

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

1 **Title:** The schizophrenia-associated variant in *SLC39A8* alters N-glycosylation in the mouse
2 brain

3

4 **Authors:**

5 Robert G. Mealer^{1,2,3*}, Sarah E. Williams^{1,2}, Maxence Noel², Bo Yang⁴, Alexandria D'Souza⁴,
6 Toru Nakata^{5,6,7}, Daniel B. Graham^{5,6,7}, Elizabeth A. Creasey^{5,6,7}, Murat Cetinbas⁶, Ruslan
7 Sadreyev⁶, Edward M. Scolnick^{1,3}, Christina M. Woo⁴, Jordan W. Smoller^{1,3}, Ramnik J.
8 Xavier^{5,6,7}, and Richard D. Cummings²

9

10 **Affiliations:**

11 ¹Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts
12 General Hospital, Harvard Medical School, Boston, MA.

13 ²National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess
14 Medical Center, Harvard Medical School, Boston, MA.

15 ³The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge,
16 MA.

17 ⁴Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.

18 ⁵Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard
19 Medical School, Boston, MA.

20 ⁶Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School,
21 Boston, MA.

22 ⁷Broad Institute of MIT and Harvard, Cambridge, MA, USA.

23

24 ***Corresponding Author:**

25 Robert Gene Mealer, M.D., Ph.D.

26 Richard B. Simches Research Center

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

27 185 Cambridge St, 6th Floor

28 Boston, MA 02114

29 Email : rmealer@partners.org

30

31 **Abstract**

32

33 A missense mutation (A391T) in the manganese transporter *SLC39A8* is strongly associated
34 with schizophrenia in genomic studies, though the molecular connection to the brain remains
35 hypothetical. Human carriers of A391T have reduced serum manganese, altered plasma
36 glycosylation, and brain MRI changes consistent with altered metal transport. Here, using a
37 knock-in mouse model homozygous for A391T, we show that the schizophrenia-associated
38 variant changes protein glycosylation in the brain. N-linked glycosylation was most significantly
39 impaired, with effects differing between regions. RNAseq analysis showed negligible regional
40 variation, consistent with changes in the activity of glycosylation enzymes rather than gene
41 expression. Finally, nearly one third of detected glycoproteins were differentially N-glycosylated
42 in the cortex, including members of several pathways previously implicated in schizophrenia
43 such as cell adhesion molecules and neurotransmitter receptors. These findings provide a
44 mechanistic link between a risk allele and biochemical changes in the brain, furthering our
45 molecular understanding of the pathophysiology of schizophrenia.

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

46 **Introduction**

47

48 Psychiatric disorders are heterogeneous in nearly every aspect - symptoms, diagnosis,
49 treatment, and course - but a common feature is the lack of clear disease mechanisms to guide
50 therapeutic development. Schizophrenia is a diagnostic classification for individuals afflicted
51 with a combination of cognitive dysfunction, social withdrawal, functional regression, and
52 psychotic symptoms¹. It affects between 0.5 - 1.0% of the population and can lead to a lifetime
53 of significant disability, economic and social hardships, increased mortality and decreased life
54 expectancy². Age of onset is often during adolescence and early adulthood, suggesting
55 changes in brain development and maturation play a critical role³. Studies of disease
56 mechanisms in schizophrenia were jumpstarted by the observation that dopamine antagonists
57 provide some level of symptomatic relief, which led to decades of research on neurotransmitter
58 signaling⁴⁻⁶. Despite this progress, no treatment with a novel mechanism of action has been
59 approved in nearly 50 years.

60

61 Genetic liability is the strongest epidemiologic contributor to overall risk for schizophrenia⁷.
62 Current evidence for schizophrenia and most psychiatric disorders is consistent with a polygenic
63 inheritance pattern, with disease contributions from many common variants of small effect and
64 few rare mutations of large effect⁸⁻¹⁰, originally hypothesized over fifty years ago¹¹. A major
65 advance came in 2014 with the publication of over 100 loci associated with schizophrenia
66 through GWAS¹², with the most recent studies implicating 270 common loci¹³. Most associated
67 variants are in the non-coding region of the genome, requiring careful follow-up studies to map
68 the affected gene and pathophysiologic consequence. The first successful example of such a
69 study involves the complement component 4 (C4) genes (C4A and C4B) near the MHC locus¹⁴.
70 Individuals with schizophrenia have increased expression of brain C4A, and the schizophrenia-
71 associated allele increases C4A expression in the brain. Global deletion of the C4 gene in mice,

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

72 which corresponds to both *C4A* and *C4B* genes in humans, leads to decreased complement
73 deposition and synaptic pruning during post-natal development¹⁴, providing a potential link
74 between a locus associated with schizophrenia and a molecular pathway implicated in
75 schizophrenia pathogenesis¹⁵.

76

77 For the remaining loci, understanding their connection to schizophrenia is a considerable
78 challenge, particularly for those without clear roles in the brain. One such example is the group
79 of genes involved in protein glycosylation, the post- and co-translational attachment of
80 carbohydrate structures to asparagine (N-linked) or serine, threonine and tyrosine (O-linked)
81 residues, respectively^{16,17}. In addition to at least 5 glycosylation enzymes, a variant in the
82 manganese (Mn^{2+}) transporter *SLC39A8* is strongly associated with schizophrenia^{12,18}. A large
83 number of glycosyltransferases require Mn^{2+} as an obligatory co-factor^{19–21}, and numerous case
84 series have described congenital disorders of glycosylation (CDG) caused by a near total
85 absence of Mn^{2+} in severe homozygous mutation carriers in *SLC39A8*^{22–25}. *SLC39A8* is
86 expressed at relatively low levels in most tissues of the body including the brain^{26,27}, and single-
87 cell sequencing data from mouse brain suggest the transporter is enriched within endothelial
88 cells²⁸. The schizophrenia-associated variant in *SLC39A8* of the single-nucleotide
89 polymorphism rs13107325 is of particular interest, as it corresponds to a missense mutation
90 (A391T) recently confirmed as the causal variant within *SLC39A8*¹³. A391T is present in ~8% of
91 the general population, with increased prevalence in European lineages and near absence in
92 Asian and African lineages²⁹. In addition to its role in schizophrenia, rs13107325 is one of the
93 most pleotropic variants in the genome and is associated with dozens of traits through GWAS³⁰,
94 including several neuropsychiatric phenotypes and a decrease in serum Mn^{2+} levels^{31–35}. Like
95 other common variants, the relative effect of rs13107325 on most phenotypes is small, e.g.,
96 reducing the concentration of serum Mn^{2+} by ~10%^{18,35} and increasing the odds ratio of
97 schizophrenia from 1.0 to 1.15 in heterozygous carriers^{12,13}.

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

98

99 The pathophysiologic connection between A391T and most conditions remain hypothetical^{29,36–}
100 ³⁹. We recently described serum glycosylation changes in homozygous *SLC39A8* mutation
101 carriers who presented with symptoms of a CDG but who were missed by conventional
102 diagnostic methods. Subtle dysglycosylation differences were observed in heterozygous carriers
103 as well, consistent with a dominant effect of *SLC39A8*-CDG alleles⁴⁰. Lin and colleagues
104 describe an increase of one precursor N-glycan in plasma from a small number of homozygous
105 *A391T* carriers, suggestive of hypogalactosylation⁴¹. We subsequently reported a detailed N-
106 glycomic analysis of plasma glycoproteins from homozygous and heterozygotes *A391T* carriers,
107 and identified dysglycosylation in both genotypes characterized by reduced complexity and
108 branching of large N-glycans, primarily those synthesized by the liver⁴². In that study, we also
109 described a previously unappreciated sex-dependent effect of the *A391T* variant on
110 glycosylation, with males showing a larger alteration in plasma N-glycosylation compared to
111 females⁴². Although plasma glycosylation is an important peripheral marker for enzymatic
112 activity and disease state in some scenarios, it is unlikely to reflect changes in the brain.
113 However, analysis of brain MRI data from the UK Biobank of *A391T* mutation carriers identified
114 a difference in the T2w:T1w ratio in several regions, consistent with an effect of *A391T* on brain
115 metal transport⁴².

116

117 Here, to further understand the molecular role of the schizophrenia-associated variant in the
118 brain, we utilized a murine model expressing the homologous human mutation *A391T* in murine
119 *Slc39a8* (*A393T*)⁴³. By applying several methods optimized for analysis of protein glycosylation
120 in the brain⁴⁴, in addition to glycoproteomics and a novel method for glycan quantification, we
121 present a comprehensive portrait of dysglycosylation in the adult *A391T* homozygous mouse
122 brain. These results are evidence of a biochemical change in the brain directly caused by a
123 schizophrenia risk variant.

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

124

125 **Results**

126

127 **A391T changes brain N-glycosylation in a region-specific manner**

128 We utilized a recently described mouse model expressing the schizophrenia-associated human
129 variant A391T in *SLC39A8* within the murine gene (Ala 393 in *Slc39a8*), which exhibits no overt
130 neurobehavioral or developmental phenotype and reproduces at the expected frequencies⁴³.

131 We hypothesized that A391T would decrease Mn²⁺ concentration and subsequent activity of
132 Mn²⁺-dependent Golgi glycosyltransferases in the brain. The N-glycome of the brain is unique
133 compared to other organs - consisting predominantly of high-mannose, bisected and
134 fucosylated glycans, with a much lower abundance of complex, branched structures containing
135 galactose and sialic acid - with subtle but significant differences between brain regions and
136 sexes⁴⁴.

