

1 **XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end**
2

3 Veronica Farmer^{1*}, Göker Arpağ^{1*}, Sarah Hall¹, and Marija Zanic^{1,2,3}

4 ¹Department of Cell and Developmental Biology

5 ²Department of Chemical and Biomolecular Engineering

6 ³Department of Biochemistry

7 Vanderbilt University, Nashville, TN

8 * these authors contributed equally to this work

9 Correspondence to M. Zanic: marija.zanic@vanderbilt.edu

10
11 **ABSTRACT**

12
13
14 The GTP-tubulin cap is widely accepted to protect microtubules against catastrophe. The GTP-
15 cap size is thought to increase with the microtubule growth rate, presumably endowing fast-
16 growing microtubules with enhanced stability. It is unknown what GTP-cap properties permit
17 frequent microtubule catastrophe despite fast growth. Here, we investigate microtubules grown
18 *in vitro* in the presence and absence of the microtubule polymerase XMAP215. Using EB1 as a
19 GTP-cap marker, we find that GTP-cap size increases regardless of whether growth
20 acceleration is achieved by increasing tubulin concentration or by XMAP215. In spite of the
21 increased mean GTP-cap size, microtubules grown with XMAP215 display increased
22 catastrophe frequency, in contrast to microtubules grown with more tubulin, for which
23 catastrophe is abolished. However, microtubules polymerized with XMAP215 have large
24 fluctuations in growth rate and EB1 intensity; display tapered and curled ends; and undergo
25 catastrophe at faster growth rates and with higher EB1 end-localization. Our results underscore
26 the role of growth irregularities in overall microtubule stability.

27
28
29 **INTRODUCTION**

30
31
32 Microtubules are cytoskeletal polymers essential for cell motility, cell division, and intracellular
33 transport. A key property of microtubules is that they are highly dynamic, allowing dramatic
34 remodeling of the microtubule network to form cellular structures such as the mitotic spindle.
35 The dynamics of individual microtubules are characterized by 'dynamic instability'- stochastic
36 switching between phases of growth and shrinkage through transitions known as catastrophe
37 and rescue (Mitchison and Kirschner, 1984). The standard model of dynamic instability implies
38 that the presence of a stabilizing 'GTP-tubulin cap' protects a growing microtubule from
39 undergoing a catastrophe. Namely, microtubules polymerize by incorporation of GTP-bound
40 $\alpha\beta$ -tubulin heterodimers, followed by the hydrolysis of GTP to GDP in β -tubulin subunits within
41 the microtubule polymer. The balance between the GTP-tubulin dimer addition and subsequent
42 GTP hydrolysis results in a cap consisting of GTP-tubulin dimers at the growing microtubule
43 end. The process of GTP hydrolysis triggers conformational changes in the tubulin dimer,
44 rendering the GDP-tubulin lattice inherently unstable. The loss of the GTP-cap exposes the
45 unstable GDP-tubulin lattice, thus triggering rapid microtubule depolymerization (Mitchison and
46 Kirschner, 1984)(Desai and Mitchison, 1997).

47
48 The inability to directly visualize the GTP-cap has made its investigation challenging. Previous
49 studies found that even a small nucleotide cap, consisting of just a few GTP-tubulin layers, can
50 be sufficient to stabilize a growing microtubule end (Drechsel and Kirschner, 1994)(Strothman et

51 al., 2019). Furthermore, an increase in the GTP-cap size, which may occur as a result of an
52 increase in microtubule growth rate, is typically associated with prolonged microtubule lifetime.
53 Along those lines, early work demonstrated that increasing the microtubule growth rate by
54 increasing the tubulin concentration *in vitro* is accompanied by a decrease in the catastrophe
55 frequency (Walker et al., 1988). In recent years, microtubule-associated EB proteins, which
56 display comet-like localization at growing microtubule ends (Bieling et al., 2007), have been
57 established as a marker for the GTP-cap due to their recognition of the nucleotide state of
58 tubulin in the microtubule polymer (Zanic et al., 2009)(Maurer et al., 2012)(Zhang et al., 2015).
59 *In vitro* studies investigating EB localization have revealed that increasing microtubule growth
60 rate by increasing tubulin concentration correlates with larger EB comets (Bieling et al., 2007;
61 Strothman et al., 2019). Additionally, microtubules with brighter EB comets were more stable
62 against catastrophe induced by tubulin dilution (Duellberg et al., 2016). These studies provide
63 further evidence that the suppression of catastrophe at faster growth rates may be a
64 consequence of a larger GTP-cap.
65

66 In contrast to microtubules polymerized with purified tubulin *in vitro*, microtubules in cells can
67 simultaneously display fast growth rates and high catastrophe frequency (Rusan et al.,
68 2001)(Mimori-Kiyosue et al., 2005)(Akhmanova and Steinmetz, 2008)(Akhmanova and
69 Steinmetz, 2015). In cells, microtubule dynamics are tightly regulated by a myriad of
70 microtubule-associated proteins (MAPs). Fast microtubule growth rates can be attributed to the
71 action of microtubule polymerases, the most prominent of which are members of the conserved
72 XMAP215 family (Gard and Kirschner, 1987)(Brouhard et al., 2008)(Gard et al., 2004)(Slep,
73 2009)(Al-Bassam and Chang, 2011). On its own, XMAP215 increases microtubule growth rates
74 up to 10-fold (Vasquez et al., 1994; Brouhard et al., 2008), while a combination of XMAP215
75 with EB1 synergistically promotes up to a 30-fold increase in microtubule growth rates, matching
76 the fast growth rates observed in cells (Zanic et al., 2013). Surprisingly, although increasing
77 growth rates by tubulin alone *in vitro* is accompanied by low catastrophe frequency, the
78 significant increase in microtubule growth rate with XMAP215 was not accompanied by a
79 suppression of catastrophe (Vasquez et al., 1994)(Zanic et al., 2013). Importantly, the effect of
80 XMAP215 on the size of the GTP-cap is not known.
81

82 In this study, we investigate how XMAP215-promoted microtubule growth can simultaneously
83 be fast and highly dynamic, displaying frequent microtubule catastrophes. First, we directly
84 show that increasing tubulin concentration in the presence of EB1 increases microtubule growth
85 rate and EB1 comet size, while simultaneously suppressing microtubule catastrophe frequency.
86 Next, we add XMAP215 and demonstrate that XMAP215-driven increase in microtubule growth
87 rate is accompanied by an increase in catastrophe frequency, as well as by an increase in EB1
88 comet size and brightness. Thus, the XMAP215-driven increase in catastrophe frequency is not
89 a consequence of the GTP-cap size reduction. Rather, we demonstrate that XMAP215
90 increases microtubule growth fluctuations and induces tapered and curled microtubule ends.
91 Our results suggest that XMAP215-induced destabilization of the growing microtubule end
92 ultimately promotes microtubule catastrophe.
93
94

95 RESULTS AND DISCUSSION

96 Increasing the microtubule growth rate by increasing tubulin concentration correlates 97 with an increase in GTP-cap size and suppression of microtubule catastrophe

98
99 100 To directly investigate the relationship between microtubule growth rate, catastrophe frequency,
101 and GTP-cap size, we used an established assay for reconstitution of microtubule dynamics *in*

102 *vitro* (Gell et al., 2010). Dynamic microtubule extensions were polymerized from GMPCPP-
103 stabilized microtubule seeds using a range of tubulin concentrations (12 - 60 μ M), and imaged
104 with total internal reflection fluorescence (TIRF) microscopy (Figure 1A). The parameters of
105 microtubule dynamics were determined using kymograph analysis (Zanic, 2016). To determine
106 the size of the GTP-cap, we included 200 nM EB1-GFP in all conditions, and measured the
107 intensity of EB1 comets at growing microtubule ends over a range of microtubule growth rates.
108 The increase in microtubule growth rate achieved with tubulin titration was accompanied by a
109 simultaneous suppression of microtubule catastrophe frequency (Figure 1B), consistent with
110 studies using tubulin alone (Walker et al., 1988). In addition, increasing microtubule growth
111 rates resulted in a linear increase in the average EB1-comet intensity (Figure 1C), consistent
112 with previous reports (Bieling et al., 2007). Thus, our measurements directly establish an
113 inverse correlation between the GTP-cap size and the microtubule catastrophe frequency, when
114 increase in growth rate is achieved by increasing tubulin concentration in the presence of EB1
115 (Figure 1D). This finding is consistent with a model in which faster microtubule growth leads to a
116 larger GTP-cap, which in turn provides enhanced protection against microtubule catastrophe.
117

118 **Increasing the microtubule growth rate using XMAP215 results in a simultaneous
119 increase in microtubule catastrophe frequency**

120 In cells, fast microtubule growth rates are achieved through the action of polymerases and other
121 MAPs, including XMAP215 and EB1 (Akhmanova and Steinmetz, 2015). Interestingly, previous
122 *in vitro* studies with XMAP215, either alone or in combination with EB1, reported that XMAP215-
123 mediated increase in growth rate was not accompanied by a suppression of microtubule
124 catastrophe frequency (Zanic et al., 2013; Vasquez et al., 1994). To investigate the relationship
125 between microtubule catastrophe and microtubule growth rate in the presence of XMAP215, we
126 quantified microtubule dynamics over a range of XMAP215 concentrations (3.13 - 200 nM) in
127 the background of 20 μ M tubulin and 200 nM EB1-GFP (Figure 2A). As expected, the
128 microtubule growth rate increased as a function of XMAP215 concentration (Figure 2B). The
129 increase in microtubule growth rate was accompanied by more frequent microtubule
130 catastrophe events, even with the lowest XMAP215 concentration used (Figure 2C). This
131 relationship between microtubule growth rate and catastrophe frequency in the presence of
132 XMAP215 is in stark contrast to the one observed when growth rates were increased using
133 tubulin titration (Figure 2D). Notably, XMAP215 led to a simultaneous increase in both growth
134 rate and catastrophe frequency even in the absence of EB1 (Figure S1), demonstrating that the
135 observed increase in catastrophe frequency can be directly attributed to XMAP215.
136

137 **Promotion of catastrophe by XMAP215 is not achieved through a reduction in the GTP-
138 cap size**

139 One possible explanation for the observed increase in catastrophe frequency is that XMAP215
140 may be directly reducing the size of the protective GTP-cap at the growing microtubule end.
141 While a linear increase in GTP-cap size with microtubule growth rate is well established for the
142 tubulin titration (Figure 1C)(Bieling et al., 2007)(Strothman et al., 2019), whether the GTP-cap
143 size increases when growth rate is increased by XMAP215 is not known. Our measurements of
144 EB1 intensity with XMAP215 titration revealed a direct correlation between growth rate and EB1
145 intensity (Figure 3A). This finding suggests that increasing microtubule growth rate by XMAP215
146 also results in a larger GTP-cap size, similar to what was observed when the growth rate was
147 increased using higher tubulin concentrations (Figure 1C).
148

149 To directly compare the mean GTP-cap size of microtubules grown in the presence or absence
150 of XMAP215, we next performed growth-rate-matching experiments. We found that growth rates
151

153 achieved with 60 μ M tubulin and 200 nM EB1-GFP could be matched using 20 μ M tubulin, 200
154 nM EB1-GFP and 12.5-25 nM XMAP215 (Figure 3B). To precisely compare the EB1 comet
155 sizes, we generated averaged comet intensity profiles for each of the two conditions, following a
156 previously established approach (see Methods)(Bieling et al., 2007). Surprisingly, we found that
157 both the total intensity and the decay length of the EB1 comets were larger in the presence of
158 XMAP215 (Figure 3C), in spite of the significantly higher catastrophe frequency in the XMAP215
159 condition when compared to the tubulin control ($0.32 \pm 0.04 \text{ min}^{-1}$, SEM, N=57 and $0.005 \pm$
160 0.005 min^{-1} , SEM, N=0 in the presence and absence of XMAP215, respectively). This finding
161 directly demonstrates that promotion of microtubule catastrophe by XMAP215 is not a result of a
162 decrease in the mean GTP-cap size.

