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Abstract

We propose an open-source Python library, called DN3, designed to accelerate deep
learning (DL) analysis with encephalographic data. This library focuses on making
experimentation rapid and reproducible and facilitates the integration of both public
and private datasets. Furthermore, DN3 is designed in the interest of validating DL
processes that include, but are not limited to, classification and regression across many
datasets to prove capacity for generalization. We explore the effectiveness of this library
by presenting a general scheme for person disambiguation called T-Vectors inspired by
speech recognition. These are single vectors created by typically short, though arbitrary
in length, electro-encephalographic (EEG) data sequences that uniquely identify users
relative to others. T-Vectors were trained by classifying nearly 1000 people using as
little as 1 second-long sequences and generalize effectively to users never seen during
training. Generalized performance is demonstrated on two commonly used and publicly
accessible motor imagery task datasets, which are notorious for intra- and inter-subject
signal variability. According to these datasets, subjects can be identified with accuracies
as high as 97.7% by simply adopting the label of the nearest neighbouring T-Vectors,
with no dependence on task performed and little dependence on recording session, even
when sessions are separated by days. Visualization of the T-Vectors from both datasets
show no conflation of subjects between datasets, and indicates a T-Vector manifold
where subjects cluster well. We first conclude that this is a desirable paradigm shift in
EEG-based biometrics and secondly that this manifold deserves further investigation.
Our proposed library provides a variety of essential tools that facilitated the
development of T-Vectors. The T-vectors codebase serves as a template for future
projects using DN3, and we encourage leveraging our provided model for future work.

Author summary

We present a new Python library to train deep learning (DL) models with brain data.
This library is tailored, but not limited, to developing neural networks for
brain-computer-interfaces (BCI) applications. There is abundant interest in leveraging
DL in the wider neuroscience community, but we have found current solutions limiting.
Furthermore both BCI and DL benefit from benchmarking against multiple datasets
and sharing parameters. Our library tries to be accessible to DL novices, yet not
limiting to experts, while making experiment configurations more easily shareable and
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flexible for benchmarking. We demonstrated many of the features of our library by
developing a deep neural network capable of disambiguating people from arbitrary
lengths of electroencephalography data. We identify a variety of future avenues of study
for these representations produced by our network, particularly in biometric applications
and addressing the variation in BCI classifier performance. We share our model, library
and its associated guides and documentation with the community at large.

Introduction 1

Machine learning (ML) has long relied on handfuls of openly accessible datasets, 2

particular to certain sub-fields of study. The MNIST dataset 1, for example, has been a 3

common touchstone for image classification and computer vision generally whose use 4

continues (for better or worse) to this day. While a demonstration of state-of-the-art 5

performance on a single dataset, like MNIST, at one time may have been sufficient to 6

warrant the consideration of a new technique, most areas of ML are increasingly 7

comparing performance across multiple datasets and tasks. In natural language 8

processing (NLP) for example, the GLUE or SuperGLUE [1] benchmarks express an 9

aggregate score across relevant tasks in the field, varying in size (of dataset) and 10

difficulty. Aspects of the brain-computer interfaces (BCIs) field present a similar but 11

altogether unique variation on this theme. One could loosely divide the work of BCI 12

research (and some of neuroscience more generally) into two streams of inquiry: data 13

collection and data analysis. Provided perfect – or at least consistent – collection, 14

analysis techniques are best validated by collecting new data to test hypothetical 15

analyses. If collection is sufficiently consistent, improvements or subtle changes in 16

collection do not strongly impact the interpretation of analysis experiments. This is 17

true of other ML fields, but unlike BCI, collection in NLP is not a similarly active (or 18

varied) line of research. Instead, quantity of data has taken precedence over quality, or 19

nature [2]. BCI research encourages some specialization in analysis or collection, with 20

the potential consequence of less-than-ideal collection or analysis respectively [3]. Likely 21

as a result of both the difficulty in performing collection and the need for controlling 22

this confound, thousands of research articles are published per year that solely leverage 23

publicly available BCI datasets [4] which is reminiscent of classical ML. The consequence 24

is that the more general applicability of these results is difficult to judge [5, 6]. The 25

MOABB [4] project is a current effort to establish a wide-ranging benchmark that in no 26

small way addresses this concern, but it remains notably agnostic to analysis method, 27

and does not strongly integrate privately collected datasets (see MOABB section). 28

Intertwined with the desire for stronger generalization claims is the expanded use of 29

DL for BCI classification. While DL is far from established as the preferred analysis 30

technique [5], there is undoubtedly keen interest in exploring it [6]. Software solutions 31

for leveraging DL for BCI currently exist (see section on prior work and ecosystem) but, 32

to our knowledge, no publicly accessible DL library is as of yet strongly suited to BCI 33

data, and typically requires significant effort to leverage multiple datasets, public or 34

private. Furthermore, the current ecosystem does not readily support more abstract DL 35

processes, despite that larger end-to-end techniques are becoming ever more 36

commonplace in DL [7]. 37

Another concern is that while there are existing analysis solutions that employ ML 38

generally, they remain at best simply DL-compatible. This is not necessarily a fault, but 39

it is not uncommon to find DL architectures from the BCI literature that reviews of the 40

literature [5] find poorly motivated or reasoned. It is hard to say precisely why this is, 41

but we speculate that a factor of this phenomenon is that while many BCI practitioners 42

1https://en.wikipedia.org/wiki/MNIST_database
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are versed in DL generally, DL remains an enigmatic and fast-moving field, with 43

techniques rapidly falling in and out of fashion. It is here that the question of 44

generalizability returns, in a complementary articulation: reproducibility. Often, 45

extreme care is needed to avoid uninformative results due to the notorious and 46

sometimes dramatic dependence on hyperparameters – that often seem innocuous (at 47

first) – to which many DL techniques are prone. 48

If more generally applicable architectures had a consistent home, and authors 49

wishing to share general models had a semi-standard approach to conform to, a versatile 50

community-driven toolbox of well-motivated techniques could begin to develop and slow 51

the pace of more inexplicable architecture choices. Furthermore, it would allow for 52

stronger benchmarking and provide mechanisms for reproducibility. 53

Herein we present DN3, the deep neural networks for neurophysiology toolbox. This 54

Python library is designed to leverage both public and private data (potentially 55

integrated together) to train deep neural networks in a rapid and reproducible fashion. 56

In particular, we use MNE-Python’s tools for neurophysiological data access [8], storage, 57

and processing, bridged with PyTorch 2 – one of the most common and powerful 58

modern deep learning libraries. Knowledge of these underlying libraries is mostly 59

unnecessary, but their lower-level functionalities remains available to DN3. While much 60

of DN3 is tailored to trial-wise BCI classification, it can undoubtedly be used with 61

neurophysiological data more generally. Furthermore, DN3 introduces a unique dataset 62

and experiment configuration tracking module called the Configuratron. This module 63

allows datasets to simply reside in the formats they were recorded in, but be 64

automatically prepared for DL processes using short, human-readable descriptions. 65

