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Highlights
e Comprehensive genetic interaction mapping of 1,030 human duplicated paralogs using a
dual targeting CRISPR/Cas9 approach
e Duplicated paralogs are highly enriched for genetic interactions
Synthetic lethal paralogs include CCNL1/CCNL2, CDK4/CDK6, and GSK3A/GSK3B
e Tumor suppressor paralog pairs include CDKN2A/CDKN2B and FBX025/FBX032
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Abstract

CRISPR knockout screens have accelerated the discovery of important cancer genetic
dependencies. However, traditional CRISPR-Cas9 screens are limited in their ability to assay the
function of redundant or duplicated genes. Paralogs in multi-gene families constitute two-thirds of
the protein-coding genome, so this blind spot is the rule, not the exception. To overcome the
limitations of single gene CRISPR knockout screens, we developed paired guide RNAs for
Paralog gENetic interaction mapping (pgPEN), a pooled CRISPR/Cas9 approach which targets
over a thousand duplicated human paralogs in single knockout and double knockout
configurations. We applied pgPEN to two cell lineages and discovered that over 10% of human
paralogs exhibit synthetic lethality in at least one cellular context. We recovered known synthetic
lethal paralogs such as MAP2K1/MAP2K2, important drug targets such as CDK4/CDK6, and
numerous other synthetic lethal pairs such as CCNL1/CCNL2. In addition, we identified ten tumor
suppressive paralog pairs whose compound loss promotes cell growth. These findings identify a
large number of previously unidentified essential gene families and nominate new druggable
targets for oncology drug discovery.
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Introduction

CRISPR-Cas9 technology has revolutionized functional genomics by enabling high-fidelity,
genome-scale, multiplexed loss-of-function screens in human cells. Due to high specificity and
ease of application, genome-wide CRISPR screens are increasingly used to identify cancer drug
targets and determine mechanisms of drug resistance (Bartha et al., 2018; Blomen et al., 2015;
Hart et al., 2015; Tsherniak et al., 2017; Wang et al., 2017, 2015). However, single-gene knockout
studies have a major blind spot: they are unable to assay the function of paralogs — ancestrally
duplicated genes that frequently retain functional redundancy. The human genome exhibits a high
degree of redundancy as a result of diploidy, gene duplication, and functional overlap of metabolic
and signaling pathways (Dean et al., 2008; Harrison et al., 2007; Lavi, 2015; Ohno, 2013).
Remarkably, paralogs constitute two-thirds of the human genome, making this blind spot the rule,
not an exception, and paralogous genes are less likely to be essential for cell growth than non-
paralogous (“singleton”) genes in CRISPR knockout screens (Wang et al., 2015). This blind spot
therefore obscures our understanding of normal human genome function and impedes the
identification of new cancer drug targets.

Genetic interactions between paralogs have been extensively characterized in yeast,
revealing fundamental insights about the differences between whole-genome and small-scale
duplicates, functional groups that are enriched for interacting paralogs, and paralog mRNA
expression patterns (Dean et al., 2008; Diss et al., 2017; Guan et al., 2007; Harrison et al., 2007).
Essential paralogs that compensate for one another’s function exhibit “synthetic lethality,” a
genetic interaction in which elimination of the entire family is deleterious but individual loss is
tolerated. Yeast geneticists have defined quantitative measures of genetic interactions, which can
capture both positive (buffering) and negative (synthetic lethal) interactions (Collins et al., 2006).
While paralog genetic interactions are still poorly characterized in mammalian cells, the extensive
degree of duplication in the human genome is similar to that seen in yeast (Dennis and Eichler,
2016; Lan and Pritchard, 2016; Singh et al., 2012), so experimental evaluation of human cells is
likely to also reveal complex genetic interactions.

Querying the genetic interaction space of the human genome has been limited by current
technology; to survey even every possible pairwise interaction, let alone higher order interactions,
would involve ~400 million unique genetic perturbations. Moreover, the landscape of genetic
interaction among randomly selected genes is exceedingly sparse; existing studies of much
smaller sets of gene pairs in human cells identified genetic interactions in less than 0.1% of
unrelated gene pairs (Han et al., 2017). To proactively identify these rare but functionally
important interactions, research should therefore focus on high-value sets of genes likely to be
enriched for functional interactions, such as paralogs.

Interestingly, the same duplication that makes paralogs difficult to study provides a tactical
advantage for cancer therapy: the highly rearranged genomes typical of cancer often harbor
paralog deletions and inactivating mutations. Cancer-associated loss-of-function of one paralog
can confer a dependency on the continued activity of a duplicated pair (De Kegel and Ryan, 2019;
Lord et al., 2020; Viswanathan et al., 2018) and this phenomenon has been used to identify
synthetic lethal relationships of paralogs such as MAGOH/MAGOHB (Viswanathan et al., 2018),
ARID1A/ARID1B (Helming et al., 2014), and SMARCA2/SMARCA4 (Hoffman et al., 2014). If the
remaining actively expressed paralog could be targeted in tumors with loss of its pair, then tumor
cells may show a selective therapeutic window compared to the surrounding normal cells with
expression of both paralog members. A successful example of a therapy based on a synthetic
lethal interaction is the enhanced sensitivity to PARP inhibitors in BRCA71- and BRCA2-mutant
tumors (Bryant et al., 2005; Farmer et al., 2005; Lord and Ashworth, 2017). We hypothesized that
paralogs could provide a rich source of genetic interactions and that direct experimental
identification of synthetic lethal paralogs could therefore enable future drug discovery efforts.
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Recently, several groups have developed innovative methods for assessing human
genetic interactions (Gls) at scale (Boettcher et al., 2018; Dede et al., 2020; DeWeirdt et al., 2020;
Gier et al., 2020; Gonatopoulos-Pournatzis et al., 2020; Han et al., 2017; Horlbeck et al., 2018;
Najm et al., 2018; Shen et al., 2017). Consistently, while the overall rate of genetic interaction
among gene pairs is low, many of the Gls identified were in paralogous genes. To
comprehensively identify Gls between human paralogs, we here report our direct experimental
evaluation of genetic interactions among 1,030 paralog pairs (2,060 genes) in two human cell
contexts. Our analysis revealed not only an extraordinarily high rate of paralog synthetic lethality,
but also identified positive interactions that nominate ten paralog pairs as tumor suppressor gene
families.