163

164 **XMAP215 increases growth rate fluctuations and induces tapered microtubule ends**

165

166 Our growth-rate-matching experiments provided an excellent dataset for a direct comparison of
167 microtubule growth characteristics in the presence and absence of XMAP215. While the mean
168 growth rates in two conditions were matched, we wondered whether the fluctuations in
169 microtubule growth rate may differ between the two conditions. To investigate this possibility, we
170 tracked microtubule growth and determined deviations from the mean velocity using linear
171 regression (Figure 4A). We found that the sum of squared residuals (SSR) was significantly
172 higher in the presence of XMAP215 ($0.02 \pm 0.01 \text{ } \mu\text{m}^2/\text{s}$, mean \pm SD, N=90) than in the tubulin
173 control conditions ($0.013 \pm 0.007 \text{ } \mu\text{m}^2/\text{s}$, mean \pm SD, N=103) (Figure 4A), despite no difference
174 in the mean growth rate (Figure S2A). This result was further corroborated by the mean squared
175 displacement (MSD) analysis of the growing microtubule end positions in the presence and
176 absence of XMAP215 (Figure S2B). Accompanying the increase in growth rate fluctuations, we
177 additionally saw increased fluctuations in EB1 intensity in the presence of XMAP215 (Figure
178 4B), consistent with a previous study correlating the fluctuations in EB intensity with microtubule
179 growth rate (Rickman et al., 2017). Thus, we conclude that microtubules polymerizing with
180 XMAP215 display a higher degree of growth rate variability than those polymerizing at the same
181 growth rates in the absence of XMAP215.

182

183 Interestingly, our high spatiotemporal-resolution tracking of EB1-GFP localization at microtubule
184 ends polymerized with XMAP215 also revealed a range of comet morphologies over time
185 (Movie and Figure 4C). Canonical EB localization has been previously described as a single
186 peak of fluorescence that exponentially decays away from the direction of microtubule growth
187 (Bieling et al., 2007), hereafter referred to as a 'full comet' (Figure 4C, left). However, in the
188 presence of XMAP215, we observed frequent incidences of EB1 comets which appeared to split
189 into two distinct intensity peaks, displaying a leading and a lagging comet, both of which were
190 still growing in the original direction of growth (Figure 4C, center). Subsequent to comet splitting,
191 we occasionally observed the lagging comet catching up to the leading comet, a phenomenon
192 previously termed a 'tip repair' event (Aher et al., 2018)(Doodhi et al., 2016). Furthermore, we
193 observed that a large number of split comet events led to a 'curled comet' morphology (Figure
194 4C, right). Curled comets were defined by the leading comet growing away from the original
195 growth direction, resulting in the leading part of the polymer to bend. Quantification of the comet
196 morphologies in the growth-rate-matching experiments revealed that microtubules polymerized
197 with XMAP215 were six times more likely to display a tapered end (either split or curled comet)
198 when compared to those grown at the same growth rate without XMAP215 (increase from 14 in
199 the absence, to 85 in the presence of XMAP215 out of 110 comets quantified for each condition,
200 Figure 4D). Given that the growth rates were the same between the control and XMAP215
201 conditions, these observations suggest that the increase in the frequency of tapered microtubule
202 ends is a direct consequence of XMAP215.

203

204 **Microtubules grown with XMAP215 undergo catastrophe at faster growth rates and with**
205 **more EB1 remaining**
206

207 Our results thus far suggest that XMAP215 disrupts the structural integrity of the GTP-cap by
208 inducing fluctuations in microtubule growth and promoting tapered microtubule ends. We
209 hypothesized that these disruptions make microtubules more prone to catastrophe. To gain
210 insight into the process of GTP-cap loss leading to catastrophe, we compared microtubule end
211 position and EB1 intensity during catastrophe events using 0 nM and 25 nM XMAP215
212 conditions (in the background of 12 μ M tubulin and 200 nM EB1-GFP), which both displayed
213 robust catastrophe frequencies. We observed that microtubules polymerized in the absence of
214 XMAP215 experienced a slowdown in growth rate prior to the onset of catastrophe,
215 accompanied by a decrease in EB1 intensity (Figure 5A top). Previous work investigating
216 tubulin-dilution-induced catastrophe found that a minimum of 29% occupancy in EB1 binding
217 sites was necessary for protection against catastrophe (Duellberg et al., 2016). Similarly, we
218 found that for spontaneously-occurring catastrophe in the absence of XMAP215, $25 \pm 7\%$
219 (mean \pm SD, N=26) of EB1 binding sites remained occupied at the time of catastrophe (Figure
220 5B, Figure S3). In contrast, although microtubules polymerized in the presence of XMAP215
221 also experienced a slowdown prior to catastrophe (Figure 5A bottom), the switch to catastrophe
222 occurred at comparatively faster growth rates (Figure 5C). Additionally, in the presence of
223 XMAP215, microtubules underwent catastrophe with $38 \pm 17\%$ (mean \pm SD, N=37) of EB1
224 binding sites occupied (Figure 5B), an amount significantly greater than in the control condition
225 ($p < 0.001$, Welch's unpaired t-test). Our results demonstrate that microtubule ends grown with
226 XMAP215 are inherently less stable, as they undergo catastrophe at faster growth rates and
227 with more EB1, when compared to microtubules polymerized without XMAP215.
228

229 **Conclusions**
230

231 A cap of GTP-tubulin at the end of a growing microtubule is widely accepted as the determinant
232 of microtubule stability (Mitchison and Kirschner, 1984)(Drechsel and Kirschner, 1994)(Desai
233 and Mitchison, 1997)(Duellberg et al., 2016)(Roostalu et al., 2020). The size of the GTP-cap is
234 defined by the balance between the addition of new GTP-tubulin dimers to the growing
235 microtubule end, and the hydrolysis of GTP to GDP within the microtubule polymer. On its own,
236 an increase in growth rate is expected to increase the size of the GTP-cap and thus confer
237 enhanced stability to the growing microtubule. Indeed, our results using tubulin titration confirm
238 that increase in growth rate is accompanied by an increase in EB1 comet size, as well as
239 suppression of microtubule catastrophe. However, these findings raise the puzzling question of
240 how simultaneously fast, yet highly dynamic microtubule growth, as observed in cells, can be
241 achieved. One possibility to limit the size of the GTP-cap, and thus presumably facilitate
242 catastrophe, is through the acceleration of the GTP-hydrolysis rate. This mechanism has been
243 proposed for EB proteins, which promote microtubule catastrophe even while inducing a slight
244 increase in growth rate (Bieling et al., 2007)(Zhang et al., 2015)(Vitre et al., 2008). In contrast,
245 our results demonstrate that XMAP215 simultaneously promotes microtubule growth and
246 catastrophe frequency without accelerating the GTP-hydrolysis rate, or otherwise decreasing
247 the mean GTP-cap size. In fact, we find that the mean size of the EB comets is even larger
248 when microtubule growth acceleration is achieved through the action of XMAP215.
249

250 Aside from the nucleotide composition, both kinetics of microtubule assembly and the structure
251 of the growing microtubule end remain areas of intense interest (Kerssemakers et al., 2006)
252 (Schek et al., 2007)(Gardner et al., 2011a)(Mickolajczyk et al., 2019)(Guesdon et al.,
253 2016)(Estévez-Gallego et al., 2020)(Mcintosh et al., 2018)(Atherton et al., 2018)(Gudimchuk et
254 al., 2020). The addition of inherently curved GTP-tubulin dimers to the ends of microtubule

255 protofilaments and their subsequent straightening into closed polymer lattice have been
256 reported to result in a variety of intermediate structures, including disconnected and splayed
257 individual protofilaments (Mcintosh et al., 2018)(Gudimchuk et al., 2020), multi-protofilament
258 sheets (Chrétien et al., 1995)(Guesdon et al., 2016)(Atherton et al., 2018) and overall tapered
259 microtubule ends (Mandelkow et al., 1991)(Reid et al., 2019). Microtubule end structures can
260 vary with tubulin from different species (Orbach and Howard, 2019), and can be further
261 modulated by microtubule-associated-proteins and drugs (Chen and Hancock, 2015)(Chen et
262 al., 2019)(Aher et al., 2018)(Doodhi et al., 2016)(Arnal et al., 2000). In the case of XMAP215,
263 the acceleration of microtubule growth has been linked to its ability to bind curved tubulin dimers
264 both in solution and at the microtubule end (Ayaz et al., 2012)(Brouhard and Rice, 2014).
265 XMAP215 is thought to stabilize an intermediate state in microtubule assembly, effectively
266 acting as an enzyme activator for the polymerization reaction. Such a catalytic mechanism can
267 explain how XMAP215 greatly accelerates microtubule polymerization in the presence of
268 soluble tubulin, but also promotes depolymerization of stabilized microtubules in the absence of
269 soluble tubulin (Brouhard et al., 2008). Given that XMAP215 was reported to act as a
270 processive polymerase, with each XMAP215 molecule promoting addition of ~25 tubulin dimers
271 (Brouhard et al., 2008), we speculate that XMAP215 molecules primarily drive elongation of
272 individual protofilaments, resulting in less coordinated protofilament growth. Indeed, our
273 observations of EB1 comet splitting and curling suggest that polymerization is not synchronized
274 among all protofilaments. Instead, some protofilaments grow faster while others grow slower, to
275 produce an overall tapered microtubule ends. Given that EBs localize to the interface of four
276 tubulin dimers (Maurer et al., 2012), our observation of leading comets suggests the presence
277 of multiple laterally-connected protofilaments within these protrusions. The existence of tapered
278 and open microtubule ends can further facilitate EB1 targeting (Reid et al., 2019), consistent
279 with our observations of brighter EB1 comet intensities on XMAP215-grown microtubule ends.
280 Importantly, although we used EB1 to visualize the nucleotide composition and structure of
281 growing microtubule ends, our observation of XMAP215-dependent promotion of catastrophe in
282 the absence of EB1 demonstrates that XMAP215 on its own, rather than through enhanced
283 targeting of EB1, promotes microtubule catastrophe.
284