137

138 We first analyzed the effect of A391T on the relative abundance of N-glycans in four
139 independent brain regions (frontal cortex, hippocampus, striatum and cerebellum) of male and
140 female adult mice with semi-quantitative MALDI-TOF N-glycomics following Peptide N-
141 Glycosidase (PNGase F) release and permethylation. Homozygous mutant mice (TT) were
142 compared to wild-type littermate controls (CC) at 12-weeks of age (**Table 1**). We identified
143 bidirectional and region-specific changes of the A391T mutation on N-glycosylation, with a
144 larger effect consistently observed in males (**Fig. 1A, Fig. S1**). N-glycans appeared more
145 complex in the male TT cortex compared to CC controls, with greater relative abundance of tri-
146 and tetra-antennary structures along with a corresponding decrease in high-mannose glycans
147 (**Fig. 1B**). Glycans containing fucose, galactose, and sialic acid were also increased in TT
148 cortex, consistent with an apparent increase in complexity of N-glycans. In the hippocampus,
149 which is evolutionarily most related to the cortex⁴⁵, the pattern of N-glycosylation changes in TT

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

150 mice were similar though did not reach statistical significance, while N-glycans in the striatum
151 appeared mostly unaffected. In contrast, the cerebellum of TT mice displayed less complex N-
152 glycans compared to CC controls, with a significant reduction in sialylated structures (**Fig 1B**).
153 Several individual N-glycans differed significantly between genotypes, the majority of which
154 were in the cortex and cerebellum (**Table S1**). Full descriptions of individual N-glycan
155 characteristics and abundance by region and sex are provided in supplementary material (**Table**
156 **S1, S2**). Analysis of N-glycans from cortex and cerebellum at 4-weeks of age in a separate
157 cohort failed to detect any difference between CC and TT mice (**Table S3**).
158

159 **O-Mannose glycans are increased in A391T cortex**

160 We are unaware of previous studies of O-glycosylation in relation to SLC39A8. After PNGase F
161 treatment, O-glycans were removed from glycoproteins through β -elimination, which represents
162 glycans released from serine and threonine residues, followed by permethylation and MALDI-
163 TOF MS. This generated interpretable O-glycan spectra with 26 unique O-glycans in a smaller
164 subset compared to our analysis of N-glycosylation (**Table S4**). Across the four brain regions,
165 only TT cortex showed a significant increase in the relative abundance of O-mannose (O-Man)
166 to O-GalNAc structures (**Fig S2, Table S5**). The majority of O-glycosylation features were
167 unchanged, with only small differences noted in structures of low abundance (cerebellar NeuGc
168 content), or the group with the smallest sample size (hippocampus). A greater proportion of O-
169 Man was also present in the small number of female TT cortex samples analyzed, though this
170 difference fell short of significance (**Fig S3**).
171

172 **Total N-glycan concentration is decreased in A391T cortex**

173 MALDI-TOF MS provides a semi-quantitative analysis following normalization within a sample.
174 For example, if the absolute concentration of every glycan was uniformly reduced by 50%, but
175 the relative abundance of each glycan remained the same, such a change would be

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

176 undetectable using standard MALDI-TOF MS techniques. As A391T appeared to have opposite
177 effects on the relative abundance of complex glycans in the cortex and cerebellum, we explored
178 approaches for absolute N-glycan measurements.

179

180 Glycoprotein blotting using the lectin Concanavalin A (ConA), which has an affinity for the core
181 α -mannose structure present in most N-glycans, was decreased ~10% in both cortex and
182 cerebellum but fell short of significance (**Fig S4**). This was not surprising given the limited
183 sensitivity of quantitative western blotting, particularly for a change predicted to be small from a
184 common genetic variant. As such, we sought to develop a more sensitive measure for N-glycan
185 concentrations within biological samples. To this end, following release with PNGase F, N-
186 glycans were derivatized at their reducing ends with the fluorescent-linker F-MAPA⁴⁶, resulting
187 in addition of one fluorescent molecule to each N-glycan (**Fig 2A**). After purification, derivatized
188 N-glycans from the isolated glycoprotein fetuin, as well as mouse serum and brain, produced
189 linear fluorescent signals across a broad range of protein concentrations, highlighting the
190 quantitative utility of this assay across several tissues (**Fig S4**).

191

192 Measurement of derivatized N-glycans with F-MAPA showed a decrease in the cortex of TT
193 mice, indicating reduced absolute concentration of N-glycans (**Fig 2B**). To address the
194 discrepancy between the semi-quantitative increase in highly branched/sialylated N-glycans
195 identified by glycomics and the fully quantitative decrease in total N-glycans in TT cortex, we
196 quantified total sialic acid in glycoconjugates in different brain fractions between genotypes (**Fig**
197 **2C**). Consistent with prior studies⁴⁷, the bulk of sialic acid in both cortex and cerebellum was
198 contained in glycolipids and removed by extraction with chloroform and methanol (**Fig S5**). The
199 remaining sialic acid is divided roughly in half between glycoprotein N- and O-glycans based on
200 PNGase F release of total N-glycans. These results, in combination with our glycomics
201 observation that only a small fraction of the N-glycan pool is sialylated (~2%, compared to 90%

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

202 of O-glycans)⁴⁴, indicate that N-glycans are several-fold more abundant in the brain relative to
203 O-glycans. No difference in sialic acid concentration was detected in total brain lysate
204 (glycolipids and glycoproteins) between CC and TT genotypes (**Fig 2D**). After removal of
205 glycolipids, the amount of sialic acid in the glycoprotein fraction was reduced in TT cortex and
206 increased in TT cerebellum (**Fig 2E**). This difference was eliminated with PNGase F treatment
207 (**Fig 2F**), indicating that the difference in amounts of sialic acid concentration was specific to N-
208 glycans. The differing sialic acid amounts could be explained by either a change in the number
209 of sialic acid monosaccharides per glycan, or a change in the absolute number of glycans
210 present. When normalized for glycan concentration using results from F-MAPA-derivatized N-
211 glycans of the same sample, we detected no difference between region or genotype in the
212 amount of sialic acid per N-glycan (**Fig 2G**). Taken together, these results demonstrate that the
213 absolute pool of N-glycans was decreased in the cortex of TT mice, while the relative amount of
214 sialylated N-glycans, a minor fraction of all N-glycans, was increased in response to the A391T
215 mutation.

216

217 **Differences in gene expression do not account for glycosylation changes in A391T** 218 **cortex**

219 We employed global RNAseq to determine if changes in gene expression contributed to
220 glycosylation differences observed in A391T cortex and cerebellum. Minimal differences in gene
221 expression were detected among the ~14,000 transcripts measured between CC and TT cortex
222 (**Fig 3A**) and cerebellum (**Fig 3B**) by RNAseq, with only 3 and 42 transcripts being differentially
223 expressed on a transcriptome-wide level, respectively (**Table S6**). Of note, there was no
224 significant difference in expression of glycosyltransferases, glycosylhydrolases, or *Slc39a8* in
225 either region between genotypes. Comparison between cortex and cerebellum within each
226 genotype (**Fig 3C, Fig 3D**) showed nearly identical regional expression patterns, consistent with
227 known regional differences (**Fig 3E, Fig S6**).

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

228

229 **N-glycoprotein levels are altered in A391T cortex**

230 Glycomic and RNAseq data were consistent with changes in the enzymatic activity of
231 glycosyltransferases in A391T mice rather than their expression. However, this does not provide
232 information on altered target protein glycosylation, which could be affected in a broad or target-
233 specific manner. To obtain quantitative data on a protein-specific level, we used hydrophilic
234 interaction liquid chromatography (HILIC) and multi-lectin affinity enrichment to isolate tryptic N-
235 glycopeptides from the cortex of male CC and TT mice, followed by analysis with LC-MS/MS. A
236 total of 517 peptide sequence fragments (PSMs) with 554 unique N-glycosylation consensus
237 sites were detected, originating from 210 distinct glycoproteins (**Table S7**). Near uniform N-
238 glycoprotein levels were seen in the five CC samples, and TT mice showed a similar pattern in 4
239 of 5 samples, with one sample appearing as an outlier from both CC and TT groupings (**Fig 4A,**
240 **B**). Repeat genotyping confirmed that both homozygous mutation status and sex were accurate,
241 and the sample was included in subsequent analyses. Of the 210 N-glycoproteins, 66 had
242 significantly different levels in TT cortex, with 41 decreased and 25 increased based on an
243 adjusted p value <0.05 and fold change > 2.0 (**Fig 4C**). The full N-glycoproteomic data can be
244 found in the supplemental data and via ProteomeXchange with identifier PXD021632.

245

246 **Differentially N-glycosylated proteins are enriched in unique cellular components and** 247 **cell clusters of origin, including glycoproteins implicated in schizophrenia**

248 For further insight into the molecular changes of A391T cortex, we analyzed the list of
249 differentially N-glycosylated proteins using the FUMA GENE2FUNC platform⁴⁸. A list of genes
250 from all detected N-glycoproteins in control cortex (210 genes) and those unchanged (141
251 gene), decreased (41 genes), and increased (25 genes) in A391T cortex were used as input
252 compared to protein coding genes, all of which were enriched in brain tissue as expected. Gene
253 Ontology (GO) cellular component analysis, based on the PANTHER classification system⁴⁹,

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

254 again confirmed significant enrichment of predictable components in all lists including dendrite,
255 synapse, and neuron, known locations of N-glycoproteins in the brain. N-glycoproteins
256 decreased in A391T cortex showed a unique enrichment of several components of the plasma
257 membrane and genes involved in ion transport (**Fig S8A**), while N-glycoproteins increased in
258 A391T cortex included multiple components of the ER and Golgi networks (**Fig S8B**). Though
259 there was overlap and the significance of enrichment decreased with the size of the list, these
260 findings suggest the A391T variant has different effects on glycosylation of individual proteins
261 within the same tissue.