Results

A paralog blind spot limits discovery of essential genes and cancer dependencies

The human genome is highly duplicated, with paralogous genes constituting over two thirds of
protein coding genes (Fig. 1A). Like other groups (Dandage and Landry, 2019; Dede et al., 2020;
Wang et al., 2015), we noticed that paralogous genes are less likely to be essential for cell growth
than non-paralogous “singleton” genes in CRISPR knockout screening data (Fig. 1B) (Vichas et
al., 2020). Given the utility of targeting cancer-essential genes for therapy, we reasoned that this
paralog blind spot may prevent detection of important druggable cancer dependencies.

To determine whether known therapeutic vulnerabilities are missed in CRISPR knockout
screens, we compared our previous drug sensitivity profiling of PC9-EGFR"*3~'T790M cg||s (Berger
et al., 2016) to recent genetic vulnerabilities identified in the same system (Vichas et al., 2020).
These cells exhibit resistance to the EGFR tyrosine kinase inhibitor, erlotinib, which can be
reversed by treatment with trametinib, a kinase inhibitor of MEK1 and MEK2 — protein kinases
encoded by the paralogous genes MAP2K1 and MAP2K2, which are part of the Ras/MAPK
pathway (Fig. 1C-D). The Ras/MAPK pathway is frequently activated in lung cancer by mutation
of upstream receptor tyrosine kinases such as EGFR, or activation of KRAS or mutation of
MAP2K1 itself (Arcila et al., 2015; Sanchez-Vega et al., 2018; TCGA, 2014). We noted in single-
gene CRISPR knockout data in the same cellular context that while EGFR and other Ras pathway
members such as GRB2 were essential as expected, neither MAP2K1 nor MAP2K2 was essential
when knocked out individually (Fig. 1E). We reasoned that paralog redundancy might underlie
the apparent disconnect between the small molecule and genetic assays. We therefore sought to
develop a multiplexed CRISPR approach to directly probe paralog compensation on a genome
scale, enabling the discovery of many more paralogous drug targets that may be missed in current
CRISPR-based target discovery efforts.

The pgPEN library enables single and double knockout of 1,030 human paraloq families

To identify synthetic lethal paralogs that could serve as potential lung cancer drug targets, we
focused on duplicated genes — paralog families of only two genes. We identified paralog families
from Ensembl (Vilella et al., 2009) and then selected families in which a maximum of two genes
shared 50-99% amino acid identity (Supplemental Fig. 1A). Next, we designed a paired guide
RNA (pgRNA) CRISPR library to knock out each paralog alone and in combination with its
respective pair. Using pre-validated single guide RNA (sgRNA) sequences from the Brunello
CRISPR library (Doench et al., 2016), we designed sixteen four-by-four pairwise double knockout
(dKO) pgRNAs for each paralog pair. In addition, we designed single knockout (sKO) pgRNAs
containing one targeting sgRNA paired with a non-targeting control sgRNA having no match to
the human reference genome. This was done for both paralogs to generate a total of 16 sKO
pgRNAs. 500 double non-targeting pgRNAs were included as a control. This “paired guide RNAs
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for Paralog gENetic interaction mapping (pgPEN)” library (Supplemental Table 1) was
synthesized and cloned at 1000-fold coverage using previously-developed methods (Gasperini et
al., 2017; Thomas et al., 2020). Next-generation sequencing confirmed that >99.99% of pgRNAs
were present in the cloned plasmid pool. The final pgPEN library consists of 33,170 pgRNAs
targeting 1,030 paralog pairs (2,060 genes) in single knockout and double knockout combinations.
Two thirds of paralogs in the pgPEN library are unique to this study while the remainder were also
assayed in recent genetic interaction maps (Dede et al., 2020; Gonatopoulos-Pournatzis et al.,
2020) (Supplemental Fig. 1B). 554 of the gene products of pgPEN-targeted genes are
considered “druggable” by recent criteria (Finan et al., 2017) (Supplemental Fig. 1C).

To map genetic interactions between paralogs, we applied the pgPEN library to PC9 lung
adenocarcinoma cells previously engineered to constitutively express Cas9 (Thomas et al., 2020;
Vichas et al., 2020) using standard pooled CRISPR screening methodology in triplicate (Fig. 2A).
pgRNAs that were positively or negatively selected were identified by lllumina sequencing of
pgRNA abundance after ~12 population doublings in vitro compared to the starting abundance in
the plasmid pool (Fig. 2A). Plasmid pgRNA abundance was highly correlated with early time point
samples taken immediately following lentiviral transduction and puromycin selection (mean
Pearson’s r = 0.93; Supplemental Fig. 1D). End point samples exhibited expected changes in
pgRNA abundance (Supplemental Fig. 1E) that were highly correlated across replicates (mean
Pearson’s r = 0.82; Supplemental Fig. 1F). sKkO pgRNAs targeting pan-essential genes (Meyers
et al., 2017) showed the expected dropout in late time point samples (Fig. 2B). These data
indicate that the screen was performed without significant bottlenecking and that the pgRNAs
performed as expected for known essential genes. Similar to previously established CRISPR
screen analysis methods (Meyers et al., 2017), we generated normalized CRISPR scores by
scaling pgRNA logz(fold change) values such that the median CRISPR score of double non-
targeting constructs was 0 and the median CRISPR score of pan-essential sKO constructs was
-1.

CRISPR-Cas9 gene knockout involves the generation of double strand breaks (DSBs)
that can themselves inhibit cell proliferation rate (Aguirre et al., 2016). One concern in targeting
multiple loci with Cas9 is that the increased generation of DSBs could, independent of any specific
gene effect, result in enhanced negative selection of dKO compared to sKO pgRNAs. To control
for this possibility, we further normalized data such that the median CRISPR score of all sKO
pgRNAs targeting non-expressed genes would be 0 and the median CRISPR score of all dKO
pgRNAs targeting two non-expressed genes would be 0 (Methods and Supplemental Fig. 1F-
G). After this normalization, dKO constructs still had significantly lower CRISPR scores than sKO
constructs (P = 1.25e-13 by one-tailed Kolmogorov-Smirnov [K-S] test), indicative of possible
genetic interactions in the dKO group. As expected, expressed genes had significantly lower
CRISPR scores than unexpressed genes in both single-targeting (P < 2.2e-16 by one-tailed K-S
test; Supplemental Fig. 1H) and double-targeting (P < 2.2e-16 by one-tailed K-S test; Fig. 2C)
constructs. After normalization, only a minimal effect of paralog copy number (Supplemental Fig.
11) on CRISPR score was observed (Supplemental Fig. 1J-K). Scaled CRISPR scores for
pgRNAs in the PC9 screen can be found in Supplemental Table 2.