285 Microtubule catastrophe is a complex phenomenon known not to follow first-order kinetics;
286 rather, a microtubule aging process ultimately leads to rapid microtubule disassembly (Odde et
287 al., 1995)(Gardner et al., 2013)(Gardner et al., 2011b). Previous studies implicated evolution of
288 the microtubule-end structure and accumulation of structural defects as steps preceding
289 microtubule catastrophe (Gardner et al., 2011b)(Coombes et al., 2013)(Bowne-Anderson et al.,
290 2013). Our results demonstrate that XMAP215, in addition to inducing dramatic microtubule end
291 morphologies, promotes large fluctuations in growth and comet intensities even when
292 microtubule ends display 'full' comets. We speculate that XMAP215 induces 'sloppy'
293 microtubule growth, as both the structure and the nucleotide composition of the growing
294 microtubule end are highly dynamic in the presence of XMAP215. Notably, we find that even at
295 the moment of catastrophe, microtubule ends polymerized with XMAP215 display faster growth
296 rates and more EB1 localization, compared to microtubules grown without XMAP215. Our
297 results reveal that the switch to catastrophe can occur with GTP-cap densities significantly
298 higher than the threshold previously established by tubulin-dilution studies (Duellberg et al.,
299 2016), suggesting that structural changes induced by XMAP215 can override the protective
300 effects of the nucleotide cap.
301

302 Finally, while the polymerase effects of XMAP215 are dose-dependent, such that the maximum
303 microtubule growth promotion is reached in the ~100 nM range, we find that XMAP215's
304 promotion of microtubule catastrophe reaches its full effect even at the lowest concentration of

305 XMAP215 tested (3.13 nM). This observation provides additional evidence that the processes of
306 microtubule growth and catastrophe are inherently decoupled. Future structural studies and the
307 refinement of existing computational models (Bowne-Anderson et al., 2013)(VanBuren et al.,
308 2002)(VanBuren et al., 2005)(Margolin et al., 2012)(Zakharov et al., 2015)(Kim and Rice,
309 2019)(Michaels et al., 2020)(Gudimchuk et al., 2020) will be necessary to unravel the full
310 complexity of microtubule dynamics. Notwithstanding, the ability to independently control
311 microtubule growth and catastrophe is at the very core of microtubule regulation in cells,
312 enabling the complex, dynamic remodeling of the microtubule cytoskeleton.

313

314 **ACKNOWLEDGEMENTS**

315

316 We thank W. Hancock, R. Ohi, the members of the Zanic laboratory and Vanderbilt
317 Microtubules and Motors Club for discussions and feedback. XMAP215 construct was a kind gift
318 from G. Brouhard (McGill University, Montreal, CA).

319

320 This work was supported by National Institutes of Health grant R35GM119552 to M. Zanic. V.
321 Farmer acknowledges support from National Institutes of Health grant T32GM008320 and
322 American Heart Association Predoctoral Fellowship 19PRE34380083. M. Zanic acknowledges
323 support from the Human Frontier Science Program and the Searle Scholars Program.

324

325 The authors declare no competing financial interests.

326

327

328 **AUTHOR CONTRIBUTIONS**

329

330 MZ, VF, and GA conceptualized the project, designed the research, and wrote the manuscript.
331 SH and VF contributed reagents. VF performed experiments. GA developed image analysis
332 scripts. VF and GA performed image and data analysis.

333 **MATERIALS AND METHODS**

334

335 **Protein preparation**

336

337 Bovine brain tubulin was purified as previously described through cycles of polymerization and
338 depolymerization in a high molarity PIPES buffer (Castoldi and Popov, 2003). Tubulin was
339 labeled with either TAMRA or Alexa 647 (Invitrogen) as previously described (Hyman et al.,
340 1991). For imaging purposes, labeled tubulin was used at a ratio of 10% of the final tubulin
341 concentration. XMAP215-7his expression construct was a kind gift from G. Brouhard, McGill
342 University, Montreal, QC, Canada. XMAP215 was expressed in Sf9 cells using the Bac-to-Bac
343 system (Invitrogen) and purified using a HisTrap followed by gel filtration (adapted from
344 Brouhard et al., 2008), and stored in 10 mM Bis-Tris, 10 mM TrisHCl, 100 mM KCl, 1 mM DTT,
345 10% glycerol, pH 6.6. EB1-GFP was expressed in *Escherichia coli* and purified as previously
346 described (Zanic et al., 2009), and stored in 10 mM Bis-Tris, 10 mM TrisHCl, 100 mM KCl, 1
347 mM DTT, 5% glycerol, pH 6.6. Protein concentration was determined using absorbance at $\lambda =$
348 280 nm.

349

350

351 **TIRF microscopy**

352

353 Imaging was performed using a Nikon Eclipse Ti microscope with a 100X/1.49 n.a. TIRF
354 objective; Andor iXon Ultra EM-CCD camera; 488-, 561-, and 640-nm solid-state lasers (Nikon
355 Lu-NA); Finger Lakes Instruments HS-625 high speed emission filter wheel; and standard filter
356 sets. A Tokai Hit objective heater was used to maintain the sample at 35°C. Samples were
357 imaged in chambers constructed as previously described (Gell et al., 2010). In brief, three strips
358 of Parafilm were sandwiched between a 22 \times 22 mm and 18 \times 18 mm silanized coverslips to
359 create two narrow channels for the exchange of reaction solution. The channel surface was
360 treated with 0.02 μ g/ μ l anti-TAMRA antibody (Invitrogen) followed by 1% Pluronic F127 (Sigma)
361 prior to use. Images were acquired using NIS-Elements (Nikon).

362

363

364 **Assay conditions**

365

366 GMPCPP-stabilized, 25% TAMRA-labeled microtubules were polymerized as previously
367 described (Hunter et al., 2003) and immobilized to coverslips using anti-TAMRA antibody (Gell
368 et al., 2010). The imaging buffer consisted of BRB80 supplemented with 40 mM glucose, 40
369 μ g/ml glucose oxidase, 25 μ g/ml catalase, 0.08 mg/ml casein, 10 mM DTT, and 0.1%
370 methylcellulose. Reactions containing imaging buffer, concentrations of tubulin ranging from 12
371 to 60 μ M tubulin, 1 mM GTP, and proteins at the concentrations indicated in the text were
372 introduced into the imaging chamber. XMAP215 storage buffer was consistently kept at a final
373 concentration of 4X-dilution (2.5 mM Bis-Tris, 2.5 mM TrisHCl, 25 mM KCl, 250 nM DTT, 2.5%
374 glycerol) for the entire XMAP215 titration.

375

376

377 **Microtubule dynamics analysis**

378

379 Quantification of microtubule dynamics parameters was performed using 5-pixel width
380 kymographs of the tubulin channel generated in Fiji (Schindelin et al., 2012) as described
381 previously (Zanic, 2016). For each experiment, 20 kymographs were analyzed for dynamic
382 parameter quantification. Microtubule polarity was determined by measuring growth rates of the
383 two ends of a microtubule, with the faster-growing end being designated as the plus end and the

384 slower-growing end the minus end. Catastrophe events were designated as a switch from
385 growth to shrinkage that decreased microtubule length by more than 2 pixels (320 nm).
386 Catastrophe frequency was calculated as the number of events divided by the total time spent in
387 growth for an individual experiment, with an error of the square root of the number of events
388 divided by the total time spent in growth (counting error).

389
390

391 **EB1 comet analysis (Figures 1-3)**

392

393 EB1 comets were quantified using a series of custom MATLAB (version R2020a, MathWorks)
394 scripts as described before (Strothman et al., 2019). Briefly, the beginning and end of individual
395 growth events were manually determined from kymographs, and the initial estimate of
396 microtubule tip position over time was obtained assuming a constant growth rate. For each time
397 frame, the pixel with the brightest EB1 intensity within a window (± 5 or ± 10 pixels for –
398 XMAP215 and + XMAP215 conditions, respectively) around the estimated tip position was
399 assigned as the microtubule tip position. For an entire microtubule growth event, the average tip
400 intensity and its standard deviation were calculated. The temporal frames with tip intensities
401 lower than one standard deviation away from the mean were eliminated. The remaining tip
402 positions were subsequently fit by linear regression, and mean and standard deviation of the fit
403 residuals were determined. The temporal frames with ± 1 standard deviation away from the
404 mean of the residuals were eliminated, and the remaining positions were fit by linear regression
405 to assign a growth rate to each event. The tip positions from the remaining temporal frames
406 were aligned using the maximum EB intensity. The microtubule lattice intensity was determined
407 by averaging the intensity 15 pixels away from the tip, which was subsequently subtracted from
408 the intensity of all pixels along the intensity profile. For a given experimental condition, individual
409 growth events were further excluded if their growth rate was not within ± 1 standard deviation
410 from the mean growth rate. Remaining events were averaged to determine a super-averaged
411 intensity profile, where error is the standard error of the mean.

412 To determine EB1 comet length, the super-averaged intensity profile was fit to an exponential
413 decay convolved with a Gaussian function:

414

$$415 \frac{A}{2} e^{\left(\frac{\sigma^2}{2\lambda^2} - \frac{x-x_0}{\lambda}\right)} \left(1 - \operatorname{erf}\left(\frac{\sigma^2 - \lambda(x - x_0)}{\sigma\lambda\sqrt{2}}\right)\right) - \frac{B}{2} \left(1 - \operatorname{erf}\left(\frac{x - x_0}{\sigma\sqrt{2}}\right)\right)$$

416

417 where A is the intensity value at the tip, B is the difference between average lattice intensity and
418 solution background, σ is the experimentally-determined full width at half maximum of the point
419 spread function, x_0 is the offset in the tip position due to convolution, and λ is the comet decay
420 length. To determine the total EB1 intensity along the super-averaged intensity profile, the pixels
421 with positive intensity (i.e. greater than lattice background) were summed. The error for total
422 EB1 intensity was determined using error-propagation.

