profiles present in rumen biofluids to identify potential roles of metabolites in rumen microbiome 11 

and understanding host-level regulatory mechanisms associated with animal production. 12 

Findings: Rumen samples from sheep grazed on a mixed ryegrass and clover pasture diet, were fractionated 13 

based on molecular weight and analysed using metabolomics and lipidomics to detect the small molecules 14 

present in ovine rumen fluid fractions. 15 

Conclusions: Untargeted metabolomics provides a detailed snapshot of the ovine ruminal fluid metabolome 16 

that can be used as reference for future studies on ovine rumen fluid or as a comparator for other ruminant 17 

species. All data and metadata are available for download in the MetaboLights database.18 
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Data description 19 

Ruminant livestock are an important component of feeding the growing human population while also being 20 

sources of global greenhouse gas emissions. Rumen microbiota breakdown and convert plant polysaccharides 21 

from feed into energy sources but also result in methane formation that affect ruminant productivity. As such, 22 

characterisation of the low molecular weight metabolites is key to improving our understanding of the rumen 23 

metabolome and our pursuit of developing a system-wide picture of rumen metabolism and biology. 24 

Metabolomics facilitates our ability to rapidly detect hundreds to thousands of metabolites within a single 25 

sample and enables accurate measurement of end-products of complex, genetic, epigenetic and environmental 26 

interactions. While rapid developments in genomics have accelerated our knowledge of rumen biology at the 27 

molecular level [1-8], there has been less work focusing on the low molecular weight molecules that stem 28 

from rumen fermentation of feed, and a complete absence of metabolomics studies on ovine rumen samples 29 

[9-11]. To date, only the bovine rumen fluid has been characterised using metabolomics [12-17].  30 

Moreover, past studies on the rumen metabolome have used a 8freeze dry/grind/extract/inject9 approach, which 31 

ignores the highly biodiverse ecology that is the rumen, with bacteria, fungi, higher order microbes, plant 32 

material at different stages of breakdown, all encased in a mammalian environment. As such, there is a need 33 

to address these major research and literature gaps as it is the rumen microbial communities that underlie 34 

variations in undesirable methane formation and conversion of feed to useful animal products. The presented 35 

dataset was initially collected to study the metabolic signatures of the ovine rumen with the purpose of 36 

increasing rumen digestibility of various forages and enhancing animal performance. However, significant 37 

challenges exist for analysing ruminal biochemistry and identifying metabolites within the chemically 38 

complex and heterogenous rumen fluid that have been shown to vary greatly based on dietary factors and host 39 

species [1, 10]. Also, an important consideration for metabolome studies is the impact of sample collection 40 

prior to extraction.  41 

As such, we performed an analysis of the rumen metabolome using a newly developed in vitro system, using 42 

different molecular weight cut-off points that represent different fractions of the rumen in vitro and could lead 43 

to better understanding of how different components of the rumen interact. Studies were conducted with an in 44 

vitro simulation of the rumen fermentation using a simple in vitro artificial rumen system of permeable 45 
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continuous culture type which would simulate both the removal of end-products of fermentation and flow of 46 

ingesta. Experiments were made to determine the effects of dialysis on the fermentation and microbial 47 

population in the continuous culture. In addition we accounted for the macro components of rumen fluid such 48 

as large degraded plant material associated with the digestion of common fibrous feeds or associated microbial 49 

features and proteins, by obtaining filtrates from dialysis of rumen fluid through membranes with molecular 50 

weight cut-offs of 20 kDa, 8-10 kDa and 100 Da. These three fractions are expected to exclude large tannin-51 

rich plants extracts and proteins respectively. We then performed metabolomic profiling of the enriched low 52 

molecular weight dialyzed rumen fluid (DRF) fractions to investigate biologically relevant molecules such as 53 

phenolics, phospholipids, amino acids, dicarboxylic acids, fatty acids, volatile fatty acids, glycerides, 54 

carbohydrates and cholesterol esters. In this study, an untargeted approach using multimodal methodologies 55 

including polar and semi-polar-retention chromatographies coupled to mass spectrometry, have been used to 56 

detect a wide-range of metabolites encompassing polar, semi-polar compounds and lipid species. A basic 57 

overview of the datasets and experimental design is shown in Figure 1. 58 

Sample collection 59 

Whole rumen content samples were collected post-mortem and pooled from five sheep grazing ad libitum on 60 

a ryegrass and clover pasture diet. Approximately 5 L of rumen contents were collected from each animal and 61 

filtered through 4 layers of cheesecloth (335 μm mesh) to remove plant material present in the digesta (Figure 62 