Direct identification of paralog genetic interactions in human lung cancer cells

Using the PC9 CRISPR scores, we calculated genetic interaction (Gl) scores for each paralog
pair under a multiplicative model of genetic interaction following recently developed methods for
human Gl mapping (DeWeirdt et al., 2020; Han et al., 2017) (Methods). Comparison of the
expected and observed CRISPR scores for each paralog pair enabled identification of interacting
paralogs (Fig. 3A) and calculation of Gl scores for each paralog pair (Fig. 3B-C and
Supplemental Table 3). This approach identified 87 synthetic lethal and 68 buffering genetic
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interactions among the 1,030 paralog pairs. Synthetic lethal interactions (Gl < -0.5 and FDR <
0.1) included CCNL1/CCNL2, CDK4/CDK6, GSK3A/GSK3B, G3BP1/G3BP2, and
CNOT7/CNOTS8, as well as MAP2K1/MAP2K2 (Fig. 3B-D), confirming that the discrepancy
between genetic and drug data in Figure 1 was indeed due to paralog redundancy. Known
synthetic lethal paralogs such as ARID1A/ARID1B (Helming et al., 2014) and MAPK1/MAPK3
(Dede et al., 2020; DeWeirdt et al., 2020) were also identified (Supplemental Table 3).

To experimentally validate these findings, we developed a competitive growth assay in
red (mCherry) and green (GFP) labeled PC9-Cas9 cells (Supplemental Fig. 2). In designing this
validation experiment, we used safe-targeting gRNAs (Morgens et al., 2017) in place of non-
targeting gRNAs to account for the growth effects observed by generating one versus two double-
strand breaks. We transduced PC9-Cas9-GFP-NLS cells with a double safe-targeting pgRNA,
while PC9-Cas9-mCherry-NLS cells were transduced with paralog-targeting pgRNAs designed to
knock out the expression of each paralog individually or both paralogs together (Supplemental
Table 4). Double safe-targeting cells were pooled with paralog-targeting cells at a 1:1 ratio of
GFP:mCherry cells. Using this approach, we determined the effect of one synthetic lethal paralog
pair, CCNL1/CCNL2, and one non-synthetic lethal paralog pair, PSMB5/PSMBS8. The results of
these competition assays mirrored the gene knockout effects observed in the pooled screen
format (Fig. 3E-l). For CCNL1/CCNL2, individual gene knockouts showed little effect on cell
growth, whereas combined knockout of CCNL1 and CCNL2 resulted in severe growth effects in
both the screen (Fig. 3E) and the competition assay (P = 1.32e-05 for CCNL1 sKO vs. dKO, P =
4.12e-4 for CCNL2 sKO vs. dKO by one-tailed t-test; Fig. 3F). In contrast, PSMB5/PSMB8
combined knockout was not significantly different from PSMBS5 single knockout in the PC9
CRISPR screen (Fig. 3G), consistent with validation experiments in the competitive growth assay
(P =0.91 by one-tailed t-test; Fig. 3H-I).

As a complementary approach to validate our screen, we used single gene knockout data
from DepMap.org (Tsherniak et al., 2017) to determine whether other identified synthetic lethal
paralog pairs showed synthetic lethality in the context of spontaneous loss of one member in
cancer cell lines. Of the top ten synthetic lethal pairs identified in the screen, 9/10 showed a
significant association between a single gene knockout “gene effect” and either expression or
copy number of the other paralog (Fig. 3J and Supplemental Table 5). These included
CCNL1/CCNL2, genes involved in pre-mRNA splicing of many transcripts including apoptotic
genes, (Fig. 3K) and OXSR1/STK39, which encode kinases involved in the oxidative stress
response (Fig. 3L). Others such as SEC24A/SEC24B did not show any significant associations
in the DepMap analysis, prompting us to investigate whether there are tissue-specific essential
paralog families that may be missed by broad analyses of multiple tissues such as DepMap data
in aggregate.

A second pgPEN screen identifies conserved versus tissue-specific paralog synthetic lethal
interactions

Next, we applied the pgPEN approach to a different tissue context, HeLa cervical carcinoma cells,
using similar methodology with the exception of using a doxycycline-inducible Cas9 system (Cao
et al., 2016). Quality control analyses of HelLa screening data again indicated successful
generation of expected gene knockout phenotypes (Supplemental Fig. 3A-J and Supplemental
Table 6). Calculation of Gl scores identified 70 significant synthetic lethal interactions and 44
significant buffering interactions (Fig. 4A-B, Supplemental Fig. 3K, and Supplemental Table
4). Many of the top synthetic lethal pairs were shared between HelLa and PC9 cells, including
CCNL1/CCNL2, GSK3A/GSK3B, and MAP2K1/MAP2K2 (Fig. 4C-D). Other paralog families were
synthetic lethal only in one of the cell contexts. These included SOS1/SOS2, which were highly
essential and synthetic lethal only in HeLa cells (Fig. 4C-D) and CDK4/CDK®6, which were only
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required in PC9 cells (Fig. 4C-D). In total, 122 paralog pairs were identified as synthetic lethal in
at least one context. Surprisingly, we noted that cell-type specific synthetic lethal interactions were
often not explained by expression differences (Fig. 4D), demonstrating that paralog
dependencies, like other cancer dependencies, are modified by cellular context or other biological
factors besides gene expression.

Some synthetic lethal paralog pairs, including SEC24A/SEC24B, COQ10A/COQ10B,
CNOT7/CNOTS8, TIA/TIAL, and VPS4/VPS4B have been highlighted in previous studies (Dede et
al., 2020; Gonatopoulos-Pournatzis et al., 2020; Lord et al., 2020; Neggers et al., 2020;
Szymanska et al., 2020). However, to our knowledge many of the synthetic lethal paralogs
identified in the pgPEN screens were not previously known to be functionally redundant in human
cells. These include CCNL1/CCNL2 and OXSR1/STK39 along with eukaryotic translation
initiation factors EIF1/EIF1B, DNA and RNA helicase and cGAS/STING pathway members
G3BP1/G3BP2, hexosamine biosynthesis pathway members GFPT1/GFPT2, and
PDS5A/PDS5B, which regulate sister chromatid cohesion during mitosis. Individual members of
many of these novel synthetic lethal paralog families have been previously implicated in cancer;
for instance, high GFPT2 expression has been linked to tumor metabolic reprogramming in lung
adenocarcinoma (Zhang et al., 2018) and PDS5B is a negative regulator of cell proliferation and
has been highlighted as a possible tumor suppressor gene in prostate cancer (Maffini et al., 2008).