423

424

425 **Determination of variability in microtubule growth (Figure 4)**

426

427 Individual microtubule growth events from the growth-rate-matching conditions which displayed
428 a full comet during their lifetime were subjected to automated tracking. Images were
429 background-subtracted using an average 5-pixel rolling ball subtraction. The EB1 channel was
430 tracked with FIESTA's single particle tracker (Ruhnow et al., 2011) using MATLAB. Then, a
431 custom MATLAB code was used to divide the output trajectories into continuous 10-second

432 segments, allowing for gaps of no more than a total of 1-second within a given segment. The
433 variations from the mean growth rate within the 10-s segments were quantified by performing
434 residuals analysis as previously described (Lawrence et al., 2018). Briefly, using a custom
435 MATLAB code, a linear function was fit to the length-versus-time data points to determine the
436 mean growth rate. The sum of squared residuals (SSR) was calculated and normalized by the
437 segment duration. For growth-rate matching experiments, only trajectories with mean growth
438 speeds between 110 and 180 nm/s were considered. Outliers based on normalized SSR were
439 identified using MATLAB function "isoutlier" and subsequently discarded. Unpaired t-test with
440 Welch's correction was used to determine p-values for mean velocity and normalized SSR
441 between \pm XMAP215 conditions. The same selected segments were subjected to Mean Squared
442 Displacement analysis using MATLAB-based "msdanalyzer" (Tarantino et al., 2014). A
443 quadratic function (Gardner et al., 2011a) was fit to the first 5 seconds of the MSD curve:
444

$$445 \quad MSD(t) = 2Dt + \nu^2t^2 + \sigma^2$$

446
447 where D is diffusion coefficient, ν is mean growth rate, σ is the positional error. The fit was
448 weighted by the inverse of the standard deviation of the MSD curve determined by
449 msdanalyzer.
450

451 452 **Determination of EB1 intensity (Figure 4)**

453 To determine EB1 intensity at microtubule ends a custom MATLAB function was used.
454 Microtubule end position was determined either by tubulin or EB1 signal for XMAP215 titration
455 or growth-rate-matching experiments, respectively. For each temporal frame, the image was
456 rotated centering around the end position, so that the microtubule lies horizontally. The brightest
457 intensity value within 5-lattice-pixels and 1-solution-pixel was assigned as maximum EB1
458 intensity (5-pixel thickness, i.e. 5x6 pixel² area). Solution background intensity was determined
459 by shifting the 5x6 pixel² area up and down 5 pixels, and the mean intensity was calculated.
460 Temporal frames with <25 pixels available for background determination were discarded. For
461 each temporal frame, the mean background intensity was then subtracted from the EB1
462 intensities. For the comparison of EB1 intensities during growth in growth-rate-matching
463 conditions, time-averaged EB1 intensities were calculated using 10-second window size.
464

465 466 467 **Determination of microtubule end morphology in growth-rate matching experiments** 468 **(Figure 4)**

469 Microtubule dynamic assays were carried out in the presence of 200 nM EB1-GFP with either
470 high tubulin concentration (60 μ M) or low tubulin concentration (12 μ M) and XMAP215 (12.5 or
471 25 nM). Imaging in the EB1 channel was acquired at 5 frames-per-second to allow for high
472 spatiotemporal tracking of the microtubule ends. Individual microtubule growth events were
473 tracked for up to 2 min and the average microtubule growth rate was determined for each
474 growth event. Two sets of 110 growth events, one for each condition (-/+ XMAP215), with no
475 significant difference in their growth rates were scored for catastrophe (as defined above) and
476 end morphology. End morphology was classified into three categories based on EB1 signal at
477 the growing microtubule end: full, split, or curled comet. Kymographs were produced from 7-
478 pixel wide linescans (1120 nm) and subsequently used to determine if EB1 localized in one
479 single peak at the end of a growing microtubule, classified as a 'full' comet. If two peaks of
480 intensity could be resolved (>2 pixels) for more than 1 seconds (5 frames) the comet was
481

482 considered to be 'split'. A 'curled' comet was preceded by a splitting event with the leading
483 comet having grown outside the 7-pixel-wide linescan.

484
485

486 **Determination of the velocity and EB1 intensity at catastrophe (Figure 5)**

487

488 Individual microtubule growth events from the 0 or 25 nM XMAP215 conditions, which displayed
489 only a full comet morphology during their lifetime, were subjected to automatic tracking. For
490 each individual growth event, microtubule position was determined from the tubulin signal using
491 TipTracker v3 (Prahl et al., 2014). First, both x- and y-coordinates of the microtubule end from
492 each temporal frame, except the initial and final frame, were preprocessed to eliminate tracking
493 noise. If the difference between coordinates of the current frame and the previous frame was
494 larger than 1000 nm, the current coordinate value was eliminated and a new coordinate value
495 was interpolated using the previous and subsequent frame, assuming a linear growth rate. To
496 further minimize tracking noise, the "smoothdata" function in MATLAB was used with the
497 "movmedian" method and a 5-frame (1-second) window size. The end position was determined
498 using smoothed coordinates. Finally, the time of catastrophe was approximated manually and
499 subsequently fine-tuned using the following automated analysis: each time point in the time
500 interval of 10 frames before and after the manually-approximated time of catastrophe was
501 assigned an instantaneous rate using a linear fit over a 3-frame sliding window. Then, starting
502 from 8 frames after catastrophe and moving backwards in time, if three consecutive frames had
503 velocity value greater than -50 nm/s, the latest of the three temporal frames was assigned as
504 the time of catastrophe. After determining the time of catastrophe, the end-position of growth
505 events over time were aligned to generate an averaged microtubule tip position using a custom
506 MATLAB code. For each microtubule, time and position values were offset to assign
507 catastrophe event to (0,0). Then, the mean and standard error of the mean for the positions at
508 each time point over different growth events were calculated.

509

510 EB1 intensity was determined as described above, using a 1-second window size. The intensity
511 error was determined by propagating the standard error of the mean of the solution background.
512 After determining EB intensity as a function of time for each growth event, the intensities were
513 averaged over all growth events at every time point, with error being the standard error of the
514 mean, both weighted with the inverse of squared error of intensities. ROUT method with Q=1%
515 identified 2 outlier points which were subsequently removed.

516

517 Microtubule growth events that underwent catastrophe were further evaluated to determine the
518 growth rate prior to catastrophe. Briefly, a custom MATLAB function was used to perform a
519 linear fit to the length-vs-time segments. To determine instantaneous growth rate at the time of
520 catastrophe (T=0 seconds), a 1-second (5-frame) window size (i.e. from T=-1 seconds to T=0
521 seconds) was used. Growth rates preceding a catastrophe event were determined using 5-
522 second intervals up to 45 seconds prior to catastrophe. Errors in growth rate were calculated as
523 $(Cl_{high} - Cl_{low})/2$, where Cl_{high} and Cl_{low} are upper and lower 95% confidence intervals from the
524 linear fits. ROUT method with Q=1% identified 2 outlier points which were subsequently
525 removed.

526 **REFERENCES**

527 Aher, A., M. Kok, A. Sharma, A. Rai, N. Olieric, R. Rodriguez-Garcia, E.A. Katrukha, T. Weinert,
528 V. Olieric, L.C. Kapitein, M.O. Steinmetz, M. Dogterom, and A. Akhmanova. 2018. CLASP
529 Suppresses Microtubule Catastrophes through a Single TOG Domain. *Dev. Cell.* 46:40–58.
530 doi:10.1016/j.devcel.2018.05.032.

531 Akhmanova, A., and M.O. Steinmetz. 2008. Tracking the ends: a dynamic protein network
532 controls the fate of microtubule tips. *Nat. Rev. Mol. Cell Biol.* 9:309–322.
533 doi:10.1038/nrm2369.

534 Akhmanova, A., and M.O. Steinmetz. 2015. Control of microtubule organization and dynamics:
535 two ends in the limelight. *Nat. Rev. Mol. Cell Biol.* 16:711–26. doi:10.1038/nrm4084.

536 Al-Bassam, J., and F. Chang. 2011. Regulation of microtubule dynamics by TOG-domain
537 proteins XMAP215/Dis1 and CLASP. *Trends Cell Biol.* 21:604–614.
538 doi:10.1016/j.tcb.2011.06.007.

539 Arnal, I., E. Karsenti, and A.A. Hyman. 2000. Structural transitions at microtubule ends correlate
540 with their dynamic properties in Xenopus egg extracts. *J. Cell Biol.* 149:767–774.
541 doi:10.1083/jcb.149.4.767.

542 Atherton, J., M. Stouffer, F. Francis, and C.A. Moores. 2018. Microtubule architecture in vitro
543 and in cells revealed by cryo-electron tomography. *Acta Crystallogr. Sect. D Struct. Biol.*
544 74:1–13. doi:10.1107/S2059798318001948.

545 Ayaz, P., X. Ye, P. Huddleston, C.A. Brautigam, and L.M. Rice. 2012. A TOG : $\alpha\beta$ -tubulin
546 Complex Structure Reveals Conformation-Based Mechanisms for a Microtubule
547 Polymerase. *Science (80-)*. 337:857–60. doi:10.1126/science.1221698.

548 Bieling, P., L. Laan, H. Schek, E.L. Munteanu, L. Sandblad, M. Dogterom, D. Brunner, and T.
549 Surrey. 2007. Reconstitution of a microtubule plus-end tracking system in vitro. *Nature*.
550 450:1100–1105. doi:10.1038/nature06386.

551 Bowne-Anderson, H., M. Zanic, M. Kauer, and J. Howard. 2013. Microtubule dynamic instability:
552 A new model with coupled GTP hydrolysis and multistep catastrophe. *BioEssays*. 35:452–
553 461. doi:10.1002/bies.201200131.

554 Brouhard, G.J., and L.M. Rice. 2014. The contribution of $\alpha\beta$ -tubulin curvature to microtubule
555 dynamics. *J. Cell Biol.* 207:323–334. doi:10.1083/jcb.201407095.

556 Brouhard, G.J., J.H. Stear, T.L. Noetzel, J. Al-Bassam, K. Kinoshita, S.C. Harrison, J. Howard,
557 and A.A. Hyman. 2008. XMAP215 Is a Processive Microtubule Polymerase. *Cell*. 132:79–
558 88. doi:10.1016/j.cell.2007.11.043.

559 Castoldi, M., and A. V. Popov. 2003. Purification of brain tubulin through two cycles of
560 polymerization- depolymerization in a high-molarity buffer. *Protein Expr. Purif.* 32:83–88.
561 doi:10.1016/S1046-5928(03)00218-3.

562 Chen, G.-Y., J.M. Cleary, A.B. Asenjo, Y. Chen, J.A. Mascaro, D.F.J. Arginteanu, H. Sosa, and
563 W.O. Hancock. 2019. Kinesin-5 Promotes Microtubule Nucleation and Assembly by
564 Stabilizing a Lattice-Competent Conformation of Tubulin. *Curr. Biol.* 29:2259–2269.e4.
565 doi:10.1016/j.cub.2019.05.075.

566 Chen, Y., and W.O. Hancock. 2015. Kinesin-5 is a microtubule polymerase. *Nat. Commun.*
567 6:8160. doi:10.1038/ncomms9160.

568 Chrétien, D., S.D. Fuller, and E. Karsenti. 1995. Structure of growing microtubule ends: Two-
569 dimensional sheets close into tubes at variable rates. *J. Cell Biol.* 129:1311–1328.

570 doi:10.1083/jcb.129.5.1311.

571 Coombes, C.E., A. Yamamoto, M.R. Kenzie, D.J. Odde, and M.K. Gardner. 2013. Evolving tip
572 structures can explain age-dependent microtubule catastrophe. *Curr. Biol.* 23:1342–1348.
573 doi:10.1016/j.cub.2013.05.059.

574 Desai, A., and T.J. Mitchison. 1997. Microtubule Polymerization Dynamics. *Annu. Rev. Cell
575 Dev. Biol.* 13:83–117. doi:10.1146/annurev.cellbio.13.1.83.

576 Doodhi, H., A.E. Prota, L.C. Kapitein, A. Akhmanova, and M.O. Steinmetz. 2016. Termination of
577 Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule
578 Catastrophes. *Curr. Biol.* 26:1713–1721. doi:10.1016/j.cub.2016.04.053.

579 Drechsel, D.N., and M.W. Kirschner. 1994. The minimum GTP cap required to stabilize
580 microtubules. *Curr. Biol.* 4:1053–1061. doi:10.1016/S0960-9822(00)00243-8.

581 Duellberg, C., N.I. Cade, D. Holmes, and T. Surrey. 2016. The size of the EB cap determines
582 instantaneous microtubule stability. *eLife.* 5:1–23. doi:10.7554/eLife.13470.