262

263 Single-cell profiling provides detailed information on the cellular specificity of gene expression in
264 the mouse brain²⁸. *Slc39a8* is expressed at relatively low levels in the mouse brain, with
265 expression concentrated in endothelial cells, trace levels in microglia and fibroblasts, and a near
266 total absence in other cell types (**Fig S9A, S9B**). To determine the cell types of origin for
267 differentially N-glycosylated proteins in A391T cortex, we downloaded single cell expression
268 data from mouse frontal cortex using the DropViz platform²⁸ for the lists of all, unchanged,
269 decreased, and increased glycoproteins. Total transcript levels were summed within each of the
270 14 unique cell-type clusters; these data indicated that differentially glycosylated proteins were
271 expressed in all subtypes, with a similar overall pattern observed between all detected
272 glycoproteins in control mice and those unchanged in TT cortex (**Fig S9C**). Normalization of
273 transcript levels for comparison across lists highlighted several differences in the cell cluster of
274 origin, including an enrichment of glycoproteins with decreased levels in interneurons and
275 neurons, and an enrichment of glycoproteins with increased levels in endothelial cells (**Fig 5**),
276 where the majority of *Slc39a8* is expressed.

277

278 Among the 66 differentially glycosylated proteins, several are striking given their function in
279 pathways previously implicated in schizophrenia, including glutamate and GABA

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

280 neurotransmission (Gria1, Slc1a2, Gabbr1), dopamine signaling (Drd1), and cell
281 adhesion/migration (Cdh5, Ncam1, Ncan, Pcdh19, Reln) (**Table 2**). In addition, Brinp2 and
282 Gria1 were differentially N-glycosylated in A391T cortex and are encoded by genes associated
283 with schizophrenia through GWAS¹².

284

285 **Discussion**

286

287 Here we employed several sensitive techniques to demonstrate that in a murine model the
288 schizophrenia risk allele in *SLC39A8* reduces the products of manganese-dependent Golgi-
289 glycosyltransferases in the brain, with a relatively small effect size as predicted for common
290 genetic variants. Rodent studies are not a model for schizophrenia but can be a tool to
291 understand downstream effects of risk variants. In contrast to previous studies which have
292 primarily knocked out schizophrenia risk genes in mice, these results show that the biologically
293 relevant risk allele in *SLC39A8* alters key molecular pathways in the brain.

294

295 Protein glycosylation changes in A391T mice were most robust in the N-glycosylation pathway,
296 which contains several Mn²⁺-binding glycosyltransferases with DxD motifs, such as β-1,4-
297 galactosyltransferases and N-acetylglucosaminyltransferases^{19,20}. In addition,
298 oligosaccharyltransferase (OST), which transfers dolichol anchored N-glycan precursors to
299 asparagine residues of nascently transcribed proteins in the ER lumen, also requires Mn²⁺ for
300 activity^{50,51}. Though there was an increase in the relative abundance of tri- and tetra-antennary
301 N-glycans in the cortex of A391T mice by MALDI, quantitative studies using F-MAPA confirmed
302 a reduction of total N-glycans, and suggest the cortex prioritizes synthesis of these low
303 abundance structures when pathway activity is reduced. A391T mice also exhibited small
304 changes in brain O-glycosylation, and the twenty N-acetylgalatosaminyltransferases (GALNTs),
305 which initiate O-GalNAc-type glycosylation, contain a Mn²⁺-binding DxH domain and could be

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

306 affected by changes in Mn²⁺ levels⁵². Transcriptomics from cortex and cerebellum did not
307 identify changes that could account for the observed glycosylation differences in A391T brain,
308 as the RNA levels of glycosyltransferases, glycosylhydrolases, and the differentially
309 glycosylated targets were unchanged. This observation is consistent with human data as the
310 rs13107325 SNP is not an eQTL for any gene in the brain including *SLC39A8*²⁶.

311
312 Glycosylation changes associated with the A391T variant support the converging evidence that
313 dysglycosylation is involved in schizophrenia pathogenesis. Numerous glycosylation enzymes
314 are associated with schizophrenia through GWAS^{12,18} and the number continues to expand, with
315 many glycosylation genes included in the most recent list of prioritized schizophrenia risk
316 genes¹³, including several specific to N-glycosylation (*MAN2A1*, *ALG12*, *MANBA*) and O-
317 glycosylation (*GALNT10*, *GALNT17*/*WBSCR17*, *TMTC1*). In addition, many genes associated
318 with schizophrenia through genetic studies encode proteins that are critically regulated by
319 glycosylation¹⁸, and post-mortem studies have consistently shown brain dysglycosylation in
320 individuals with schizophrenia⁵³. Glycoproteomic changes further illustrate the connection
321 between schizophrenia and glycosylation, as several risk genes and proteins involved in critical
322 developmental and functional pathways in the brain are altered in the cortex of A391T mice.
323 Pathway analyses of the differentially glycosylated proteins suggest that proteins with increased
324 or decreased levels are enriched in distinct pathways and cellular components, consistent with
325 the complexity of glycosylation as a non-template-based protein modification. We predict
326 glycosylation enzymes exert altered substrate specificity and binding in the setting of
327 homeostatic changes in Mn²⁺ levels, increasing the glycosylation of some priority targets while
328 decreasing others.

329
330 *SLC39A8* is expressed in most tissues at low levels²⁷, and in the mouse brain *S/c39a8* is
331 restricted primarily to endothelial cells²⁸. We observed changes in glycoproteins originating

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

332 from, though not necessarily restricted to, all cell clusters in the brain. Interestingly,
333 glycoproteins whose levels are increased in TT cortex are enriched in endothelial cells, which
334 express the highest level of *Slc39a8*, while decreased glycoproteins are enriched in several
335 neuronal clusters, with a minimal change in microglia. These results suggest that *Slc39a8*
336 serves as a gate keeper for Mn²⁺ in the brain, with the A391T variant impairing its function in
337 endothelial cells to result in subtle but significant glycosylation changes across the brain and cell
338 types. It is possible that the biological effects are related to its peripheral expression, but the
339 final consequence is altered brain glycosylation.

340

341 We confirmed our prior observation of a sex-dependent effect of A391T on glycosylation, with
342 human and mouse males showing a larger effect compared to females⁴². Recent investigations
343 of gastrointestinal phenotypes associated with A391T confirmed sex effects, which may in part
344 be explained by lower Mn²⁺ levels in male mice^{43,54}. It is important to note that the increased risk
345 for schizophrenia in A391T carriers is equal in males and females¹³. We suspect that A391T
346 confers risk through altered Mn²⁺ transport during brain development; given the complexity of
347 Mn²⁺ homeostasis and transport, the subtle effect may normalize over time despite vulnerable
348 pathways during critical windows having been already affected. Interestingly, we did not observe
349 glycosylation changes in male A391T mice at 4 weeks of age, which roughly corresponds with
350 early adolescence in humans, raising the possibility that Mn²⁺ supplementation after 4 weeks of
351 age might prevent these changes.

352

353 In sum, our findings provide mechanistic support that the *SLC39A8* schizophrenia risk allele
354 alters glycosylation in the brain and provide several nodes of connection between known
355 genetic risk and disease pathways. Mendelian disorders of glycosylation caused by severe
356 hypofunctioning alleles of *SLC39A8* are treated with supplementation of glycosylation
357 precursors and manganese^{22,23}. Although the A391T variant is likely to have a much smaller

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

358 effect on SLC39A8 function, supplementation with similar factors during critical periods of brain
359 development may lessen the risk of neuropsychiatric conditions in carriers and targeting
360 glycosylation more broadly in schizophrenia could represent a novel pathway for therapeutic
361 development.

362

363 **Author Contributions:**

364 RGM conceptualized the project, performed the bulk of experiments and analyses, and wrote
365 the manuscript

366 SEW performed glycomics experiments and assisted statistical analysis

367 MN performed quantitative glycan analyses and lectin blotting

368 BY and ADS performed glycoproteomic analysis

369 TN assisted in tissue harvest, genotyping and mouse colony maintenance

370 DBG was involved in mouse generation

371 EAC was involved in mouse generation, genotyping and colony maintenance

372 MC performed analysis of RNAseq data

373 RS supervised RNAseq analysis

374 EMS initiated the project and coordinated collaborations

375 CMW supervised BY and ADS and oversaw glycoproteomic analysis

376 JWS co-supervised RGM and SEW, oversaw experimental analyses, and helped conceptualize
377 the project

378 RJX provided mouse samples for analysis

379 RDC co-supervised RGM, SEW and MN, oversaw experimental analyses, and helped
380 conceptualize the project

381 All authors contributed feedback and edits to the manuscript

382

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

383 **Acknowledgements:** This work was supported by a foundation grant from the Stanley Center
384 for Psychiatric Research at the Broad Institute of Harvard/MIT (awarded to RGM) and NIH grant
385 P41GM103694 (awarded to RDC). RGM is supported by T32MH112485. CMW is supported by
386 NIH NCI U01CA242098.

387

388 **Competing Interests:** R.J.X. is a cofounder and equity holder of Celsius Therapeutics and
389 Jnana Therapeutics and consultant to Novartis. These companies did not provide support for
390 this work.

391

392 **Methods**

393

394 *A391T homozygous knock-in mutant mice* were generated by gene targeting in embryonic stem
395 cells derived from C57BL/6J mice, as previously described⁴³. Mice from both sexes were used
396 in this study and were 12 weeks old at the time of tissue harvest unless otherwise noted. No live
397 animals were used in this study. All mice were housed and maintained in accordance with the
398 guidelines established by the Animal Care and Use Committee at Massachusetts General
399 Hospital under protocol #2003N000158.

