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» Abstract

s Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental
ss processes, maintain cellular lineage specification, and can define or stratify cancer and other diseases.
s»  However, the wide variety of approaches available to interrogate these modifications has created a need for
ss harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequenc-
so ing applications in clinical and basic research. Here, we present a multi-platform assessment and a global
« resource for epigenetics research from the FDA's Epigenomics Quality Control (EpiQC) Group. The study
e design leverages seven human cell lines that are designated as reference materials and publicly available
« from the National Institute of Standards and Technology (NIST) and Genome in a Bottle (GIAB) consortium.
es These samples were subject to a variety of genome-wide methylation interrogation approaches across six
« independent laboratories, with a primary focus was on 5-methylcytosine modifications. Each sample was
e processed intwo or more technical replicates by three whole-genome bisulfite sequencing (WGBS) protocols
s (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl),
& one enzymatic deamination method (EMseq), targeted methylation sequencing (lllumina Methyl Capture
s EPIC), and single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies. After rig-
s orous quality assessment and comparison to lllumina EPIC methylation microarrays and testing on a range
7 of algorithms (Bismark, BitmapperBS, BWAMeth, and GemBS), we found overall high concordance between
n assays (R=0.87-R0.93), differences in efficency of read mapping and CpG capture and coverage, and plat-
7 form performance. The data provided herein can guide continued used of these reference materials in epige-
72 nomics assays, as well as provide best practices for epigenomics research and experimental design in future
s studies.

» Introduction

7 DNA methylation plays a key role in the regulation of gene expression [1], disease onset [2], cellular devel-
» opment [1], age progression [3], and transposable element activity [4]. Whole Genome Bisulfite Sequencing
s (WGBS) is increasingly used for fundamental and clinical research of CpG methylation. Numerous validated
7 protocols and commercially available kits are available for WGBS library preparation ([5], [6], [7]). Other as-
o says to interrogate the epigenome include oxidative bisulfite sequencing [8], enzymatic deamination [9], and
s targeted approaches ([10], [11]), further accelerating the breadth and rate of discovery in genome-wide DNA
& methylation studies.

8 As the field of epigenomics continues to advance, there is a need to establish definitive standards and
s benchmarks repesentative of the methylome. The Genome in a Bottle (GIAB) Consortium has recently es-
ss tablished seven human cell lines as reference material to enable genomics benchmarking and discovery [12].
s Recent work has characterized the genomes of these cell lines (e.g. germline structural variant detection in
& [13]), but not yet at the epigenome level. Here, the FDA's Epigenomics Quality Control (EpiQC) Group presents
e epigenomic sequence data across all seven GIAB reference cell lines, as well as a comparative analysis of
s targeted and genome-wide methylation protocols, to serve as a comprehensive resource for epigenetics
o research. We build on top of previous work done to compare the performance and biases of WGBS library
«  kits (e.g. [6, 14, 15]) by evaluating both commonly used and newly available epigenomic library preparation

o2 kits across a broad set of samples that are used increasingly for benchmarking. We report the relative per-
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s formance of each kit, as measured by mapping efficiencies, CpG coverage, and methylation estimates, as
o« well as characterizing the reproducibility and challenges of methylation estimation across the genome. We
os further sequenced these cell lines using long read technology on an Oxford Nanopore PromethlON and com-
% pare its ability to characterize the epigenome alongside more common chemical/enzymatic conversion kits
o and short read sequencing. We also generated microarray data for these cell lines and provide guidelines
e« for normalization of beta values, site filtration, and comparison to epigenetic sequence data. This reference
o dataset can act as a benchmarking resource and a reference point for future studies as epigenetics research

1w becomes more widespread within the field of genomics.

« Results

. Study Design and Sequencing Outputs

ws We generated epigenomic data for seven well-characterized human cell lines (HG001-HG007) that have re-
ws  cently been designated as reference materials for genomic benchmarking by the Genome in a Bottle (GIAB)
s Consortium [16]. These cell lines include NA12878 (HG0O01) from the CEPH Utah Reference Collection, as
s Well as two family trios from the Personal Genome Project, one of Ashkenazi Jewish ancestry (HG002-4)
w7 and one of Han Chinese ancestry (HG005-7).

108 Libraries for whole epigenome sequencing were prepared using a variety of common bisulfite and en-
e zymatic conversion kits, including NEBNext Enzymatic Methyl-Seq (referred to here as EMSeq), Swift Bio-
w  sciences Accel-NGS Methyl-Seq (MethylSeq), SPlinted Ligation Adapter Tagging (SPLAT), NuGEN TrueMethyl
m 0xBS-Seq (TrueMethyl), and lllumina TruSeq DNA Methylation (TruSeq). Cell line genomic DNA was acquired
w2 from Coriell, and one aliquot of each genome was extracted and distributed to six independent laboratories,
ns  each utilizing one library preparation method (Table 1).

m Each site prepared two technical replicates per cell line for their respective epigenetic assay. In the case
ns  of EMSeq, libraries were prepared at two sites, designated as Lab 1and Lab 2. All other sites were designated
ne as Lab 1 for their library type. In the case of TrueMethyl, pairs of replicates were made using a bisulfite-only
w treatment (BS) and an oxidative-bisulfite treatment (0X). All libraries were pooled into equamolar concentra-
ns tions and sequenced in multiplex at one site (see methods), resulting in a range of 500M to 3.5B paired-end
n reads per replicate. The range of sequencing depth per replicated resulted from an imbalance in library
2 pooling, as well as differences in shearing condition and size selection per library type (see methods).

2 In addition to short read sequencing of epigenetic libraries, Oxford Nanopore R9.4.1 PromethION flow
2 cells (referred to here as Nanopore) were run to generate long read sequence data for each genome, each

ns ranging from 75B to 250B bases.
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= Data Quality Control

s We performed quality control of all sequence data generated within this study using FASTQC [17] (see Sup-
s plementary Data 1 for quality reports for every sample). As a measure of the success of the bisulfite or
17 enzymatic convesion step of each library preparation, we estimated the cytosine conversion rate across
s CpG and non-CpG contexts (Figure S1a). CpG methylation levels fell in the expected 45%-65% range across
o all libraries (Methyl Capture EPIC, as an exception, showed lower rates, a reflection of targeting less methy-
w lated regions such as promoters and enhancers). Conversion of cytosines in non-CpG contexts was near
w  zero as expected for all libraries, though CHG and CHH context conversion was somewhat eelevated for
w2 TruSeq libraries (Figure S1a) (see below for mapping and methylation calling that enabled these estimates).
133 Depending on library preparation, different libraries had different completely unmethylated (lambda) or
1w completely methylated (pUC19 plasmid) spiked-in controls (see methods). Methylation levels of these con-
us  trols were very nearly 0% or 100% respectively across all libraries (Figure S1b), further reflecting the quality

s Of the data.

w Mapping Efficiencies Per Epigenomic Library Type

1 Following quality control, we examined the performance of reference-based read alignment and methylation
1o estimation for samples of each library type. Our pipeline of choice was bwa-meth (a common methylation-
w aware, reference-based read aligner) followed by MethylDackel for methylation extraction, which was chosen
w  for its high mapping efficiency, greatest mean depth of coverage per CpG, and speed (for a comparison
w2 of alignment and methylation calling pipelines, see the supplementary results, as well as Figure S2 and
us  Figure S3). Each epigenomic assay had a distinct profile of mapping outcomes (Figure 1a). MethylSeq
u had the highest primary mapping rate and lowest secondary/unmapped rate. While EMSeq (Lab 1) and
us  SPLAT had comparable primary mapping rates to MethylSeq, SPLAT had the highest fraction of unmapped
us reads. TrueMethyl had the highest rate of multi-mapped reads, while TruSeq returned the highest rate of
1w PCR duplicate reads.

