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Abstract 

Galaxy is a user-friendly platform with a strong development community and a rich 

set of tools for omics data analysis. While multi-omics experiments are becoming 

popular, tools for multi-omics data analysis are poorly represented in this platform. 

Here we present GAIT-GM, a set of new Galaxy tools for integrative analysis of gene 

expression and metabolomics data. In the Annotation Tool, features are mapped to 

KEGG pathway using a text mining approach to increase the number of mapped 

metabolites. Several interconnected databases are used to maximally map gene IDs 

across species. In the Integration Tool, changes in metabolite levels are modelled as a 

function of gene expression in a flexible manner. Both unbiased exploration of 

relationships between genes and metabolites and biologically informed models based 

on pathway data are enabled. The GAIT-GM tools are freely available at 

https://github.com/SECIMTools/gait-gm. 
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Introduction 

High-throughput transcriptomics and metabolomics are now common analytical 

techniques in many labs, where scientists not expert in bioinformatics or statistics 

demand user-friendly tools for data analysis. The Galaxy platform is a widely used 

open source community development with an easy to understand GUI and a ‘mix and 

match’ pipeline building philosophy, that has become one of the most successful 

resources for omics data analysis by biologists. Galaxy contains tools to analyze gene 

expression and for untargeted metabolomics
1,2

. However, Galaxy tools for joint 

analysis of transcriptomics and metabolomics are scarce
3
 and this limits the utilisation 

of this platform to address multi-omics data integration problems. 
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A diversity of methods have been developed that integrate metabolomics and gene 

expression data
4-7

. Many of the existing integration approaches are based on 

multivariate dimension reduction techniques that assess the covariation structures 

between transcript and metabolite levels
8,9

. However, these methods rarely 

incorporate existing biological knowledge, which hampers the interpretation of 

analysis results. Pathway database such as KEGG
10

, that include both metabolites and 

genes, can be used to map features to a common biological process and to guide 

integrative analysis
11

. However, this strategy has also limitations. Mapping measured 

metabolite levels to a pathway database such as KEGG is restricted to the metabolites 

that are actually annotated to metabolic pathways. Many detected metabolites, 

especially lipids, cannot be mapped to the pathway data, and are eventually left aside 

in the integrative analysis. Moreover, despite the clear evidence of the importance of 

using metabolite identifiers
12

, and the existence of several metabolite ID conventions 

such as InChIKey and PubChemID
13

, natural language is still prevalent, hampering 

the use of databases that rely on identifiers. At present, common natural language 

names are not standardized in the chemical community. Moreover, using names for 

metabolites introduces variability due to different technology providers using 

different conventions. For example, using lactate versus lactic acid (the conjugate 

base of an acid versus the acid) or using ³-ketoglutarate versus 2-oxoglutarate. 

Moreover, metabolomics platforms usually do not resolve isomeric variants of sugars 

such as L-glucose and D-glucose, for which a different notation exists in KEGG. 

Finally, existing pathway tools
14-17

 have limited or no choices for the pre-processing 

of gene expression and metabolomics data, and typically do not incorporate methods 

to identify significant differences across experimental conditions. The result is that 

each scientist must deploy several additional tools for a successful and complete 

analysis. Using a series of different tools requires several data transfers and reformats, 

and the analysis can become fragmented and hard to reproduce. In contrast, linking 

the same tools inside Galaxy results in an integrated and documented workflow that is 

immediately reproducible, without extra documentation. Here we present Galaxy 

tools that integrate gene expression and metabolites by mapping to KEGG pathways 
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and use a text-mining algorithm to improve metabolites identification. We 

hypothesize that metabolite changes are a function of transcriptional regulation and 

have created a flexible Integration Tool to build models of gene-metabolite regulation 

in both a biologically based and an unbiased mode. Leveraging the Galaxy 

framework, pipelines with pre-processing steps for differential expression of genes 

and metabolites can be easily created and saved for future studies. 