583 Estévez-Gallego, J., F. Josa-Prado, S. Ku, R.M. Buey, F.A. Balaguer, A.E. Prota, D. Lucena-
584 Agell, C. Kamma-Lorger, T. Yagi, H. Iwamoto, L. Duchesne, I. Barasoain, M.O. Steinmetz,
585 D. Chrétien, S. Kamimura, J.F. Díaz, and M.A. Oliva. 2020. Structural model for differential
586 cap maturation at growing microtubule ends. *eLife.* 9:1–26. doi:10.7554/eLife.50155.

587 Gard, D.L., B.E. Becker, and S. Josh Romney. 2004. MAPping the eukaryotic tree of life:
588 Structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated
589 proteins. *Int. Rev. Cytol.* doi:10.1016/S0074-7696(04)39004-2.

590 Gard, D.L., and M.W. Kirschner. 1987. A microtubule-associated protein from Xenopus eggs
591 that specifically promotes assembly at the plus-end. *J. Cell Biol.* 105:2203–2215.
592 doi:10.1083/jcb.105.5.2203.

593 Gardner, M.K., B.D. Charlebois, I.M. Janosi, J. Howard, A.J. Hunt, and D.J. Odde. 2011a. Rapid
594 microtubule self-assembly kinetics. *Cell.* 146:582–592. doi:10.1016/j.cell.2011.06.053.

595 Gardner, M.K., M. Zanic, C. Gell, V. Bormuth, and J. Howard. 2011b. Depolymerizing kinesins
596 Kip3 and MCAK shape cellular microtubule architecture by differential control of
597 catastrophe. *Cell.* 147:1092–1103. doi:10.1016/j.cell.2011.10.037.

598 Gardner, M.K., M. Zanic, and J. Howard. 2013. Microtubule catastrophe and rescue. *Curr. Opin.
599 Cell Biol.* 25:1–9. doi:10.1016/j.ceb.2012.09.006.

600 Gell, C., V. Bormuth, G.J. Brouhard, D.N. Cohen, S. Diez, C.T. Friel, J. Helenius, B. Nitzsche,
601 H. Petzold, J. Ribbe, E. Schaffer, J.H. Stear, A. Trushko, V. Varga, P.O. Widlund, M. Zanic,
602 and J. Howard. 2010. Microtubule dynamics reconstituted in vitro and imaged by single-
603 molecule fluorescence microscopy. 95. First edit. Elsevier. 221–245 pp.

604 Gudimchuk, N.B., E. V Ulyanov, E.O. Toole, C.L. Page, D.S. Vinogradov, G. Morgan, G. Li, J.K.
605 Moore, E. Szczesna, A. Roll-mecak, F.I. Ataullakhanov, and J.R. McIntosh. 2020.
606 Mechanisms of microtubule dynamics and force generation examined with computational
607 modeling and electron cryotomography. *Nat. Commun.* 1–15. doi:10.1038/s41467-020-
608 17553-2.

609 Guesdon, A., F. Bazile, R.M. Buey, R. Mohan, S. Monier, R.R. García, M. Angevin, C.
610 Heichette, R. Wieneke, R. Tampé, L. Duchesne, A. Akhmanova, M.O. Steinmetz, and D.
611 Chrétien. 2016. EB1 interacts with outwardly curved and straight regions of the microtubule
612 lattice. *Nat. Cell Biol.* 1. doi:10.1038/ncb3412.

613 Hunter, A.W., M. Caplow, D.L. Coy, W.O. Hancock, S. Diez, L. Wordeman, and J. Howard.
614 2003. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-

615 hydrolyzing complex at microtubule ends. *Mol. Cell.* 11:445–457. doi:10.1016/S1097-
616 2765(03)00049-2.

617 Hyman, A.A., D.N. Drechsel, D. Kellogg, S. Salser, K. Sawin, P. Steffen, L. Wordeman, and T.J.
618 Mitchison. 1991. Preparation of Modified Tubulins. *Methods Enzymol.* 196:478–485.

619 Kerssemakers, J.W.J., E.L. Munteanu, L. Laan, T.L. Noetzel, M.E. Janson, and M. Dogterom.
620 2006. Assembly dynamics of microtubules at molecular resolution. *Nature.* 442:709–712.
621 doi:10.1038/nature04928.

622 Kim, T., and L.M. Rice. 2019. Long-range, through-lattice coupling improves predictions of
623 microtubule catastrophe. *Mol. Biol. Cell.* 30:mbc.E18-10-0641. doi:10.1091/mbc.E18-10-
624 0641.

625 Lawrence, E.J., G. Arpag, S.R. Norris, and M. Zanic. 2018. Human CLASP2 specifically
626 regulates microtubule catastrophe and rescue. *Mol. Biol. Cell.* 29:1168–1177.
627 doi:10.1091/mbc.E18-01-0016.

628 Mandelkow, E.-M., E. Mandelkow, and R.A. Milliganll. 1991. Microtubule dynamics and
629 microtubule caps: a time-resolved cryo- electron microscopy study. *J. Cell Biol.* 114:977–
630 991. doi:10.1083/jcb.114.5.977.

631 Margolin, G., I. V. Gregoretti, T.M. Cickovski, C. Li, W. Shi, M.S. Alber, and H. V. Goodson.
632 2012. The mechanisms of microtubule catastrophe and rescue: Implications from analysis
633 of a dimer-scale computational model. *Mol. Biol. Cell.* 23:642–656. doi:10.1091/mbc.E11-
634 08-0688.

635 Maurer, S.P., F.J. Fourniol, G. Bohner, C.A. Moores, and T. Surrey. 2012. EBs recognize a
636 nucleotide-dependent structural cap at growing microtubule ends. *Cell.* 149:371–382.
637 doi:10.1016/j.cell.2012.02.049.

638 McIntosh, J.R., E.O. Toole, G. Morgan, J. Austin, E. Ulyanov, F.I. Ataullakhanov, and N.B.
639 Gudimchuk. 2018. Microtubules grow by the addition of bent guanosine triphosphate
640 tubulin to the tips of curved protofilaments. *J. Cell Biol.* 1–25.

641 Michaels, T.C.T., S. Feng, H. Liang, and L. Mahadevan. 2020. Mechanics and kinetics of
642 dynamic instability. *eLife.* e54077. doi:10.7554/eLife.54077.

643 Mickolajczyk, K.J., E.A. Geyer, T. Kim, L.M. Rice, and W.O. Hancock. 2019. Direct observation
644 of individual tubulin dimers binding to growing microtubules. *PNAS.* 1–15.
645 doi:10.1101/418053.

646 Mimori-Kiyosue, Y., I. Grigoriev, G. Lansbergen, H. Sasaki, C. Matsui, F. Severin, N. Galjart, F.
647 Grosveld, I.A. Vorobjev, S. Tsukita, and A. Akhmanova. 2005. CLASP1 and CLASP2 bind
648 to EB1 and regulate microtubule plus-end dynamics at the cell cortex. *J. Cell Biol.*
649 168:141–153. doi:10.1083/jcb.200405094.

650 Mitchison, T.J., and M.W. Kirschner. 1984. Dynamic instability of microtubule growth. *Nature.*
651 310:237–242.

652 Odde, D.J., L. Cassimeris, and H.M. Buechner. 1995. Kinetics of microtubule catastrophe
653 assessed by probabilistic analysis. *Biophys. J.* 69:796–802. doi:10.1016/S0006-
654 3495(95)79953-2.

655 Orbach, R., and J. Howard. 2019. The dynamic and structural properties of axonemal tubulins
656 support the high length stability of cilia. *Nat. Commun.* 10:1–11. doi:10.1038/s41467-019-
657 09779-6.

658 Prahl, L.S., B.T. Castle, M.K. Gardner, and D.J. Odde. 2014. Quantitative analysis of
659 microtubule self-assembly kinetics and tip structure. 540. 1st ed. Elsevier Inc. 35–52 pp.

660 Reid, T.A., C. Coombes, S. Mukherjee, R.R. Goldblum, K. White, S. Parmar, M. McClellan, M.
661 Zanic, N. Courtemanche, and M.K. Gardner. 2019. Structural state recognition facilitates tip
662 tracking of EB1 at growing microtubule ends. *Elife*. 1–32. doi:10.1101/636092.

663 Rickman, J., C. Duellberg, N.I. Cade, L.D. Griffin, and T. Surrey. 2017. Steady-state EB cap
664 size fluctuations are determined by stochastic microtubule growth and maturation. *Proc.
665 Natl. Acad. Sci.* 201620274. doi:10.1073/pnas.1620274114.

666 Roostalu, J., C. Thomas, N.I. Cade, S. Kunzelmann, I.A. Taylor, and T. Surrey. 2020. The
667 speed of GTP hydrolysis determines GTP cap size and controls microtubule stability. *Elife*.
668 9:1–22. doi:10.7554/eLife.51992.

669 Ruhnow, F., D. Zwicker, and S. Diez. 2011. Tracking single particles and elongated filaments
670 with nanometer precision. *Biophys. J.* 100:2820–2828. doi:10.1016/j.bpj.2011.04.023.

671 Rusan, N.M., C.J. Fagerstrom, A.-M.C. Yvon, and P. Wadsworth. 2001. Cell cycle-dependent
672 changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha
673 tubulin. *Mol. Biol. Cell.* 12:971–80.

674 Schek, H.T., M.K. Gardner, J. Cheng, D.J. Odde, and A.J. Hunt. 2007. Microtubule Assembly
675 Dynamics at the Nanoscale. *Curr. Biol.* 17:1445–1455. doi:10.1016/j.cub.2007.07.011.

676 Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C.
677 Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P.
678 Tomancak, and A. Cardona. 2012. Fiji: An open-source platform for biological-image
679 analysis. *Nat. Methods.* 9:676–682. doi:10.1038/nmeth.2019.

680 Slep, K.C. 2009. The role of TOG domains in microtubule plus end dynamics. *Biochem. Soc.
681 Trans.* 37:1002–1006. doi:10.1042/BST0371002.

682 Strothman, C., V. Farmer, G. Arpağ, N. Rodgers, M. Podolski, S. Norris, R. Ohi, and M. Zanic.
683 2019. Microtubule minus-end stability is dictated by the tubulin off-rate. *J. Cell Biol.*
684 218:2841–2853. doi:10.1083/jcb.201905019.

685 Tarantino, N., J.Y. Tinevez, E.F. Crowell, B. Boisson, R. Henriques, M. Mhlanga, F. Agou, A.
686 Israël, and E. Laplantine. 2014. Tnf and il-1 exhibit distinct ubiquitin requirements for
687 inducing NEMO-IKK supramolecular structures. *J. Cell Biol.* 204:231–245.
688 doi:10.1083/jcb.201307172.

689 VanBuren, V., L. Cassimeris, and D.J. Odde. 2005. Mechanochemical model of microtubule
690 structure and self-assembly kinetics. *Biophys. J.* 89:2911–2926.
691 doi:10.1529/biophysj.105.060913.

692 VanBuren, V., D.J. Odde, and L. Cassimeris. 2002. Estimates of lateral and longitudinal bond
693 energies within the microtubule lattice. *Proc. Natl. Acad. Sci.* 99:6035–6040.
694 doi:10.1073/pnas.092504999.