148 As a measure of protocol efficiency, we estimated the total cytosine conversion in CpG contexts and
1o found that each whole-methylome approach converted 45-65% of CpGs. As an estimate of conversion ef-
w0 ficiency, we also characterized methylation in CHG and CHH contexts and found all libraries to be close to
w  the expected 0% range (nearing 100% conversion efficiency), except for TruSeq which neared 2% in CHG
1w contexts and 1% in CHH contexts, and MethylSeq which approached 0.75% in CHH contexts (Figure S1).

153 Each assay had a specific, tight profile of insert size distributions (Figure 1b). There was a strong rela-

14 tionship within each assay between the estimated insert size and the percentage of total bases that were
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s trimmed prior to alignment (this included triming adapter content, low quality bases, and dovetailing bases
1 between mates of a pair of reads). Libraries with insert sizes below 275bp had anywhere from 5-25% of
w7 total bases trimmed, while EMSeq libraries with >275bp insert sizes needed very few bases trimmed other
s than adapter content (Figure 1c). This particular pattern was seen due to the 150x150 chemistry used for
150 sequencing, and the threshold for fragment size may be lower with shorter read sequencing.

160 Imbalanced base trimming and unequal distribution of reads per replicate (see above) resulted in diver-
1w gent genome coverage per assay (Figure 1d). Generally, a minimum of 20X coverage is considered suffi-
w2 ciently deep to characterize a genomic region, and EMSeq and MethylSeq had the highest percentage of the
s genome covered at 20X. This was followed by SPLAT, the oxidative and bisulite replicates of TrueMethyl,
e and lastly the TruSeq libraries, which had the lowest percentage of the genome covered at lower depths, but
s a long tail of high-coverage sites. TruSeq libraries also showed a high degree of dinucleotide bias favoring
s GC-rich regions compared to other libraries (Figure 1e), owing to the GC-biased random hexamer ligation
w  stepinits library preparation, as well as exposing samples to sodium bisulfite prior to DNA shearing.

168 Reads from whole methylome libraries were passed through an alignment and methylation calling pipeline
s (see above). Reads were filtered from the methylation calling process if they did not map to the reference
w genome, if they were marked as a non-primary alignment (secondary/supplementary/duplicate reads), or
i if they were assigned a mapping quality score below MQ10. The fractions of reads that were filtered along
w2 the alignment pipeline (Figure S4) were highly assay-specific. At the end of this process, EMSeq libraries
s retained the highest percentage of reads for methylation calling (maximum 86%), followed by SPLAT (83%),
w7 MethylSeq (81%), TrueMethyl (80%), and finally TruSeq (77%). EMSeq also showed laboratory specificity, with
ws lower rates of useable bases in libraries prepared using shorter fragment sizes (mean of 86% in Lab 1 versus
w  73%in Lab 2) (see methods). We observed no notable differences in read filtration rates between TrueMethyl
w  libraries treated with potassium perruthenate (KRuO4) oxidation and those only exposed to sodium bisulfite.
w The average total percentage of useable bases is summarized per assay for HG002 in Table 2, and more
e detailed statistics for all cell lines are shown in Supplementary Table 2.

180 We next calculated for each library type the relationship between raw total number of read pairs se-
w quenced versus the mean depth of coverage achieved per CpG (Figure 1f). We found that the rates were
w2 highly assay-specific, as seen above. Overall, in order to achieve a target mean depth of 20X per CpG, EM-
v Seq required the fewest reads ( 275-300M read pairs), folowed by MethylSeq (366M) and SPLAT (369M),
1w then TruSeq (461M), and then TrueMethyl (692M), as noted in Table 2. In order to compare short read data
s to variably-lengthed long read data from Oxford Nanopore, we calculated the same relationship using total
1w bases sequenced (Figure 1g). We found that Nanopore sequencing covered CpGs and called methylation at

w7 a similar rate per nucleotide as did any short read library type.
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« CpG Coverage and Downsampling

s We analyzed the distribution of CpG coverage across the genome per assay. In order to control for the
wo effect of uneven sequencing depth, we first downsampled the methylation call sets for every replicate to
w1 a given mean coverage value. Downsampling can be done by either filtering the number of reads in an
w2 alignment (BAM files), or by randomly removing a fraction of observed cytosines and observed thymines
s per CpG within methylation call sets (bedGraph files). Because downsampling at the alignment level can
wa be slow and demanding in terms of disk space and compute time, we set out to evaluate if the signal from
s downsampling cytosines within bedGraph files recapitulated downsampling aligned reads within BAM files.
e Thetwo approaches yielded similar results in number of CpG sites detected, distribution of read counts, and
w7 methylation calls. bedGraph downsampling had the added benefit that the targeted average CpG coverage
s Was more accurately estimated than when downsampling BAMs (Figure S5).

199 We proceeded with methylation call sets that were normalized to a mean of 20x coverage per site. Unless
20 Otherwise noted, these call sets comprised merged replicates per library type, and merged calls on positive
20 and negative strands (i.e. reporting methylaton at the dinucleotide level rather than individual cytosines).
22 The mean coverage per library shifted as expected, indicating the success of the downsampling approach
23  (Figure S6a). Notably, the methylation percentage distribution also shifted, with the bimodal peaks at 0%
204 and 100% becoming more pronounced, and putatively hemimethylated regions dropping out as a function
25 Of fewer observations per site resulting in lowered sensitivity (Figure S6b). We observed that downsampling
26 below 20x exaggerated this effect. Downsampling also produced an assay-specific pattern of site dropout
207 (Figure S7). Although the overwhelming number of sites are covered by all assays, we observed the high-
206 est CpG dropout in TruSeq, followed by SPLAT, then MethylSeq, then TrueMethyl, then EMSeq, both when
20 accounting for any coverage at all (>=1x) or coverage of >=50% of the overall mean value.

210 Even after normalizing for mean CpG coverage, we observed a range of assay-specific empirical cumu-
o  lative distributions (Figure 2a). In particular, TruSeq produced left and right tails of very low and very high
m  coverage. We see this has an effect on reproducibility between replicates of the same assay (Figure 2b),
23 where, compared to an expected distrubtion of cross-replicate concordance, TruSeq showed the highest
24 variation, followed by TrueMethyl, while SPLAT, MethylSeq, and EMSeq were more reproducible than ex-
x5 pected. Intra-assay coverage reproducibility was relatively consistent above 20X coverage (r>0.98 for all
z6  assays), but broke down below 10X (r<=0.95 for all assays). We therefore recommend 20X as a minimum
v CpG dinucleotide coverage value (Figure S9).

218 We restricted further analyses to Chromosome 1, which represents a significant portion of the genome
zo  (10%), contains all difficult regions (such as tandem duplications and satellites), and is computationally

220 much more tractable than a genome-wide analysis. When aligning CpGs covered in the 20X downsampled
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2 libraries, we found that the majority of CpGs (>99%) were covered by all assays, with some assay-specific
22 dropout (Figure 2c). Nanopore sequencing was able to cover the highest number of CpGs not covered by
23 other assays, and TruSeq missed the highest number of CpGs covered by other assays (Figure 2d). Among
24 the regions covered uniquely by Nanopore sequencing, about 20% were meaningful for epignetic regulation
»s (promoter, TSS, or exonic sites), while the few CpGs uniquely captured by other assays were intronic or
2 intergenic (Figure 2d). Despite the small number of differences of CpG coverage observed between assays,
27 the total genomic annotation of sites covered was highly consistent (Figure S8).