 

Results  

General overview of GAIT-GM 

GAIT-GM (Galaxy Annotation and Integration Tools for Genes and Metabolites) is a 

set of tools for the analysis of metabolomics and transcriptomics data that enable the 

development of Galaxy workflows for statistical integration of gene and metabolite 

expression (Figure 1). Starting from a paired metabolomics and transcriptomics 

dataset, the Annotation Tools efficiently map gene IDs and metabolite names to 

KEGG IDs and KEGG Pathways. Features can be filtered using existing differential 

expression analysis tools to create a reduced dataset of significant features to use in 

the integrative analysis. The Integration Tools includes a diversity of analysis options 

to correlate genes and metabolites either based on the data alone or using pathway 

information to guide the analysis. GAIT-GM returns networks, text files and heatmap 

graphs as output (Figure 1A). 
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Figure 1. Galaxy pipeline for transcriptomics-metabolomics integration enabled by GAIT-GM. A) 

Annotation and Integration Tools are provided by GAIT-GM. Filter and Selection tools are taken from existing 

Galaxy tools. B) Analysis flexibility of the GAIT-GM tool. Unbiased -based on a correlation metric- and 

biologically informed -based on pathway, metabolite class and Partial Least Square analysis- analyses are 

implemented. 

The GAIT-GM framework for the integration of metabolomics with gene expression 

data builds on four biological hypotheses and the principle of analysis flexibility 

(Figure 1B). The first hypothesis is that gene expression (indirectly) regulates 

metabolite levels and this regulatory relationship can be identified as a relationship 

between the quantitative levels of the metabolite, and the transcript. This principle 

underlies both the unbiased analyses and the biologically informed analyses. The 

second hypothesis is that genes/metabolites belonging to the same pathway are more 

likely to be engaged in regulatory relationships. In the biologically informed analyses, 

shared Pathway information is used to develop models of metabolite level changes. 

The third hypothesis is that metabolites that belong to the same “class” (i.e. all 

sphingomyelins) may have a common underlying regulator. For the unbiased 

approach, co-variation patterns are used to cluster metabolites. GAIT-GM implements 
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tools that group metabolites to allow joint analysis in both unbiased and biologically 

informed ways. Fourth, pathways as a whole can be considered functional units 

regulating metabolic changes. GAIT-GM enables the estimation of a pathway effect. 

Using the principle of flexibility each tool is developed in a modular format, allowing 

tools to be chained together into a pipeline or to enable different tools to be used for 

genes and metabolites. Multiple combinations or subsets of genes and metabolites can 

be integrated to answer different research questions. 

Application to a mouse dataset 

We demonstrate the utilization of the GAIT-GM tools using a rat experiment that 

evaluates the effects of high ammonium acetate levels in Wilstar rats. Rats were fed 

during 4 weeks with a 25% of ammonium acetate to induce Hyperamonemia or a 

normal diet (Control). After this period of time, all rats were sacrificed cerebellum 

was isolated. One half was used for RNA extraction and the other half was 

immediately frozen to subsequent metabolomics analysis. 50 bp single read RNA-seq 

run with Illumina 2500 Hiseq. Data were processed as described
18

 and a gene 

expression dataset was obtained with 13,013 genes. Metabolomics profiles were 

obtained with a BIOCRATES instrument for LC-MS. A total of 131 compounds were 

measured.  

GAIT-GM Annotation Tool improves feature mapping to pathways 

GAIT-GM implements a number of parsing, text mining and database cross-reference 

strategies to maximally map gene ID and metabolite names to the KEGG database. 

For our rat dataset this approach increased the mapping of user metabolites to KEGG 

compound IDs from 26% to 95 % and most of them could also be located to at least 

one Pathway (Figure 2A). This significant improvement is partly achieved by the 

flexible parsing of metabolite names (Figure 2C), but also by the assignment of 

structural lipids (such as sphingomyelins, phosphatidylcholines, ceramides, etc) with 

multiple compounds of variable side chain lengths to a generic lipid class present in 

the KEGG database (Figure 2D). The results in lipids having on average 30 
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compounds per KEGG ID, while other metabolites have a 1:1 relationship to KEGG 

IDs (Figure 2E). While, most genes were mapped to KEEG IDs, only 20% mapped to 

pathways (Figure 2B). 