Identification of tumor suppressor paralog pairs

In addition to synthetic lethal interactions, pgPEN screening can identify positive genetic
interactions. We noticed that these positive interactions include both buffering interactions, where
loss of one paralog prevents the deleterious phenotype of loss of the other — we identified 108
of such interactions in at least one cell context — as well as cases where combined loss of both
genes synergistically promote cell growth. The latter are likely to be paralog families with tumor
suppressive functions that require complete loss of the family to reveal the cellular phenotype. To
identify these tumor suppressive paralogs, we restricted our analysis to significant buffering
interactions (Gl > 0.25, FDR < 0.1) between expressed paralogs in which the double knockout
was positively enriched in each CRISPR screen (CS > 0.25). Under these relatively stringent
criteria, four tumor suppressor buffering interactions were identified in PC9, and six in HeLa cells
(Fig. 5A). None of the ten interactions were shared across cell lines, potentially reflecting the
differing biology of HeLa and PC9 cells and the difficulty in achieving positive selection in basal
culture conditions of rapidly proliferating cancer cell lines.

Tumor suppressor pairs identified in PC9 cells include RAB27A/RAB27B, encoding Rab-
family GTPases involved in vesicle trafficking (Li et al., 2018), and the BTB/POZ-domain genes
BTBD10/KCTDZ20 (Fig. 5B). In HeLa cells, one of the top pairs identified was CDKN2A/CDK2NB
(Fig. 5C), frequently deleted tumor suppressors that encode the CDK4/6 inhibitors INK4A/ARF
and INK4B (Kim and Sharpless, 2006). A novel top tumor suppressor paralog pair in HeLa cells
was FBX025/FBX032 (Fig. 5C), which encode SCF-type E3 ligase proteins. Although little is
known about the function of these proteins and their substrates, the genetic interaction between
FBX025 and FBX032 suggests that these two proteins may share similar functions or substrates.
FBX025 and FBX032 have been individually proposed to have tumor suppressive function in
previous studies (Xue et al., 2012; Zhou et al., 2017).

While this direct identification of tumor suppressor paralog pairs has merit for
understanding basic genome function, spontaneous loss of two unlinked genes in cancer should
be rare, and therefore it is unlikely that double knockout of paralogs contributes to tumorigenesis
for most paralog families. Interestingly however, we noted that two tumor suppressor pairs
contained genes co-located in the same chromosomal locus (Fig. 5D). In addition to
CDKNZ2A/CDKN2B, whose combined loss is well known to promote tumorigenesis, ZNF561 and
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ZNF562 are also co-located and reside on chromosome 19p13.2, a frequently deleted region in
uterine corpus endometrial cancer (Berger et al., 2018; Cherniack et al., 2017) (Fig. 5E). Beyond
the tumor suppressor paralogs, 13% of all the paralog pairs in the pgPEN library are located within
1 MB of each other in the human genome (Fig. 5F), which raises the possibility that the cell fithess
consequences of double knockout of human paralogs could contribute to the selective forces that
drive aneuploidy patterns in human cancer (Ben-David and Amon, 2020; Taylor et al., 2018).

Discussion

This work provides, to our knowledge, the largest direct experimental assessment of paralog
genetic interactions in the human genome to date. The pgPEN library we developed uses two
Cas9-type sgRNAs driven from independent promoters to enable knockout of two paralogs
simultaneously and targets 2,060 duplicate human paralogs. Complementing two other recent
studies of human paralog genetic interactions (Dede et al., 2020; Gonatopoulos-Pournatzis et al.,
2020), our library adds 1,331 unique paralogs and brings the total set of human paralogs assayed
to date to 3,237. An additional difference between the present study and these other reports is
our use of Cas9 versus the newer Cas12a-derived enzymes. Cas12a systems have the benefit
of using an array of sgRNAs on a single transcript that is processed by Cas12a, enabling
programmable delivery of multiple sgRNAs to the same cell (DeWeirdt et al., 2020). Continued
application of Cas12a for CRISPR screening will enable the experimental identification of higher
order combinatorial genetic interactions in human cells. However, for pairwise interactions of
paralogs, the pgPEN library may provide an ease of application to investigators with Cas9-
expressing cell systems already developed.

Remarkably, we find that 12% of duplicate paralogs exhibit synthetic lethality,
demonstrating that paralogs are a rich source of genetic interactions. These findings underscore
the importance of simultaneously targeting redundant genes and demonstrate that a large fraction
of cancer dependencies are missed by current single-gene knockout approaches. Like others (De
Kegel and Ryan, 2019; Viswanathan et al., 2018), we propose that synthetic lethal interactions
among paralogs could be harnessed for cancer therapy, since the aneuploid genomes typical of
cancer cells commonly harbor deletions and inactivating mutations in one or more paralogs.
Targeting lineage-specific essential paralogs or paralog families with partial loss in cancer could
provide an orthogonal approach for cancer therapy to be applied in combination with existing
therapies to provide durable cancer control and improved patient outcomes. In addition, even
paralogs that are not lost in cancer may represent tractable cancer targets; the same homology
and redundancy that complicates genetic identification of paralogs as cancer dependencies could
enable simultaneous targeting of each protein with ease. This strategy is exemplified by the
current use of small molecules targeting several of the top synthetic lethal paralogs we identified,
such as CDK4/CDK6 and GSK3A/GSK3B.

Last, we provide the first systematic identification of tumor suppressive paralog pairs. We
identified ten paralog pairs whose combined loss significantly promotes cancer cell line growth.
Although combined loss of some of these pairs is likely to be rare, 2 of 10 we identified are located
in the same chromosomal locus. Many of these loci are frequently deleted in cancer. These data
therefore shed light on the basis for the positive selection of these genome deletions and suggest
that combined paralog loss may shape the landscape of positive and negative selection in human
cancer.
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Figure 1. Paralog dependencies are missed in single gene CRISPR knockout screens.

(A) Pie chart of human genes classified based on whether they are part of a paralog gene family
with 50-99% amino acid sequence identity.

(B) Density plot of CRISPR scores for a single gene CRISPR knockout screen in PC9 lung
adenocarcinoma cells. Data is from (Vichas et al., 2020). Dashed lines indicate the mean
CRISPR score of genes in each group. P < 2.2e-16 by one-tailed Kolmogorov-Smirnov test.
(C) Schematic of the EGFR receptor signaling pathway.

(D) Dose response curve of PC9-Cas9-EGFR™9M8%R |yng adenocarcinoma cells treated with
erlotinib, trametinib, or a 1:1 combination of both drugs. The fraction of viable cells was
determined by CellTiterGlo luminescence after 96 hours of treatment. Data was re-analyzed
from a larger drug screen in (Berger et al., 2016).

