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Abstract

Galaxy is a user-friendly platform with a strong development community and a rich
set of tools for omics data analysis. While multi-omics experiments are becoming
popular, tools for multi-omics data analysis are poorly represented in this platform.
Here we present GAIT-GM, a set of new Galaxy tools for integrative analysis of gene
expression and metabolomics data. In the Annotation Tool, features are mapped to
KEGG pathway using a text mining approach to increase the number of mapped
metabolites. Several interconnected databases are used to maximally map gene IDs
across species. In the Integration Tool, changes in metabolite levels are modelled as a
function of gene expression in a flexible manner. Both unbiased exploration of
relationships between genes and metabolites and biologically informed models based
on pathway data are enabled. The GAIT-GM tools are freely available at
https://github.com/SECIMTools/gait-gm.

KEYWORDS: Galaxy; data integration; transcriptomics; metabolomics

Introduction

High-throughput transcriptomics and metabolomics are now common analytical
techniques in many labs, where scientists not expert in bioinformatics or statistics
demand user-friendly tools for data analysis. The Galaxy platform is a widely used
open source community development with an easy to understand GUI and a ‘mix and
match’ pipeline building philosophy, that has become one of the most successful
resources for omics data analysis by biologists. Galaxy contains tools to analyze gene
expression and for untargeted metabolomics'?. However, Galaxy tools for joint
analysis of transcriptomics and metabolomics are scarce’ and this limits the utilisation

of this platform to address multi-omics data integration problems.
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A diversity of methods have been developed that integrate metabolomics and gene

expression data®”’.

Many of the existing integration approaches are based on
multivariate dimension reduction techniques that assess the covariation structures
between transcript and metabolite levels®”. However, these methods rarely
incorporate existing biological knowledge, which hampers the interpretation of
analysis results. Pathway database such as KEGG'?, that include both metabolites and
genes, can be used to map features to a common biological process and to guide
integrative analysis''. However, this strategy has also limitations. Mapping measured
metabolite levels to a pathway database such as KEGG is restricted to the metabolites
that are actually annotated to metabolic pathways. Many detected metabolites,
especially lipids, cannot be mapped to the pathway data, and are eventually left aside
in the integrative analysis. Moreover, despite the clear evidence of the importance of
using metabolite identifiers'?, and the existence of several metabolite ID conventions
such as InChIKey and PubChemID'"’, natural language is still prevalent, hampering
the use of databases that rely on identifiers. At present, common natural language
names are not standardized in the chemical community. Moreover, using names for
metabolites introduces variability due to different technology providers using
different conventions. For example, using lactate versus lactic acid (the conjugate
base of an acid versus the acid) or using oa-ketoglutarate versus 2-oxoglutarate.
Moreover, metabolomics platforms usually do not resolve isomeric variants of sugars
such as L-glucose and D-glucose, for which a different notation exists in KEGG.
Finally, existing pathway tools'*"” have limited or no choices for the pre-processing
of gene expression and metabolomics data, and typically do not incorporate methods
to identify significant differences across experimental conditions. The result is that
each scientist must deploy several additional tools for a successful and complete
analysis. Using a series of different tools requires several data transfers and reformats,
and the analysis can become fragmented and hard to reproduce. In contrast, linking
the same tools inside Galaxy results in an integrated and documented workflow that is
immediately reproducible, without extra documentation. Here we present Galaxy

tools that integrate gene expression and metabolites by mapping to KEGG pathways
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and use a text-mining algorithm to improve metabolites identification. We
hypothesize that metabolite changes are a function of transcriptional regulation and
have created a flexible Integration Tool to build models of gene-metabolite regulation
in both a biologically based and an unbiased mode. Leveraging the Galaxy
framework, pipelines with pre-processing steps for differential expression of genes

and metabolites can be easily created and saved for future studies.