 

Figure 2. GAIT-GM improvement of mapping of features to KEGG database. A) Mapping improvement at 

metabolites. B) Mapping results for GeneIDs C) Example of text-mining rules. D) Example of mapping output for 

metabolites. C) Cardinality of input metabolites to KEEG compound IDs as a function of the metabolite type. 

GAIT-GM Integrative Tools characterise the gene-metabolite co-variation network. 

The GAIT-GM Integration module, can estimate all possible gene-metabolite 

correlations (Pearson, Spearman or Kendall). Analysis of the top 500 gene-metabolite 

correlations in the rat dataset, reveals a network composed of multiple small modules 

with one central metabolite linked to a few gene ID, and two larger connected 

components, enriched in structural lipids (Supplementary Figure 1). Interestingly, a 

prominent network component contains one Phosphatidylcholine (PC aa 30:0) that is 

highly correlated with 57 genes, that are enriched for intracellular membrane and 

transport functions, functions associated to PC lipids cellular roles
19

. These results 

suggest that further analysis of co-expression patterns of these lipids might be 

meaningful to unravel putative functional or regulatory relationships with expressed 

genes. 
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GAIT-GM biologically-informed integration reveals regulatory differences for 

structural lipids 

The sphingomyelin component of the rat dataset is composed of twelve separate 

metabolites all identified as sphingomyelins. We ask whether all metabolites in this 

class behave similarly or whether subsets exist regulated by different genes. The 

GAIT-GM integration tool was used to build an sPLS model
20

, where the response 

matrix is the set of twelve sphingomyelins, and the predictor matrix is composed of 

differentially expressed genes in KEGG pathways containing at least one 

sphingomyelin. We identified two subsets of sphingomyelins differentially regulated 

by four sets of genes (Figure 3). Notably, one pattern corresponds to long chain and 

the other to short chain compounds. Mapk9, involved in sphingomyelin signalling, 

was associated with long chains, while Sptlc2, a key enzyme in sphingomyelin 

biosynthesis, was related to short chains. The results suggest that gene regulation of 

sphingomyelins may differ based on the size and function of the lipid chain.   

 

 

 

Figure 3. GAIT-GM integrative analysis. A) sPLS model of sphingomyelins vs. pathway genes. B) Sphingolipid 

signaling pathway localization of significant genes. 
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GAIT-GM Integration Tools identify novel functional relationships at the pathway 

level. 

We hypothesized that global transcriptional patterns may influence global metabolic 

changes. To explore this idea, we used MMC to cluster metabolites into modules 

based on co-expression
21

 and computed pathway metagenes
22

. MCC identified ten 

metabolite modules (Supplementary Figure 2). Metabolites in Modules 1 and 2 are 

positively correlated and represent mostly long chain phosphatidylcholines (PC). 

Metabolites in Modules 3 and 4 are negatively correlated to 1 and 2 and contain 

mostly short chain PC. Metagenes from all pathways containing at least 3 genes were 

used to build an sPLS models for these 4 MMC metabolite modules (Figure 4). We 

identified several metabolic and signalling pathways associated with the MMC 

modules. For example, Butanoate metabolism –involved in the creation of lipid 

precursors-, Glutathione metabolism –relevant in detoxification-, and NFKB and 

Natural Killer Mediated Toxicity were positively correlated with Modules 1-2, while 

Insulin secretion and Inositol Phosphate metabolism were associated with Modules 3- 

4. These results suggest different regulatory and functional specificities for different 

subsets of the PCs. 
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Figure 4. GAIT-GM Integrative Tool analysis results. sPLS analysis of 4 MCC metabolite modules versus 

pathway metagenes. Each heatmap represents the correlation of a lipid clusters to the most coordinated gene 

expression signature of each pathway. Colour scale indicates high positive correlation as red and high negative 

correlation as blue. 