Then, these descriptions can be easily shared to reproduce work entirely, or simply in 66

design when data cannot be shared. Finally, DN3 implements some existing classifiers 67

and techniques and will remain open source (under a BSD license) to continue to add 68

state-of-the-art techniques to its repertoire, with the goal of remaining convenient for 69

both experts and beginners. 70

In short, DN3 is best suited to facilitating research at the intersection of deep 71

learning and BCI (and potentially neurophysiological data science more generally, but 72

we focus here on BCI). Experts strongly preferring either of these two fields stand to 73

gain from DN3’s consistency in the abstraction of challenges in the other field. 74

Furthermore, it can dramatically reduce boilerplate code, it introduces general 75

mechanisms for experiment reproducibility, and is fully open-source 3. 76

In section Prior work and ecosystems, we discuss the current Python ecosystem and 77

alternatives to DN3. Next, we provide a structural overview of DN3 and its important 78

modules. Last, we use DN3 to create a cross-paradigm and cross-hardware technique for 79

subject disambiguation (consequently, identification) that we call T-Vectors. We suggest 80

that this technique would have been a long and difficult undertaking but, by making 81

good use of DN3, we have produced a (freely reusable) model with minimal code. 82

T-Vectors are a technique for producing single vectors from variable-length-snippets of 83

EEG data that robustly identify subjects. A neural network was pre-trained to classify 84

over 1000 subjects and subsequently generalized without further training to completely 85

unseen data, despite being recorded in different labs with different hardware. Novel 86

subjects can be identified with well over 90% accuracy using nothing more than the 87

labels of the nearest-neighbouring T-Vectors. We found our representation specifically 88

robust to which task was being performed by the subject and the particular recording 89

session of a sequence of data, yet not confounded by mixing subjects from multiple 90

datasets. 91

2https://pytorch.org/
3https://dn3.readthedocs.io/en/latest/
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Prior work and ecosystems 92

Python has not historically been the standard choice for data analysis in neuroscience. 93

Its large data-science ecosystem and community of open-source, open-access, and 94

community engagement covers a wide array of useful techniques for analysis. MATLAB 95

4 instead has been the neuroscience research standard and in fact includes DL tools. 96

However, few if any new DL approaches publish source code with MATLAB, opting 97

instead for typically either Tensorflow or PyTorch (with a community of researchers and 98

hobbyists constantly translating between the two frameworks). Thus, progress towards 99

merging DL with neuroscience is dependent on the MATLAB developers or experts 100

re-implementing entire processes from scratch. 101

The MNE project, and MNE-Python [8] in particular, is a powerful set of tools for 102

neuroscience data processing, organization, and analysis that further the large 103

ecosystem of Python-based data-science and is a strong alternative to MATLAB. As 104

such, merging MNE-Python with one of these major Python-based DL libraries is a 105

natural solution to studying neuroscience with DL, and is one that has been adopted by 106

prior work in DL with BCI data [9–11]. In the introduction, we discussed a variety of 107

advantages to having a dedicated toolbox for users coming from either of BCI or DL; it 108

is worth highlighting why it is preferable to not simply use MNE-Python and a DL 109

library for every DL-neuroscience experiment. MNE-Python’s toolset is very large, and 110

makes few assumptions as to the ultimate application of the data. As such, the efficient 111

development and evaluation of DL processes is nowhere near a first-class concern, and 112

can require significant code development for each application, sometimes resulting in 113

code variations just for minor differences in data. 114

In essence, we observe that Python is the de facto choice for DL and that 115

MNE-Python provides many dataset utilities that can facilitate merging DL and 116

neuroscience. However, there is room to add a more application-specific layer on top of 117

MNE-Python to reduce boilerplate code, unify applications, and facilitate novice-level 118

DL. 119

The braindecode package 120

The braindecode Python package is likely the most similar library to DN3 in many 121

respects. Ostensibly, this package provides utilities to train several well known neural 122

network architectures as trial-wise classifiers or regressors of EEG and MEG data. 123

Additionally, it features tools to use a variety of datasets, notably providing a bridge to 124

the datasets featured as part of the MOABB. 125

The potential advantages braindecode might have over DN3 include the use of the 126

skorch [12] package (itself a layer above PyTorch) rather than PyTorch alone as the DL 127

workhorse. As skorch develops, models prepared for, and any tools added to this (well 128

maintained) library, will likely serve to extend braindecode in a way not true for DN3. 129

That said, we elected to avoid this due to the limitations caused by the fairly 130

reductionist skorch, which enforces training pipelines that might exclude more 131

eccentric approaches that may prove useful in an area that has no apparent standard 132

mechanisms. Consider that the implementation of adversarial architectures in skorch 133

are difficult, and similarly, procedures such as meta-learning, like MAML [13] or 134

REPTILE [14] may not even be possible. Using an adversarial training paradigm has an 135

existing (albeit) small BCI-specific literature [15], while meta-learning is commonly 136

considered for transfer learning problems, itself a keenly sought after methodology for 137

core DL research and BCI [5, 9]. We preferred to err on the side of flexibility in this 138

regard. The braindecode package also provides utilities to enable explainable AI (XAI) 139

4https://www.mathworks.com/products/matlab.html

December 3, 2020 4/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.17.423197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423197
http://creativecommons.org/licenses/by/4.0/


techniques (notably from work done by Schirrmeister et al. [10]) that can be used as an 140

(albeit rough) attempt at understanding the operations a neural network is performing. 141

While we do not preclude the addition of an XAI module within DN3, we elected to 142

avoid providing any ready-made XAI solutions for the time being, as there seems to be 143

no apparent standards within BCI for this as such, and there is a large risk that if used 144

too liberally, XAI techniques can prove to be very misleading [16]. 145

This being said, DN3 has notable advantages that were (at the time of writing) not 146

available in braindecode, some of which may be difficult to add without significant 147

re-design. The first and perhaps most interesting difference with DN3 is the 148

Configuratron, which is a unique addition. Furthermore, the Dataset instances that 149

this subsequently constructs has an application programming interface (API) that is 150

readily compatible with many other libraries, such as other deep learning libraries like 151

Tensorflow/Keras, and in fact braindecode. Later, we will discuss more detail about this 152

API, but it notably includes a variety of conveniences not similarly provided by 153

braindecode, including methods for accessing data by subject and session, cross 154

validation across subjects, and methods for constructing DL classifiers on the basis of 155

the Dataset instance. Another important point of difference stems from the fact that 156

DL research is dominated by GPUs and other accelerators that run in parallel to CPU 157

operations. It is important to consider how best to leverage idle CPU time. While 158

PyTorch does most of the heavy lifting to facilitate such considerations, DN3 specifies 159

an entire pipeline that modifies data on the CPU while DL proceeds on accelerators. 160

This is in contrast to braindecode, where data transforms are performed before training, 161

and there is a relatively limited data transform/augmentation system. 162

MOABB 163

The mother of all BCI benchmarks (MOABB) project [4] serves as important 164

inspiration for this work. Their stated purpose of consistently validating techniques 165

against public datasets is well aligned with our own. While it would seem clear at the 166

outset that a benchmark is very different from a software library, we felt it useful to 167

clearly identify what these are in this case, as the project also includes tools for data 168

analysis and statistical post-analysis. Considering similarities, MOABB is another 169

Python library that also leverages MNE to load, and at various stages represent a BCI 170