Results

General overview of GAIT-GM

GAIT-GM (Galaxy Annotation and Integration Tools for Genes and Metabolites) is a
set of tools for the analysis of metabolomics and transcriptomics data that enable the
development of Galaxy workflows for statistical integration of gene and metabolite
expression (Figure 1). Starting from a paired metabolomics and transcriptomics
dataset, the Annotation Tools efficiently map gene IDs and metabolite names to
KEGG IDs and KEGG Pathways. Features can be filtered using existing differential
expression analysis tools to create a reduced dataset of significant features to use in
the integrative analysis. The Integration Tools includes a diversity of analysis options
to correlate genes and metabolites either based on the data alone or using pathway
information to guide the analysis. GAIT-GM returns networks, text files and heatmap

graphs as output (Figure 1A).
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Figure 1. Galaxy pipeline for transcriptomics-metabolomics integration enabled by GAIT-GM. A)
Annotation and Integration Tools are provided by GAIT-GM. Filter and Selection tools are taken from existing
Galaxy tools. B) Analysis flexibility of the GAIT-GM tool. Unbiased -based on a correlation metric- and
biologically informed -based on pathway, metabolite class and Partial Least Square analysis- analyses are
implemented.

The GAIT-GM framework for the integration of metabolomics with gene expression
data builds on four biological hypotheses and the principle of analysis flexibility
(Figure 1B). The first hypothesis is that gene expression (indirectly) regulates
metabolite levels and this regulatory relationship can be identified as a relationship
between the quantitative levels of the metabolite, and the transcript. This principle
underlies both the unbiased analyses and the biologically informed analyses. The
second hypothesis is that genes/metabolites belonging to the same pathway are more
likely to be engaged in regulatory relationships. In the biologically informed analyses,
shared Pathway information is used to develop models of metabolite level changes.
The third hypothesis is that metabolites that belong to the same “class” (i.e. all
sphingomyelins) may have a common underlying regulator. For the unbiased

approach, co-variation patterns are used to cluster metabolites. GAIT-GM implements
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tools that group metabolites to allow joint analysis in both unbiased and biologically
informed ways. Fourth, pathways as a whole can be considered functional units
regulating metabolic changes. GAIT-GM enables the estimation of a pathway effect.
Using the principle of flexibility each tool is developed in a modular format, allowing
tools to be chained together into a pipeline or to enable different tools to be used for
genes and metabolites. Multiple combinations or subsets of genes and metabolites can

be integrated to answer different research questions.
Application to a mouse dataset

We demonstrate the utilization of the GAIT-GM tools using a rat experiment that
evaluates the effects of high ammonium acetate levels in Wilstar rats. Rats were fed
during 4 weeks with a 25% of ammonium acetate to induce Hyperamonemia or a
normal diet (Control). After this period of time, all rats were sacrificed cerebellum
was isolated. One half was used for RNA extraction and the other half was
immediately frozen to subsequent metabolomics analysis. 50 bp single read RNA-seq
run with Illumina 2500 Hiseq. Data were processed as described'® and a gene
expression dataset was obtained with 13,013 genes. Metabolomics profiles were
obtained with a BIOCRATES instrument for LC-MS. A total of 131 compounds were

measured.

GAIT-GM Annotation Tool improves feature mapping to pathways

GAIT-GM implements a number of parsing, text mining and database cross-reference
strategies to maximally map gene ID and metabolite names to the KEGG database.
For our rat dataset this approach increased the mapping of user metabolites to KEGG
compound IDs from 26% to 95 % and most of them could also be located to at least
one Pathway (Figure 2A). This significant improvement is partly achieved by the
flexible parsing of metabolite names (Figure 2C), but also by the assignment of
structural lipids (such as sphingomyelins, phosphatidylcholines, ceramides, etc) with
multiple compounds of variable side chain lengths to a generic lipid class present in

the KEGG database (Figure 2D). The results in lipids having on average 30
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compounds per KEGG ID, while other metabolites have a 1:1 relationship to KEGG

IDs (Figure 2E). While, most genes were mapped to KEEG IDs, only 20% mapped to

.
pathways (Figure 2B).
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Figure 2. GAIT-GM improvement of mapping of features to KEGG database. A) Mapping improvement at
metabolites. B) Mapping results for GenelDs C) Example of text-mining rules. D) Example of mapping output for
metabolites. C) Cardinality of input metabolites to KEEG compound IDs as a function of the metabolite type.