 

Discussion 

Multiomics experiments including gene expression and metabolomics data are now 

within the reach of many biological research laboratories that do their own data 

analysis. Traditionally, such labs have used user-friendly bioinformatics tools that 

allow easy access to state-of-the art algorithms and make possible interactive and 

exploratory analysis of the data. Galaxy is a platform widely used in these cases 

because it allows flexible configuration of analysis pipelines to accommodate a wide 

range of experimental designs and analysis needs. However, not many tools for 

integrative transcriptomics and metabolomics exist in Galaxy. The GAIT-GM fills a 

gap in multiomics data analysis for the Galaxy project. 
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There are several types of strategies for integrating gene expression and 

metabolomics data, and each of them pose different bioinformatics needs. When a 

priori information on the identity and functional relationship between genes / 

metabolites is not known or not incorporated in analysis, data can be modelled in 

unbiased ways. A straightforward approach is to search for correlation between genes 

and metabolites and look for patterns in results post hoc. This is implemented in the 

GAIT-GM Correlation module and can be used for exploratory unbiased analysis of 

the entire data set. This can be applied to all data, or only to genes/metabolites that are 

differentially expressed according to a factor in the experimental design 

(recommended). Alternatively, metabolites/genes can be grouped by co-expression 

using an unbiased clustering, the resulting groups can be modelled and/or the group 

can be further reduced to a single variable. For example suppose a co-variation 

analysis identifies three groups of metabolites and 5 groups of genes, an sPLS on the 

individual metabolites and genes for all group combinations can be performed (15 

combinations in the above example). Another option is to reduce the gene expression 

patterns into 5 variables, one for each group and then for each group of metabolites, to 

model the 5 groups of co-expressed genes. These possibilities are implemented in the 

GAIT-GM Integration tool. 

When biological knowledge is present, a more informed approach is possible and 

Tools in GAIT-GM have been developed to facilitate this approach. One important 

aspect is the annotation of metabolites. If compound IDs are present, a general tool 

links these IDs to the KEGG database and KEGG pathways. If compound IDs, are not 

present, or not uniformly present, the GAIT-GM Annotation Tool applied a number of 

text mining and parsing strategies based on the compound name that significantly 

improve the mapping of compounds of KEGG pathways. Another problem is the high 

number of lipidic compounds that have not a precise match in the database and for 

which a specific location in a metabolic pathway is simply unknown. These are the 

many phosphatidylcholines, sphingomyelines, ceramides, etc., that populate 

metabolomics datasets with varying lengths and saturation of their side chains. These 

compounds, apart from lacking a precise match in the KEGG database, may present 
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high heterogeneity in their quantities and variation patterns across samples, making 

their analysis difficult. The GAIT-GM Tool has been specially designed to address 

this problem by allowing selection and clustering of metabolite classes thereby 

enabling the identification of different subsets of lipids of the same generic class. 

These subsets can then be modelled separately. In the rat dataset, we showed that the 

separation of lipid classes identifies putative distinct functional roles for different 

metabolite subsets.  

In summary, the GAIT-GM provides a user-friendly analytical framework to 

integrate metabolomics and gene expression information. GAIT-GM is modular and 

allows a flexible integration that enables everything from a completely unbiased 

analysis to a pathway-centric biologically informed analysis, and various 

combinations of these integrative strategies. The Galaxy platform enables the 

construction of reproducible pipelines and transparent sharing of analytical 

approaches and results. There are two important yet unmet needs in the analysis of 

metabolomics data specifically developed here: the efficient mapping of compound 

names to KEGG, and the analysis of the heterogeneity and co-regulation with gene 

expression to improve their functional characterisation.       

 

Materials and methods 

There are three basic steps for an integrated expression and metabolite analysis 1) 

Feature annotation 2) Feature selection 3) Integrated analysis. We have developed 

Galaxy tools that cover the first and third steps of this process and leverage existing 

Galaxy tools for the second step. The GAIT-GM Annotation Tools map common 

metabolite and gene names to KEGG IDs and associate them their common pathways. 