(E) Rank plot of CRISPR scores from an erlotinib sensitization screen in PC9-Cas9-
EGFRT9MLESER cells (Vichas et al., 2020). MAP2K1 (encodes MEK1) or MAP2K2 (encodes
MEK?2) single gene knockout does not result in significantly decreased cell growth. Gray dashed
lines indicate the threshold for negative selection (-0.5).
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Figure 2. The pgPEN CRISPR library enables genetic interaction mapping of 1,030 human
paralog pairs.

(A) Schematic of pgPEN screening approach for paralog genetic interaction mapping.

(B) Violin plots of target-level CRISPR scores for negative control (double non-targeting
control), positive control (sKO pgRNAs targeting known essential genes), all other sKO, and
dKO pgRNAs in the PC9 screen.

(C) Density plot of target-level CRISPR scores for double targeting pgRNAs grouped by gene
expression in PC9 cells indicating for each paralog pair whether zero, one, or both targeted
genes are expressed (TPM > 2). Dashed lines indicated the median CRISPR score for each

group.
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Figure 3. pgPEN uncovers synthetic lethal and buffering genetic interactions.

(A) Scatter plot of target-level observed versus expected CRISPR scores in the PC9 screen.
Dashed lines represents two residuals above or below the linear regression line for the negative

control (sKO) pgRNAs.

(B) Rank plot of target-level genetic interaction scores in PC9 cells. Table insert, top 10

paralogs based on Gl score.

(C) Volcano plot of target-level genetic interaction scores in PC9 cells. FDR indicates the
multiple hypothesis-adjusted P values from a two-tailed t-test (Methods). Blue, synthetic lethal
paralog genetic interactions with Gl < -0.5 and FDR < 0.1; red, buffering paralog genetic
interactions with Gl > 0.25 and FDR < 0.1.

(D) CRISPR scores for representative synthetic lethal paralog pairs. Data shown is the mean
CS for each sKO or dKO target across three biological replicates with replicate data shown in
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overlaid points.

(E) Fluorescence microscopy images of CCNL1/CCNL2 competitive fitness assay on Day 0 and
Day 12. Scale bar, 100 uM.

(F) Line graph of competitive fithess assay time course for sKO and dKO of the paralog pair
CCNL1 and CCNL2. Data shown is the mean and S.E.M. of six biological replicates. sKO
pgRNAs contained one gene-targeting sgRNA and one safe-targeting sgRNA. ** P < 8.3e-4 by
one-tailed t-test.

(G) CRISPR scores for PSMB5/PSMBS in the pooled screen format. Data shown as in (D).

(H) Fluorescence microscopy images of PSMB5/PSMB8 competitive fitness assay on Day 0
and Day 12. Scale bar, 100 uM.

(I) Line graph of competitive fitness assay time course for the paralog pair PSMB5 and PSMBS,
performed as in (F). n.s., not significant by one-tailed t-test.

(J) Bar plot indicating the best linear regression P value obtained by comparing the gene effect
of a single paralog knockout to the expression or copy number of its pair across cell lines in
DepMap single-gene CRISPR knockout screen data (www.DepMap.org). Black, P < 0.05; gray,

P =0.05.
(K) Scatter plot comparing the effect of CRISPR-mediated knockout of CCNL1 to the copy
number of its paralog CCNLZ2. Each dot represents a cell line. Data retrieved from DepMap.org.

(L) Scatter plot comparing the effect of CRISPR-mediated knockout of OXSR1 to the expression
of its paralog STK39. Each dot represents a cell line. Data retrieved from Depmap.org.
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Figure 4. Identification of context-specific and pan-essential synthetic lethal paralog
pairs.

(A) Rank plot of target-level genetic interaction scores in Hela cells.

(B) Volcano plot of target-level genetic interaction scores in HelLa cells. FDR indicates the
multiple hypothesis-adjusted P values from a two-tailed t-test (Methods). Blue, synthetic lethal
paralog genetic interactions with Gl < -0.5 and FDR < 0.1; red, buffering paralog genetic
interactions with Gl > 0.25 and FDR < 0.1.

(C) Scatter plot of target-level genetic interaction scores for paralog pairs in PC9 versus HelLa
cells. Blue, synthetic lethal paralog pairs with Gl <-0.5 and FDR < 0.1 in either PC9 or HeLa
cells; gray, all paralog pairs with Gl 2-0.5 or FDR = 0.1.

(D) CRISPR scores for representative synthetic lethal paralog pairs identified in the PC9 and
HelLa cell screens. Top row: Data shown is the mean CS for each sKO or dKO target across
three biological replicates with replicate data shown in overlaid points. Pan-synthetic lethal
paralogs have FDR < 0.1 in both cell lines, PC9-specific paralogs have FDR < 0.1 in PC9 only,
and Hela-specific paralogs have FDR < 0.1 in HeLa only. Bottom row: Paralog gene expression
in PC9 and HelLa cells from RNA-seq analysis.
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Figure 5. Paralog buffering interactions include tumor suppressor paralogs.

(A) Identification of tumor suppressive paralog interactions (Gl score > 0.25; FDR < 0.1;
CRISPR score > 0.25).

(B) CRISPR scores of PC9-specific tumor suppressive paralog pairs. Data shown is the mean
of three biological replicates with replicate data shown in overlaid points.

(C) CRISPR scores of HeLa-specific tumor suppressive paralog pairs. Data shown as in (B).

(D) Circos plot showing the genomic locations of tumor suppressive paralog pairs. Blue arcs
indicate paralog pairs located on different chromosomes, while pink arcs represent paralog pairs
located on the same chromosome.

(E) Top, diagram of a recurrent deletion seen in uterine corpus endometrial carcinoma (UCEC)
data from TCGA that spans the genomic locus containing ZNF561 and ZNF562, and a bar plot
indicating the deletion frequency. Bottom, diagram of recurrent deletions in epithelial and glial
cancers that span the genomic locus containing CDKN2A and CDKN2B, and a bar plot showing
the deletion frequency in each cancer subtype.

(F) Genomic distance between paralogs for the 1,030 paralog pairs included in the pgPEN
library in three proximity categories: on different chromosomes, on the same chromosome but
=1 megabase apart, and on the same chromosome within 1 megabase. Inset: Histogram of
paralog distance for pairs that are within 1 megabase of one another.
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Supplemental Figure 1.

(A) Schematic of filtering strategy used to select paralogous genes for inclusion in the pgPEN
library.