400

401 *Sample Preparation and Glycomic Analysis* were performed as previously described in detail in
402 a related manuscript⁴⁴.

403

404 *F-MAPA derivation and quantification of released N-glycans.* All chemical reagents were HPLC
405 grade purchased from Sigma Aldrich (St. Louis, MO, USA) unless otherwise noted, and all
406 reagents were freshly prepared on the day of analysis. PNGase F (New England Biolabs,
407 #P0704) released N-glycans from 1 mg of brain protein lysate were isolated as previously
408 described⁴⁴. Purified N-glycans were derivatized using the fluorescent linker

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

409 fluorenylmethyloxycarbonate-3-(methoxyamino)propylamine (F-MAPA) as previously
410 described⁴⁶. In brief, purified N-glycans (not permethylated) were resuspended in 80 µL of
411 dimethylsulfoxide/acetic acid at 7:3 (v/v) ratio containing 0.25 M F-MAPA, 0.25 M sodium
412 acetate, and 0.5 mM 2-amino-5-methoxybenzoic acid and incubated for 2 hours at 65°C with
413 gentle rotation at 100 RPM. Ten (10) volumes of ethyl acetate were added, vortexed, and
414 incubated at -20°C for 20 minutes to precipitate N-glycan/F-MAPA conjugates and isolated by
415 centrifugation at 10,000 RPM for 15 minutes. After removal of the supernatant, the pellet
416 containing F-MAPA derived N-glycans was dissolved in 300 µL of Milli-Q filtered water and
417 loaded on a C18 Sep-Pak columns (200 mg) preconditioned with acetonitrile (ACN) then water.
418 Bound F-MAPA-linked N-glycans were washed with 5 mL of water, eluted with 2 mL of 30%
419 ACN, and lyophilized. Purified F-MAPA linked N-glycans were then resuspended in 200 µL of
420 water and detected using a fluorescence spectrophotometer (SpectraMax i3x, Molecular
421 Devices) with excitation wavelength of 265 nm and emission wavelength 315 nm and quantified
422 (SoftMax Pro Software, v7.0.3).

423

424 *Sialic acid quantification.* Absolute quantification of sialic acid in different glycoconjugate
425 fractions was performed using the Sialic Acid (NANA) Assay Kit (Ab83375, Abcam, Cambridge,
426 MA) according to the manufacturer's instructions. Briefly, 30 µg of protein or 600 pmol of N-
427 glycan/F-MAPA were incubated with the sialidase NeuA for 4 h at 37°C. The reaction was
428 stopped by boiling the samples for 5 minutes at 95°C, followed by centrifugation at 10,000 RPM
429 for 5 minutes, and the supernatant (containing free sialic acid) was transferred to a 96-wells
430 plate. NANA reactions were performed by adding 25 µL reaction mix (22 µL assay buffer, 1 µL
431 sialic acid converting enzyme, 1 µL sialic acid development mix, 1 µL sialic acid probe) to each
432 supernatant, and incubated for 30 minutes at room temperature in the dark. The fluorescence of
433 each well was then quantified by spectrophotometry (Excitation: 535 nm, Emission: 587 nm) as
434 described above.

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

435

436 *RNA Sequencing* was performed as described performed as previously described in related
437 manuscript⁴⁴. In brief, RNA from snap frozen cortex and cerebellum was purified using the
438 RNeasy Lipid Tissue Mini Kit (QIAGEN, 74804). RNA-seq libraries were prepared from total
439 RNA using polyA selection followed by the NEBNext Ultra II Directional RNA Library Prep Kit
440 protocol (New England Biolabs, E7760S). Sequencing was performed on Illumina HiSeq 2500
441 instrument resulting in approximately 30 million of 50 bp reads per sample. Sequencing reads
442 were mapped in a splice-aware fashion to the mouse reference transcriptome (mm9 assembly)
443 using STAR⁵⁵. Read counts over transcripts were calculated using HTSeq based on the
444 Ensembl annotation for GRCm37/mm9 assembly and presented as Transcripts Per Million
445 (TPM)⁵⁶.

446

447 *N-Glycoproteomic analysis*. Brain cortex samples were lysed in 1 mL lysis buffer (20 mM
448 HEPES pH 7.9, 1% SDS, and protease inhibitor) with protein concentrations determined by
449 BCA assay (Thermo Fisher Scientific, Cat # 23225). Reduction and alkylation were performed
450 as previously described⁵⁰. S-trap digestion was performed according to the manufacturer's
451 instructions (ProtiFi, Cat # C02-mini), resulting in ~0.6 mg tryptic peptides per sample. To one
452 half of tryptic peptides, 15 mg of HILIC beads (PolyLC, Cat # BMHY0502) pre-activated with
453 0.1% trifluoroacetic acid (TFA) were added to make a 1:50 peptide-to-beads mass ratio. The
454 samples were vortexed in binding buffer (0.1% TFA, 19.9% water, 80% ACN) for 1 h at room
455 temperature to allow N-glycopeptides to bind to beads. The unbound peptides were washed
456 with 150 µL binding buffer 6 times, and N-glycopeptides were eluted by washing the beads with
457 (150 µL) 0.1% TFA for 5 times. Finally, 2 µL PNGase F (500U/µL) (NEB # P0704) was added to
458 the elution buffer and the samples were incubated for 3 h at 37 °C, followed by lyophilization. To
459 the other half of tryptic peptides, multi-lectin enrichment was performed based on a previously
460 reported protocol with some modifications⁵¹. Briefly, tryptic peptides were mixed with a mixture

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

461 of lectins (90 µg ConA, 90 µg WGA, 36 µg RCA120 in 2X binding buffer (Sigma-Aldrich, Cat
462 L7886, Cat L9640, and Cat L7647) and transferred to a 30 kDa filter (Pall Corporation, Cat #
463 OD030C34), incubated at room temperature for 1 h and unbound peptides were eluted by
464 centrifuging at 14,000 g for 10 minutes. N-glycopeptides were washed with 200 µL binding
465 solution four times and 50 µL digest buffer of 50 mM triethylammonium bicarbonate (TAEB)
466 twice. Finally, 2 µL PNGase F (NEB # P0704) was added to the filter and incubated for 3 h at 37
467 °C. The deglycosylated N-glycopeptides were eluted with 2 × 50 µL digest buffer. N-
468 glycopeptides from two enrichment methods were combined and desalted by C18 tips (Thermo
469 Fisher Scientific, Cat #87784) following the manufacturer's instructions and resuspended in 30
470 µL 100 mM TEAB buffer. For each sample, 5 µL the corresponding amine-based tandem mass
471 tag (TMT) 10-plex reagents (10 µg/µL) (Thermo Fisher Scientific, Cat # 90406) was added and
472 incubated for 1 hour at room temperature. The reactions were quenched with 2 µL 5%
473 hydroxylamine solution (Oakwood Chemical, Cat # 069272), and the combined mixture was
474 lyophilized. High-pH fractionation was done according to the manufacturer's instructions
475 (Thermo Fisher Scientific, Cat # 84868), which resulted in 15 independent fractions.

476

477 A Thermo Scientific EASY-nLC 1000 system was coupled to a Thermo Scientific Orbitrap
478 Fusion Tribrid with a nano-electrospray ion source. Mobile phases A and B were water with
479 0.1% formic acid (v/v) and ACN with 0.1% formic acid (v/v), respectively. For each fraction,
480 peptides were separated with a linear gradient from 4 to 32% B within 45 min, followed by an
481 increase to 50% B within 10 minutes and further to 98% B within 10 minutes, and re-
482 equilibration. The instrument parameters were set as follows: survey scans of peptide
483 precursors were performed at 120K FWHM resolution over a m/z range of 410-1800. HCD
484 fragmentation was performed on the top 10 most abundant precursors exhibiting a charge state
485 from 2 to 5 at a resolving power setting of 50K and fragmentation energy of 37% in the Orbitrap.

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

486 CID fragmentation was applied with 35% collision energy and resulting fragments detected
487 using the normal scan rate in the ion trap.

488

489 The raw data was processed using Proteome Discoverer 2.4 (Thermo Fisher Scientific). Data
490 was searched against the UniProt/SwissProt mouse (*Mus musculus*) protein database (May 30,
491 2019, 17,372 total entries) and contaminant proteins using Sequest HT and Byonic algorithms.