GAIT-GM Integrative Tools characterise the gene-metabolite co-variation network.

The GAIT-GM Integration module, can estimate all possible gene-metabolite
correlations (Pearson, Spearman or Kendall). Analysis of the top 500 gene-metabolite
correlations in the rat dataset, reveals a network composed of multiple small modules
with one central metabolite linked to a few gene ID, and two larger connected
components, enriched in structural lipids (Supplementary Figure 1). Interestingly, a
prominent network component contains one Phosphatidylcholine (PC aa 30:0) that is
highly correlated with 57 genes, that are enriched for intracellular membrane and
transport functions, functions associated to PC lipids cellular roles'’. These results
suggest that further analysis of co-expression patterns of these lipids might be
meaningful to unravel putative functional or regulatory relationships with expressed

genes.
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GAIT-GM biologically-informed integration reveals regulatory differences for

structural lipids

The sphingomyelin component of the rat dataset is composed of twelve separate
metabolites all identified as sphingomyelins. We ask whether all metabolites in this
class behave similarly or whether subsets exist regulated by different genes. The
GAIT-GM integration tool was used to build an sPLS model®’, where the response
matrix is the set of twelve sphingomyelins, and the predictor matrix is composed of
differentially expressed genes in KEGG pathways containing at least one
sphingomyelin. We identified two subsets of sphingomyelins differentially regulated
by four sets of genes (Figure 3). Notably, one pattern corresponds to long chain and
the other to short chain compounds. Mapk9, involved in sphingomyelin signalling,
was associated with long chains, while Sptlc2, a key enzyme in sphingomyelin
biosynthesis, was related to short chains. The results suggest that gene regulation of
sphingomyelins may differ based on the size and function of the lipid chain.
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Figure 3. GAIT-GM integrative analysis. A) sPLS model of sphingomyelins vs. pathway genes. B) Sphingolipid

signaling pathway localization of significant genes.
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GAIT-GM Integration Tools identify novel functional relationships at the pathway

level.

We hypothesized that global transcriptional patterns may influence global metabolic
changes. To explore this idea, we used MMC to cluster metabolites into modules
based on co-expression”’ and computed pathway metagenes’>. MCC identified ten
metabolite modules (Supplementary Figure 2). Metabolites in Modules 1 and 2 are
positively correlated and represent mostly long chain phosphatidylcholines (PC).
Metabolites in Modules 3 and 4 are negatively correlated to 1 and 2 and contain
mostly short chain PC. Metagenes from all pathways containing at least 3 genes were
used to build an sPLS models for these 4 MMC metabolite modules (Figure 4). We
identified several metabolic and signalling pathways associated with the MMC
modules. For example, Butanoate metabolism —involved in the creation of lipid
precursors-, Glutathione metabolism —relevant in detoxification-, and NFKB and
Natural Killer Mediated Toxicity were positively correlated with Modules 1-2, while
Insulin secretion and Inositol Phosphate metabolism were associated with Modules 3-
4. These results suggest different regulatory and functional specificities for different

subsets of the PCs.
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Figure 4. GAIT-GM Integrative Tool analysis results. SPLS analysis of 4 MCC metabolite modules versus
pathway metagenes. Each heatmap represents the correlation of a lipid clusters to the most coordinated gene
expression signature of each pathway. Colour scale indicates high positive correlation as red and high negative

correlation as blue.