1A). The pH of each sample was determined immediately after sampling using a pH meter (6.6). Filtered 63 

rumen fluid was immediately processed so as not to alter the fermentative capacity of the ruminal fluid. 64 

Sampling was conducted in December 2018 at AgResearch Grasslands Research Centre (Palmerston North, 65 

New Zealand) under the approval of the AgResearch Grasslands Animal Ethics Committee.  66 

A method was developed to acquire DRF fractions that enrich for different sized components of rumen fluid 67 

for metabolomics and lipidomics analyses (Figure 1B). DRF fractions based on three molecular weight cut-68 

offs (MWCO) were obtained using Spectra-Por® Float-A-Lyzer® G2 dialysis systems with MWCOs of 20 69 

kDa (Z726931, Sigma-Aldrich), 8-10 kDa (Z726605, Sigma-Aldrich) and 100 Da (Z727253, Sigma-Aldrich). 70 

Briefly, the pooled and filtered RF contents were mixed and divided evenly into four Schott gas washing 71 

bottles fitted with Drechsel type head connections (GL 14, DURAN). The analytical conditions in vitro were 72 
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identical to the animal9s physiological conditions, with a temperature of 39℃ in anaerobic conditions obtained 73 

by insufflating a stream of O2-free CO2 inside the container with constant mixing. To obtain each DRF 74 

fraction, five replicates of each individual MWCO apparatus were dialyzed against 10mL of autoclaved 75 

phosphate buffered saline (1× PBS, 137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 2 mM KH2PO4, pH 76 

7.4) buffer overnight at 39℃ in a water bath. Additional containers were prepared in parallel containing only 77 

PBS and distilled water as control treatments. The principles of dialysis allowed small compounds to migrate 78 

from high concentration (rumen fluid contents) to low concentration (dialysis systems containing saline). DRF 79 

fractions and samples of digesta obtained from different phases of the process were snap-frozen in liquid 80 

nitrogen and kept on dry ice until long term storage at -80ºC. 81 

Extractions for non-targeted metabolomic and lipidomic profiling  82 

A combination of multiple metabolomics platforms, or 8multi-modal9 strategy, were applied in parallel to the 83 

same batch of biological samples to facilitate interpretation and provide extensive coverage of the rumen 84 

metabolome. To comprehensively elucidate metabolites associated with DRF fractions we used: hydrophilic 85 

interaction liquid chromatography (HILIC) to separate polar compounds [18], ultra-high-performance liquid 86 

chromatography (UHPLC) with C18 chromatography to separate semi-polar compounds and a modified C18 87 

phase (CSH-C18) for separation of lipids [19-20]. LC-MS analyses were done in both positive and negative 88 

electrospray ionization (ESI) modes.  89 

Upon collection, the DRF fractions were snap-frozen in liquid nitrogen, transferred to glass vials and stored 90 

at -80°C until further use. Seven aliquots of 1 mL each (5 for analyses and two for quality control samples 91 

(QC)) of each sample were transferred into microcentrifuge tubes. The two QC samples (12) were pooled and 92 

solely used for monitoring sample degradation, tracking run-order effects within a batch, and quality control 93 

purposes only. Briefly, samples were thawed overnight at 4℃, centrifuged (4℃, 11,000 × g) for 10 min and 94 

200 µL of supernatant transferred into a 2 mL micro-centrifuge tube. An extraction solvent comprising 800 95 

µL of chloroform:methanol (1:1; v/v) was added and samples were vortexed (1 min). Sample was diluted with 96 

water (400 µL), again vortexed (1 min), and centrifuged (4℃, 11,000 × g) for 15 min.  97 