228 We also examined the coverage of CpG islands, shelves, and shores (Figure 2e). Nanopore returned the
220 MOSt even coverage across these annotations, while TruSeq showed elevated coverage relative to its overall
20 mean in these GC-rich regions. EMSeq, MethylSeq, and SPLAT returned reduced coverage in CpG islands
2n relative to their mean CpG coverage. This pattern was recapitulated around transcript start sites (TSS),
22 Where TruSeq was overrepresented, Nanopore and TrueMethyl stayed relatively flat, and EMSeq, MethylSeq,

23 and SPLAT were respectively underrepresented in TSS (Figure 2f).

»« Methylation Percentage across Genomic CpGs

25 After comparing coverage of CpGs, we examined estimates of per-site methylation across assays. As
26 expected, we found methylation percentages to be bimodally distributed with peaks near 0% and 100%
2z methylation. All assays exhibited enrichment for fully methylated regions (Figure 3a), with the exception
28 Of Nanopore, which showed underrepresentation of fully methylated regions, a current limitation of its un-
2o derlying base modification calling method (see methods). For short read approaches, we calculated and
20 corrected for methylation bias (or "mbias"), a measurement of overinflated hypo- or hyper-methylation sig-
. nal toward the 5’ and 3’ ends of reads. Mbias analysis revealed assay-specific deviation at read ends (Fig-
22 Ure 3b). We trimmed bases uniquely for each sample where values began to inflate as recommended by
23 MethylDackel. Mbias analysis also revealed overall methylation trends, with SPLAT and EMSeq tending to
24 have the highest average methylation across reads, while TrueMethyl had the lowest among short read pro-
25 tocols, and TruSeq was the most variably methylated per base across reads.

246 We next assigned genomic features to each CpG and summarized methylation across regions in a meta-
27 gene plot (Figure 3c). As expected, we found that methylation levels dropped significantly at TSS and
s then rose again beyond the 5’'UTR in all assays. As detected in the global analysis, methylation captured
20 by Nanopore was lower than by short read assays. Nevertheless, all assays including Nanopore showed
20 highly similar methylation profiles around transcript start sites (TSS) genome-wide (Figure 3d). Correlation
s of methylation values across genome-wide CpGs was very high (Figure 3e). However, concordance broke

2 down among all assays when restricting to sites with 20-80% methylation, where correlations were as low
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53 as r=0.42 between Nanopore and TruSeq (Figure 3f). Therefore the majority of disagreement between as-
s« says fell in CpG sites that were either hemimethylated, clonally complex, or undercovered with respect to the
25 global mean. Although short read protocols had higher concordance with one another (r>0.93 for all pair-
6 Wise short read comparisons) than with Nanopore estimates, we found that methylation estimation from
257 Nanopore base modification calling was comparable to short read protocols, with Pearson correlation val-

28 Ues around r=0.90 for all pairwise comparisons (Figure 3g).

= [Family Trio Differential Methylation

0 Differential methylation was examined at the family trio level. For each methylome assay, we used the
21 replicate-combined methylation calls (including merging bisulfite and oxidative-bisulfite replicates for TrueMethyl)
%2 that were normalized to 20X mean coverage.

263 A total of 2,298,846 CpG sites were present on Chromosome 1 in all six assays (EMSeq, MethylSeq,
264 Nanopore, SPLAT, TrueMethyl, and TruSeq). Coverage levels on HG002 were positively correlated among
s EMSeq, MethylSeq, and TrueMethyl (Spearman’s p > 0.24). SPLAT coverage was also correlated with these
s three assays as well as with TruSeq, which was only weakly correlated with any other assay. Nanopore
27 coverage was uncorrelated with that of any other assay. The magnitude of pairwise coverage correlations
s Within each assay varied considerably, with the highest levels observed for TruSeq (0.85 < p < 0.86), SPLAT
%0 (0.62 < p < 0.71), and MethylSeq (0.47 < p < 0.48), and the lowest for Nanopore (0.14 < p0.22), EMSeq
a0 (0.28 < p < 0.31), and TrueMethyl (0.32 < p < 0.34).

o For each assay, differential methylation analysis was independently conducted at the family level (Ashke-
22 nazi Trio HG002-HG004 against the Chinese Trio HG005-HG007). This also included a restriction to sites
23 with 5X coverage in at least two out of three members of each family group, resulting in small data reduc-
o tions for EMSeq, MethylSeq, Nanopore, SPLAT, and TrueMethyl (3%, 4%, >1%, 4%, and 3%, respectively), and
zs a greater loss for TruSeq (14%). Comparative analysis considered only the 1,928,536 CpG sites that met
6 this criterion for all six assays. To assess consistency in sites identified as differentially methylated (DM)
a7 by each assay (DMA), we computed the fraction of DMA sites that were unique to each assay (a pseudo
o false-positive rate) (Supplementary Table 3). We also computed the total number of DM sites commonly
29 identified by four or more assays (DM4+), which totaled 1.5% of the common sites. We then determined the
20 percentage of DMA sites that were also DM4+ sites (a measure of specificity), as well as the percentage of
2 DMA4+ sites that were also DMA sites (a measure of sensitivity).

282 For EMSeq, 26% of the sites identified as DM were unique to that assay, comparable to MethylSeq (26%)
s and SPLAT (29%). These three assays were also comparable in the percentage of DM sites that were identi-

284 fied in at least three other assays (36%, 38%, and 35% for EMSeq, MethylSeq, and SPLAT, respectively), and
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2ss  in the percentage of DM sites called by at least three other assays that they also detected (90%, 86%, and
s 89%, respectively). TrueMethyl detected fewer DM sites overall, with 22% of sites unique to this assay and
27 42% detected in at least three other assays. However, this did not correspond to a large decline in sensitivity,
8 as 85% of the sites detected by three or more other assays were also identified by TrueMethyl. The small-
20 est number of DM sites was identified in the Nanopore samples, with high specificity (17% unique DMAs
20 and 56% of sites in DM4+) and lower sensitivity, identifying only 51% of the sites identified by four or more
2 other assays. TruSeq, on the other hand, was associated with the largest number of DMA sites and had
202 poor agreement with the other assays, with 43% unique sites, 38% of its sites identified in two or more other
23 platforms, and only 71% of the sites identified by three or more platforms among its DMAs.

204 Figure 4 illustrates the role of coverage variability for each platform. For each assay, the range between
25 the 5th and 95th percentile of median coverage is shown along the x-axis, while the degree of agreement
26 With other assays for DM sites is shown along the y-axis. We see that agreement declines at higher cov-
27 erage levels, but this effect is minimal for EMSeq, MethylSeq, Nanopore, and TrueMethyl. Because SPLAT
s has a more heavy-tailed coverage distribution with stronger sample-to-sample correlations, the impact is
29 more pronounced, while for TruSeq the coverage distribution is extremely diffuse and there is markedly

a0 poor agreement with other platforms in its upper coverage percentiles.

. Normalization of Array Data

sz In addition to bisulfite sequencing, microarrays are another commonly used technique to interrogate the
s epigenome. For each cell line, across three laboratory sites, we generated 3-6 biological or technical repli-
a4 cates with microarray data from the lllumina MethylationEPIC Beadchip (850k array) (Table 1). As a first
s0s step before integrating microarray data with the sequencing data, we assessed the performance of differ-
a6 ent microarray normalization pipelines.

307 We implemented 26 normalization pipelines with different combinations of between-array and within-
ss array normalization methods. The between-array normalization methods evaluated were no normalization
s0  (None), quantile normalization (pQuantile) [18], functional normalization (funnorm) [19], ENmix [20], dasen
a0 [21], SeSAMe [22], and Gaussian Mixture Quantile Normalization (GMQN) [23]. The within-array normalization
sn methods evaluated were no normalization (None), Subset-quantile Within Array Normalisation (SWAN) [24],
s peak-based correction (PBC) [25], and Regression on Correlated Probes (RCP) [26]. All combinations were
a3 implemented with the exception of pQuantile + SWAN and SeSAMe + SWAN, which were not possible due
s to incompatible R object types.