(more specifically than DN3) data. Furthermore, they employ a similar set of 171

abstractions around individual sessions, subjects and datasets (each consisting of a 172

number of the former abstractions from left to right). Aside from not being specifically 173

related to DL at all, MOABB makes another fundamentally different (though 174

reasonable for their application) choice to be strict on data, but lenient on process (e.g. 175

classifier). DN3 relaxes the strictness on data, trying to more effortlessly integrate 176

public and private data, and expand the propagation of relevant information (such as 177

subject id, channel labels, etc.) more extensively through its full pipeline. Ultimately 178

DN3 is not a competitor to MOABB, but is complementary, and shares many of the 179

same goals. DN3 instead focuses on flexibility in leveraged data and specifically 180

facilitates DL-based analysis, whereas MOABB remains agnostic, and less friendly to 181

new datasets (at least in terms of boilerplate code). 182

Structural overview 183

DN3 was organized around two pillars: preparing data and training deep neural network 184

models. DN3 defines an API that connects these pillars through a single recommended 185

point of interface. Figure 1 gives an overview of the major modules of DN3 and which 186

of the two core aspects each interacts with (left or right of the dashed line). 187

December 3, 2020 5/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.17.423197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423197
http://creativecommons.org/licenses/by/4.0/


Dataset

Dataset

Configuratron
Dataset(s)

Preprocessing

Trial
Transform

Experiment

Model(s)

Process

Data
Responsible for loading dataset(s), preprocessing
them and modifying them for use.

Training
Training of different models uses vairous processes

Metrics

Outputs

Batch
Transform

Fig 1. High-level overview of the major aspects of DN3. The library is organized
around ease of interface between dataset processing and representation, and the training
of deep neural networks with these data.

We elaborate on the motivation of these modules from left to right, focusing on their 188

purposes rather than explaining the particular API which is documented (and kept 189

more up to date than a publication) at https://dn3.readthedocs.io/en/latest/. 190

Configuratron 191

The Configuratron is a configuration-file-based dataset organization tool meant to 192

enhance experiment/data preparation consistency and provide significant reductions in 193

boilerplate code. The appropriately formatted configuration files are responsible for 194

listing: the dataset(s) employed in an experiment, where they are stored, whether or 195

what kind of events will be used to crop trials, and more optional pre-processing choices 196

like simple bandpass-filtering or electrode selection. Thus, if a dataset conforms to a 197

consistent directory and naming scheme 5 within a common top-level directory, the 198

Configuratron easily prepares it for training a DNN simply through a reference to this 199

top-level. From here, splitting the dataset along individual or multiple subjects, and 200

further splitting to the session level is straightforward (see next section). 201

Some of the more mundane, but highly common, BCI pipeline tasks, such as: 202

renaming or remaping channels, excluding inconsistent or bad subjects and sessions 203

(which in a small capacity is also automatically discovered while loading datasets), and 204

adding some basic transforms such as normalization, are all specified using these 205

configuration files. The majority of these options are meant to provide a much more 206

efficient way of performing the myriad housekeeping (not really even preprocessing) 207

steps that are, for the most part, handled by MNE-Python, but must be done 208

consistently for every subject and session (and dataset if experimenting across datasets). 209

Sharing these configuration files, allows for data to be loaded in, again, a consistent 210

fashion between different researchers, encouraging reproducibility but also flexibility as 211

to how the analysis aspect will be performed, without ever exchanging raw/processed 212

data or a complete codebase, which itself may be impossible to share, e.g. due to 213

privacy concerns. 214

5The most common being a variation used by datasets found at physionet.org, which holds a
number of commonly used public datasets. Additionally, recordings and subjects can be identified using
a simple pattern-matching scheme.
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While leveraging standard directory structures and file-types makes for minimal 215

coding, this structure can also be adapted to more custom-solutions. Data can be 216

forcibly injected at the session (see figure 2), person and dataset level, while still 217

leveraging the remaining configuration options when appropriate. Furthermore, the 218

configuration file behaves as a more general place for logging hyperparameters, by 219

allowing arbitrary configuration elements. These can include preprocessing and 220

transform details, or DL hyperparameters. Finally, a simple import system 221

(accomplished through a YAML directive) allows for importing other configurations to 222

the experiment. This allows selecting to import different hyperparameter sets, or 223

pulling hyperparameters from web-enabled hyperparameter search tools. 224

Data 225

Custom Data
Representation (e.g.

numpy array)

MNE

Raw Epochs

Recording Layer

Thinker Layer

Dataset
Leave One Subject Out

Leave Multiple Subjects Out

Split Data

Add Transform

Dataset Cross Validation

Fig 2. Here the hierarchical structure of a Dataset is outlined, with individual sessions
made up of the MNE-Python Raw and Epoch instances, or custom representations for
more unique problems. The arrows to the right indicate some common API endpoints
for developing training, validation and test sets from the Dataset.

This module implements the higher-level containers that represent a dataset and its 226

constituent parts. Datasets are specifically comprised of a set of Thinkers that 227

represent each respective subject, and those are each comprised of a number of 228

recordings. Figure 2 further illustrates this hierarchy and shows how MNE Raw and 229

Epochs objects 6 underpin the data layer below these. Thus, while MNE compatible 230

data is naturally integrated into this scheme, Recording- and Thinker-level APIs allow 231

for more customized data integration into the Dataset format. 232

Once data is represented as a Dataset, single data instances are fetched from disk or 233

system memory depending on configuration (important for more large-scale datasets 234

that are beginning to develop [17]). This is combined with experiment-focused 235

conveniences like leave one (or multiple) subject(s) out cross-validation, or randomized 236

splits, and also the collection of dataset level data distributions and statistics. 237

Furthermore, DN3 includes a suite of utilities that help develop automated rejection of 238

trials, or other steps to filter for the most pertinent sections of data. 239

6Note that as described
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Preprocessing & Transforms 240

Commmon to all BCI analysis is some preprocessing step(s), or adjustment of the raw 241

data. For example simply excluding non-neural recording channels, leveraging those 242

channels to strip away artifacts, or spatial filtering/channel re-weighting. DN3 tries to 243

minimize the time spent doing steps like these before each experiment by creating a 244

pipeline to transform data while it is loaded. This could be as simple as stripping 245

electro-oculogram (EOG) channels while trials are fetched from disk, though this alone 246

does not really require a pipeline as such. If alternatively, independent component 247

analysis (ICA) signals are to be removed based on correlation to EOG signals, a 248

preprocessing stage would calculate the forward and backward transformation 249

(optionally saved offline), and then the rejection of these components can happen as a 250

batch is collected for DL. These are relatively standard methods, but we created a 251

notably flexible pipeline to avoid precluding things like mixing of transformed and 252

un-transformed trials, mixing different transformations, or doing something more 253

exceptional like converting trials to their T-Vector representations. 254

Processes & Trainables 255

Rather than limiting analysis to classification or regression using neural network models 256

(or set of modules that constitute them), DN3 employs a more abstract training 257

Processes API to train... Trainables. The distinction may not be clear from the 258

outset Undoubtedly, the StandardClassification process is likely to be used the 259

majority of the time, but DL as simply a process of classification or regression with a 260

single loss function is perhaps at the time of writing, more than ever, not sufficient. 261