492 Searches were performed with the following guidelines: spectra with a signal-to-noise ratio
493 greater than 1.5; trypsin as enzyme, 2 missed cleavages; variable oxidation on methionine
494 residues (15.995 Da) and deamidation on asparagine (0.984 Da); static

495 carboxyamidomethylation of cysteine residues (57.021 Da), static TMT labeling (229.163 Da) at
496 lysine residues and peptide N-termini; 10 ppm mass error tolerance on precursor ions, and 0.02
497 Da mass error on fragment ions. Data were filtered with a peptide-to-spectrum match (PSM) of
498 1% FDR using Percolator. The TMT reporter ions were quantified using the Reporter Ions

499 Quantifier with total peptide normalization. For the obtained PSMs, the data was further filtered
500 with the following guidelines: confidence is high; PSM ambiguity is unambiguous; modifications
501 contain deamidated; exclude all contaminant proteins. Consensus sequence filtering was
502 applied using a string match module with filtering the Subcellular location for Cell membrane,

503 Endoplasmic reticulum, Golgi apparatus, Extracellular, and Secreted. Most of the empty

504 Abundances, if any, were filled in with minimum noise level computed by taking the minimum for
505 each channel in CC and TT cortex. Reducing these minimum groups, five channels for CC and
506 five for TT, required taking the absolute maximum in CC and TT and the absolute minimum in

507 CC and TT. Subsequently, 2000 centroids were generated at random from these 4 points and a
508 minimum noise level was generated using a K-means clustering method. If there were few

509 missing values the maximum and minimum of the Abundances for that PSM in the CC and TT
510 groups were used to generate centroid data. If only one Abundance was missing, the instance
511 was filled with the geometric mean of the PSM for CC or TT. If all Abundances were missing for

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

512 CC and TT, the PSM was removed. Based on the algorithm in this script of an empty
513 abundance missing completely at random, missing not at random, or missing at random, any
514 valid instances were filled with the appropriate method described above. A limitation of the log-
515 ratio of raw MS data is the dependence on variation within each channel for CC and TT. Applied
516 here was a VSN normalization computed on the imputed matrix using a robust variant of the
517 maximum-likelihood estimator for an additive-multiplicative error model and affine calibration.
518 The model incorporates dependence of the variance on the mean intensity and a variance
519 stabilizing data transformation. The MS data were deposited at the ProteomeXchange
520 Consortium⁵² via the PRIDE partner repository and are available with the identifier PXD021632.

521

522 *Glycoprotein pathway analyses* was performed using the GENE2FUNC tool of the FUMA
523 platform⁴⁸ on October 30th, 2020. Input lists included all detected N-glycoproteins in CC cortex,
524 unchanged N-glycoproteins in TT cortex, decreased N-glycoproteins in TT cortex, and
525 increased N-glycoproteins in TT cortex, based on corrected p-values < 0.05 and fold change
526 >2.0 compared to protein coding genes as background. Output results for gene set enrichment
527 of GO cellular components⁴⁹ were presented.

528

529 *Glycoprotein cell of origin analyses* was performed using publicly available data downloaded
530 from the DropViz database²⁸ on October 30th, 2020. Single cell expression data from each gene
531 in the above-described lists of N-glycoproteins were downloaded from frontal cortex containing
532 14 distinct cell clusters and exponentially natural log transformed to approximate transcripts per
533 100,000 in each cluster. Transcripts levels for each cluster were then summed for the above
534 described lists of detected glycoproteins (*all, unchanged, decreased, increased*) and normalized
535 within each group to generate the relative abundance of glycogene expression from each
536 cluster.

537

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

538 *Statistical Analysis.* For glycomic studies, the abundance of individual glycans and glycan
539 classes were compared between CC and TT mice using unpaired t-tests assuming unequal
540 variance. For RNAseq results, the EdgeR method was used for differential expression analysis
541 with gene cutoffs of 2-fold change in expression value and false discovery rates (FDR) below
542 0.05 as previously described⁵⁷. For glycoproteomics results, a linear model was fitted to the
543 expression data for CC and TT cortex, and t-statistics were computed by empirical Bayes
544 moderation of standard errors towards a common value. The heatmap clustering method used
545 was based on average linkage.

546

547 **References**

- 548 1. Marder, S. R. & Cannon, T. D. Schizophrenia. *N. Engl. J. Med.* **381**, 1753–1761 (2019).
- 549 2. Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. *Lancet Lond. Engl.* **388**, 86–97
550 (2016).
- 551 3. Millan, M. J. *et al.* Altering the course of schizophrenia: progress and perspectives. *Nat. Rev. Drug Discov.* **15**, 485–515 (2016).
- 552 4. Enna, S. J., Bennett, J. P., Burt, D. R., Creese, I. & Snyder, S. H. Stereospecificity of
553 interaction of neuroleptic drugs with neurotransmitters and correlation with clinical potency.
554 *Nature* **263**, 338–341 (1976).
- 555 5. van Rossum, J. M. The significance of dopamine-receptor blockade for the mechanism of
556 action of neuroleptic drugs. *Arch. Int. Pharmacodyn. Ther.* **160**, 492–494 (1966).
- 557 6. Howes, O., McCutcheon, R. & Stone, J. Glutamate and dopamine in schizophrenia: an
558 update for the 21st century. *J. Psychopharmacol. Oxf. Engl.* **29**, 97–115 (2015).
- 559 7. Avramopoulos, D. Recent Advances in the Genetics of Schizophrenia. *Mol. Neuropsychiatry*
560 **4**, 35–51 (2018).
- 561 8. Sullivan, P. F. & Geschwind, D. H. Defining the Genetic, Genomic, Cellular, and Diagnostic
562 Architectures of Psychiatric Disorders. *Cell* **177**, 162–183 (2019).

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

564 9. Smoller, J. W. *et al.* Psychiatric genetics and the structure of psychopathology. *Mol.*
565 *Psychiatry* **24**, 409–420 (2019).

566 10. Lee, P. H. *et al.* Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across
567 Eight Psychiatric Disorders. *Cell* **179**, 1469-1482.e11 (2019).

568 11. Gottesman, I. I. & Shields, J. A polygenic theory of schizophrenia. *Proc. Natl. Acad. Sci. U.*
569 *S. A.* **58**, 199–205 (1967).

570 12. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights
571 from 108 schizophrenia-associated genetic loci. *Nature* **511**, 421–427 (2014).

572 13. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke, S., Walters,
573 J. T. & O'Donovan, M. C. *Mapping genomic loci prioritises genes and implicates synaptic*
574 *biology in schizophrenia.* <http://medrxiv.org/lookup/doi/10.1101/2020.09.12.20192922>
575 (2020) doi:10.1101/2020.09.12.20192922.

576 14. Sekar, A. *et al.* Schizophrenia risk from complex variation of complement component 4.
577 *Nature* **530**, 177–183 (2016).

578 15. Presumey, J., Bialas, A. R. & Carroll, M. C. Complement System in Neural Synapse
579 Elimination in Development and Disease. in *Advances in Immunology* vol. 135 53–79
580 (Elsevier, 2017).

581 16. *Essentials of Glycobiology.* (Cold Spring Harbor Laboratory Press, 2015).

582 17. Varki, A. Biological roles of glycans. *Glycobiology* **27**, 3–49 (2017).

583 18. Mealer, R. G. *et al.* Glycobiology and schizophrenia: a biological hypothesis emerging from
584 genomic research. *Mol. Psychiatry* (2020) doi:10.1038/s41380-020-0753-1.

585 19. Ramakrishnan, B., Ramasamy, V. & Qasba, P. K. Structural Snapshots of β -1,4-
586 Galactosyltransferase-I Along the Kinetic Pathway. *J. Mol. Biol.* **357**, 1619–1633 (2006).

587 20. Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J. & Imbert, A. Structures and mechanisms
588 of glycosyltransferases. *Glycobiology* **16**, 29R-37R (2006).

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

589 21. Chang, A., Singh, S., Phillips, G. N. & Thorson, J. S. Glycosyltransferase structural biology
590 and its role in the design of catalysts for glycosylation. *Curr. Opin. Biotechnol.* **22**, 800–808
591 (2011).

592 22. Park, J. H. *et al.* SLC39A8 Deficiency: A Disorder of Manganese Transport and
593 Glycosylation. *Am. J. Hum. Genet.* **97**, 894–903 (2015).

594 23. Park, J. H. *et al.* SLC39A8 deficiency: biochemical correction and major clinical
595 improvement by manganese therapy. *Genet. Med. Off. J. Am. Coll. Med. Genet.* (2017)
596 doi:10.1038/gim.2017.106.

597 24. Boycott, K. M. *et al.* Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy
598 Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8.
599 *Am. J. Hum. Genet.* **97**, 886–893 (2015).

600 25. Riley, L. G. *et al.* A SLC39A8 variant causes manganese deficiency, and glycosylation and
601 mitochondrial disorders. *J. Inherit. Metab. Dis.* **40**, 261–269 (2017).

602 26. Aguet, F. *et al.* The GTEx Consortium atlas of genetic regulatory effects across human
603 tissues. <http://biorxiv.org/lookup/doi/10.1101/787903> (2019) doi:10.1101/787903.

604 27. Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nat. Genet.* **45**, 580–
605 585 (2013).

606 28. Saunders, A. *et al.* Molecular Diversity and Specializations among the Cells of the Adult
607 Mouse Brain. *Cell* **174**, 1015–1030.e16 (2018).

608 29. Li, M. *et al.* Recent Positive Selection Drives the Expansion of a Schizophrenia Risk
609 Nonsynonymous Variant at SLC39A8 in Europeans. *Schizophr. Bull.* **42**, 178–190 (2016).

610 30. Buniello, A. *et al.* The NHGRI-EBI GWAS Catalog of published genome-wide association
611 studies, targeted arrays and summary statistics 2019. *Nucleic Acids Res.* **47**, D1005–D1012
612 (2019).

613 31. Hill, W. D. *et al.* A combined analysis of genetically correlated traits identifies 187 loci and a
614 role for neurogenesis and myelination in intelligence. *Mol. Psychiatry* **24**, 169–181 (2019).

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

615 32. Pickrell, J. K. *et al.* Detection and interpretation of shared genetic influences on 42 human
616 traits. *Nat. Genet.* **48**, 709–717 (2016).

617 33. Kaufmann, T. *et al.* Common brain disorders are associated with heritable patterns of
618 apparent aging of the brain. *Nat. Neurosci.* **22**, 1617–1623 (2019).

619 34. Luo, Q. *et al.* Association of a Schizophrenia-Risk Nonsynonymous Variant With Putamen
620 Volume in Adolescents: A Voxelwise and Genome-Wide Association Study. *JAMA
621 Psychiatry* **76**, 435 (2019).