315 We first performed principal component analysis (PCA) and visually inspected the first two principal

s components (PCs) for each normalization pipeline (Figure S10). Generally, samples from the same cell
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s line clustered together more tightly after normalization, although a few pipelines (PBC alone, GMQN alone,
s GMQN + PBC) did not show obvious improvement in replicate clustering. Most pipelines failed to clearly
sv  distinguish samples from cell lines HGO05 and HG006, the Han Chinese father/son pair, from one another.
320 A variance partition analysis was used to compute the percentage of methylation variance explained by
s cell line, lab, or residual variation at each CpG site in each normalized dataset. A superior normalization
a2 pipeline would have more variation explained by cell line across the epigenome compared to other pipelines
223 as well as clear clustering of biological and technical replicates.

324 Funnorm + RCP had the highest median across the epigenome (90.4%), although many pipelines had
25 medians in the 85-90% range (Figure 5a). SeSAMe and RCP performed well (median > 85%) no matter which
»s Methods they were combined with. While using RCP or SWAN usually improved performance compared to
sz having no within-array normalization, using PBC for within-array normalization always reduced the median
»s variance explained by cell line. For all downstream analyses, we used the funnorm + RCP normalized mi-
a9 croarray data because this pipeline had the highest median variance explained by cell line. Figure 5a shows
a0 the full distribution of variance explained by cell line across the epigenome for each normalization pipeline.
an  Most pipelines had a bimodal distribution, so CpG sites typically had almost no variation explained by cell
s line or nearly 100% of variation explained by cell line.

333 In light of previous work that has shown that microarray data is not reliable for sites with low popu-
w4 lation variation [27], we investigated whether sites with poor concordance between replicates (% variance
35 explained near 0) overlapped with low-varying sites. We used the 59 SNP probes on the lllumina EPIC ar-
s6  ray to compute a data-driven threshold for categorizing sites as low varying (Figure 5b-d; see methods for
s details). We found that nearly all CpG sites in the normalized (funnorm + RCP) microarray data with poor
s concordance between replicates met our definition of low-varying sites (Figure 5e). This suggests that our
s data-driven definition of low-varying CpG sites, which can be applied to any Illumina 450k or 850k array

o dataset, may be useful for filtering out less reliable CpG sites before analysis.

s« Normalized Microarray Concordance with Sequencing Data

2 We performed 6 additional variance paritition analyses, adding samples from one sequencing assay (EM-
s3  Seq, MethylSeq, SPLAT, TrueMethyl, TruSeq, or Nanopore) at a time, to evaluate the concordance between
s Microarray and downsampled 20X sequencing data. For each site and each sequencing assay, we estimate
us the percentage of methylation variance explained by cell line, assay (sequencing or microarray), and resid-
as  Ual variation. A higher percentage of variance explained by cell line indicates better agreement with the
sz Microarray data.

248 Ternary density plots of the variance explained by cell line, assay, or residual variation show lower con-

10


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

e cordance between the Nanopore sequencing data and the microarray data than other sequencing assays
o (Figure 6a). The five other sequencing assays (EMSeq, MethylSeq, SPLAT, TrueMethyl, and TruSeq) have a
s high density of sites where nearly 100% of the methylation variance in the merged segeuencing/microarray
2 dataset is explained by cell line. However, for all assays, there is a smaller peak of CpG sites where nearly
3 100% of the methylation variance is explained by assay, indicating that there were some technical artifacts
s introduced by assay, but these technical artifacts were not widespread across the epigenome.

355 We investigated what was driving poor concordance between assays at this subset of CpG sites and
s found a strong, non-linear relationship between the amount of variability at a CpG site and concordance
a7 (Figure 6b). The non-linear relationship between CpG site variance in the microarray data and concordance
s between assays indicates that there is a minimum amount of population variance needed for reproducibil-
s ity, but beyond this threshold more variation does not improve concordance. This confirms our proposed
w0 approach of estimating technical noise from the SNPs on the array to create a binary "low-varying" or "high-
s varying" classification for CpG sites.

362 Because each cell line had 3-6 microarray replicates and only one (merged replicate) sequencing sample,
w3 these results are largely driven by the microarray data and the estimates of the percentage of variation
¢ €xplained by cell line (vs. assay) are likely biased upward by this. Visual inspection of the joint distribution of
s Microarray and sequencing beta values for all HG002 replicates (with sequencing replicates from the same
6 |lab merged) shows that there is substantial technical noise in the data when comparing any two assays
s7  (Figure S11). For the same assay in two different labs, we see much better concordance between HG002

s beta values with microarrays than with EMSeq.

« Differential Methylation in Microarray Sites

a0 We took differentially methylated regions between family groups (see above) and restricted them to sites
sn  captured by the Illumina MethylationEPIC Beadchip (850k array) (see above). Of the 82,013 probes on the
s array that map to regions on Chromosome 1, 81,456 sites (99.3%) were detected at high depth by all six
w3 sequencing assays. Of these, the number of differentially methylated assays (DMAs) ranged from 1,027
s (Nanopore) to 4,267 (TruSeq). For EMSeq, MethylSeq, Nanopore, and TrueMethyl, over 99% of these DMA
o5 had estimated percent methylation difference (PMD) of 20% or greater between the family groups, while
s 95% and 80% of DMAs met this criterion for SPLAT and TruSeq, respectively.

a7 To analyze concordance between the sequencing-based and array results, we computed the proportion
s of these DMAs for which a corresponding difference of at least 20% was observed for the arrays, with these
a9 array PMDs estimated via ANOVA models with random intercepts for each genome. As illustrated Supple-

s Mmentary Table 4, the overall agreement was comparable for four of the six methods with values ranging

1
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s from 55.5% (EMSeq) to 60.0% (TrueMethyl), with a higher level of 67.0% for Nanopore and a lower level of
2 49.6% for TruSeq. However, among the 4,137 sites with array |PMD|>0.2, only 16.6% were Nanopore DMAs

ss  iN comparison to 42-44% for all other assays, suggesting high precision but lower sensitivity for this assay.

« Discussion

s The EpiQC study provides a comprehensive epigenetic benchmarking resource using human cell lines es-
1 tablished by the Genome in a Bottle Consortium as reference materials to advance genomics research. We
s7  provide datasets for a broad range of methylome sequencing assays, including short-read whole genome
s bisulfite sequencing (WGBS) and enzymatic deamination (EMSeq), and native 5-methylcytosine calling using
a0 Oxford Nanopore long read sequencing. We also provided data from targeted approaches, including reduced
s0 representation bisulfite sequencing (Methyl Capture EPIC) and the Illumina Infinium MethylationEPIC 850k
s array. While most of the published and/or commercialized assays have been tested with some standard
2 sample (e.g. GM12878), the sample used to benchmark each assay was drawn from different DNA aliquots,
sz extracted from cells grown at different passage, and potentially grown in different media. Here, aliquots of
s« the same gDNA were distributed across multiple laboratories, and used for all data generated. To remove
ss additional variability, all libraries were sequenced on multiple flow cells of one lllumina NovaSeq 6000 (then
w6 athird flow cell on the same instrument type). For all assays, libraries were produced in duplicates, providing
a7 both inter- and intra-assay datasets.