There are now wide variety of end-to-end systems being developed in DL [14,18–20] 262

that can not be fully characterized within such a frame. A community driven solution 263

like DN3 could help make more of these available for wider use. Thus, a Process in 264

DN3, is a more general formulation than simply classification or regression, and is 265

designed to support diverse uses of backpropagation with respect to a (or even multiple) 266

loss function(s). There are some added assumptions that incoming data is, in a sense, 267

neurophysiological data (i.e. made up of sequence of sampled channels). While 268

conveniences like loading batched (and batch-wise transformed) data to the appropriate 269

accelerator, calculating training and validation metrics and under/over sampling are all 270

readily available through a change in arguments during Process creation. In other 271

words, a Process encapsulates the procedure by which data is fed to a model and the 272

backpropagation of losses through it. Those that are unconcerned with exactly how 273

particular weights get updated can safely ignore this latter detail, while those that are 274

concerned with questions of why, how, when and if certain weights are changed, can 275

create their own processes. 276

Trainables are the neural network modules, or more generally, modules that 277

integrate into the forward and backward passes in DL. These can simply be PyTorch 278

Modules and Functions, or the extended wrapper provided by DN3: DN3BaseModel(s). 279

The advantage of using the DN3 API, is that models can be generated based on 280

Dataset instances, meaning according to the incoming channel set, sequence length, 281

sampling frequency and classification targets. This has been, in our experience, a way 282

to alleviate a major source of tiresome code, particularly in projects that leveraged 283

several datasets (like the one we present below). 284

Processes would not be complete without the addition of Metrics to evaluate the 285

suitability of Trainables. To this end we have taken advantage of the existing Python 286

data science ecosystem, and provide utilities to leverage the many metrics provided by 287

standard choices like sklearn [21] through wrapper functions and decorators. 288
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T-Vectors 289

In this section, we present original work that showcases some of the unique advantages 290

of DN3. We showcase integrating multiple datasets, BCI-dataset-specific utilities, and 291

the capitalization of the wider Python ecosystem. 292

Motivation 293

The recorded features of most subjects performing BCI tasks can vary dramatically 294

both within and between subjects, making universally applicable classifiers difficult to 295

develop [9, 22–24]. The sensory motor rhythm (SMR) paradigm in particular exhibits a 296

form of subject-dependent variability that manifests in some 20-30% of people seemingly 297

incapable of even eliciting expected features for classification in the first place [22,23]. 298

The nature of this dramatic variability is a topic of continual research but not nearly 299

fully characterized. Prior work groups this variability into psychological, physiological, 300

anatomical, and demographic differences, though integrated studies of these factors are 301

notably lacking [23]. These are then perhaps overly inclusive categories, capturing all 302

known correlates to performance. While these factors potentially inform the cause of 303

the signal variations, the goal nonetheless remains that new users (or new sessions of 304

existing users) can quickly use BCI systems [5, 25, 26]. To this end, previous work has 305

found that identifying similar users implies what configuration of features and/or 306

classifiers may be effective for a new context [26]. In other words, transfer learning (TL) 307

can be enhanced by identifying similar enough users. 308

More than just identifying similar users, Riemannian geometry-based covariance 309

matrix classification is a large step towards better TL in BCI [5, 27]. This alternative 310

represents trials using the covariance matrix of the channels of each trial, resulting in a 311

symmetric positive definite matrix (SPD) confined to its associated differentiable 312

manifold M (i.e., the manifold of the set of SPD matrices). The advantage of this 313

approach is the robustness of a trial’s representation on M under a variety of conditions, 314

notably under a variety of BCI preprocessing and recording techniques [5, 27]. 315

Specifically, this means that these robust representations allow for better 316

subject-to-subject transfer and stability across different data collection efforts [5]. Prior 317

work has shown that trials of particular users tend to cluster along M , and transfer 318

learning can be further improved if these representations are shifted along M to a 319

common centralized location [28]; however, this requires the use of Riemannian 320

geometry to establish a central location along M , which is cumbersome. Thus the 321

stability afforded by confining trials to the invariant space M is traded-off against the 322

limitation in features asserted by the SPD representation and the inconvenience of the 323

geometry, where only some classification algorithms naturally extend. 324

In the work we present below, we have first and foremost asked whether a deep 325

neural network can be used to create a robust (invariant) descriptive vector of any EEG 326

user. Ideally, this vector could identify a particular user juxtaposed to others, (in the 327

best case) irrespective of hardware used or activity performed. This should consequently 328

then be a model of latent subject-wise variation, where features or directions in this 329

space may be descriptive of subject-wise differences. This is an indirect, and data-driven 330

modelling of latent differences, rather than an explicit account of these differences. 331

Towards application, this representation could be immediately leveraged to identify 332

similar subjects and as noted above may be informative of how best to classify their 333

features. However, it presents a variety of additional opportunities. As a consequence, 334

the range of these representations creates a manifold, somewhat like M above, but 335

without the constraints of solely covariance-based features and the requirement to use 336

Riemannian geometry (the more standard Euclidean sense should suffice). Evaluating 337

the result of all of these motivations is beyond the scope of this work alone, and here we 338
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have focused on the development of a robust learned vector first. 339

To develop our vectors, we took inspiration from a similar problem that arises in 340

automatic speech recognition (ASR). Unlike BCIs, variability in speech is intuitively 341

apparent – different individuals have high or low-pitched voices, an individual may be 342

yelling, whispering, or attenuating their speech production, or may have a regional 343

accent. This latter case can loosely serve as an analogy for part of the BCI-specific 344

variance problem, if we assumed that non-native speakers leverage co-articulation 345

patterns or colloquialisms from their native tongue when speaking a non-native 346

language, it results in (what we commonly assume to be) the same semantics with a 347

different set of (acoustic) manifestations. This same semantics, different manifestations 348

framing is a loose lens that we extend to BCI subject variation (although what a 349

non-native, versus native speaker means for BCI strains the analogy). Therefore, this 350

lens was useful insofar as it suggested a possibly effective method to deal with the 351

known phenomenon of person-wise variation, one that was readily transferable to BCI 352

data: summarize utterances into a fixed-length representation that is able to classify a 353

large set of users. I-Vectors and their variants [29] are historically effective, but with 354

more speech recognition being performed by DNNs, the similar X-Vector approach is 355

common and seemingly more accurate [29]. 356

Thus, herein we investigate whether DNN-derived X-Vectors, used mostly as they 357

were presented in the ASR literature, are capable of modelling thinker rather than 358

speaker instance differences. We call these vectors trained to identify thinkers: 359

T-Vectors. 360

We would be remiss to not also mention that, while our own motivation comes from 361

a desire to model the latent space for inter-subject variance, our proposed solution (if 362

effective) is also very relevant to a body of research in EEG-based biometrics [30, 31]. 363