Discussion

Multiomics experiments including gene expression and metabolomics data are now
within the reach of many biological research laboratories that do their own data
analysis. Traditionally, such labs have used user-friendly bioinformatics tools that
allow easy access to state-of-the art algorithms and make possible interactive and
exploratory analysis of the data. Galaxy is a platform widely used in these cases
because it allows flexible configuration of analysis pipelines to accommodate a wide
range of experimental designs and analysis needs. However, not many tools for
integrative transcriptomics and metabolomics exist in Galaxy. The GAIT-GM fills a

gap in multiomics data analysis for the Galaxy project.
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There are several types of strategies for integrating gene expression and
metabolomics data, and each of them pose different bioinformatics needs. When a
priori information on the identity and functional relationship between genes /
metabolites is not known or not incorporated in analysis, data can be modelled in
unbiased ways. A straightforward approach is to search for correlation between genes
and metabolites and look for patterns in results post hoc. This is implemented in the
GAIT-GM Correlation module and can be used for exploratory unbiased analysis of
the entire data set. This can be applied to all data, or only to genes/metabolites that are
differentially expressed according to a factor in the experimental design
(recommended). Alternatively, metabolites/genes can be grouped by co-expression
using an unbiased clustering, the resulting groups can be modelled and/or the group
can be further reduced to a single variable. For example suppose a co-variation
analysis identifies three groups of metabolites and 5 groups of genes, an sPLS on the
individual metabolites and genes for all group combinations can be performed (15
combinations in the above example). Another option is to reduce the gene expression
patterns into 5 variables, one for each group and then for each group of metabolites, to
model the 5 groups of co-expressed genes. These possibilities are implemented in the
GAIT-GM Integration tool.

When biological knowledge is present, a more informed approach is possible and
Tools in GAIT-GM have been developed to facilitate this approach. One important
aspect is the annotation of metabolites. If compound IDs are present, a general tool
links these IDs to the KEGG database and KEGG pathways. If compound IDs, are not
present, or not uniformly present, the GAIT-GM Annotation Tool applied a number of
text mining and parsing strategies based on the compound name that significantly
improve the mapping of compounds of KEGG pathways. Another problem is the high
number of lipidic compounds that have not a precise match in the database and for
which a specific location in a metabolic pathway is simply unknown. These are the
many phosphatidylcholines, sphingomyelines, ceramides, etc., that populate
metabolomics datasets with varying lengths and saturation of their side chains. These

compounds, apart from lacking a precise match in the KEGG database, may present
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high heterogeneity in their quantities and variation patterns across samples, making
their analysis difficult. The GAIT-GM Tool has been specially designed to address
this problem by allowing selection and clustering of metabolite classes thereby
enabling the identification of different subsets of lipids of the same generic class.
These subsets can then be modelled separately. In the rat dataset, we showed that the
separation of lipid classes identifies putative distinct functional roles for different
metabolite subsets.

In summary, the GAIT-GM provides a user-friendly analytical framework to
integrate metabolomics and gene expression information. GAIT-GM is modular and
allows a flexible integration that enables everything from a completely unbiased
analysis to a pathway-centric biologically informed analysis, and various
combinations of these integrative strategies. The Galaxy platform enables the
construction of reproducible pipelines and transparent sharing of analytical
approaches and results. There are two important yet unmet needs in the analysis of
metabolomics data specifically developed here: the efficient mapping of compound
names to KEGG, and the analysis of the heterogeneity and co-regulation with gene

expression to improve their functional characterisation.

Materials and methods

There are three basic steps for an integrated expression and metabolite analysis 1)
Feature annotation 2) Feature selection 3) Integrated analysis. We have developed
Galaxy tools that cover the first and third steps of this process and leverage existing
Galaxy tools for the second step. The GAIT-GM Annotation Tools map common
metabolite and gene names to KEGG IDs and associate them their common pathways.
The GAIT-GM Integration Tools implement methods for unbiased (data-driven) and
biologically informed integration for genes and metabolites. GAIT-GM Tools are
wrapped for Galaxy and deposited in PyPi (https://pypi.org/project/gait-gm/) with a

corresponding Conda recipe to enable users access on the command line. All code,
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including the needed Galaxy wrappers is also available on our github
(https://github.com/SECIMTools/gait-gm).