308 Benchmarking whole methylome sequencing technologies is important for determining which method
w9 Will achieve the best performance, and to provide recommendations and standards for experimental design
w0 Within future studies. Large projects such as the NIH Roadmap Epigenomics Project [28] the International
s Human Epigenome Consortium [29], and the Cancer Genome Atlas [30] have produced, compiled, and an-
«2 alyzed a vast amount of WGBS data comprising tissues and cell lines from normal and neoplastic tissues.
w3 Building upon these previous works, our study encompasses an up-to-date range of commonly used whole
w2 methylome assays as well as emerging methods such as enzymatic methylation and native 5mC calling
«s from long read technologies, and provides data across 7 different reference material cell lines, providing a
ws comprehensive examination of DNA methylation analysis methods.

a07 We found that the library prepration method of choice and parameters used within each protocol had
w8 an outsized impact on data quality and biological inference. Libraries with longer inserts benefitted from
w0 less adapter contamination, fewer dovetailing (overlapping) reads, and fewer low quality bases, which in-
a0 creased mapping efficiency and mean coverage per CpG. This is particularly impactful when one chooses

a1 to employ a cost-effective sequencing on an lllumina system with paired-end 150 bp reads, as was done

12
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2 within this study. This sequencing scheme resulted in a highly variable depth of coverage per library prepa-
«3 ration. While imbalanced pools may account for some of the difference, library preparation methods had the
«a biggest impact. Except for TruSeq, all the other library preparations start with shearing of the gDNA. For the
«s other bisulfite-dependent protocols, the DNA fragments range between 200-400, whereas EMSeq allows for
«s longer fragments ( 550bp). TruSeq libraries tend to have short (130 bp) insert sizes and are therefore more
«7 suitable for 75 bp paired-end read lengths. To overcome the impact of imbalanced sequence depth, this
«s study provides robust recommendations for downsampling across sequencing types, showing both how
no different downsampling schemes (i.e. at the BAM level or at the methylation bedGraph level) are compara-
20 ble, and how downsampled datasets can be directly compared to one another to assess the performance
o Of the assays themselves.

a2 The methods that have proven to have greater genome-wide evenness of coverage, namely Accel-NGS
w23 MethylSeq [15], SPLAT [6], and TrueMethyl [31] tend to have longer insert sizes (200-300 bp), fewer PCR du-
«4 plicates (down to a few percent, depending on sequencing platform), and high mapping efficiencies (>75%).
w5 The SPLAT libraries herein had shorter insert sizes than desired due to the use of 400 bp Covaris shearing
w2 prior to library preparation. To achieve insert sizes of >=300bp, the SPLAT authors now recommend us-
27 ing DNA fragmented to 500-600 bp as input and to perform final library purification at 0.8x AMPure ratio
s 1o remove shorter fragments. The same recommendation may also improve the insert size for MethylSeq
»9 and TrueMethyl protocols. SPLAT is the only method in our evaluation that is not commercial/kit-based
s and could be comparatively 10x cheaper per library [6]. This can be important when considering the sample
w1 preparation cost alongside sequencing costs.

432 NEB'’s EM-Seq protocol [32] compares favorably to the bisulfite sequencing-based approaches analyzed
«s  herein. In almost all comparisons EM-Seq libraries captures more CpG sites at equal or better coverage. We
«  also show that the methylation signal achieved by native base modification detection from Oxford Nanopore
a5 long read sequencing is highly comparable to short read bisulfite- and enzymatic-methylation sequencing,
a  With average Pearson correlation values of r=0.90 for CpG methylation concordance. Moreover, Nanopore
.7 can detect a significant number of sites that short read assays miss, many of which occur in promoter and
s €xonic regions that are potentially of biological significance.

439 Beyond library preparation, the use of algorithmic tools has animpact on the performance of each methy-
a0 lome assay. Asymmetrical C-T distributions between DNA strands and reduced sequence complexity make
wa  epigenetic sequence alignment different from regular DNA processing. We compared common methyla-
a2 tion processing piplines and compared their mapping efficiencies, depth of coverage achieved per CpG, and
s computational time to run, and observed bwa-meth to provide the best performance when considering all

«s  Of these factors. Notably, BitMapperBS was significantly faster and not far behind bwa-meth in terms of

13
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s mapping efficiency and CpG coverage.

446 Another important parameter is the amount of data retained from a WGBS experiment following adapter
a7 and quality trimming, mapping and deduplication. Here, we show the effects of each mapping step on each
«s  methylome assay (Figure S4), and how reads are filtered along each step, including the estimated number
wo  Of reads required to achieve a certain mean coverage per CpG (Table 2). Similarly, previous studies [5, 15]
0 have implemented a metric to estimate the efficiency of WGBS genome coverage by determining the raw
«  library size (number of PE 150 bp reads prior to filtering) required to achieve at least 30x coverage of 50%
sz or more of the genome. We propose a modified version of the calculation proposed by Zhou and collegues,
«ss  deriving the number of PE150 bp reads needed to achieve 20x average CpG coverage for a library, as this
s« metric directly relates back to the CpG sites whose methylation levels will be interrogated. We also calculate
«ss  useable bases, reflecting the total bases used for methylation estimation out of the total bases sequenced
ass  for per library. Adoption of such metrics will make it significantly easier to compare and contrast results
.7 from different methods.

458 Choice of computational algorithms is equally important in analyzing methylation microarray data. In this
w0 study, we compared 26 different normalization pipelines. Many algorithms (SWAN, RCP, pQuantile, dasen,
w0 funnorm, ENmix, SeSAMe) generally performed well in this dataset, clustering replicates from the same cell
s line together while preserving differences between cell lines. Given the comparable performance of these
w2 methods, the best normalization pipeline will depend on the needs of individual studies. For instance, co-
w3 horts with multiple tissues may want to use the multi-tissue extension of funnorm, funTooNorm[33], and
w4 cohorts with very large sample sizes may want to use SeSAMe[22], which is the only single-sample normal-
ws ization method we evaluated. All pipelines performed poorly at sites with low population variance, confirm-
w6 ing previous work [27]. We propose using the SNPs on the 850k array to calculate a data-driven threshold
w7 for classifying and filtering out low-varying sites before analysis. Previously published associations at sites
s With low population variation, which can also often be identified by their extreme (<5% or >95%) median
w0 mMethylation values[27], should be interpreted with caution. Aditionally, our data from EMSeq and microarray
a0 replicates across different labs Figure S11 support previous findings that the lllumina 850k array was more
s reproducible than TruSeq across paired technical replicates from 4 cord blood samples [34]. We conclude
a2 that overall, microarrays are a good option for researchers who are comfortable with a targeted assay.

73 One final caveat for the data within this study is our use of high quality DNA from EBV-immortalized,
a+  B-lymphoblastoid cell lines. Using this highly controlled input, the methods examined within this study pro-
w5 duced mostly comparable data. However, the performance of each kit may be more variable on less optimal
w6 input DNA (lower input, more highly fragmented, etc.) that mirrors real clinical samples more closely. The

a7 optimal data herein should serve as a launch point for future studies of more realistic inputs.
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«» Methods

= Genomic DNA

w0 The samples in this study comprise genomic DNA (gDNA) from seven EBV-immortalized B-lymphoblastoid
«  cell lines designated as reference samples by the National Institute of Standards and Technolog (NIST)
2 Genomein aBottle Consortium (see https://www.coriell.org/1/NIGMS/Collections/NIST-Reference-Materials).
s The NA12878 (HG0O01) cell line was selected as it is the most commonly used reference for benchmarking
w4 OrF generation of genomics datasets. Additionally, six cell lines representing two trios from the Personal
s Genome Project, which are consented for commercial redistribution, were also included. The HG002/3/4
s samples were provided by a son/father/mother trio of Ashkenazi Jewish ancestry, and the HG005/6/7 come
.7 from a Han Chinese son/father/mother trio.

488 For each reference cell line, 100 ug genomic DNA (gDNA) was purchased from the Coriell Institute for
s Medical Research, along with viable cell lines for later growth and distribution. The gDNA was quantitated
w0 Using Qubit Broad Range dsDNA kit and an aliquot from reference sample gDNA was distributed to six

w1 independent laboratories for NGS library preparation or microarray analysis.