Here, EEG signals are leveraged to uniquely identify users, typically in the interest of 364

security applications. Most commonly, this is a problem framed in terms of 365

authentication or identification [30]. Authentication strives to identify a single person 366

from an open set (and is ostensibly more desirable [30]), while identification considers 367

options in a closed set of candidates. We suggest that T-Vectors represent a 368

disambiguation paradigm instead. T-Vectors should disambiguate any subject (whether 369

seen during training or otherwise) by (Euclidean) proximity to other vectors. It could 370

thus be adapted to either authentication or identification, but is not immediately one or 371

the other. 372

Datasets 373

An ideal training dataset here is one that is as general and representative as possible 374

(while remaining practically tractable) so that it transfers well to many applications. In 375

this case then, it specifically should represent a multitude of different people, performing 376

various tasks, across many demographics and recording contexts, preferably separated in 377

time. To our knowledge, the closest-fitting publicly-available project was the Temple 378

University Hospital EEG Corpus (TUEG) which advertises data from individuals as 379

young as less than a year old, to over 90, a split of 51% female, and sessions that were 380

separated up to eight months apart [17]. It consists of clinical EEG recordings from 381

Temple University Hospital using a limited variety of monopolar EEG systems, all with 382

a roughly 10/20 electrode configuration, in addition to a variety of auxiliary channels 383

including eletro-ocular (EOG), cardio and myographic recordings. The majority of the 384

recordings were made with sampling frequencies of 250 Hz or 256 Hz, though some were 385

higher (typically multiples of this, such as 512 Hz or 1024 Hz ) [17]. We limited our 386

analysis to the version 1.2.0 subset of TUEG, which after rejecting outlying data (see 387
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Preprocessing), featured 1364 people 7 roughly an order of magnitude larger than any 388

prior work in EEG user identification that we were aware of [30, 31]. 389

For downstream subject disambiguation (datasets considered once the T-Vector 390

model was determined), we focused on two SMR datasets, due to the task’s known intra- 391

and inter-subject variability. First, the well known BCI competition IV, dataset 2a 392

(BCIC) [32], which we selected for its clear isolation of two distinct recording sessions 393

separated by days, and its limited subject set. The limited subject set was particularly 394

valuable for visual examination. It similarly featured a largely 10/20 monopolar 395

recording setup of 22 EEG channels, 3 EOG channels and a single event trigger channel 396

(the EOG and of course trigger channels were simply discarded in this work). Secondly, 397

we used the easily accessible movement and motor imagery database (MMI) [33,34]. 398

This featured 109 subjects using 64 channels in a 10/10 channel configuration, sampled 399

ostensibly at 160 Hz. Four of these subjects were inconsistently sampled and excluded 400

from training 8 leaving 105 possible subjects. Note that these datasets also featured 401

(particularly MMI) in prior work in subject identification for biometric 402

applications [30, 31]. 403

All three datasets were simply downloaded from publicly available locations: 404

TUEG9, MMI 10 and BCIC 11. The Configuratron automatically prepared each of the 405

datasets using the configuration files available with the project. This included renaming 406

of a variety of channels, notably from TUEG, excluding a number of uninformative 407

sections of data and more. The most consequential of these is presented in the following 408

section, and can otherwise be found in the published source code. 409

Preprocessing 410

The TUEG dataset contains recordings at various sampling frequencies, all with a 411

low-pass filter that did not violate the Nyquist criterion for a 256 Hz sampling 412

frequency (i.e., low-pass filter ≤ 128 Hz ) were kept and resampled to 256 Hz. This 413

resampling was kept as simple as possible: in most cases, a decimating procedure 414

(taking every n samples) whenever the sampling frequency was whole multiple of 256 Hz. 415

Further, any data sampled at 250 Hz was resampled to 256 Hz using the nearest sample 416

in time to the original sequence. Note that both the decimation (when sampling 417

frequencies are whole multiples of a standard sampling frequency) and the nearest 418

sample interpolation are done automatically by DN3 when a global sampling frequency 419

is specified for the experiment (a flag set simply in a configuration file). A consistent 420

ordering for the channels was then determined, so that the same EEG channel was 421

consistently found at the same tensor index, e.g. the FP1 channel was always found at 422

index 1. This was necessary to allow the use of data across different recording hardware, 423

and has the benefit of allowing previously trained models to be transferable to other 424

applications. DN3 has a system for doing this automatically called the Deep1010 425

mapping, which consistently maps 77 EEG channels, 2 earlobe reference electrodes (this 426

covers the very common 10/20 channel scheme and additionally adds the mid-way 427

points to mostly cover the 10/10 extension [35]) and 11 auxiliary channels that includes 428

4 electro-oculogram channels (horizontal and vertical for left and right eyes) and 7 429

miscellaneous channels that allow for the integration of other sources for potential 430

7Currently using the whole project, which includes other versions of the data results in over ten
thousand targets and has proven more challenging and will be considered in future work.

8See the uploaded configuration file for more details.
9https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml access requires a

simple sign-up process.
10https://physionet.org/content/eegmmidb/1.0.0/
11Originally here http://www.bbci.de/competition/iv/, which requires request for access, but we

found some difficulty with these files and instead converted the unrestricted copy found at http:

//bnci-horizon-2020.eu/database/data-sets to the native MNE (raw.fif) format.
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artifacts such as electro-cardio and myograms, additional reference channels or other 431

more application-specific channels. Ultimately, when training and evaluating T-Vectors, 432

all but the EEG channels were removed. We explain the Deep1010 as it is a unique 433

feature of DN3. 434

We cropped non-overlapping and reasonably dissimilar sequences by taking 1280 435

samples (at a sampling frequency of 256 Hz corresponding to 5 seconds) every 7680 436

samples (30 seconds). In other words, the first 5 seconds of every 30 from each 437

recording were considered for training. Herein these cropped sequences are referred to 438

simply as points. Due to the extreme size of the TUEG dataset, it was difficult to triage 439

the entire dataset, but a cursory look found notable artifacts and many cases of 440

channels with absent (zero, or minimally varying) data. Scaling each point to lie 441

between -1 and 1 12, we considered the overall distribution of these points and 442

determined upper and lower bounds on standard deviation for viable training points. 443

This is described in more detail in appendix A, but it suffices to say that a very 444

significant proportion of data had curiously low or high variation as compared to more 445

controlled/smaller scale datasets, and these extremes were removed. We employed a 446

variety of readily available tools from the DN3 library to accomplish this. 447

Subsequent to these initial preprocessing steps, each person had, on average, 234 448

viable points for training, with an overall minimum of 1 and a maximum of 2621, 449

totalling just under 320 000 points. 450

The BCIC dataset was prepared as if for classification of the associated 4-way SMR 451

task (imagined left and right hand movement, foot movement and tongue 452

movement) [32]. Points were determined by taking 4.5 second crops from 0.5 seconds 453

before the event marker until 4 seconds after, this time period has been shown in prior 454

work to maximize the event-related signal for previous neural network classifiers [9, 10]. 455

Similar to some of the TUEG data, the sampling frequency of 250 Hz was upsampled 456

using the nearest point in time to the common 256 Hz 457

The MMI dataset was prepared differently, focusing instead on leveraging the 458

totality of data available for all 105 subjects. This meant including all 14 sessions 459

performed by each person, and using all of the recorded data. To do this, the sampling 460

frequency of 160 Hz was adjusted to the 256 Hz mark again by simply using nearest 461

neighbours upsampling. We note here that while this is nowhere near an ideal choice, 462

we focused on making simple choices to determine how tolerant the T-Vector extraction 463

was. With a unified sampling frequency, each point was made from each 464

non-overlapping 4 second crop of data. The one exception to this was that when 465

investigating the capacity of T-Vectors for predicting task events (see table 1, Task row, 466