Here we describe the methods behind GAIT-GM tools. We also provide examples of
workflows that demonstrate several data integration options. Further technical details
on tools utilisation are provided in the Supplementary Material User Guide.
Annotation

Resolving metabolite names

To address the problem of matching of natural language metabolite names, typically
provided by metabolomics facilities, to KEEG, GAIT-GM maps names onto KEGG
IDs using a set of rules for the processing of natural language. The set of rules in
PaintOmics3'' was used and expanded to assign metabolite names to the most likely
compound in the KEGG database. For each input metabolite, a list of potentially
related metabolites based on the similarities in their names is generated as follows: 1)
Metabolite names are parsed according to the rules listed in the User Guide provide as
Supplementary Material. Common metabolite prefixes are removed (cis-, trans-, d- , I-
, (s)-, alpha-, beta-, alpha, beta, alpha-d-, beta-d-, alpha-l-, beta-1-, 1-beta-, 1-alpha-,
d-beta-, d-alpha-). If the metabolite name given is an acid, then the name is modified
to the conjugate base by replacing “ic acid”, “icacid” or “ic_acid” with “ate”. If
amino acids are given in 1-letter or 3-letter abbreviations, names are modified to the
full amino acid name. The following commonly used lipid abbreviations are modified
to reflect the full names (SM = sphingomyelin, lysopc = lysophosphatidylcholine, PC
= phosphatidylcholine, PE = phosphatidylethanolamine and LysoPE =
lysophosphatidylethanolamine). ~ Similarly, abbreviations for other commonly
assayed metabolites are modified to reflect the full names (cit = citrate, orn =
ornithine, thyr = thyroxine and boc = butoxycarbonyl). 2) Names are matched to
KEGG. 3) A similarity score is calculated using the python internal SequenceMatcher

class from difflib (https://docs.python.org/2/ sources/library/difflib.rst.txt, module

and section author Tim Peters (tim_one@users.sourceforge.net)) that returns a
measure of the similarity between two strings. Similarity score is based on the longest

contiguous matching subsequence that does not contain 'junk' elements where 'junk’
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elements are defined as duplicates making up more than 1% of a sequence with
minimum length of 200. Identical names receive a score of 1. 4) The highest
similarity score is selected. 5) When the best match is tied with at least one other
compound in KEGG, all matches are returned. A tie is determined if the similarity
score is greater than 95% for 2 or more matches in the metabolite name. In this cae,
a default selection is provided, but other possibilities are visible to the scientist and

the selection can be easily modified before the next step.

Resolving gene names

Gene ID conversion has been a long and general problem of genomics databases.
Tools such as DAVID* and BridgeDB** address this problem, although limitations
exist, such as the number of species covered or the number of items that can be
processed at a time. The KEGG Mapper is inconsistent in its naming conventions for
different species. To our knowledge there is no general tool that links KEGG IDs for
all species. We have adopted and improved the PaintOmics3 procedure for gene
mapping''. Basically, PaintOmics3 fetches the ID translation information from public
databases such as Ensembl, PDB, NCBI Refseq and KEGG, generates the translation
tables and stores them in MongoDB collections. For example, given a feature 1D
(gene, protein or transcript) for database A, to translate to a valid gene name for
database B, first the system retrieves the list of transcripts associated with the feature
(if any). Then, for each transcript ID in database A, the equivalent transcript identifier
at database B. Finally, to translate back to genes, the system finds the gene name
associated to each identified transcript. Although this method has some limitations,
mainly due to the fact that intersections between databases are not complete (i.e. some
biological entities in database A may not exist in database B), in general terms the
percentage of translated features has shown to be high and sufficient enough for

pathway analysis purposes.