The GAIT-GM Integration Tools implement methods for unbiased (data-driven) and 

biologically informed integration for genes and metabolites. GAIT-GM Tools are 

wrapped for Galaxy and deposited in PyPi (https://pypi.org/project/gait-gm/) with a 

corresponding Conda recipe to enable users access on the command line. All code, 
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including the needed Galaxy wrappers is also available on our github 

(https://github.com/SECIMTools/gait-gm).  

Here we describe the methods behind GAIT-GM tools. We also provide examples of 

workflows that demonstrate several data integration options. Further technical details 

on tools utilisation are provided in the Supplementary Material User Guide.  

Annotation 

Resolving metabolite names 

To address the problem of matching of natural language metabolite names, typically 

provided by metabolomics facilities, to KEEG, GAIT-GM maps names onto KEGG 

IDs using a set of rules for the processing of natural language. The set of rules in 

PaintOmics3
11

 was used and expanded to assign metabolite names to the most likely 

compound in the KEGG database. For each input metabolite, a list of potentially 

related metabolites based on the similarities in their names is generated as follows: 1) 

Metabolite names are parsed according to the rules listed in the User Guide provide as 

Supplementary Material. Common metabolite prefixes are removed (cis-, trans-, d- , l- 

, (s)-, alpha-, beta-, alpha, beta, alpha-d-, beta-d-, alpha-l-, beta-l-, l-beta-, l-alpha-, 

d-beta-, d-alpha-). If the metabolite name given is an acid, then the name is modified 

to the conjugate base by replacing “ic acid”, “icacid” or “ic_acid” with “ate”.  If 

amino acids are given in 1-letter or 3-letter abbreviations, names are modified to the 

full amino acid name. The following commonly used lipid abbreviations are modified 

to reflect the full names (SM = sphingomyelin, lysopc = lysophosphatidylcholine, PC 

= phosphatidylcholine, PE = phosphatidylethanolamine and LysoPE = 

lysophosphatidylethanolamine).  Similarly, abbreviations for other commonly 

assayed metabolites are modified to reflect the full names (cit = citrate, orn = 

ornithine, thyr = thyroxine and boc = butoxycarbonyl). 2) Names are matched to 

KEGG. 3) A similarity score is calculated using the python internal SequenceMatcher 

class from difflib (https://docs.python.org/2/_sources/library/difflib.rst.txt, module 

and section author Tim Peters (tim_one@users.sourceforge.net)) that returns a 

measure of the similarity between two strings. Similarity score is based on the longest 

contiguous matching subsequence that does not contain 'junk' elements where 'junk' 
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elements are defined as duplicates making up more than 1% of a sequence with 

minimum length of 200. Identical names receive a score of 1. 4) The highest 

similarity score is selected. 5) When the best match is tied with at least one other 

compound in KEGG, all matches are returned. A tie is determined if the similarity 

score is greater than 95% for 2 or more matches in the metabolite name.  In this cae, 

a default selection is provided, but other possibilities are visible to the scientist and 

the selection can be easily modified before the next step.  

 

Resolving gene names 

Gene ID conversion has been a long and general problem of genomics databases.  

Tools such as DAVID
23

 and BridgeDB
24

 address this problem, although limitations 

exist, such as the number of species covered or the number of items that can be 

processed at a time. The KEGG Mapper is inconsistent in its naming conventions for 

different species. To our knowledge there is no general tool that links KEGG IDs for 

all species. We have adopted and improved the PaintOmics3 procedure for gene 

mapping
11

. Basically, PaintOmics3 fetches the ID translation information from public 

databases such as Ensembl, PDB, NCBI Refseq and KEGG, generates the translation 

tables and stores them in MongoDB collections. For example, given a feature ID 

(gene, protein or transcript) for database A, to translate to a valid gene name for 

database B, first the system retrieves the list of transcripts associated with the feature 

(if any). Then, for each transcript ID in database A, the equivalent transcript identifier 

at database B. Finally, to translate back to genes, the system finds the gene name 

associated to each identified transcript. Although this method has some limitations, 

mainly due to the fact that intersections between databases are not complete (i.e. some 

biological entities in database A may not exist in database B), in general terms the 

percentage of translated features has shown to be high and sufficient enough for 

pathway analysis purposes. 