MMI columns), we extracted 3 second crops as in prior work [36] starting from the 467

event offset of sessions 4, 8 and 12 where the subjects imagined opening and closing 468

their left or right fists (left or right being the target class). Unless otherwise stated, the 469

EEG channels were limited to those in common with the BCIC dataset. 470

Methods 471

Training Procedure 472

Datasets in DN3 provide a mechanism for accessing subject IDs paired with each 473

fetched point. These are used as the labels and inputs respectively for pretraining the 474

T-Vector network with the TUEG data. Each point was linearly scaled and shifted so 475

12This is also a default aspect of the Deep1010 mapping. Additional default behaviour includes
mapping one of the auxiliary channels to a global scale parameter, which represents the factor by which
a particular point’s maximum absolute value (the 1 or -1 value in the point) relates to the absolute
maximum value in the dataset, as specified in the configuration file. This allows for consistently scaled
trials, while still informing models as to the scale of the point’s context. This was not used for T-Vectors
to minimize any average amplitude being suggestive of identity.
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that its largest value was 1 and smallest value was -1 (note this was not per channel, 476

and the entire point/trial was scaled and shifted by the same factors), which was also 477

done when extracting T-Vectors of downstream data. 478

Here, we simply employed the network used to create X-vectors [37], but reduced the 479

hidden size of the network to 384 rather than 512. Each T-Vector is then the 480

384-element-long hidden representation from layer segment6 (as labelled by the original 481

authors [37]). These are the activations of the second to last layer (third to last if 482

including the final softmax) before the non-linearity. The entire network was of course 483

subject to training during the pre-training stage, with the final softmax creating a 484

distribution over the 1364 targets (people). 485

Optimization was performed in batches of 128 using the ever-popular Adam 486

optimizer [38] with a default learning rate of 0.001. This rate was divided by 10 at 487

epochs 50 and 75 through the 100 epochs of training. A minimal L2 weight-decay was 488

added to the loss at a factor of 0.00001 (larger values appeared to not separate clusters 489

as well during tuning with a small subset of 100 people). 490

To minimize sensitivity to any expected length, we further cropped each loaded batch 491

uniformly to 20%-100% of its original length. Thus the network is trained to identify 492

users using as little as a single second’s worth of data, with no particular consistency in 493

task. This strategy is implemented as a DN3 batch transform, and is part of the 494

available transforms in the library. 495

At the end of pre-training, the model weights were frozen and no longer updated. 496

The final weights used can be downloaded here and DN3 provides tools to easily 497

recreate the network with these weights. Finally, the T-Vector representations of each 498

point of each downstream dataset was collected and saved for analysis. 499

Analysis of vectors 500

We analyze T-Vectors with two complementary approaches. First, we consider a simple 501

supervised prediction of notable variables using k-nearest-neighbours (k = 5 is used 502

throughout). Naturally, subject identity was the most critical variable considered, but 503

we also included: session identity, which task was being performed (e.g., canonical trial 504

labels such as left versus right hand motor imagery task), and dataset prediction 505

(mixing T-Vectors from both downstream SMR datasets). The additional variables were 506

to highlight if the spatial distribution of the points was informative of any other known 507

quantity besides subject identity. These were all compared using 5-fold cross-validation, 508

stratified by prediction target. That is, each fold had an equal (as possible) percentage 509

of each target variable. Our second analysis visualizes the manifold of T-Vectors using 510

t-distributed stochastic neighbour embeddings (t-SNE), noting how readily separable 511

the T-Vector space appeared, and if there were any ready interpretations of behaviour 512

outside of this. Throughout, we set the perplexity of the t-SNE operations to 30. 513

Throughout, we additionally consider the effect of smoothing the single trial 514

T-Vectors by averaging up to 4 sequential vectors to minimize T-Vector variance. This 515

averaging never crossed the boundaries of covariates considered (i.e., vectors from one 516

session and a second session were not averaged together when predicting session); 517

instead, the final point would simply be an average of the remaining points. 518

Results 519

Variable prediction 520

Table 1 clearly demonstrates that the local (Euclidean distance) space around each 521

T-Vector is highly informative of subject identity. Predicting vectors from the held-out 522

fold using the closest vectors of the remaining folds yielded results that were, in all but 523
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BCIC MMI
Target Num. 1 2 3 4 Num. 1 2 3 4
Subject 9 89.2 93.5 95.5 96.1 105 92.2 96.7 97.6 97.7
Session 2 53.2 52.5 52.6 50.8 14 6.7 6.5 6.6 6
Task 4 27.1 28.0 26.7 26.3 2(L/R) 53.2 54.5 55.3 53.5
Dataset 2 100 100 100 100 — — — — —

Table 1. Accuracy of predicting targets over five-fold cross-validation using majority
label of five nearest-neighbours. Only the prediction of subject and dataset scored
appreciably over chance (all but the dataset target were balanced; chance level
prediction was 1

Num.
). Sensitivity to variation in T-Vectors was accounted for by

comparing single T-Vectors through an average of four sequential vectors. This
averaging showed a consistent, though mild trend in subject prediction. The dashed
MMI/Dataset row is because this is the same experiment as BCIC/Dataset (and has the
same uniform 100% prediction).

one case, well over 90% accurate at identifying subject (and the remaining case was very 524

near this point). Conversely, the local space of the T-Vector representation was 525

markedly less informative of which session or task was being performed, irrespective of 526

dataset. Interestingly, identifying which dataset T-Vectors belonged to was profoundly 527

accurate, making no mistakes. Noting that this variable can be seen as a mixture of 528

subject variation and some other dataset-specific variation, it is clear that some 529

information besides subject identity is encoded by the T-Vector representation. At the 530

very least, whatever confused the subject identity prediction within a dataset did not 531

extend between the datasets considered. 532

Manifold visualizations 533
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(a) Using single T-Vectors.
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(b) Averaging four sequential vectors.

Fig 3. t-SNE visualizations of the high-dimensional manifold of the learned T-Vector
space. The nine subjects of the BCIC dataset are plotted in different colours, while
their separate training and evaluation recording sessions are marked with stars and
crosses respectively. For the most part each subject’s vectors were separately clustered,
though subjects A01 and A02 were notably less clustered. Averaging across four vectors
in (b) dramatically reduced cluster overlap, but not entirely.