«» NGS Library Preparation

w3 Enzymatic Methyl-Seq (EMSeq): EMSeq libraries were prepared at two different laboratories using slightly
«4 altering protocols. At Lab1, genomic DNA was spiked in with 2 ng unmethylated lambda as well as 0.1 ng
w5 CpG methylated pUC19, and was then fragmented to 500 bp using a Covaris S2 (200 cycles per burst, 10%
w6 duty-cycle, intensity of 5 and treatment time of 50 seconds). At Lab2, genomic DNA was fragmented to
w7 450 bp using Covaris 130uL. While all replicates of HG001-004 were created using 100ng of DNA, both labs
«s created replicates of HG005-007 using 100ng, 50ng, and 10ng of DNA in order to test the effects of input
w0 concentration. EM-seq libraries from both laboratories were prepared using the NEBNext Enzymatic Methyl-
soo  seq (E7120, NEB) kit following manufacturer’s instructions. Final libraries were amplified with NEBNext Q5U
s polymerase using 4 PCR cycles for 100 ng, 5 cycles for 50 ng and 7 cycles for 10 ng inputs. Libraries were
sz quality controlled on a TapeStation 2200 HSD1000.

503

s« Swift Biosciences Accel-NGS Methyl-Seq (MethylSeq): Libraries were prepared according to manufac-
ss turer's instructions (Swift) using dual-indexing primers. Briefly, 100ng of genomic DNA was spiked in with 1%
s,s Unmethylated Lambda gDNA, and fragmented to 350 bp (Covaris $S220, 200 cycles per burst, 5% duty-factor,
sv 175W peak displayed power, duration of 50 seconds). Bisulfite conversion was performed using EZ DNA

ss Methylation-Gold kit (Zymo Research). Adaptase was used to ligate adapters to the 3’ end of the bisulfite-
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soo converted DNA, followed by primer extension, second strand synthesis, and ligation of adapter sequences
so atits 3’ end. The libraries were amplified for a total of 6 rounds using the Enzyme R3 provided with the kit.
sn Libraries were quality controlled on a TapeStation 2200 HSD1000.

512

sz SPlinted Ligation Adapter Tagging (SPLAT): 100ng gDNA was fragmented to 400 bp (Covaris E220, 200
su cycles per burst, 10% duty factor, 140 peak incident power PIP, 55s treatment time). Bisulfite conversion was
sis  performed using the EZ DNA Methylation-Gold kit (Zymo Research). SPLAT libraries were constructed as
sis described previously [6]. Briefly, adapters with a protruding random hexamer were ligated at the 3’ end and
sz 5" end of single-stranded DNA in consecutive reactions. The resulting libraries were amplified with 4 PCR
sis  cycles using KAPA HiFi Uracil+ PCR enzyme (Roche). Libraries were quality controlled on a TapeStation
sv 2200 HSD1000.

520

sz NUGEN TrueMethyl oxBS-Seq (TrueMethyl): 200 ng of genomic DNA was spiked with 1% unmethylated
s2 Lambda gDNA and fragmented to 400 bp (Covaris S220, 10% duty-factor, 140W peak incident power, 200
w3 cycles per burst, duration of 55 seconds). Fragmented DNA was processed for end-repair, A-tailing, and
s24 ligation using NEB's methylated hairpin adapter. Ligation was performed at 16°C overnight in a thermocy-
ss  cler. The USER enzyme reaction was performed the next morning, according to the manufacturer’s protocol,
s and the adapter-ligated DNA cleaned up using 1.2:1 Ampure XP bead:ligated DNA ratio. Each ligation was
s then split into 2 aliquots to perform oxidation + bisulfite conversion or mock (water) + bisulfite conversion
ss according to the OxBS module instructions (Tecan/NuGen). PCR amplification was performed using NEB’s
s9  dual-indexing primers and KAPA Uracil+ HiFi enzyme for a total of 10 cycles. Libraries were quality controlled
ss0  on a TapeStation 2200 HSD1000.

531

s22  Illumina TruSeq DNA Methylation (TruSeq): 100ng of genomic DNA was bisulfite converted using EZ DNA
s13  Methylation-Gold Kit (Zymo Research). Sequencing libraries were prepared according to the manufacturer’s
ss«  protocol (Illumina). Briefly, the bisulfite-converted DNA was first primed by random hexamers containing a
sss tag sequence on its 5’ end. Next, the bottom strand was extended and a 3’ end oligo added. The libraries
sss  were amplified with 10 PCR cycles using the FailSafe PCR enzyme (lllumina/Epicentre). Libraries were quality
ss7 controlled on a TapeStation 2200 HSD1000.

538

s39  lllumina Methyl Capture EPIC: 500ng of genomic DNA was prepared according to the manufacturer’s proto-
s col (Illumina), including a spike-in of 2 ng of unmethylated lambda. Briefly, the genomic DNA was fragmented

s 10 200 bp using a Covaris $S220 (10% duty-cycle, 1775W peak incident power, 200 cycles per burst, duration of
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s« 360 seconds). The fragmented DNA was next purified using AMpure XP beads, end repaired and A-tailed, be-
sis  fore ligation of single index adapters with methylated cytosines. Libraries cleaned using AMpure XP beads,
s« then pooled in 3- and 4-plex. The pools were denatured to single stranded DNA before hybridization to the
sss  RNA baits provided with the kit. After cleanups of the hybridizations according to the manufacturer’s pro-
s tocol, the captured strands were process for library amplification by PCR using KAPA Uracil+ HiFi enzyme
s (Roche) and TrueSeq primers included in the kit. Libraries were quality controlled on a TapeStation 2200
ss  HSD1000..

549

ss0 Oxford Nanopore Library Preparation: Genomic DNA was quantified using a Qubit 4 Fluorometer (Ther-
sss  moFisher Q33238) and libraries were prepaird using a Ligation Sequencing Kit (SQK-LSK109, Oxford Nanopre
s2 Technologies). Briefly, 1000ng of genomic DNA was end-repaired and dA-tailed using the NEBNext End
ss3  Repair/dA-tailing module, and then sequencing adapters were ligated. DNA fragments below 4kb were re-

ss«  moved using the long fragment wash protocol option according to the manufacturer's protocol.

sss EPIC Microarrays

s lllumina Infinium MethylationEPIC BeadChip (850k array): Bisulfite conversion was performed using the
sv EZ DNA Methylation Kit (Zymo Research) with 250 ng of DNA per sample. The bisulfite converted DNA
sss was eluted in 15 pl according to the manufacturer’s protocol, evaporated to a volume of <4 pl, and used for
59 methylation analysis on the 850k array according to the manufacturer’s protocol (lllumina).

560 Microarray experiments were run at three different labs, denoted Lab A, B, and C to distinguish them from
ss» the sequencing labs (Lab 1 and Lab 2). The resulting dataset contains 30 samples, with each of the seven
s2 cell lines (HGO01-HGO007) having between three and six replicates (biological or technical). Two technical
s3 replicates were generated for each cell line at lab A, one replicate from each cell line was generated at lab
ss« B, and three technical replicates were generated for the Han Chinese family trio cell lines (HG005-HG007)

s  atlab C.

s LC-MSMS Quantification

ss» LC-MS/MS quantification of 5mC and 5hmC: Genomic DNA from HG001-007 cell lines was used for the
ss analysis. Samples were digested into nucleosides using Nucleoside digestion mix (M0649S, New England
ss Biolabs) following manufacturers protocol. Briefly, 200 ng of each sample was digested in a total volume of
so 20 pl using 1 pl of the digestion mix. Samples were incubated at 37°C for 2 hours.