 

Linking metabolites and genes to KEGG identifiers – 'Link Name to KEGGID' 
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In order to integrate transcriptomics and metabolomics data using common KEGG 

pathways, each omics data needs to be converted into the identifiers used by the 

KEGG database. Genes in KEGG are not directly attached to common identifiers such 

as RefSeq/PubChem IDs, rather, KEGG uses an independent identifier (a KEGG ID). 

Similarly, metabolite name conventions are diverse and KEGG uses their own 

compound IDs. The Link Name to KEGGID tool maps input gene/metabolite names to 

the KEGG database. The KEGG identifiers can then be retrieved and used to link to 

KEGG pathways. This process identifies which genes and metabolites are in shared 

pathways. 

 

Features to Pathways – 'Add KEGGID to Pathway Information'  

Linking annotations form the data to a common identifier such as a KEGG identifier 

is the first step in an integrated the analysis. The next step is to link the KEGG 

identifiers to Pathways, which is a straight-forward parsing KEGG pathway files.  

When a feature maps to multiple pathways, multiple rows area created to indicate 

each relationship. 

 

Selection and filtering 

We recommend performing a selection of metabolites/genes prior to the integration 

task. For example, differential expression can be used to filter metabolites/genes 

changing between treatments. Feature selection can be performed with any Galaxy 

tool that implements differential expression analysis. For example, for gene 

expression, the Galaxy implementations of edgeR
25

 or DEseq2
26

 can be used. For 

metabolomics, we recommend using SECIMTools
1
. These tools return lists of 

features (genes or metabolites) with associated p or q values that can be used for 

threshold-filtering. 

 

Integration Tool 

Defining metabolite subsets 
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Metabolites can be analyzed as a function of gene expression as a whole data matrix, 

or as subsets of metabolites. Subsets can be created either by their annotation label or 

by their measured levels across samples. Annotation labels refer to the metabolite ID 

in the KEGG database, which can be assigned to multiple compounds of the input 

dataset. For example, when lipidomics data are processed, multiple compounds will 

be mapped to the KEGG ID sphingomyelin or ceramide, and hence these compounds 

are considered to be part of the same metabolite class. Metabolite groups can also be 

created based on their measurements across samples using a clustering technique. 

Here we use the SECIMTools
1
 implementation of MMC

21
 for unbiased clustering or 

metabolites. Note that subsets can be created by combining the annotation class with 

the MMC cluster or by a user defined knowledge base. 

 

From genes in pathways to metagenes. 

Gene expression can be used a whole data matrix or genes can be selected that belong 

to specific pathways. An additional possibility is to concentrate pathway gene 

expression information in one or few metagenes that capture the variability pattern or 

“activity” of the pathway across samples. We have implemented the pathway 

metagene computation method described in
22

. This typically reduces the gene 

expression dataset to as many metagenes as annotated pathways.  

 

Metabolite-Expression integration statistics. 

Unbiased analyses 

To allow novel, unbiased discovery of gene-metabolite relationships, a simple 

correlation measure is implemented that calculates correlations between metabolite 

abundance and gene expression for all possible gene-metabolite pairs used as input. 

The tool then selects the top 500 correlation pairs to display data as an interaction 

network that can be further visually analyzed. Also the tool returns all correlation 

results in a tabular format for downstream analysis. This is a fully data-driven analysis 

that identifies the strongest co-variation relationships between genes and metabolites. 
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Given the high number of correlations calculated here, it is important to estimate the 

potential for spurious association. GAIT does a simulation test, where the mean and 

variance of each compound/gene are assumed to be normal and this is used to 

generate observations at random for all features used. The simulated data are then 

processed identically to the observed data and the distribution of correlation 

coefficients are calculated. The simulation is performed 1000 times, and for each 

possible gene/metabolite pair, the frequency of random correlations above the 

correlation obtained with the original data is taken as p.value. Multiple testing may be 

adjusted for by several different already existing tools in Galaxy such as the 'Multiple 

Testing Adjustment (MTA)' tool implemented in SECIMTools
1
. 