We observe a general tendency for points from the same subject to have a common 534

localization in Figure 3, becoming stronger after pooling. This suggests that the vector 535

representation is robust under different conditions. The BCIC dataset allowed for 536

observing any variation across sessions separated by days (in figure 3, star and cross 537
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points represent the different sessions). It remained clear that, for the most part, 538

different sessions did not separate into different clusters. Showing some stability over 539

time. Subject A05 was a notable exception to this (and is most obvious after pooling; 540

purple points in Figure 3b). Furthermore, there was a notable region of ambiguity in 541

Figure 3a made up of points from subjects A01, A02, A03, and A05 (cluster made 542

predominantly of blue, orange, green and purple respectfully, although other colours 543

also added to the mix). While patterns like this are hard to interpret using a single 544

t-SNE plot (or even several for that matter), a reasonable correlation between this zone 545

and subject-specific performance was also observed. The subjects where we observed 546

the lowest single-vector (subject) classification were also A01, A02, A03, and A05 – all 547

of whom scored below 90% (with the remaining subjects scoring above this mark). The 548

supplementary table in Appendix B provides more subject-specific details. After 549

considering the subject-specific performance in conjunction with 3, we concluded that 550

the visualization is representative of how T-Vectors separate data from unseen subjects 551

performing unseen tasks, with novel hardware. In other words, T-Vectors do seem to 552

generalize to new datasets and subjects without any further adaptation. 553
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(a) Using all channels from each

downstream datasets.
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(b) After limiting the MMI dataset to

those channels common with BCIC.

Fig 4. t-SNE visualizations for T-Vectors across both BCIC and MMI datasets (blue
and orange respectively). The two figures show the difference in distribution when in (a)
excessive channels were used with the MMI dataset: including additional channels not
present in the pretraining set, and (b) limiting to the mostly 10/20 channel set common
to both. The figures are largely identical, indicating that the extra channels were
ignored. The major commonality between (a) and (b) is that each subject has roughly
one cluster to account for them, with minor ambiguity. By visual inspection, we noted 8
representative clusters for 9 subjects for BCIC and 104, perhaps 105 clusters out of 105
subjects for MMI.

This pattern of subject separability is all the more clear in Figure 4, in which the 554

two colours represent the two downstream datasets. Rather than isolating two major 555

groupings (one for each dataset), the pattern indicates sets of localized structures 556

correlated to subject identity. Many small pockets of data abound and, after counting 557

all groupings that did not consist of individual points, the number of MMI clusters is 558

either 104 or 105 (the center region has some ambiguity), which corresponds to the 105 559

subjects used from this dataset (recalling the high accuracy from Table 1, these 560

groupings were largely homogenous). The BCIC groupings appear to provide 561

approximately 8 groupings, one fewer than the total subjects, but with a distinct cluster 562

reminiscent of the most ambiguous region of Figure 3b, although this is not conclusive. 563

Very little changed when adjusting for the differences in recorded channels, focusing 564

only on the 22 EEG channels common to both datasets, Figure 4a looks largely 565
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identical to Figure 4b albeit, in the former, the MMI dataset appeared to encircle the 566

BCIC dataset. We therefore conclude that, while determining the source dataset of a 567

particular T-Vector is readily apparent from its neighbours (see Table 1), this was (for 568

the most part) a consequence of separating the independent groups of subjects. In other 569

words, a stability of subject-wise representation is shown across datasets which were 570

recorded very differently. 571

Discussion of T-Vectors 572

T-Vectors are promising for identifying individuals using minimal EEG recordings. 573

While these vectors may be effective as presented, we expect that without introducing 574

some notions of fairness [39], biases are likely to occur. For example, we might observe a 575

greater sensitivity for well-represented demographic intersections in the data for better 576

represented groups, than for other demographics. 577

We also warn against quickly interpreting T-Vectors (or features therein) as strongly 578

correlated to intersections of demographics or notions of personal characteristics (e.g., 579

intelligence). It would be an error to describe T-Vectors as an “objective” 580

representation of variability – instead, they simply capture some latent features that 581

seem to disambiguate individuals well. Specific investigation into any correlations needs 582

to be done subsequently, with consideration of the likely data biases mentioned above. 583

With these considerations in mind, we intend to explore possible correlations 584

between T-Vector components and markers of mental health, in addition to better 585

qualifying how sensitive T-Vectors are to sessions separated by longer time scales, more 586

different hardware, recording modalities (e.g. transfer to magnetoencephalography) and 587

performed tasks. While capturing correlations like this is certainly a potentially 588

interesting avenue, T-Vectors may also be informative of the scale of these differences, 589

e.g. by distance along a direction of variation, a somewhat unique aspect of this 590

continuous latent space approach. 591

As mentioned in our motivation, prior work in transfer learning has considered the 592

use of adaptive classifiers, whose major mechanism of performance transfer comes 593

from identifying which users are most similar 13. Future work should consider if 594

T-Vector distance can be used towards similarly identifying like-users. Again as 595

mentioned above, previous work has found alignment of subject’s data along the SPD 596

manifold to be an effective method for creating general classifiers. Future work will 597

consider if a data transformation scheme can do the same in T-Vector space, with the 598

advantage of the T-Vector space being more ready use of Euclidean notions of distance 599

rather than Riemannian. 600

Additionally, throughout all t-SNE visualizations there are a variety of singular 601

points scattered throughout. While these were minimized after averaging sequential 602

vectors (see figure 3b), they are never removed entirely. It would be prudent to consider 603

what these outliers are if they remain after further development. Could they for instance 604

be overly contaminated with muscular artifacts, or other notable characteristics? In this 605

way, it is worth considering if T-Vectors may also prove to be a quick form of data 606

triage, detecting usable versus non-usable data given an expected template T-Vector. 607

In terms of biometric applications, the performance levels presented above are 608

similar to previous work. For example, recent work with the MMI dataset was over 99% 609

accurate, with a reduced channel set and shorter time window [40]. However, this result 610

is achieved by training a DNN with the first 90% of each session’s data, and predicting 611

the identity of the user with the remaining data. While this is not uncommon in the 612

literature [30], this paradigm does not necessarily generalize across datasets or hardware 613

13Note that t-SNE plots do not represent distance well beyond local structure and in fact can be

misleading when referring to the “closeness” of different locally coherent areas, we caution against using

the plots above for this purpose.
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and may introduce channel effects and even information leakage which artificially boosts 614

performance. We are unaware of any prior work that does in fact generalize in this 615

fashion, but it is clear that this is a desired property for the application [30]. We 616

therefore suggest that T-Vectors represent the state-of-the-art despite not reporting the 617

greatest performance. Towards resolving a claim like this, previous work has considered 618

the development of a score for EEG biometrics [31] called a U score, but we find some 619

difficulty in fairly calculating U for our own work, as no other prior work performed 620

such a great degree of pre-training to develop their features in the first place. 621

Specifically, U rightfully aims to minimize the amount of time needed to identify a 622

subject, which is determined in terms of total time of recordings for training. It is 623

ambiguous how pre-training would be factored in. If it is, by virtue of this large number 624

our method has an inconsequential score. If we focus only on time to develop a single 625

prediction, i.e. the time embodied by the nearest-neighbours used for prediction, our 626

own method outperforms the previous best score by 3.5%. However, in the interest of 627

not excluding pre-training approaches, and further extending the score to evaluate 628

generalization across multiple datasets, we propose some revisions in appendix C. 629

The source-code for this project can be found at 630

https://github.com/SPOClab-ca/T-Vectors and can be seen as a template for other 631

DN3-based projects. The particular T-Vector weights used in these analyses can be 632

downloaded here. 633

Conclusion 634

We have presented DN3, a new Python-based deep learning library and set of APIs for 635