(B) Venn diagram of paralogs included in this study, Dede et al. (Dede et al., 2020), and
Gonatopoulos-Poumatzis et al. (Gonatopoulos-Pournatzis et al., 2020).

(C) Pie chart depicting the number of genes considered “druggable” based on classification from
Finan et al. (Finan et al., 2017).

(D) Heat map illustrating Pearson correlations between sequencing reads in counts per million
(CPM) supporting each pgRNA for all samples from the PC9 screen. Dendrogram,
unsupervised clustering of CPM by the complete-linkage method.

(E) Plot showing the cumulative distribution of pgRNA counts at each time point (mean across
three biological replicates) in the PC9 screen. Each point represents the proportion of total
pgRNAs with the corresponding count in a given sample.

(F) Scatter plot of target-level logz(fold changes) between the plasmid and late time points for
the indicated replicate comparisons in the PC9 screen. Contour lines indicate the density of
points in 2D space.

(G) Histogram of PC9 RNA-seq reads in logz(TPM) for all paralogs in the pgPEN library. Dashed
line indicates the cutoff used for expression: log>(TPM) > 1.

(H) Density histogram of CRISPR scores for sKO paralog target genes, grouped by target gene
expression in PC9.

(I) Scatter plot of PC9 log»(copy number) for paralogs in the pgPEN library. Red dashed line
indicates the mean PC9 copy number of pgPEN library paralogs. Copy number data was
obtained from DepMap.org.

(J) Box and overlaid dot plot of CRISPR scores for sKO paralog target genes, grouped by PC9
copy number. Box plots indicate median + IQR for each group.

(K) Box and overlaid dot plot of CRISPR scores for dKO paralog target gene pairs, grouped by
combined PC9 copy number. Box plots indicate median + IQR for each group.
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Supplemental Figure 2.
(A) Representative images of PC9-Cas9-GFP-NLS and PC9-Cas9-mCherry-NLS cells.
(B) Representative images of detecting GFP and mCherry positive cells within a 50:50 mixture.

(C) Line graph of PC9-Cas9-GFP-NLS and PC9-Cas9-mCherry-NLS cell relative viability across
a 10 day time course. Representative images of mixture at day 1 and day 10 time points are
shown. Scale bar, 100 uM.

(D) Schematic of competitive fitness assay.

(E) CRISPR scores for MAGOH/MAGOHB paralog pair in the PC9 screen. Data shown is the
mean CS for each sKO or dKO target across three biological replicates with replicate data
shown in overlaid points.

(F) Line graph of relative viability for PC9-Cas9-mCherry-NLS cells expressing the indicated
pgRNA compared to PC9-Cas9-GFP-NLS cells expressing a non-targeting control pgRNA.
MAGOH/MAGOHB was selected as a positive control based on prior reports of synthetic
lethality (Viswanathan et al., 2018). * P < 0.033 by one-tailed t-test. Right, representative
images of mixture at day 1 and day 10 time points are shown. Scale bar, 100 uM.
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Supplemental Figure 3

(A) Heat map illustrating Pearson correlations between sequencing reads in counts per million
(CPM) supporting each pgRNA for all samples from the HeLa screen. Dendrogram,
unsupervised clustering of CPM by the complete-linkage method.

(B) Plot showing the cumulative distribution of pgRNA counts at each time point (mean across
three biological replicates) in the HelLa screen. Each point represents the proportion of total
pgRNAs with the corresponding count in a given sample.

(C) Scatter plot of target-level logz(fold changes) between the plasmid and late time points for
the indicated replicate comparisons in the HeLa screen. Contour lines indicate the density of
points in 2D space.

(D) Violin plots of target-level CRISPR scores for negative control (double non-targeting
control), positive control (sKO pgRNAs targeting known essential genes), all other sKO, and
dKO pgRNAs in the HelLa screen.

(E) Histogram of PC9 RNA-seq reads in log2(TPM) for all paralogs in the pgPEN library. Dashed
line indicates the cutoff used for expression: log>(TPM) > 1.

(F) Density histogram of CRISPR scores for sKO paralog target genes, grouped by target gene
expression in Hela.

(G) Density plot of target-level CRISPR scores for double targeting pgRNAs grouped by gene
expression in HelLa cells indicating for each paralog pair whether zero, one, or both targeted
genes are expressed (TPM > 2). Dashed lines indicate the median CRISPR score for each
group.

(H) Scatter plot of HelLa logz(copy number) for paralogs in the pgPEN library. Red dashed line
indicates the mean HelLa copy number of pgPEN library paralogs. Copy number data was
obtained from DepMap.org.

(I) Box and overlaid dot plot of CRISPR scores for sKO paralog target genes, grouped by HelLa
copy number. Box plots indicate median +IQR for each group.

(J) Box and overlaid dot plot of CRISPR scores for dKO paralog target gene pairs, grouped by
combined HelLa copy number. Box plots indicate median +IQR for each group.

(K) Scatter plot of target-level observed versus expected CRISPR scores in the HelLa screen.
Dashed line represents two residuals below the linear regression line for the negative control
(single targeting) pgRNAs.

20


https://doi.org/10.1101/2020.12.20.423710
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423710; this version posted December 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Methods

Human paralog analysis and selection

For analysis of human paralog versus singleton essentiality (Fig. 1A-B), a list of human protein-
coding genes was obtained from Ensembl. Mitochondrial genes and splice variants were
removed from the analysis. The remaining genes were divided into two groups: (1) paralogous
genes with >10% amino acid sequence identity and (2) singleton genes.

For the pgPEN library, the list of human paralogs was further filtered to include only
those with >50% reciprocal amino acid sequence identity with only one other gene. Genes
encoding components of olfactory signaling and T cell receptors were also excluded. As shown
in Supplemental Figure 1A, a total of 2,060 paralogous genes (1,030 pairs) was included in
the pgPEN library.

PC9 single-gene CRISPR knockout screen and drug sensitivity profiling data

PC9-Cas9 and PC9-Cas9-EGFRT79ML85R gingle-gene CRISPR knockout screen data (Vichas
et al., 2020) and erlotinib/trametinib drug sensitivity data (Berger et al., 2016) were re-analyzed
from previously published data. The relative essentiality of singletons versus paralogs in the
PC9-Cas9 CRISPR knockout screen using the Brunello library (Doench et al., 2016) was
assessed via a two-tailed Kolmogorov-Smirnov test (Fig. 1B). Drug sensitivity data was
generated as part of a large-scale screen in (Berger et al., 2016) performed in PC9 cells
ectopically expressing the erlotinib-resistance variant, EGFR™9M8%R 'Eqr combination dosing,
erlotinib and trametinib were delivered to cells in a 1:1 molar ratio.