695 Vasquez, R.J., D.L. Gard, and L. Cassimeris. 1994. XMAP from Xenopus Eggs Promotes Rapid
696 Plus End Assembly of Microtubules and Rapid Microtubule Polymer Turnover. *J. Cell Biol.*
697 127:985–993.

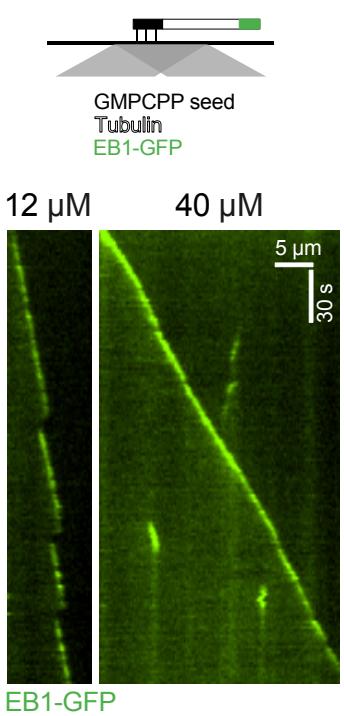
698 Vitre, B., F.M. Coquelle, C. Heichette, C. Garnier, D. Chrétien, and I. Arnal. 2008. EB1 regulates
699 microtubule dynamics and tubulin sheet closure in vitro. *Nat. Cell Biol.* 10:415–421.
700 doi:10.1038/ncb1703.

701 Walker, R.A., E.T. O'Brien, N.K. Pryer, M.F. Soboeiro, W.A. Voter, H.P. Erickson, and E.D.
702 Salmon. 1988. Dynamic Instability of Individual Microtubules. *J. Cell Biol.* 107:1437–1448.

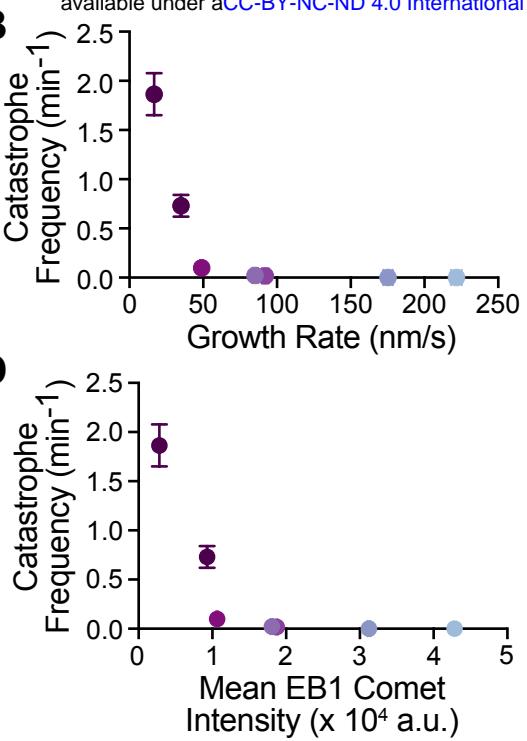
703 Zakharov, P., N.B. Gudimchuk, V. Voevodin, A. Tikhonravov, F.I. Ataullakhanov, and E.L.
704 Grishchuk. 2015. Molecular and Mechanical Causes of Microtubule Catastrophe and

705 Aging. *Biophys. J.* 109:2574–2591. doi:10.1016/j.bpj.2015.10.048.

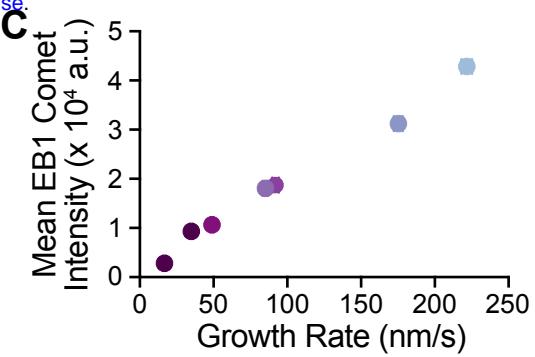
706 Zanic, M. 2016. Measuring the Effects of Microtubule-Associated Proteins on Microtubule
707 Dynamics In Vitro. *Methods Mol. Biol.* 1413:47–61. doi:10.1007/978-1-4939-3542-0_4.

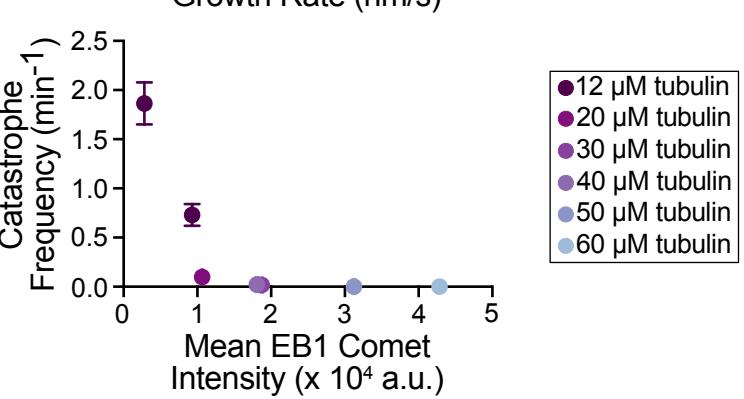

708 Zanic, M., J.H. Stear, A.A. Hyman, and J. Howard. 2009. EB1 recognizes the nucleotide state of
709 tubulin in the microtubule lattice. *PLoS One.* 4:1–5. doi:10.1371/journal.pone.0007585.

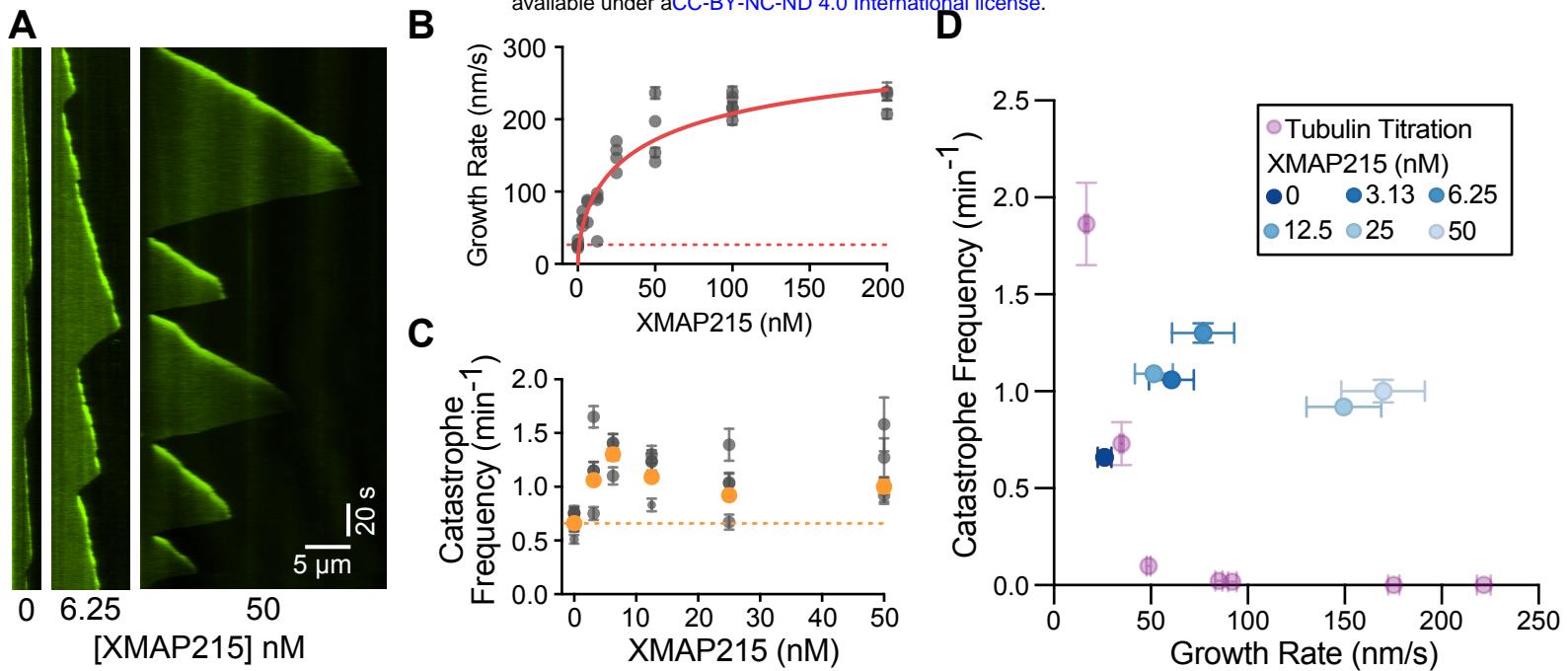
710 Zanic, M., P.O. Widlund, A.A. Hyman, and J. Howard. 2013. Synergy between XMAP215 and
711 EB1 increases microtubule growth rates to physiological levels. *Nat. Cell Biol.* 15:688–693.
712 doi:10.1038/ncb2744.


713 Zhang, R., G.M. Alushin, A. Brown, and E. Nogales. 2015. Mechanistic origin of microtubule
714 dynamic instability and its modulation by EB proteins. *Cell.* 162:849–859.
715 doi:10.1016/j.cell.2015.07.012.