Linking metabolites and genes to KEGG identifiers — 'Link Name to KEGGID'
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In order to integrate transcriptomics and metabolomics data using common KEGG
pathways, each omics data needs to be converted into the identifiers used by the
KEGG database. Genes in KEGG are not directly attached to common identifiers such
as RefSeq/PubChem IDs, rather, KEGG uses an independent identifier (a KEGG ID).
Similarly, metabolite name conventions are diverse and KEGG uses their own
compound IDs. The Link Name to KEGGID tool maps input gene/metabolite names to
the KEGG database. The KEGG identifiers can then be retrieved and used to link to
KEGG pathways. This process identifies which genes and metabolites are in shared

pathways.

Features to Pathways — 'Add KEGGID to Pathway Information'

Linking annotations form the data to a common identifier such as a KEGG identifier
is the first step in an integrated the analysis. The next step is to link the KEGG
identifiers to Pathways, which is a straight-forward parsing KEGG pathway files.
When a feature maps to multiple pathways, multiple rows area created to indicate

each relationship.

Selection and filtering

We recommend performing a selection of metabolites/genes prior to the integration
task. For example, differential expression can be used to filter metabolites/genes
changing between treatments. Feature selection can be performed with any Galaxy
tool that implements differential expression analysis. For example, for gene
expression, the Galaxy implementations of edgeR* or DEseq2”® can be used. For
metabolomics, we recommend using SECIMTools'. These tools return lists of
features (genes or metabolites) with associated p or q values that can be used for

threshold-filtering.

Integration Tool

Defining metabolite subsets
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Metabolites can be analyzed as a function of gene expression as a whole data matrix,
or as subsets of metabolites. Subsets can be created either by their annotation label or
by their measured levels across samples. Annotation labels refer to the metabolite ID
in the KEGG database, which can be assigned to multiple compounds of the input
dataset. For example, when lipidomics data are processed, multiple compounds will
be mapped to the KEGG ID sphingomyelin or ceramide, and hence these compounds
are considered to be part of the same metabolite class. Metabolite groups can also be
created based on their measurements across samples using a clustering technique.
Here we use the SECIMTools' implementation of MMC?' for unbiased clustering or
metabolites. Note that subsets can be created by combining the annotation class with

the MMC cluster or by a user defined knowledge base.

From genes in pathways to metagenes.

Gene expression can be used a whole data matrix or genes can be selected that belong
to specific pathways. An additional possibility is to concentrate pathway gene
expression information in one or few metagenes that capture the variability pattern or
“activity” of the pathway across samples. We have implemented the pathway
metagene computation method described in*>. This typically reduces the gene

expression dataset to as many metagenes as annotated pathways.

Metabolite-Expression integration statistics.

Unbiased analyses

To allow novel, unbiased discovery of gene-metabolite relationships, a simple
correlation measure is implemented that calculates correlations between metabolite
abundance and gene expression for all possible gene-metabolite pairs used as input.
The tool then selects the top 500 correlation pairs to display data as an interaction
network that can be further visually analyzed. Also the tool returns all correlation
results in a tabular format for downstream analysis. This is a fully data-driven analysis

that identifies the strongest co-variation relationships between genes and metabolites.
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Given the high number of correlations calculated here, it is important to estimate the
potential for spurious association. GAIT does a simulation test, where the mean and
variance of each compound/gene are assumed to be normal and this is used to
generate observations at random for all features used. The simulated data are then
processed identically to the observed data and the distribution of correlation
coefficients are calculated. The simulation is performed 1000 times, and for each
possible gene/metabolite pair, the frequency of random correlations above the
correlation obtained with the original data is taken as p.value. Multiple testing may be
adjusted for by several different already existing tools in Galaxy such as the 'Multiple

Testing Adjustment (MTA)' tool implemented in SECIMTools'.