 

 

Direct Integration of metabolite quantity as a function of gene expression. We 

implement Sparse Partial Least Squares (sPLS) from the mixomics package
20

 as a 

method to explain metabolite level changes as a function of gene expression. In this 

approach, Gene Expression is the explanatory variable (X) and Metabolite levels is 

the response variable (Y). This statistical method can be applied to multiple 

combinations of Gene Expression and Metabolite matrices to create a highly flexible 

analysis framework where several regulation hypotheses can be tested.  

 

Biologically informed analyses 

a) Metabolite class vs. genes in associated pathways. A group of metabolites in the 

input data that map to the same compound ID in the KEGG database are considered a 
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class and represent a single feature that might be present in one or several KEGG 

pathways. A pertinent question in this case is if all the metabolites in the same class 

are regulated in the same way or subsets of metabolites associate to different sets of 

genes. The sPLS model enables testing this hypothesis. By using as explanatory 

variables only genes in the pathway where the metabolite is annotated, the chance of 

identifying biologically interpretable associations is much higher. 

c) Metabolite class vs. pathway metagenes. Annotation of metabolites to metabolic 

and signalling pathways is far from complete. In order to identify potential regulatory 

relationships beyond the pathways where metabolites are currently annotated a 

summary of expression in a given pathway can be derived as the combination of the 

expression profiles of genes in the pathway. These pathway metagenes can be fit as 

explanatory variables in sPLS models of groups of metabolites. When the response 

variables are metabolites in a class, this approach addresses the question of how the 

pathway activity network contributes to the regulation of the metabolites in the same 

class. When the response variables are co-expressed metabolites without a known 

annotation, associations with genes expressed in a pathway n may help identify the 

metabolites. 

 

Workflows 

We have leveraged the power of the Galaxy platform, our new developed GAIT-TM 

tools and the existing contributions of the community to create complete Galaxy 

workflows for the integrated analysis of gene and metabolite expression data. These 

workflows are available on github (https://github.com/SECIMTools/gait-gm) and 

some examples are described here. 

The 'WF_gene_met_correlation' Galaxy workflow implements the data-driven 

analysis described above. Stating with data files and feature identification information 

(e.g. m/z ratios or retention times), this workflow creates wide format datasets, design 

files, identifies the genes and metabolites of interest by ANOVA, annotates the genes 

and metabolites via KEGG and performs a correlation analysis between significant 
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genes and metabolites to generate a table of correlation coefficients (Supplementary 

Figure 3).  P-values for the correlation coefficients are calculated by simulating 

individual gene and metabolite datasets 1000 times using a normal distribution with 

means and standard deviations generated from the data. Sample size reflects the input 

datasets. Correlations are calculated on the simulated data. Correlations must be 

higher/lower than 95% of the randomly simulated values to be considered significant. 

An output image of this workflow is show in Supplementary Figure 3. 

The 'WF_int_met_class_2-genes_by_common_pathway' Galaxy workflow 

implements one of the possible biologically-informed analyses described above. The 

workflow will create wide format datasets, design files, identify the genes and 

metabolites of interest by ANOVA, annotate the genes and metabolites via KEGG 

and integrate the gene expression and metabolite data by modelling metabolite classes 

as a function of the genes in the pathways where the metabolite is present. This 

approach is recommended as both gene expression and metabolite datasets are 

reduced to consider relationships that are likely to occur due to the pathway 

commonality of genes and metabolites. An output image of this workflow is show in 

Supplementary Figure 4. 

Additional example Galaxy workflows are available 

(https://github.com/secimTools/gait-gm). For example, the 

'WF_int_met_2_metagene.ga' workflow contains the same tools as described above 

but the options chosen in the 'Metabolite – Gene Integration' tool are different.  In 

this case, the options select model metabolite classes as a function of metagenes that 

reflects the transcriptional activity of entire pathways. To include similarly behaving 

metabolites without regard to identification or type, the 

'WF_int_MMC_2_metagene.ga' Galaxy workflow options implement the MMC tool 

to estimate modules that are modelled as a function of metagenes. 
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