To evaluate the lipidome of the DRF fractions, the lower, organic layer was taken (200 µL), evaporated to 98 

dryness under a continuous stream of nitrogen (30℃), and the dried extract was reconstituted in 200 µL of 99 
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chloroform:methanol (2:1; v/v), with 16:0 d31-18:1 phosphatidylethanolamine (10 µg/mL) as an internal 100 

standard. Finally, samples were vortexed (1 min), and 100 µL was transferred to a glass insert in an auto-101 

sampler vial for LC-MS analysis. For polar and semi-polar compounds, hydrophilic interaction liquid 102 

chromatography (HILIC) and C18 chromatography were applied, respectively [18-20]. For these analyses, 103 

supernatants (200 µL) were mixed with 800 µL of pre-chilled chloroform:methanol (1:1, v/v) containing 1.6 104 

mg/L of internal standards; d5-Ltryptophan, d4-citric acid, d10-leucine, d2-tyrosine, d35-stearic acid, d5-105 

benzoic acid, 13C2-glucose, and d7-alanine. Two aliquots of the upper aqueous layer (200 µL) was taken and 106 

evaporated as above, then reconstituted in 200 µL of the extraction solvents (acetonitrile:water containing 107 

0.1% formic acid;1:1 for HILIC and 1:9 for C18, v/v). 108 

Chromatography and mass spectrometry spectral acquisition 109 

The chromatographic gradient and other conditions were selected to detect metabolites over a wide polarity 110 

range for the non-targeted LC-MS and lipid analyses as previously described [18-20]. For semi-polar 111 

compounds, C18 conditions were set as described [18], with extract (2 µL) injected into a 100 mm × 2.1 mm 112 

Thermo Hypersil Gold C18 column with 1.9 µm particle size and eluted over a 16 min gradient with a flow 113 

rate of 400 μL/min. The mobile phase was a mixture of water with 0.1% formic acid (solvent A), and 114 

acetonitrile with 0.1% formic acid (solvent B). Chromatographic gradient and other LC-MS conditions have 115 

been previously described [20-21]. For polar compounds, HILIC conditions were set as described [18], with 116 

extract (2 µL) injected onto a 100 mm × 2.1 mm ZIC-pHILIC column with 5 µm particle size and eluted over 117 

17 min with solvent gradient from 97% solvent A (1 min), 97%-70% solvent A (1-12 min), 70-10% solvent 118 

A (12-14.5 min) to 10% solvent A (14.5-17 min). Mobile phase solvent A was a mixture of acetonitrile with 119 

0.1% formic acid, solvent B was a mixture of water with 16 mM ammonium formate and flowrate was 250 120 

µL/min. Chromatographic gradient and other LC-MS conditions have been previously described [18, 22]. 121 

 122 

C18 and HILIC column effluents were connected to a high-resolution mass spectrometer (Exactive 123 

Orbitrap™, ThermoFisher Scientific, Waltham, MA, USA) mass spectrometer with electrospray ionization, 124 

and lipid analysis was conducted on a Q-Exactive quadrupole-high resolution mass spectrometer 125 

(ThermoFisher Scientific, Waltham, MA, USA). Both full and data dependent MS2 (ddMS2) scans were 126 
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collected in profile data acquisition mode. For full scan mode, a mass resolution setting of 35,000 was set to 127 

record a mass range of m/z 200-2000 with a maximum trap fill time of 250 ms. In ddMS2, MS2 measurements 128 

are activated when a set peak intensity threshold is achieved. For ddMS2 scan mode, the same mass resolution 129 

setting was maintained with a maximum trap fill time of 120 ms. The isolation window of selected MS1 scans 130 

was ± 1.5 m/z with a normalized collision energy of 30. Samples were run in both positive and negative 131 

ionization modes separately. Positive ion mode parameters were as follows: spray voltage, 4.0 kV; capillary 132 

temperature, 275 °C; capillary voltage, 90 V; tube lens 120 V. Negative ion mode parameters were as follows: 133 

spray voltage, -2.5 kV; capillary temperature, 275 °C; capillary voltage, -90 V; tube lens, -100 V. The nitrogen 134 

source gas desolvation settings were the same for both modes (arbitrary units): sheath gas, 40; auxiliary gas, 135 

10; sweep gas, 5.  136 

Pooled sample from all conditioned DRF fraction extracts and internal standards were used as controls and 137 

samples were run in randomised order to avoid bias due to any inherent variation due to run order. Blank 138 

subtraction was applied after internal standard correction. To verify and maintain data quality, the QC sample 139 

was injected once every 10 samples. Retention time, signal intensity, and mass error of the internal standard 140 

were constantly monitored during the runs. Fragmentation data on approximately 4 samples in total per 141 

ionization mode (positive and negative) were used for identification of metabolite ions/classes. 142 