Algorithm _
Preprocessing =
- Original
R Corralzuion>
Original Transpose IMatrix
Dgta Datafrgmes Check NZY \

Genes Metabolites

New. New; : Simulate Per feature
correlation Corelation new Normal mean and

value > old? \ VIatrix: Data SD

-

+1
pvalue

Matrix pvalue/N < Results
Threshold? Table

Direct Integration of metabolite quantity as a function of gene expression. We

implement Sparse Partial Least Squares (sPLS) from the mixomics package® as a
method to explain metabolite level changes as a function of gene expression. In this
approach, Gene Expression is the explanatory variable (X) and Metabolite levels is
the response variable (Y). This statistical method can be applied to multiple
combinations of Gene Expression and Metabolite matrices to create a highly flexible

analysis framework where several regulation hypotheses can be tested.

Biologically informed analyses

a) Metabolite class vs. genes in associated pathways. A group of metabolites in the

input data that map to the same compound ID in the KEGG database are considered a
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class and represent a single feature that might be present in one or several KEGG
pathways. A pertinent question in this case is if all the metabolites in the same class
are regulated in the same way or subsets of metabolites associate to different sets of
genes. The sPLS model enables testing this hypothesis. By using as explanatory
variables only genes in the pathway where the metabolite is annotated, the chance of
identifying biologically interpretable associations is much higher.

c) Metabolite class vs. pathway metagenes. Annotation of metabolites to metabolic

and signalling pathways is far from complete. In order to identify potential regulatory
relationships beyond the pathways where metabolites are currently annotated a
summary of expression in a given pathway can be derived as the combination of the
expression profiles of genes in the pathway. These pathway metagenes can be fit as
explanatory variables in sPLS models of groups of metabolites. When the response
variables are metabolites in a class, this approach addresses the question of how the
pathway activity network contributes to the regulation of the metabolites in the same
class. When the response variables are co-expressed metabolites without a known
annotation, associations with genes expressed in a pathway n may help identify the

metabolites.

Workflows

We have leveraged the power of the Galaxy platform, our new developed GAIT-TM
tools and the existing contributions of the community to create complete Galaxy
workflows for the integrated analysis of gene and metabolite expression data. These

workflows are available on github (https:/github.com/SECIMTools/gait-gm) and

some examples are described here.

The 'WF gene met correlation' Galaxy workflow implements the data-driven
analysis described above. Stating with data files and feature identification information
(e.g. m/z ratios or retention times), this workflow creates wide format datasets, design
files, identifies the genes and metabolites of interest by ANOVA, annotates the genes

and metabolites via KEGG and performs a correlation analysis between significant
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genes and metabolites to generate a table of correlation coefficients (Supplementary
Figure 3). P-values for the correlation coefficients are calculated by simulating
individual gene and metabolite datasets 1000 times using a normal distribution with
means and standard deviations generated from the data. Sample size reflects the input
datasets. Correlations are calculated on the simulated data. Correlations must be
higher/lower than 95% of the randomly simulated values to be considered significant.
An output image of this workflow is show in Supplementary Figure 3.

The 'WF _int met class 2-genes by common pathway' Galaxy  workflow
implements one of the possible biologically-informed analyses described above. The
workflow will create wide format datasets, design files, identify the genes and
metabolites of interest by ANOVA, annotate the genes and metabolites via KEGG
and integrate the gene expression and metabolite data by modelling metabolite classes
as a function of the genes in the pathways where the metabolite is present. This
approach is recommended as both gene expression and metabolite datasets are
reduced to consider relationships that are likely to occur due to the pathway

commonality of genes and metabolites. An output image of this workflow is show in

Supplementary Figure 4.
Additional example Galaxy workflows are available
(https://github.com/secimTools/gait-gm). For example, the

'WF _int met 2 metagene.ga' workflow contains the same tools as described above
but the options chosen in the 'Metabolite — Gene Integration' tool are different. In
this case, the options select model metabolite classes as a function of metagenes that
reflects the transcriptional activity of entire pathways. To include similarly behaving
metabolites without regard to identification or type, the
'WF_int MMC 2 metagene.ga' Galaxy workflow options implement the MMC tool

to estimate modules that are modelled as a function of metagenes.
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