BCI and more general neuroscience applications. DN3 aims to increase reproducibility 636

while minimizing redundancy at little to no expense in flexibility. Furthermore, we aim 637

it to be a community-driven solution to engage with DL techniques that might 638

otherwise be inaccessible. Intended additions to DN3 include more applications of large 639

datasets such as semi- and self-supervision tasks, meta-learning optimization and 640

adversarial learning processes. All the while, we hope to continue to integrate more 641

multi-purpose preprocessing steps, transforms, and trainable modules as they develop. 642

These goals ultimately can only be confirmed by the community at large, but we have 643

presented a unique application of DL with EEG data that was considerably streamlined 644

through the use of DN3. 645
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A TUEG dataset triage 778

Unlike the MMI and BCIC datasets, the TUEG dataset had little if any inspection for 779

data quality. Furthermore, the number of channels can vary, in some instances files 780

indicate that a channel was recorded, but it ends up blank. As this scale of data is 781

profoundly useful, but difficult to visually inspect for artifacts, errors and the like, we 782

considered the difference in distribution of an easily acquired statistic: the standard 783

deviation of channel values for each trial, to narrow the focus on which trials were likely 784

best representing good data. 785
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Histogram of normalized trial standard deviations
TUEG
MMI

Fig 5. Log-histogram comparing the distribution of channel-wise standard deviations
for all normalized points (cropped training sequences) in the MMI and TUEG datasets.
Notice the large peak for TUEG at a standard deviation of 0, and the surprising (in
relation to the MMI dataset) increase in deviation ≥ 0.8. We chose to narrow the
selection of usable TUEG trials to those that were between the red lines
(0.04 ≤ σtrial ≤ 0.45), simply so that the noted extremes were rejected.

Figure 5 shows that the TUEG and MMI distributions are quite distinct. While it is 786

hard to conclude what good data should look like, this plot clearly shows where TUEG 787

exhibits some bad features. The largest peak of the histogram is a relatively narrow 788

section localized at (and very near to) a standard deviation of 0. Such points are not 789

representative of any real EEG data and needed to be excluded. Additionally, given 790

that some of the TUEG dataset comes from clinical evaluation of epilepsy patients, and 791

clinical settings in general that may have floating or unconnected channels, the large 792

representation of points with standard deviations greater than 0.6 were suspect to us 793

when compared to the MMI distribution. To focus on data that seemed somewhat 794

representative of our ultimate application, we specified upper and lower cutoffs in the 795

range that seemed to (by inspection) match the MMI distribution. Thus, points with 796

channel standard deviations σtrial were only used in training if 0.04 ≤ σtrial ≤ 0.45. 797
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B BCIC subject-specific performances 798

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09
1 73.0 84.9 89.0 92.4 87.8 92.2 98.5 92.0 97.3
2 83.1 91.9 94.1 95.5 87.5 94.6 99.6 97.2 100.0
3 90.3 95.2 94.8 95.9 91.0 95.9 100.0 97.5 100.0
4 93.3 95.2 96.3 95.2 93.2 95.3 100.0 96.6 100.0

Table 2. Accuracy according to each subject across all five folds of data for the BCIC
dataset. Each row considers how many sequential vectors were averaged to develop
points. Notably, A01 underperforms other subjects, but averaging sequential vectors
compensates for this problem. Almost uniformly, this averaging improves performance
for all subjects.

C Subject identification score 799

In the survey performed by Yang & Deravi on using EEG for biometrics [31], the 800

authors proposed a formulation of a general score to compare subject identification 801

across a range of contexts and datasets. This score was designed to increase in 802

proportion to the number of subjects N (train and test since prior work developed 803

capacity to identify a fixed set) and the overall subject identification accuracy Acc. 804

This was balanced against minimizing the length of time needed to identify a subject Te 805

and the number of channels used C to do so. All while also minimizing the amount of 806

data needed to train such a system Tr. 807

Their overall score U was then: 808

U =
N ×Acc

Tr + C × Te

(1)

The highest overall score they ultimately determined was 86.63 scored while 809

similarly using the MMI dataset [31]. 810

Considering whether our own work could be scored in this fashion, it is immediately 811

clear that the Tr term (specified in seconds) would be exceedingly large ( 1.6 million 812

seconds) and the score would be near zero. If however, we were to take some liberty 813

with the interpretation of this quantity, and identify it as the amount of time needed to 814

identify a test point, one could plausibly see this term as the time embodied by the five 815

neighbours employed in our nearest-neighbours classifier above. Thus, we might say 816

Tr = 5× 4s = 20s. The upper bound on the score for MMI identification with 817

T-Vectors as presented in the main body of this article would then be: 818

Uupper =
105× 92.2

20 + 22× 4
= 89.63

While this is higher than the previous best, this is to be sure, an upper bound. That 819

being said, we would like to propose an alternative score that is more amenable to 820

methods that: 821

1. Can be uniformly leveraged over multiple datasets/hardware 822

2. Can employ whatever means effective to develop features 823

3. Can support different channel, reference and evaluation quantities with respect to 824

each person and trial 825
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To this end, we propose to re-consider the Tr term so that it is more clearly defined 826

as: the amount of time (in seconds) needed to develop a prediction with accuracy Accsi 827

of a particular point (sequence) T s
i . Where both terms are with respect to a point i ∈ Is, 828

where Is are all the available testing points for subject s ∈ Nsubjects. In other words, Tr 829

for the T-Vectors methodology is the sum of time employed for the k (in our case 5) 830

neighbours needed to develop a prediction. Considering a DNN trained to simply 831

identify Nsubjects, this T
si
r would be the total time points used in the training data for 832

that particular subject. Furthermore, Accsi then is a binary variable, where the value is 833

either 0 or 100, indicating whether each point is predicted. The choice of 100 rather 834

than 1 is simply so that the resulting score will tend to be greater than 1, and is mostly 835

compatible with the prior work. Additionally, we suggest that the score should be 836

increased in a reasonable manor with respect to the number of different datasets Nds 837

(ideally hardware) that performance carries over for. The full expression of our revised 838

score is then: 839

TU =
1

√
Nds

∑

d∈Nds

1
√

Nd
subjects

∑

s∈Nd
subjects

∑

i∈Is

Accsi

T
si
r + Cs

i × T
si
e

(2)

Fundamentally, this is a revision of the U score, as at its core it remains mostly the 840

same. In fact, Uupper is nearly recoverable from this general formulation, since we 841

calculate it using a single dataset, and Ts, Tc and C parameters that do not vary in 842

subject or reference trial. The only difference in score here would be the division by the 843

square root of the number of subjects (and datasets), which we added to minimize 844

simply surpassing the state-of-the-art by adding inconsequential additional subjects or 845

datasets. This rather should reflect larger demonstrations of generalization across 846

people and datasets. 847

While we expect that adding any other dataset using the pre-trained T-Vectors 848

would quickly overtake this score, the TU score of the work in the main body of this 849

article would be: 850

T
TV ectors
U =

1
√
2

(

89.2× 9
√
9(22.5 + 22× 4.5)

+
92.2× 105

√
105(20 + 22× 4)

)

≈ 7.74
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