Data quality, processing and analysis 143 

The MS raw data files (Thermo .raw files) were converted to mzXML files using MSConvert function of 144 

ProteoWizard™ [23]. These files were uploaded to XCMS Online [24, 25] with suitable parameters for data 145 

processing including peak detection, retention time alignment, profile alignment, isotope annotation, grouping 146 

and gap filling. The type of adducts generated are dependent on the solvents and eluting conditions used. For 147 

this study, [M+H] and [M+NH4] adducts were selected for negative and positive ionisation modes, 148 

respectively. Finally, a retention time tolerance of 0.1 min, and mass error tolerance of ± 10 ppm was allowed. 149 

The filtered matrix was normalized by a QC based on LOESS signal correction (QC-RLSC) [26] and all 150 

subsequent m/z features and retention times with relative standard deviation (RSD) [27] > 0.3 were eliminated. 151 

The resultant data matrix was used for downstream statistical analyses and metabolite identification.  152 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.01.10.426113doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426113
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Statistical analysis and metabolite annotation/identification 153 

Following the metabolomics data analysis pipeline [28] the raw data from the lipid stream (Figure 1C) were 154 

processed and subjected to peak detection, quality control, statistical analysis, and the annotation of the top-155 

ranking peaks. Metabolite features were initially confirmed by matching source-induced fragmentation data 156 

against standard MS/MS spectra in the METLIN MS2 spectral library using XCMS Online [24, 25]. The fold 157 

change (FC g 2), p-value (p < 0.1), and intensity thresholds (10,000) were defined for peak ranking. The 158 

identity of significantly differential peaks were further determined from the exact mass composition using 159 

HMDB [29], LIPID MAPS [30], METLIN [31], LMDB [9], BMDB [32], PubChem and mzCloud databases. 160 

All the raw data and metadata reported in this study have been submitted to the MetaboLights database 161 

(www.ebi.ac.uk/metabolights) with the study identifier: MTBLS1717. 162 

Because only sparse fragmentation spectra (MS2) were collected for positive mode ions and no MS2 for 163 

negative mode ions in this study we used the correlation structure of peaks for metabolite identification. Unless 164 

otherwise specified, we carried out MSI (Metabolomics Standards Initiative) level 2 metabolite annotation as 165 

evidenced by chromatographic behaviour, library search based on accurate mass (< 10 ppm error) and the 166 

match of isotopic peak intensity between experimental and theoretical spectrum. For peaks detected with C18 167 

and HILIC chromatography, after the filtering of 13C isotopic peaks and early eluting peaks (<1 min) were left 168 

for annotation in each ionization stream. Metabolite identification was based on the match of m/z ([M+H], 169 

[M+NH4] or [M-H], within 5 ppm accuracy) with those in HMDB and in-house retention time databases. In 170 

addition, we exploited the correlation structure of top peaks to assist the annotation. Correlated peaks due to 171 

coelution may indicate the similar physio-chemical properties of eluting metabolites, or in-source fragment 172 

ions [28]. The presence of in-source fragment peaks helps identify the molecular ion for correct annotation of 173 

the metabolite. On the other hand, peak correlation among biological samples may suggest the origin of 174 

candidate metabolites, providing additional information for annotation. 175 

For identifying significant peaks (FDR corrected p value f 0.05, FC g 1) as potential ovine rumen fluid 176 

metabolome products, a multi-group comparison between the DRF fractions (20 kDa, 8-10 kDa, 100 Da) 177 

groups was performed (Figure 2). An initial prerequisite for our downstream comparative multimodal analyses 178 

was that a peak needed to be present in g 3 of the 5 biological replicates across each of the metabolomics 179 
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analysis. Univariate hypothesis testing of the peaks was carried out using Permutation ANOVAs as 180 

implemented in the lmPerm R package version 2.1 [33] with 1 million permutations, after which, significance 181 

was determined for the peaks using the Benjamini-Hochberg FDR-corrected [34] p-values (FDR p value < 182 

0.05). A total of 675 peaks for HILIC, 144 C18 peaks and 454 peaks for LIPID were identified (both positive 183 

and negative modes), with putative annotations were quantified with varying degree of confidence. Overall, a 184 

combined total of 1,454 peaks were identified with no putative annotations across all metabolomics analyses. 185 