716


A


B


C

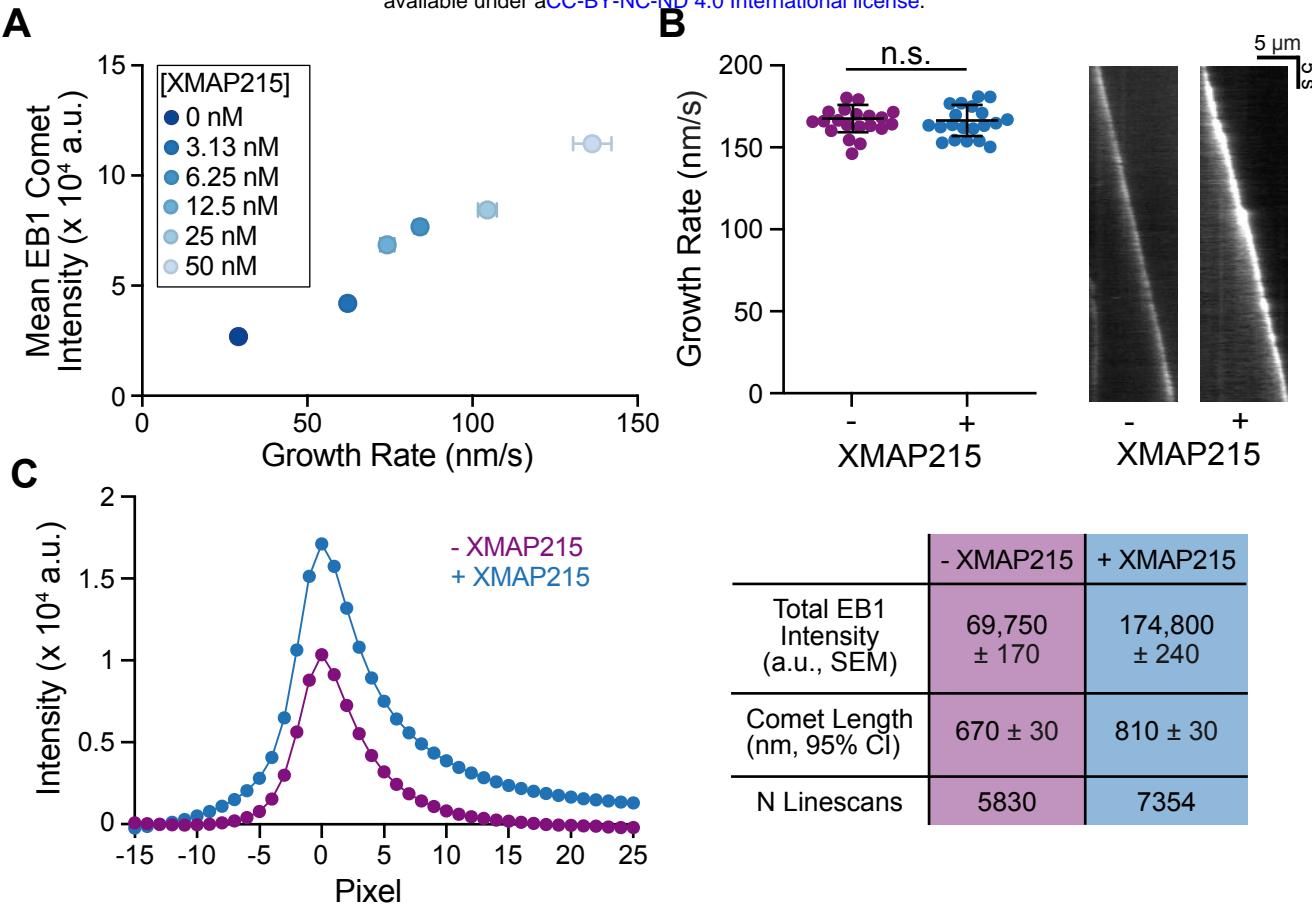

D

Figure 1. Increasing the microtubule growth rate by increasing tubulin concentration correlates with larger mean EB1 comets and suppression of microtubule catastrophe. (A) Top: schematic of TIRF assay. Dynamic microtubule extensions are polymerized from GMPCPP stabilized seeds using unlabeled tubulin in the presence of EB1-GFP. Bottom: Representative kymographs of microtubule plus ends grown with either 12 or 40 μM tubulin and 200 nM EB1-GFP. (B) Microtubule growth rate as a function of catastrophe frequency. (C) Microtubule growth rate replotted as a function of mean EB1 comet intensity. (D) Mean EB1 comet intensity replotted as a function of catastrophe frequency. 20 microtubules were analyzed per condition. Error bars are SEM.

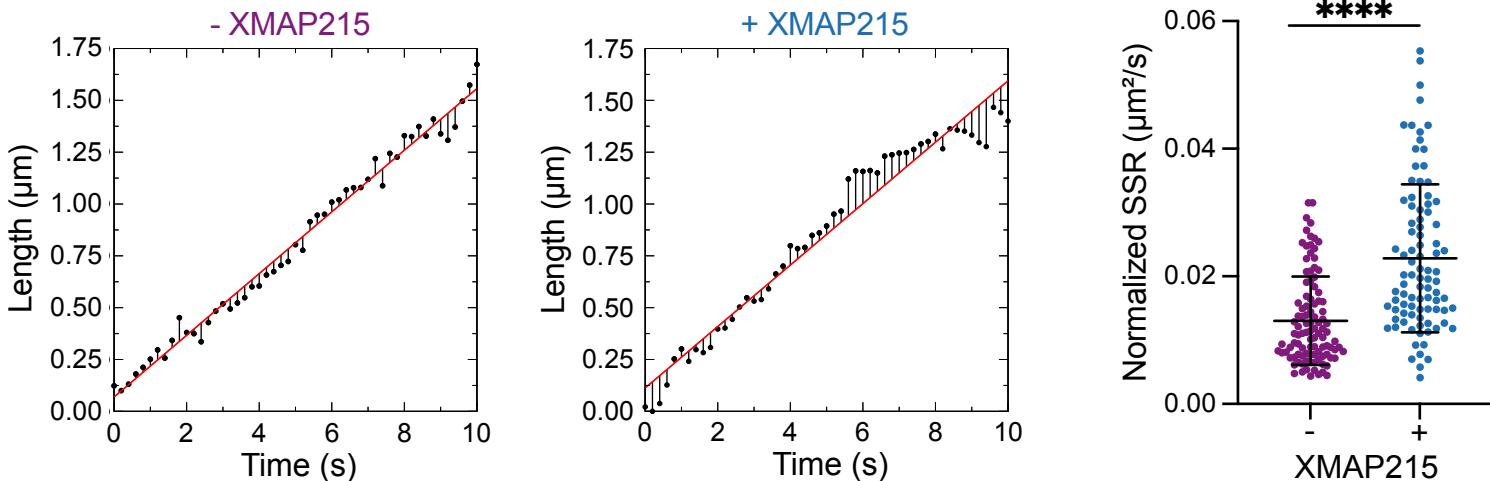


Figure 2. XMAP215 simultaneously increases microtubule growth rate and catastrophe frequency in the presence of EB1. (A) Representative kymographs of microtubule plus ends grown with 20 μ M tubulin, 200 nM EB1-GFP, and corresponding amount of XMAP215 (nM). EB1-GFP is shown. Quantification of (B) microtubule growth rate and (C) catastrophe frequency as a function of XMAP215 concentration in the presence of 20 μ M tubulin and 200 nM EB1-GFP. Error bars represent SEM. Each point represents 20 kymographs from one experimental repeat. The number of repeats per concentration were: 6, 4, 3, 4, 4, 4, 3. Dotted lines indicate the average values for the control (0 nM XMAP215). Solid red line in (B) is the data fit to the Hill equation. Orange points in (C) are the weighted averages for each condition. (D) Microtubule catastrophe frequency replotted as a function of microtubule growth rate for the XMAP215 titration along with the tubulin titration (Figure 1B).

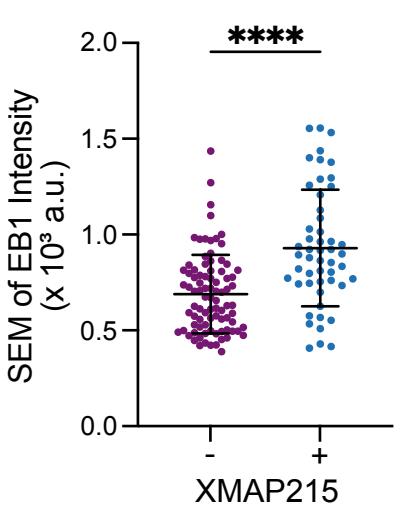
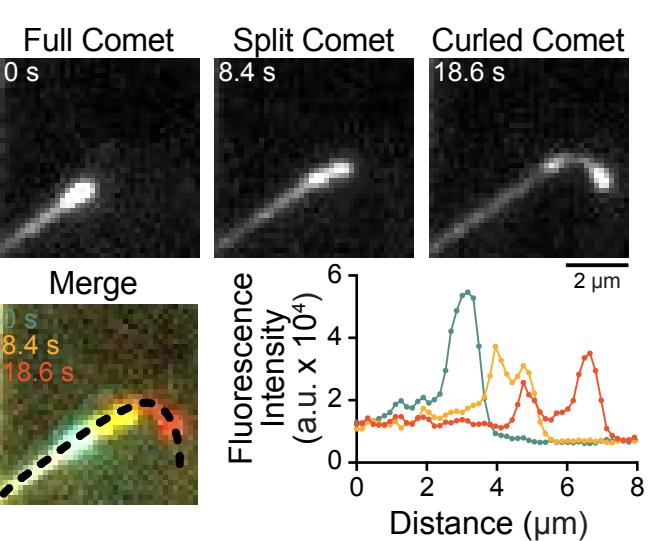
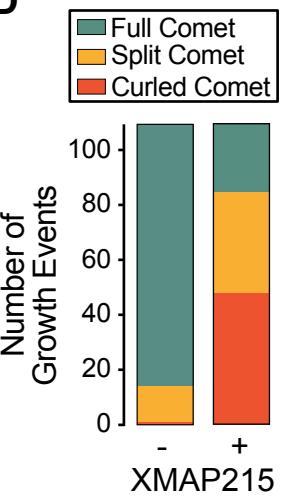
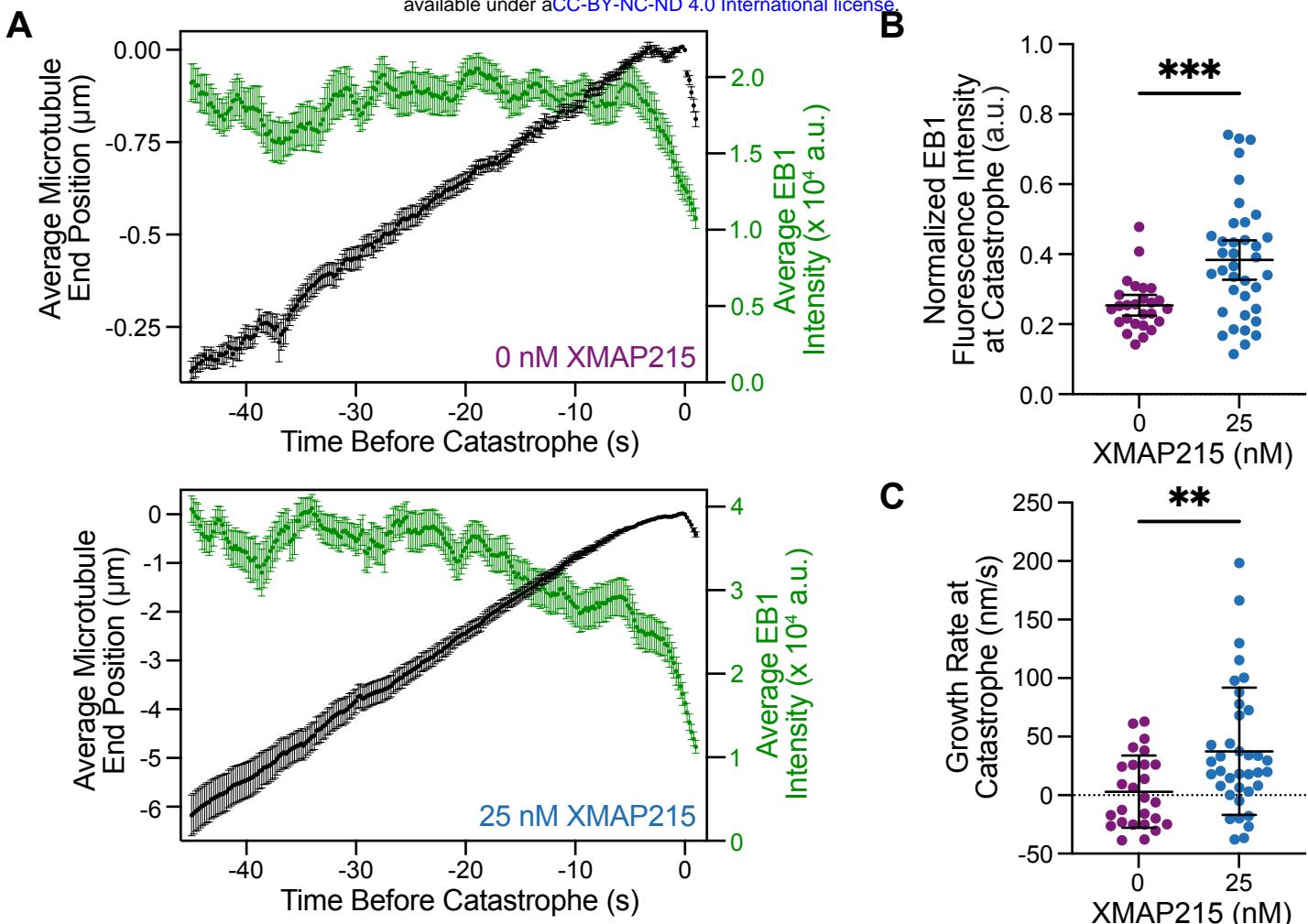