Paralog pgRNA plasmid library design and cloning

The pgPEN library was designed using pre-validated sgRNAs selected from the Brunello library
(Doench et al., 2016). sgRNAs containing BsmBI restriction target sequences and U6
termination signals were excluded from the library. Given that previous data demonstrated no
position effects using the pgRNA approach (Gasperini et al., 2017), the sgRNA targeting a given
gene was located at the same site in every pgRNA.

pgRNA oligonucleotides were synthesized by Twist Biosciences and cloned per
published protocols (Gasperini et al., 2017; Thomas et al., 2020). Briefly, the pgRNA
oligonucleotides were amplified (primers RKB1169 and RKB1170, Supplemental Table 7)
using NEBNext High Fidelity 2X Ready Mix (New England Biolabs) and purified via a 1.8X
Ampure XP SPRI bead (Beckman Coulter) clean-up. Amplified oligonucleotides were then
cloned into BsmBl (FastDigest Esp3l, Thermo Fisher Scientific)-digested lentiGuide-Puro
(Addgene no. 52963) plasmid backbone via the NEBuilder HiFi (New England Biolabs)
assembly system. Cloned plasmids were purified using a 0.8X Ampure XP SPRI bead clean-up
and transformed into Endura ElectroCompetent E. coli cells (Lucigen) via electroporation to
generate the pLGP-2xSpacer vector. The pLGP-2xSpacer vector was isolated using the
NucleoBond Xtra Maxiprep kit (Macherey-Nagel) and linearized by BsmBI digest. A GBlock
(synthesized by Integrated DNA Technologies) containing a second gRNA backbone and H1
promoter sequence was digested with BsmBl, purified via a 1.8X Ampure bead clean-up, and
ligated into the pLGP-2xSpacer backbone using NEB Quick Ligase (New England Biolabs). The
reaction product was purified using an 0.8X Ampure bead cleanup and transformed into Endura
Electrocompetent E. coli via electroporation to propagate the final pLGP-pgRNA vectors. The
pLGP-pgRNA plasmids were again isolated using the NucleoBond Xtra Maxiprep kit, and the
cloned library was amplified and sequenced as described below to confirm high coverage. At
each cloning steps, individual E. coli colonies were sequence verified via colony PCR and
Sanger sequencing with primer RKB1148. Over 1000X coverage of each pgRNA was

21


https://doi.org/10.1101/2020.12.20.423710
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423710; this version posted December 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

maintained throughout plasmid library cloning, amplification, and sequencing; coverage depth
was selected based on our previous screen experience as well as published recommendations
(Doench, 2018; Joung et al., 2017).

Lentivirus production and titration

With our cloned library, we produced lentivirus via a large-format transfection in HEK293T cells
using a protocol adapted from Joung et al. (Joung et al., 2017). Briefly, we used TransIT-LT1
(Mirus Bio) as a transfection reagent, with packaging plasmid psPAX2 (Addgene no. 12260) and
envelope plasmid pVSV-G (Addgene no. 8454) and Opti-MEM (Thermo Fisher Scientific).
Plasmids were added at a 4:2:1 ratio of transfer to packaging to envelope plasmid. 18 hours
post-transfection, media was changed to high-serum DMEM (30% FBS). Lentivirus was
harvested 48 hours post-transfection. Over 500X coverage of each pgRNA was maintained
throughout; coverage depth was selected based on our previous screen experience as well as
published recommendations (Doench, 2018; Joung et al., 2017).

Cell lines

PC9-Cas9 cells were a gift from Dr. Matthew Meyerson (Broad Institute) and cultured in RPMI-
1640 (Gibco) supplemented with 10% Fetal Bovine Serum (FBS, Sigma). PC9-Cas9-GFP-NLS
and PC9-Cas9-mCherry-NLS cells were generated by transducing PC9-Cas9 cells with
lentivirus containing GFP-NLS or mCherry-NLS-encoding vectors (parental backbone, Addgene
no. 12252). mCherry or GFP positive cells were selected using flow cytometry. HeLa/iCas9 cells
were previously generated (Cao et al., 2016) and cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM, Genesee Scientific) supplemented with 10% FBS. All cells were maintained at
37°C in 5% CO2 and confirmed mycoplasma-free.

Genome-wide CRISPR paralog knockout screen

PC9-Cas9 and iCas9/HelLa cells were transduced with the pgPEN library at low multiplicity of
infection (~0.3) to ensure the integration of a single pgRNA construct into >95% of cells
(Doench, 2018). Transduced cells were then selected using puromycin (1.0 uyg/mL, Sigma) for
48-72 hours until all uninfected control cells were dead. For the PC9-Cas9 screen, cells were
split into three biological replicates after infection but before puromycin selection, and genomic
DNA (gDNA) was harvested from each replicate after puromycin selection for an early time point
sample. For the iCas9/HelLa screen, cells were kept in the pooled format until puromycin
selection was complete, resulting in a single early time point sample. iCas9/HeLa cells were
then induced using doxycycline (1.0 pg/mL, Sigma) and split into three biological replicates. For
both screens, cells were then passaged for approximately 12 population doublings while
maintaining over 500X coverage of each pgRNA at every step. An endpoint gDNA sample was
harvested from each biological replicate and stored at -80°C. Genomic DNA was extracted
using the QlAamp DNA Blood Maxi Kit (Qiagen).

Paralog pgRNA ampilification, library preparation, and sequencing

Plasmid and gDNA samples were amplified and sequenced at >500X coverage per pgRNA as
per our previously established methods (Thomas et al., 2020). First, 2.5 ug of gDNA was used
as input for each reaction, with a total of 48 reactions (120 ug total input gDNA) to ensure
>500X coverage per sample. Input DNA was amplified using NEBNext High Fidelity 2X Ready
Mix with primers RKB2713/RKB2714 followed by 1.8X Ampure bead clean-up. Second, the
amplicon from PCR no. 1 was used as input for PCR no. 2, with 10 ng input DNA in one
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reaction per sample. The input DNA was amplified using primers RKB2715/RKB2716 followed
by 1X Ampure bead clean-up. Third, 10 ng of the amplicon from PCR no. 2 was used as input
for PCR no. 3 and was amplified using a common forward primer (RKB2717) and a sample-
specific barcoded reverse primer (see Supplemental Table 7) to allow for multiplexed
sequencing. Product from PCR no. 3 was purified using a 1X Ampure bead clean-up, quantified
by a Qubit assay (Thermo Fisher Scientific), and pooled at equimolar amounts prior to lllumina
sequencing.