This suggests that further correlation between metabolomics and transcriptomics data to aid in identifying 186 

these unknown features is required and is an area of active research. 187 

Potential use 188 

To date, the majority of published ruminant metabolomics work has focused on the processed bovine ruminal 189 

fluid metabolome [14-17]. This suggests that greater consideration needs to be given to what components are 190 

extracted for understanding the rumen, as otherwise we may be mainly extracting the degraded pasture 191 

metabolome that is destined for return to the pasture, rather than what is available for uptake by the ruminant. 192 

Our data provides the first view of the ovine rumen metabolome during in vitro continuous culture using 193 

multimodal metabolomics. Separating out these components has important implications for both animal 194 

production, health assessment, disease diagnosis, bioproduct characterization and biomarker discovery for 195 

desirable economic traits (e.g. feed efficiency and milk production). In particular, this dataset will serve as a 196 

valuable resource in greenhouse gas research for future mining of targets for interventions that target the 197 

rumen, including the search for potential vaccine candidates for methane mitigation strategies.  198 

Future studies can employ various comprehensive bioinformatics tools to mine the presented raw data for any 199 

metabolites that may be present in the ovine rumen, rather than focus solely on the top list of peaks. Also, 200 

future efforts can employ more updated and curated databases such as BMDB [32] where Bovine rumen 201 

metabolites and spectral data are archived. In addition, data can also be compiled for the other common 202 

livestock species namely goats, horses and pigs, to compose an open access, comprehensive livestock 203 

metabolome database focused on extremely low molecular weight metabolites. When coupled with the advent 204 

of sequencing technologies and availability of genomic and transcriptomic datasets, is a comprehensive 205 
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approach for the identification of these peaks and characterization of the ovine rumen fluid molecular 206 

mechanisms. 207 

Different molecular weight cut-offs to separate out different components of the rumen led to different 208 

metabolite and lipid profiles. While this finding is not surprising, it does suggest that fractionating rumen fluid 209 

prior to extraction and analysis could give insights into metabolic activity occurring in relation to the solid 210 

residue present compared to the more active liquid matrix. Biologically this may be due to the effects of 211 

dialysis on fermentation patterns and subsequent shifts in microbial population during continuous culture. For 212 

example, accumulation of particular fermentation end-products and variations in the composition of volatile 213 

fatty acids (VFAs) can rapidly inhibit microbial growth within the rumen. Further work is needed to establish 214 

whether higher molecular weight fractions can provide insight into the degree of breakdown of plant material. 215 

This study is the first report of the ovine rumen metabolome, and while due to the collection method used is 216 

not directly comparable to previously published bovine rumen metabolomes, represents an important reference 217 

dataset. Our dataset should enable microbiologists and livestock researchers to conduct more targeted 218 

metabolomic studies to identify low molecular weight features where further metabolome coverage is 219 

required. Further research will be done on this prototype model, including additional data mining and 220 

annotation of the metabolite features and investigation into the microbial community profiles within the 221 

different dialysis contents using next-generation sequencing technology, as these microbiome signatures may 222 

have critical implications into various livestock metabolomics applications. 223 
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Availability of supporting data and materials 224 

Supporting data and corresponding metadata are available in the MetaboLights database [MTBLS1717]. 225 
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  329 
Figure 1. Overview of the experimental design and multimodal metabolomics workflow. (A) New 330 

Zealand pasture-fed sheep used for this study. (B) Dialyzed rumen fluid (DRF) fractions were obtained under 331 

anaerobic rumen conditions (39℃ and CO2) using dialysis systems at three molecular weight cut-offs. (C) 332 

Schematic of a multimodal metabolomics workflow and statistical analyses used to process data integrated 333 

from multiple analytical approaches. 334 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.01.10.426113doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426113
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

 335 
Figure 2. Unique and mutual peaks identified across all metabolomics streams. Venn diagrams compiling 336 

the Polar (HILIC), semi-polar (C18) and lipids (LIPID) molecular features determined from all DRF fractions 337 

for the negative (A) and positive (B) streams. UpsetR barchart analysis (C) showing the presence and numbers 338 

of quantified molecular features determined for different metabolomics streams (i.e. HILIC (orange), C18 339 

(purple) and LIPID (blue). Connected dots display shared molecular features between or among metabolomics 340 

streams, and the total number of features in a particular metabolomics stream is shown in the set size. Coloured 341 

connected dots indicate the molecular features identified in both the negative (-) and positive (+) extractions 342 

of a metabolomics stream. 343 
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