622 35. Ng, E. *et al.* Genome-wide association study of toxic metals and trace elements reveals
623 novel associations. *Hum. Mol. Genet.* **24**, 4739–4745 (2015).

624 36. Zang, Z.-S., Xu, Y.-M. & Lau, A. T. Y. Molecular and pathophysiological aspects of metal ion
625 uptake by the zinc transporter ZIP8 (SLC39A8). *Toxicol. Res.* **5**, 987–1002 (2016).

626 37. Fujishiro, H. & Himeno, S. New Insights into the Roles of ZIP8, a Cadmium and Manganese
627 Transporter, and Its Relation to Human Diseases. *Biol. Pharm. Bull.* **42**, 1076–1082 (2019).

628 38. Nebert, D. W. & Liu, Z. SLC39A8 gene encoding a metal ion transporter: discovery and
629 bench to bedside. *Hum. Genomics* **13**, 51 (2019).

630 39. Costas, J. The highly pleiotropic gene SLC39A8 as an opportunity to gain insight into the
631 molecular pathogenesis of schizophrenia. *Am. J. Med. Genet. B Neuropsychiatr. Genet.*
632 **177**, 274–283 (2018).

633 40. Park, J. H. *et al.* N-glycome analysis detects dysglycosylation missed by conventional
634 methods in SLC39A8 deficiency. *J. Inherit. Metab. Dis.* (2020) doi:10.1002/jimd.12306.

635 41. Lin, W. *et al.* Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and
636 manganese-dependent enzyme activity. *J. Clin. Invest.* **127**, 2407–2417 (2017).

637 42. Mealer, R. G. *et al.* The schizophrenia risk locus in SLC39A8 alters brain metal transport
638 and plasma glycosylation. *Sci. Rep.* **10**, 13162 (2020).

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

639 43. Nakata, T. *et al.* A missense variant in SLC39A8 confers risk for Crohn's disease by
640 disrupting manganese homeostasis and intestinal barrier integrity. *Proc. Natl. Acad. Sci. U.*
641 *S. A.* (2020) doi:10.1073/pnas.2014742117.

642 44. Williams, S. E. *et al.* *The restricted nature of protein glycosylation in the mammalian brain.*
643 <http://biorxiv.org/lookup/doi/10.1101/2020.10.01.322537> (2020)
644 doi:10.1101/2020.10.01.322537.

645 45. Tosches, M. A. *et al.* Evolution of pallium, hippocampus, and cortical cell types revealed by
646 single-cell transcriptomics in reptiles. *Science* **360**, 881–888 (2018).

647 46. Wei, M. *et al.* Novel Reversible Fluorescent Glycan Linker for Functional Glycomics.
648 *Bioconjug. Chem.* **30**, 2897–2908 (2019).

649 47. Schnaar, R. L., Gerardy-Schahn, R. & Hildebrandt, H. Sialic acids in the brain: gangliosides
650 and polysialic acid in nervous system development, stability, disease, and regeneration.
651 *Physiol. Rev.* **94**, 461–518 (2014).

652 48. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and
653 annotation of genetic associations with FUMA. *Nat. Commun.* **8**, 1826 (2017).

654 49. Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function
655 analysis with the PANTHER classification system. *Nat. Protoc.* **8**, 1551–1566 (2013).

656 50. Das, R. C. & Heath, E. C. Dolichyldiphosphoryl oligosaccharide–protein
657 oligosaccharyltransferase; solubilization, purification, and properties. *Proc. Natl. Acad. Sci.*
658 *U. S. A.* **77**, 3811–3815 (1980).

659 51. Shrimal, S. & Gilmore, R. Oligosaccharyltransferase structures provide novel insight into the
660 mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells.
661 *Glycobiology* **29**, 288–297 (2019).

662 52. Bennett, E. P. *et al.* Control of mucin-type O-glycosylation: a classification of the polypeptide
663 GalNAc-transferase gene family. *Glycobiology* **22**, 736–756 (2012).

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

664 53. Williams, S. E., Mealer, R. G., Scolnick, E. M., Smoller, J. W. & Cummings, R. D. Aberrant
665 glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. *Mol.*
666 *Psychiatry* (2020) doi:10.1038/s41380-020-0761-1.

667 54. Sunuwar, L. *et al.* Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in
668 complex human disease. *JCI Insight* **5**, (2020).

669 55. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinforma. Oxf. Engl.* **29**, 15–21
670 (2013).

671 56. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput
672 sequencing data. *Bioinforma. Oxf. Engl.* **31**, 166–169 (2015).

673 57. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
674 differential expression analysis of digital gene expression data. *Bioinforma. Oxf. Engl.* **26**,
675 139–140 (2010).

676

677

678

679

680

681

682

683

684

685

686

687

688

689

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

690 Tables

Glycan Category	Cortex			Hippocampus			Striatum			Cerebellum		
	CC	TT	p-value	CC	TT	p-value	CC	TT	p-value	CC	TT	p-value
Paucimannose	3.1 ± 0.2	2.9 ± 0.2	0.5	2.6 ± 0.3	2.5 ± 0.4	0.8	2.6 ± 0.3	2.2 ± 0.2	0.2	1.17 ± 0.12	1.28 ± 0.08	0.5
High-mannose	63 ± 1	59 ± 1	0.03*	61 ± 2	58 ± 10	0.2	61 ± 1	62 ± 1	0.5	61 ± 2	64 ± 1	0.2
Mono-antennary	19.0 ± 0.8	20.2 ± 0.3	0.2	19.2 ± 0.7	19.3 ± 3.5	0.9	18.9 ± 0.4	19.2 ± 0.5	0.6	13.0 ± 0.6	11 ± 0.5	0.06
Bi-antennary	13.5 ± 0.9	15.5 ± 0.7	0.1	15 ± 1	18 ± 3	0.2	15.4 ± 0.4	14.9 ± 0.7	0.5	21.8 ± 0.9	21.0 ± 0.9	0.6
Tri-antennary	1.4 ± 0.1	2.2 ± 0.2	0.009**	1.6 ± 0.3	2.2 ± 0.4	0.08	1.7 ± 0.1	1.5 ± 2	0.4	2.6 ± 0.4	2.0 ± 0.2	0.2
Tetra-antennary	0.09 ± 0.03	0.20 ± 0.04	0.03*	0.12 ± 0.04	0.23 ± 0.04	0.09	0.19 ± 0.05	0.16 ± 0.06	0.7	0.32 ± 0.08	0.16 ± 0.04	0.1
Hybrid	4.8 ± 0.2	5.4 ± 0.1	0.05	6.2 ± 0.2	6.5 ± 1.2	0.3	6.6 ± 0.4	6.3 ± 0.4	0.7	8.3 ± 0.4	7.3 ± 0.4	0.09
Bisected	30 ± 1	33 ± 1	0.08	32 ± 2	35 ± 6	0.3	32.1 ± 0.6	31.7 ± 1.1	0.8	34 ± 2	32 ± 1	0.3
Galactose	13.2 ± 0.6	16.1 ± 0.9	0.02*	12.5 ± 1.1	15.5 ± 0.9	0.06	13.6 ± 0.6	12.7 ± 1.1	0.5	11.3 ± 1.1	9.3 ± 0.8	0.2
Fucose	35 ± 1	38 ± 1	0.04*	36 ± 2	39 ± 1	0.2	36 ± 1	35 ± 1	0.6	35 ± 2	32 ± 1	0.2
Sialic Acid	1.6 ± 0.4	2.8 ± 0.3	0.04*	2.1 ± 0.5	3.2 ± 0.3	0.08	2.1 ± 0.5	1.8 ± 0.6	0.7	2.9 ± 0.3	1.8 ± 0.3	0.03*

691

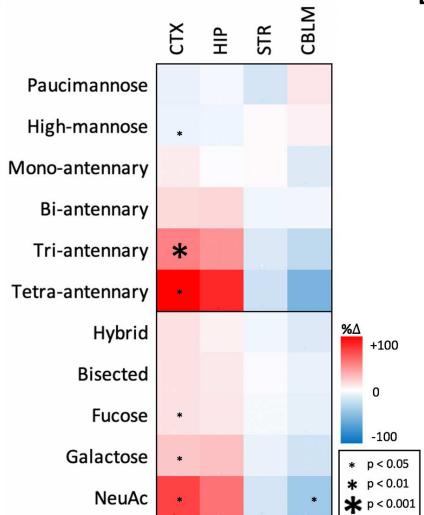
692 **Table 1. Categorical analysis of protein N-glycans revealed region-specific changes in**
 693 **male A391T brain.** Data presented as mean percent abundance +/- SEM. Unpaired t-tests
 694 performed for each category assuming unequal variance.