Figure 3. XMAP215 does not decrease the GTP-cap size. (A) Mean EB1 comet intensity is plotted against microtubule growth rate over a range of XMAP215 concentrations in the presence of 20 μ M tubulin and 200 nM EB1-GFP. To generate each point, 20 microtubules were analyzed from one experiment, all experiments were performed on the same day. Error bars are SD. (B) Left: growth rates of microtubules polymerized with either 60 μ M tubulin, 200 nM EB1-GFP (- XMAP215), or 20 μ M tubulin, 200 nM EB1-GFP, and 25 nM XMAP215 (+ XMAP215). 20 growth events per condition with no significant difference in growth rate were analyzed, determined by unpaired t test. Means and SD are shown. Right: representative kymographs of EB1 localization in each condition. (C) The average EB1 comet profiles (left) and quantification (right) from 20 growth events per each condition.


A


B


C

D

Figure 4. XMAP215 promotes fluctuations in microtubule growth and tapered microtubule ends. Growth-rate-matching conditions were achieved by either polymerizing microtubules with 60 μM tubulin, 200 nM EB1GFP (- XMAP215), or with 20 μM tubulin, 200 nM EB1GFP, and 12.5/25 nM XMAP215 (+ XMAP215). (A) Sum of squared residuals was determined from 10 s tracks that only displayed full comets. Left and center: representative example tracks from each condition are shown with microtubule tip position (black points) and residual for each time point (black lines), and linear regression to tip position (red line). Right: quantification of - XMAP215: $0.013 \pm 0.007 \mu\text{m}^2/\text{s}$ (mean \pm SD, $N = 103$), and + XMAP215: $0.023 \pm 0.011 \mu\text{m}^2/\text{s}$ (mean \pm SD, $N = 90$). ***, $p < 0.0001$ using unpaired Welch's t test. (B) SEM of time-averaged EB1 intensities from 10-second segments tracks. - XMAP215: $0.7 \pm 0.3 \times 10^4$ a.u. (mean \pm SD, $N = 87$), and + XMAP215: $1.1 \pm 0.04 \times 10^4$ a.u. (mean \pm SD, $N = 51$). ***, $p < 0.0001$ using unpaired Welch's t test. A subset of tracks from (A, right) that displayed the same mean EB intensity was used. (C) EB1 comet morphology changes over time reveal EB1 intensity changes that define the morphologies. (D) 110 microtubule growth events were tracked for no more than 2 min and classified to be the most disrupted end morphology observed. Number of growth events classified as either a full, split, or curled comet for each condition: - XMAP215: 96, 13, 1, and + XMAP215 25, 37, 48.

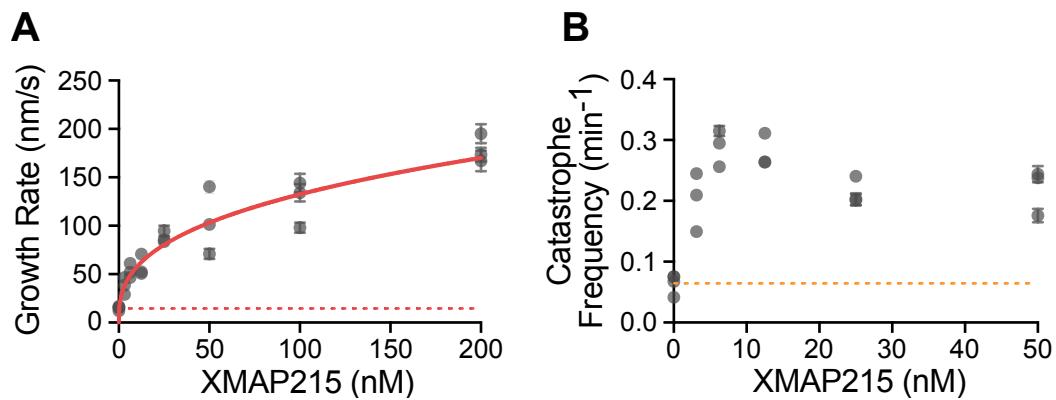
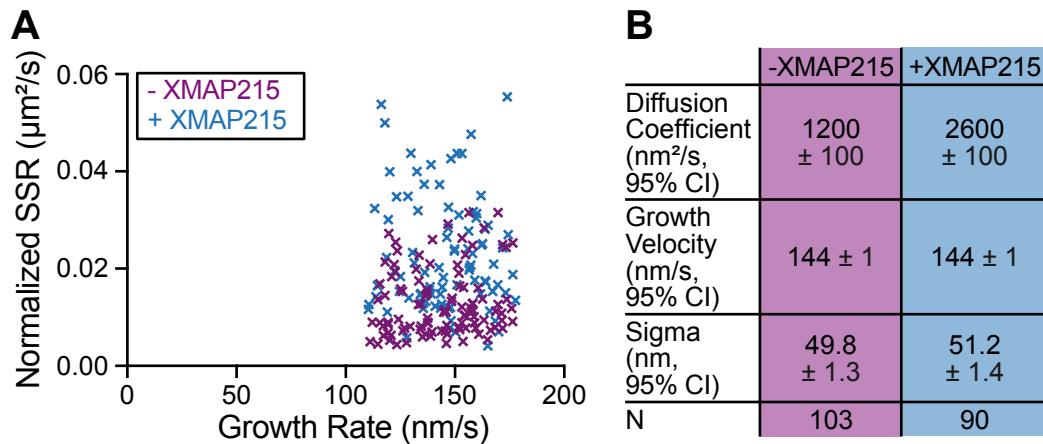


Figure 5. Microtubules grown in the presence of XMAP215 undergo catastrophe at faster growth rates and with more EB1. (A) Average microtubule end position and EB1 intensity over time. For 0 nM XMAP215, 30 tracks were averaged along their entire lifetime, with a minimum of 22 tracks for each time point. For 25 nM XMAP215, 38 tracks were averaged along their entire lifetime, with a minimum of 25 tracks for each time point. Average EB1 intensity was determined using a 5-frame (1 s) sliding window for each time point. Error bars represent SEM for both position and EB1 intensity. (B) EB1 intensity at the time of catastrophe was determined using 1 s prior to catastrophe (5 frames). EB1 fluorescence was normalized to the maximum intensity measured across all time points, independent of the condition (Fig. S3). 0 nM XMAP215 undergo catastrophe with 0.25 ± 0.07 a.u. (mean \pm SD, $N = 26$), while 25 nM XMAP215 undergo catastrophe with 0.38 ± 0.17 a.u. (mean \pm SD, $N = 37$). ***, $p < 0.0001$ using unpaired Welch's t test. (C) Microtubule growth rate at the time of catastrophe was determined using 1 s prior to catastrophe (5 frames). 0 nM XMAP215: 3 ± 31 nm/s (mean \pm SD, $N = 26$), and 25 nM XMAP215: 37 ± 54 nm/s (mean \pm SD, $N = 37$). **, $p = 0.0045$, unpaired Welch's t test.


Farmer, Arpač et al. XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end

SUPPLEMENTAL MATERIAL

Movie. EB1 comet morphologies at the end of a growing microtubules. Time-lapse of a microtubule grown in the presence of 20 μ M tubulin, 200 nM EB1-GFP, and 25 nM XMAP215. Scale bar is 2 μ m.

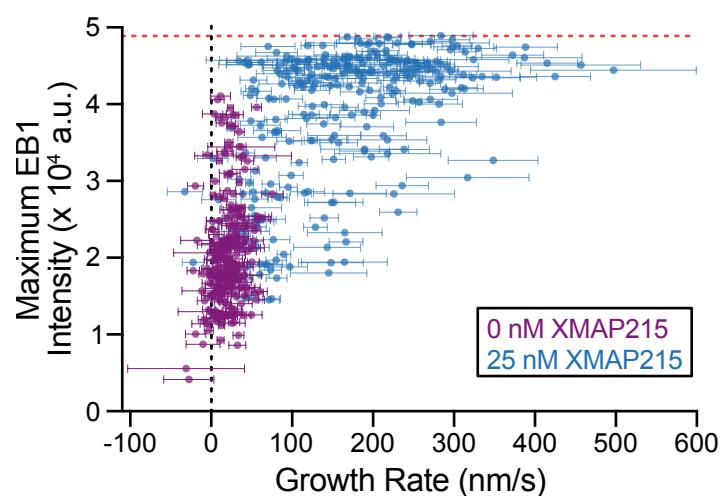


Figure S1. Simultaneous increase of microtubule growth rate and catastrophe frequency by XMAP215 occurs independently of EB1. Microtubule growth rate and catastrophe frequency were quantified over a titration of XMAP215 in the background of fixed tubulin concentration (20 μ M). Each point represents 20 kymographs from one experimental repeat. The number of repeats per concentration were: 4, 3, 3, 3, 3, 3, 3. (A) Microtubule growth rate as a function of XMAP215 concentration. Dotted red line represents the growth rate in control conditions and solid red line is data fit to the Hill equation. Error bars are SEM. (B) Microtubule catastrophe frequency as a function of XMAP215 concentration. Dotted orange line represents the catastrophe frequency in control conditions. Error bars represent counting error.

Figure S2. Growth rate matching conditions. (A) Growth events used for SSR analysis in Figure 4A were selected to have no significant difference in growth rate: - XMAP215; 143 ± 18 nm/s (mean \pm SD, N = 103), and + XMAP215; 145 ± 18 nm/s (mean \pm SD, N = 90). (B) Diffusion coefficients were determined by Mean Squared Displacement analysis by fitting a quadratic function (Gardner et al. 2011).

Farmer, Arpač et al. XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end

Figure S3. Maximum EB1 intensity positively scales with microtubule growth rate and plateaus, indicating saturation of binding sites. (A) Microtubule growth rate and EB1 intensity for every track were determined at 5 s intervals using a sliding window of either 5 s or 1 s, respectively. Error is 95% CI of the fit for growth rate and propagated error using SEM of background intensity. Dotted red line represents the saturating EB1 intensity, used for normalization in Figure 5B.