571 LC-MS/MS analysis was performed using two biological duplicates and two technical duplicates by in-

s2  jecting digested DNA on an Agilent 1290 UHPLC equipped with a G4212A diode array detector and a 6490A
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s Triple Quadrupole Mass Detector operating in the positive electrospray ionization mode (+ESI). UHPLC was
s performed on a Waters XSelect HSS T3 XP column (2.1 x 100 mm, 2.5 pm) using a gradient mobile phase
s5 consisting of 10 mM aqueous ammonium formate (pH 4.4) and methanol. Dynamic multiple reaction mon-
s itoring (DMRM) mode was employed for the acquisition of MS data. Each nucleoside was identified in the
s» extracted chromatogram associated with its specific MS/MS transition: dC [M+H]+ at m/z 228-112, 5mC
ss [M+H]+ at m/z 242-126, and 5hmC [M+H]+ at m/z 258-142. External calibration curves with known amounts

so  of the nucleosides were used to calculate their ratios within the analyzed samples.

s DNA Sequencing

s lllumina sequencing: The short-read sequencing libraries were collected from participating laboratories and
ss2  sequenced centrally at two sequencing centers. Libraries were pooled by library type in high concentration
sss  equimolar stock pools (4 nM). After pooling, bead-based clean-up was performed to remove peaks <200
ss«  bp. The cleaned stock pools were quantified on an Agilent Bioanalyzer using High sensitivity DNA chip and
sss  subsequently diluted to 1.5 nM prior to sequencing on lllumina NovaSeq 6000 S4 flowcells PE150 read-
sss length to a targeted minimum per replicate CG coverage of 20x. Base calling was performed using RTA
s»  v3.4.4. Additional details about the sequencing parameters can be found in the Supplementary Materials
sss and Methods.

589 Oxford Nanopore Sequencing: The Nanopore libraries were run simultaneously on seven FLO-PR0002
soo flowcells for 64 hours on a PromethION Beta device to maximize yield. FAST5 files were generated using
sn default parameters within MinKNOW on the PromethlON machine. Base calls and base modification calls
s were generated using Megalodon v2.2.9 (https://nanoporetech.github.io/megalodon/) with guppy v4.2.2
o3 (https://community.nanoporetech.com/downloads/guppy) as the basecaller backend. The MinlON DNA
s« R9.4.1 5mC configuration file from the Rerio database (https://github.com/nanoporetech/rerio) was used
ss as the base modification model. The MinlON model was chosen because it maintained more consistent

s peaks at 0% and 100% methylation as compared to the PromethlON model.

<> Data Quality Control

ss FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to evaluate the quality of
s9  Sequencing data, including base qualities, GC content, adapter content, and overrepresentation analysis.
«0 Adapter sequences were trimmed using FASTP [35] with a minimum length of two bases, quality filtering dis-
s abled, and forced poly-G trimming. The data generated using the Swift Methyl-Seq kit were further trimmed
«2 for an additional 10bp on the 3’ end of R1 and 10bp on the 5’ end of R2 to remove Adaptase sequence intro-

ez duced during library prepartion.
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«« Alignment and Methylation Calling

ss Alignment comparison was conducted on sample HG002. All short read WGBS libraries were aligned to the
«s human reference genome (build GRCh38) with additional contigs included representing bisulfite controls
«07 spiked within pooled libraries, including lambda, T4, and Xp12 phages, as well as cloning vector plasmid
«s PUCT9. The Epstein-Barr Virus (EBV) sequence was also included as a decoy contig to account for use of
s00o EBV to immortalize B-lymphocytic cell lines.

610

en  BISMARK: Adapter-trimmed reads were aligned using two parallel instances of BISMARK v0.23.0 (https://github.com/FelixKr
sz perreplicate and bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) as the read aligner. BAM
e files were position sorted using sambamba sort (https://lomereiter.github.io/sambamba/) and deduplicated
e Using deduplicate_bismark with default paramters. Methylation was called using bismark_methylation_-
o5 extractor using 2 multicore instances and default parameters and strands were merged into dinucleotdie
s contexts using MethylDackel (https://github.com/dpryan79/MethylDackel) mergeContext.

617

«s BitMapperBS: Alignment was run using default parameters within BitMapperBS v1.0.2.2 on adapter-trimmed
sv  FASTQs and the resulting BAMs were position sorted using sambamba sort. Alignments were dedupli-
«0 cated using Picard MarkDuplicates (https://broadinstitute.github.io/picard). Methylation was extracted us-
s ing MethylDackel extract and strands were merged into dinucleotide context using MethylDackel mergeCon-
o2 text.

623

«2a BSSeeker2: Adapter-trimmed reads were aligned across four threads within BSSeeker2 using bowtie2 as the
s2s aligner per user guide recommendation. Alignments were sorted using sambamba sort and deduplicated
26 Using Picard MarkDuplicates. Methylation was called within bs_seeker2-call_methylation and strands were
s merged into dinucleotdie contexts using MethylDackel mergeContext.

628

20 bwa-meth: Adapter-trimmed reads were aligned using bwa-meth v0.2.1 with default parameters and con-
s0 verted into BAM format using sambamba view. Alignmens were then position sorted with sambamba
s sort and deduplicated using Picard MarkDuplicates. Methylation was called with MethylDackel extract and
22 Sstrands were merged into dinucleotdie contexts using MethylDackel mergeContext

633

s« gemBS: gemBS v3.2.0 (https://github.com/heathsc/gemBS) requires two set-up files to enable analysis.
s The first file is a metadata sheet, in which sample barcodes were provided in assay/lab/genome/replicate

s3s format (e.g. EMSeq_LABO1_HGOO01_REPOQ1). The second file is a configuration sheet, in which default param-
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7 eters were applied, including MAPQ threshold of 10, base quality threshold of 13, reference bias of 2, 5’ trim
s Of 5bp, 3’ trim of Obp, removing improper pairs, marking duplicate reads, diploid alignment, auto conversion,
s and all files generated (CpG, non-CpG, bedMethyl, and bigWig). These files were fed into gemBS which uses

«0  GEMS for alignment and BScall for methylation calling.

« Downsampling Methylation Calls

s2 The 5-methylcytosine bedGraph files generated by the bwa-meth aligner (see results for rationale to pro-
«3 ceed with bwa-meth calls for secondary analyses) were normalized such that each call set had a given
ssa Mean global coverage per CpG. In order to maximize coverage per library, all technical replicates were com-
s bined per library type per cell line per laboratory (e.g., all replicates for EM-Seq HG002 from Laboratory
ss 1 were combined) by summing up the methylated and unmethylated counts per CpG site. Next, counts
sz along the positive and negative strands were merged in order to produce one value per CpG dinucleotide
ss  UsSing MethylDackel mergeContext. The resulting replicate-CpG-merged bedgraphs were downsampled us-
s ing https://github.com/nebiolabs/methylation_tools/ downsample_methylKit.py where a fraction of counts
eso  kept corresponding to the desired downsampling depth.