695

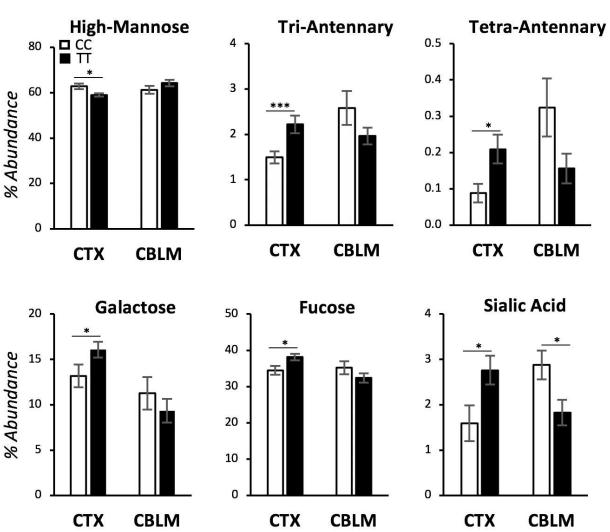
Gene	Protein	FC	Adj.p.val
Slc1a2	Excitatory amino acid transporter 2	-4.90	0.004
Ncam1	Neural cell adhesion molecule 1	-2.51	0.007
Reln	Reelin	-2.42	0.006
Gabbr1	Gamma-aminobutyric acid type B receptor subunit 1	-1.97	0.017
Cdh5	Cadherin-5	-1.89	0.004
Pcdh19	Protocadherin-19	-1.58	0.044
Gria1*	Glutamate receptor 1	1.61	0.002
Ncan	Neurocan core protein	1.86	0.025
Brinp2*	BMP/retinoic acid-inducible neural-specific protein 2	2.10	0.013
Drd1	D(1A) dopamine receptor	2.15	0.002

696

697 **Table 2. Select N-glycoproteins linked to schizophrenia pathogenesis with altered levels**
 698 **in A391T cortex.** A subset of glycoproteins with altered N-glycosylation in the A391T cortex
 699 are highlighted, including cell adhesion molecules, proteins involved in neurotransmitter, and
 700 two genes associated with schizophrenia by GWAS*. FC, Fold Change; Adj.p.val, Adjusted p-
 701 value.