Paralog pgRNA CRISPR screen analysis

Sequencing reads for each pgRNA were mapped separately to the pgPEN library annotation
using Bowtie (Langmead et al., 2009). Based on the reference set, correctly-paired pgRNAs
were retained while incorrectly-paired gRNAs were discarded. pgRNAs with <2 reads per million
(RPM) in the plasmid pool or with a read count of zero at any time point were also removed. The
logo-scaled fold change (LFC) of each pgRNA was then computed using MAGeCK (Li et al.,
2014) to compare initial abundance in the plasmid pool to abundance at early and late time
points.

LFC values were scaled so that the median of negative control (double non-targeting)
pgRNAs was set to zero, while the median of positive control (single-targeting pgRNAs targeting
Project Achilles pan-essential genes (Meyers et al., 2017) pgRNAs was set to -1.0 (Fig. 2B and
Supplemental Fig. 3D). We also used RNA-seq data from each cell line (Thomas et al., 2020)
to control for growth defects caused by the double-strand break generation and repair process.
To do this, we adjusted pgRNA LFCs so that the median LFC of single- and double-targeting
gRNAs targeting unexpressed genes (TPM <2) was set to zero (Fig. 2C and Supplemental
Figs. 1G-H and 3E-G). Finally, we analyzed copy number effects using data from DepMap.org.
We grouped pgRNAs by the combined copy number of targeted genes for each construct and
analyzed the CRISPR scores of each copy number group (Supplemental Figs. 11-K and 2H-J).
Given that the copy number of the vast majority of paralogs included in our library was close to
2, we did not adjust for copy number effects. The scaled and normalized LFC for each pgRNA
was termed a CRISPR score (CS). Target-level CRISPR scores were calculated by taking the
mean across pgRNAs with the same sKO or dKO paralog target. Final CRISPR scores were
computed by taking the mean across the three biological replicates for each screen.

Genetic interaction score calculations

To compute a genetic interaction score for each paralog pair, we combined two previously
published methods for genetic interaction mapping in human cells (DeWeirdt et al., 2020; Han et
al., 2017). We first calculated an expected and observed CS for each pgRNA. For dKO pgRNAs
(pgRNA-Paralog1_Paralog2), we calculated the expected CS by first taking the mean CRISPR
scores of each sKO pgRNA with the same targeting sgRNA sequence paired with a NTC
sgRNA sequence (i.e., mean(pgRNA-Paralog1_NTC1, pgRNA-Paralog2_NTC2) and
mean(pgRNA-NTC1_Paralog2, pgRNA-NTC2_Paralog2)). We summed these two sKO mean
CS values to calculate an expected CS for each paralog pair, and compared this expected CS
to the observed dKO CS (pgRNA-Paralog1_Paralog2). For sKkO pgRNAs, we calculated an
expected CS by computing the sum of (1) the CS for the other sKkO pgRNA containing the same
targeting sgRNA sequence paired with a different NTC sgRNA sequence (pgRNA-
Paralog1_NTC2) and (2) the mean CS of double NTC pgRNAs (pgRNA-NTC1_NTC2)
containing the same NTC sgRNA sequence (i.e., mean(pgRNA-NTC1_NTC2, pgRNA-
NTC1_NTC3)). This sKO expected CS was then compared to the observed sKO CS (pgRNA-
Paralog1_NTC1 or pgRNA-NTC1_Paralog?2). Target-level sKkO and dKO expected and
observed CRISPR scores were calculated by taking the mean across pgRNAs.
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We then obtained the distribution of CRISPR scores for control pgRNAs by calculating
the linear regression of control (sKO) expected versus observed CS values (Fig 3A for PC9 and
Supplemental Fig 3L for HelLa). Gl scores were calculated by calculating the residual of each
observed CS value for each paralog pair from the control regression line. A t-test was used to
compute the statistical significance of the difference in dKO Gl scores versus the distribution of
control (sKO) Gl scores. A Benjamini-Hochberg false discovery rate (FDR) correction
(Benjamini and Hochberg, 1995) was then applied, and FDR < 0.1 was considered significant.

Synthetic lethal paralogs were defined as those with a Gl score <-0.5 and FDR < 0.1,
while buffering paralogs were defined as those with Gl score > 0.25 and FDR < 0.1. Tumor
suppressor paralogs were defined as buffering paralogs with an additional filter for dKO CS >
0.25 in either PC9 or Hela cells. Cancer deletion data for paralog tumor suppressor analysis
shown in Figure 5E were obtained from The Cancer Genome Atlas Copy Number Portal
(Beroukhim et al., 2010).

Competition assay

For the bichromatic competition assay, PC9-Cas9-GFP-NLS cells were infected with a control
pgRNA and PC9-Cas9-mCherry-NLS cells with either a paralog sKO pgRNA or a paralog dKO
pgRNA. After 48-72 hours of selection with puromycin (1 pg/mL), cells were pooled at an equal
ratio and seeded in tissue culture-treated plates (Corning). All pgRNA sequences used for the
competition assay are available in Supplemental Table 4. For the MAGOH/MAGOHB paralog
pair, NTC gRNAs were used as controls and each competition (double NTC versus MAGOH
sKO, double NTC versus MAGOHB sKO, double NTC versus MAGOH/MAGOHB dKO) was
carried out in triplicate. For the CCNL1/CCNL2 and PSMB5/PSMB8 competition assays, safe-
targeting gRNAs that target intergenic regions (Morgens et al., 2017) were used as controls to
account for the different number of double-strand breaks generated by sKO versus dKO
pgRNAs. Each CCNL1/CCNL2 and PSMB5/PSMB8 competition was carried out in six biological
replicates. After pooling, cells were imaged and raw counts of mCherry- and GFP-expressing
cells were computed every 2-3 days using a Cytation 5 imager (BioTek Instruments). The ratio
of mCherry to GFP was computed and normalized to the Day 0 count. At the assay end point,
the targeting-to-control ratios were compared for sKO versus dKO conditions via a one-tailed
Student’s t-test.

Statistics and reproducibility

Statistical tests are indicated in the figure legends. Results were analyzed for statistical
significance with R v3.6.3 in an Rstudio v1.2.5 environment or in GraphPad Prism 8.
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Data Availability Statement

RNA-seq data for PC9 and Hela cells are available from GSE120703. The authors declare that
all other data supporting findings of this study are available within the paper and its
Supplemental information files.
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