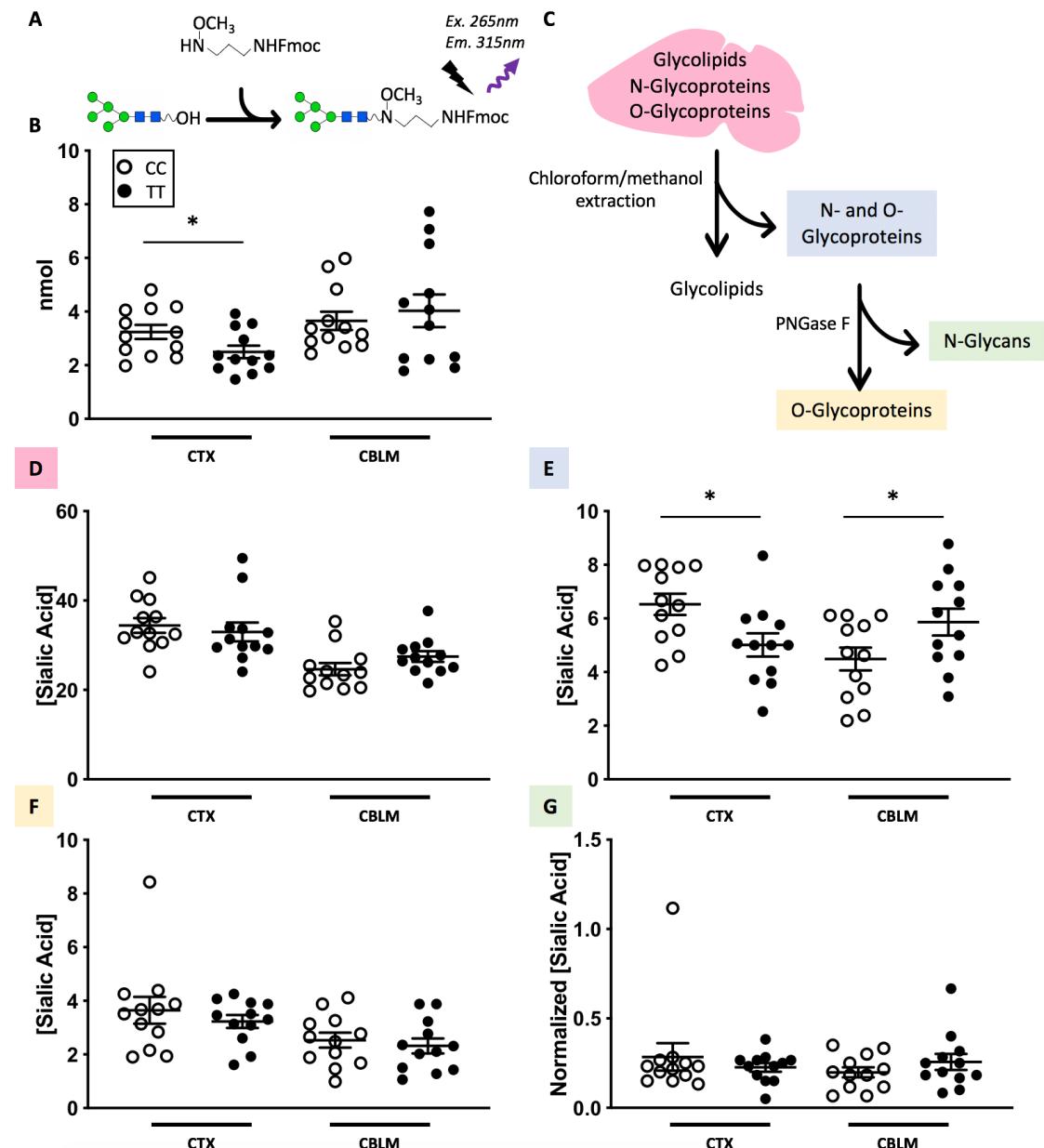

702

703


MEALER SLC39A8 A391T BRAIN MANUSCRIPT

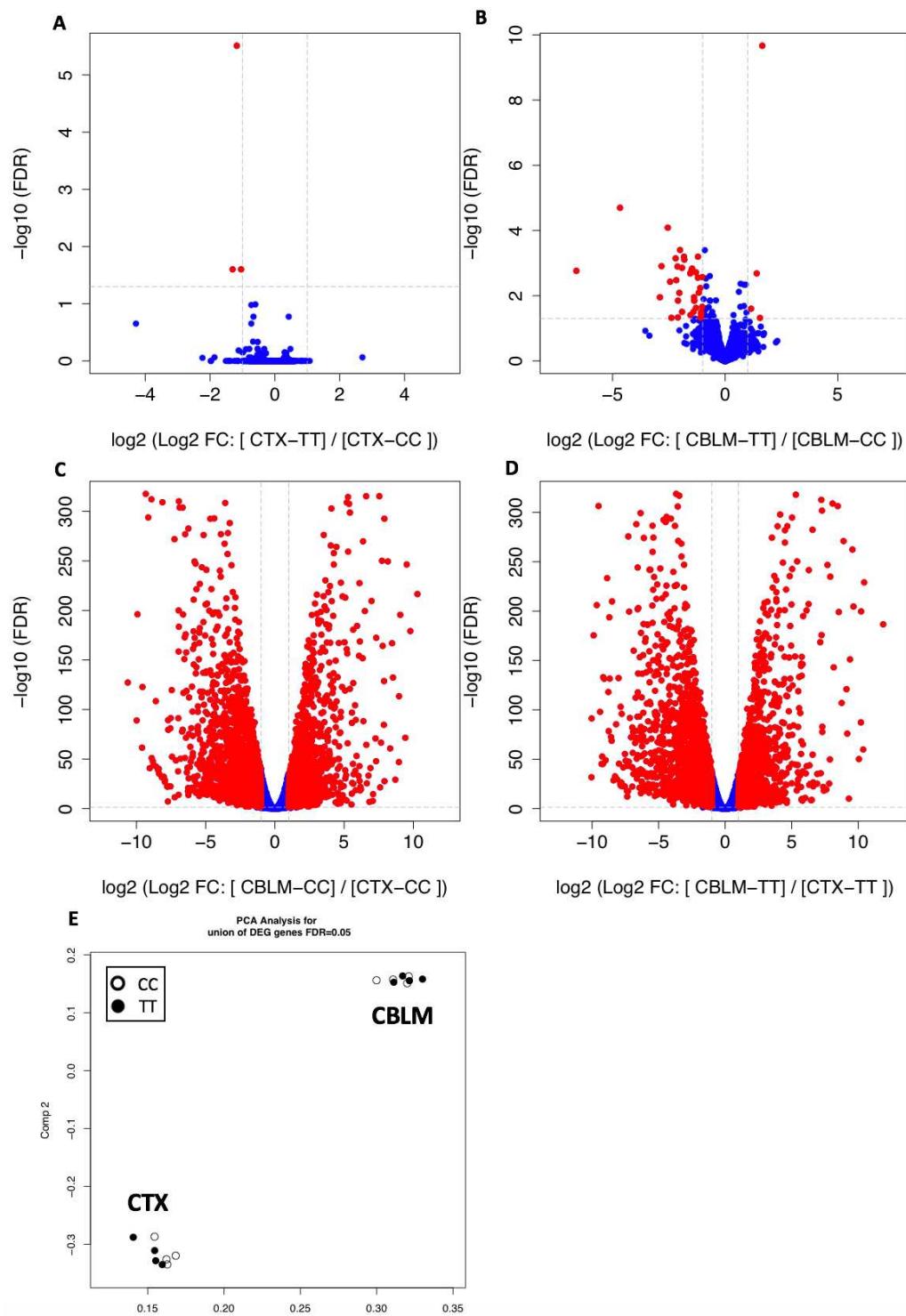
704 **Figures**

A


B

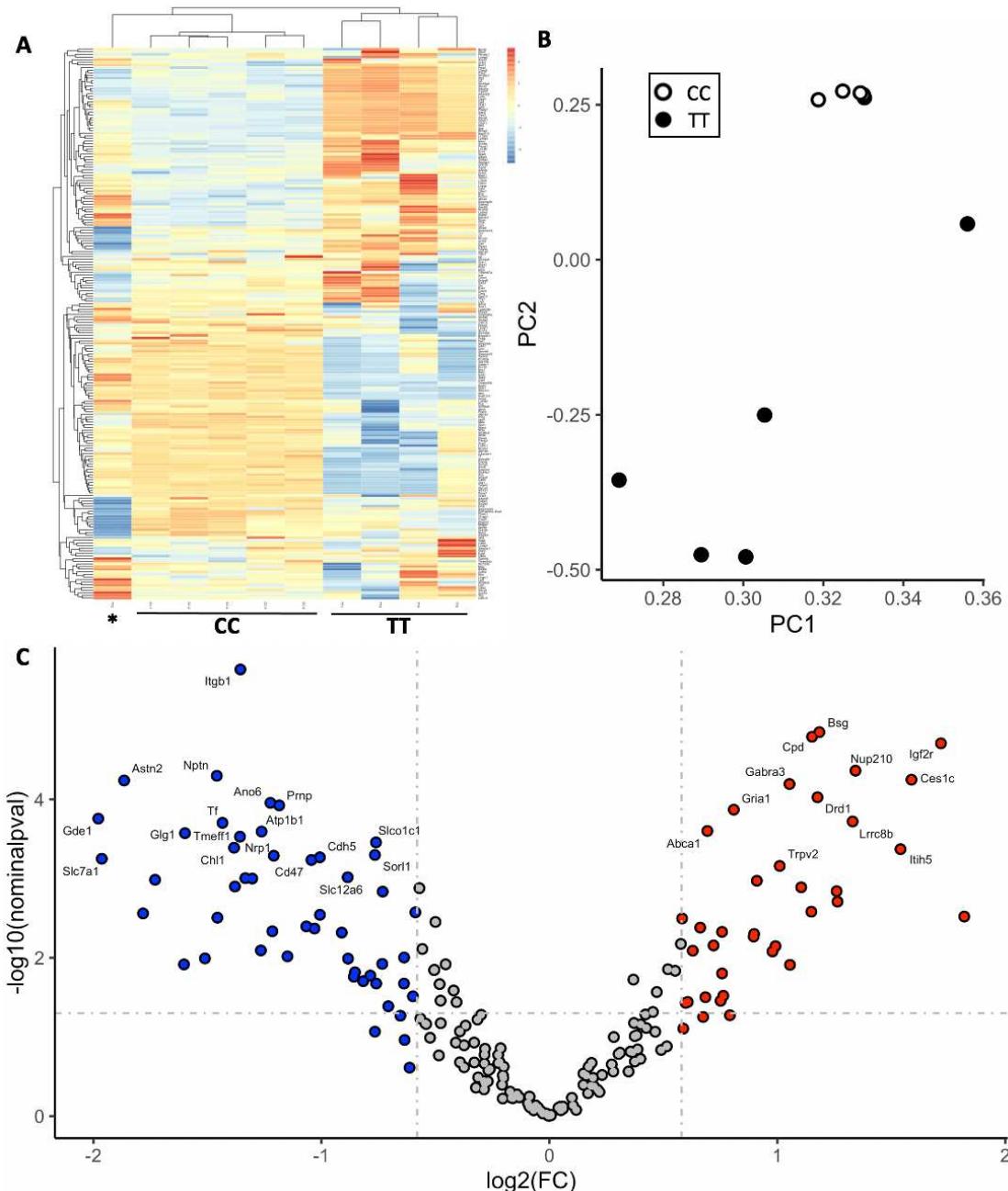
705
706
707
708
709
710
711
712

Fig. 1. A391T alters the relative abundance of N-glycans in a region-dependent manner.
A) Categorical analysis of N-glycans from the cortex (CTX), hippocampus (HIP), striatum (STR), and cerebellum (CBLM) of male mice revealed a bi-directional effect of the A391T variant. Data presented as a heatmap of percent change in glycan abundance comparing TT mice to CC controls. T = 6, CC = 8 for each region. B) TT cortex showed an increase in complex N-glycans, while the cerebellum showed a downward trend in the same categories. Data presented as mean percent abundance +/- SEM.


MEALER SLC39A8 A391T BRAIN MANUSCRIPT

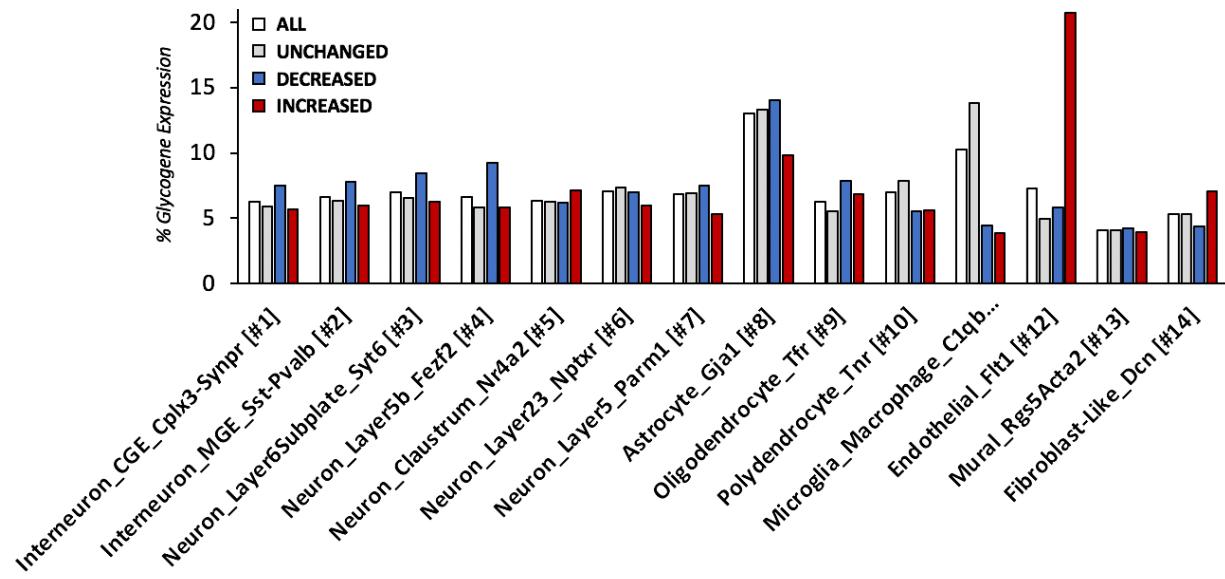
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

Fig. 2. A391T lowers the absolute quantity of N-glycans in the cortex. A) Schematic of F-MAPA fluorescent glycan derivatization. Free hydroxyl groups of PNGase F-cleaved N-glycans are labeled in a 1:1 ratio with F-MAPA and quantified using fluorescence (Excitation: 265nm; Emission: 315nm). **B)** Quantification of brain N-glycans with F-MAPA derivatization, showing a significant decrease in the cortex of male A391T mice. **C)** Workflow for isolation of different glycan fractions from brain homogenate for sialic acid quantification. **D)** Sialic acid quantification of total lysate (glycolipids and glycoproteins), showing no difference in A391T mice. **E)** Sialic acid quantification of total glycoproteins (N- and O-), showing a decrease in cortex and increase in cerebellum of A391T mice. **F)** Sialic acid quantification of O-glycoproteins, showing no difference in A391T mice. **G)** Sialic acid quantification of released N-glycans, showing no difference in A391T mice when normalizing for per nmol of N-glycans. Sialic acid concentration reported as nmol sialic acid/mg of protein. N = 4 male mice per group, measured in triplicate. Individual data points are shown, with brackets representing group means +/- SEM.


MEALER SLC39A8 A391T BRAIN MANUSCRIPT

728
729
730
731
732
733
734
735

Fig. 3. RNAseq analysis identifies minimal gene expression changes in the cortex and cerebellum of A391T mice. Volcano plots comparing cortex (A) and cerebellum (B), identifies minimal gene expression changes in A391T mice based on genotype. Volcano plots between cortex and cerebellum in both wild-type (C) and A391T (D) mice are consistent with known regional differences in gene expression. E) PCA analysis highlights the lack of gene expression differences between genotypes in A391T mice, with CC (white dots) and TT (black dots) from cortex and cerebellum shown. N = 4 male mice per group.


MEALER SLC39A8 A391T BRAIN MANUSCRIPT

736
737
738
739
740
741
742
743
744
745
746
747

Fig. 4. A391T mouse cortex has altered N-glycosylation of one third of glycoproteins. A) Clustering heat map showing the N-glycoproteins with altered abundances in A391T cortex. 10 mice are shown in the columns, with the first column representing the one TT outlier (*), followed by 5 CC cortex samples and the remaining 4 TT cortex samples. B) PCA analysis of cortex compared to controls (white dots). C) Volcano plot of differentially N-glycosylated proteins in A391T cortex. Increased (red) and decreased (blue) N-glycoproteins are shown, with the names of the top 30 included. Significance thresholds for fold change (\log_2 , 2-fold change) and adjusted p-value ($-\log_{10}$) are shown as grey dotted lines on the x- and y-axis, respectively. N = 5 mice per genotype.

MEALER SLC39A8 A391T BRAIN MANUSCRIPT

748
749 Fig. 5. Decreased and increased N-glycoproteins in A391T cortex originate are expressed
750 across cell types in the brain. Single-cell mouse brain expression data for genes encoding
751 differentially N-glycosylated proteins in TT mice were downloaded from www.dropviz.org and
752 compared to all detected N-glycoproteins. After normalization, the sum of clustered transcripts
753 per 100,000 for each distinct cell type is illustrated between groups including all detected
754 glycoproteins (white), unchanged (grey), decreased (blue), and increased (red). Differentially N-
755 glycosylated proteins are expressed across all cell types despite the restricted expression
756 pattern of Slc39a8 in endothelial cells.