651 To compare downsampling from mapped reads (BAM files) in comparison to bedGraph files, the BAM
2 files from all replicates representing EMSeq HG006 (Lab 1) were respectively merged using samtools merge.
ssa  The merged BAMs were then downsampled using samtools view using the —s parameter, calculating the
esa fraction of reads necessary to achieve the desired mean coverage per BAM. Methylation was called on
s these BAM files using the same methodology as above. The strands were merged by CpG dinucleotide
sss Using MethylDackel merge context, creating one methylation call per CpG site. The procedure is outlined in

es7  Figure S5.

s Differential Methylation

sso Differential methylation between the two family groups (Ashkenazi Jewish Trio, HG002-HG004 vs Chinese
s0 Han Trio, HG005-HG007) was assessed at each site on Chromosome 1 for which at least two samples per
et group were covered by 5 or more reads. Following aggregation of replicates, strand merging, and down-
sz Sampling to mean 20X coverage, analysis was independently conducted via logistic region for each of six
3 platforms (Methyl-seq, EM-seq, Nanopore, TruSeq, SPLAT, and TrueMethyl) using the standard “glm” func-
s tion in R. p-values were adjusted using the Benjamini-Hochberg correction and adjusted values < 0.05 were
s considered statistically significant. Comparisons among platforms considered only sites that were present

s for all assays.
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« Microarray Normalization

s Microarray normalization methods were divided into two broad categories: between-array normalization
sso and within-array normalization. Between-array normalization is used to reduce technical variation while pre-
e0  serving biological variation between samples, while within-array normalization is used to correct for the
«n two different probe designs on the lllumina methylation arrays, which have been observed to have differ-
s2 ent dynamic ranges [25]. The between-array normalization methods evaluated were pQuantile [18], funnorm
&3 [19], ENmix [20], dasen [21], SeSAMe [22], and GMQN [23]. We implemented all possible combinations of
e4  between-array and within-array normalization methods as well as each method individually. Samples from
s all 3 labs were normalized together as one joint dataset.

676 In order to evaluate the performance of each pipeline, all 30 microarray samples from 3 labs were pooled
&7 together in a variance partition analysis [36]. For each pipeline and at each CpG site, the percentage of
o8  variation in DNA methylation beta values explained by cell line and lab was calculated. Additionally, we
s performed principal components analysis (PCA) and visually inspeced clustering of technical and biological
es0 replicates across all normalization pipelines.

681 After normalization, we used the 59 SNP probes on the 850k array, meant to identify sample swaps [37],
2 to define a data-driven classification of low-varying sites. Previous studies have found that low-varying sites
s have poor reproducibility on the lllumina arrays [27] and have suggested data-driven probe filtering using
4 technical replicates [38, 39] or beta value ranges [27]. However, not all studies have technical replicates,
sss and previously proposed beta value range cutoffs for one experiment may not be generalizable to another
sss experiment. We first called genotype clusters based on the beta values at each of the 59 SNP probe within
sz each of the 3 different labs (??b). Although we used a naive approach for calling genotypes (<25% methy-
s lation=cluster 1, 25-50% methylation = cluster 2, >75% methylation = cluster 3), which was sufficient for the
0 Clear separation in our dataset (??b), more sophisticated methods [40] can be used for datasets with less
s0 Clear separation and/or outlier values. In theory, because these 59 SNP probes are meant to measure geno-
s types, cell lines with the same genotype should have exactly the same readout in an experiment without any
s2 technical noise. Therefore, we can use variance within genotype clusters from the same experiment as a
ss Measure of technical noise and determine the minimum population variation needed to exceed the observed
e« technical variation. Within each of the 3 labs, we calculated methylation variance at each SNP probe within
sos €each genotype cluster, giving us a distribution of observed technical noise (??c). To avoid being overly con-
sss Servative due to outlier values at these 59 SNP probes, we use the 95th percentile of these genotype cluster

s7 variances as the threshold for defining low-varying sites (??c-d).
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< Sequencing Performance in Micorarray Sites

o Variance partition analyses [36] were used to compare the microarray and downsampled sequencing datasets
70 and assess concordance between microarray and sequencing assays. Each of the variance partition anal-
s yses included all microarray replicates, normalized with funnorm + RCP, and one sequencing sample per
72 cell line with all replicates merged. The percent of variation in DNA methylation explained by cell line, assay
73 (sequencing or microarray), and residual variation was calculated at each CpG site. This produced 6 sets
s Of results, one per sequencing assay. The percentage of variation explained by cell line at each site was
s Used as a measure of cross-platform concordance between each sequencing platform and the microarray
76 data. The variance partition results presented are restricted to CpG sites that were measured in all 7 cell

77 lines across all 7 assays (N=841,883) to ensure a fair comparison.

« Data Availability

70 All data sequenced for this study is available within SRA under accession number SRR8324451. All code

7o used to process data and generate files is publicly available on Github at https://github.com/Molmed/epiqc.
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Figure 1: Sequencing and alignment metrics of whole methylome libraries, including all replicates across all cell lines.
EM=EMSeq; MS=MethylSeq; SP=SPLAT; TS=TruSeq; TM=TrueMethyl. (a) Distribution of reference-based read align-
ment outcomes, including primary mapped reads (both mates mapped in correct orientation within a certain distance),
multi-mapped reads (read pairs containing secondary or supplementary alignments), reads marked as PCR or optical
duplicates, and unmapped reads. Ambiguous and duplicate reads can be a subset of properly aligned reads. (b) Me-
dian insert size distributions derived from distance between aligned paired end reads. (c) Percentage of bases trimmed
per replicate, either due to low base quality, adapter content, or dovetailing reads. (d) Cumulative genomic coverage
plot, averaged across cell line per assay. Coverage is cut off at 200x in this plot, but extends beyond for all assays. (e)
Nucleotide bias plot showing the log2 enrichment of covered versus expected mono- and di-nucleotides. (f) The rela-
tionship between the number of read pairs sequenced per assay and the mean depth of coverage per CpG dinucleotide,
showing sequencing depth required to achieve a certain level of coverage. 20x CpG coverage is shown as the dotted

line. (g) Same as (f), but plotted using total bases sequenced, to include Oxford Nanopore sequencing, which produces
variable read lengths.
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Figure 2: Coverage of CpGs across the genome. All samples visualized here were downsampled to 20X mean coverage
per CpG. (a) Empirical cumulative distribution functions for median coverage, averaged across samples for HG002-
HGO007. (b) Standard deviation between replicate beta values for HG002 as a function of average coverage. The ex-
pected curve (computed based on the assumption that replicate beta values are independent and identically distributed
estimates of a common proportion p) is added as a solid black curve. (c) Intersection of CpG coverage (min 5x) across
Chromosome 1. Exact values of CpGs covered per assay are shown on the right. (d) Count and genomic annotation
for CpGs uniquely covered by an assay (left) and uniquely not covered by an assay (right). Up5kb = 5kb upstream dis-
tance from promoter region; Promoter = within 1kb upstream of transcript start site. (e) Distribution of coverage in CpG
shelves, shores, and islands. EM=EMSeq; MS=MethylSeq; SP=SPLAT; TS=TruSeq; TM=TrueMethyl. (f) Mean coverage
curves around transcript start sites (TSS).
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Figure 3: Estimates of methylation per CpG across the genome for HG002. All samples visualized here were downsam-
pled to 20X mean coverage per CpG. (a) Methylation percentage distributons per assay. (b) Methylation bias (mbias)
plots showing mean methylation per base for short read assays (Nanopore excluded here). Dotted lines indicate rec-
ommended cutoffs for methylation calling for these data. Original Top/bottom refer to mappings to bisulfite-converted
strands in the reference genome. (c) Metagene plot showing mean methylation across genomic feature per assay. Pro-
moter regions span 1kb upstream of transcript start sites (TSS). (d) Mean methylation curves surrounding TSS across all
genes. (e) Pearson correlation matrix of genome-wide methylation estimates. (f) Pearson correlation matrix of methyla-
tion estimates for sites where methylation was estimated to be between 20-80%. (g) Methylation percentage correlation
between Oxford Nanopore and all other assays. Pearson correlation values shown on top. Marginal histograms show
methylation curves per assay.
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Figure 4: Mosaic plots illustrating agreement between assays for differentially methylated per assay (DMA) sites as
coverage levels vary. Rows represent the number of the six assays for which each DMA site was also identified, with

values ranging from 1 (indicating no other assays, shaded in red) to 6 (indicating all assays, shaded in purple). Columns
indicate the median coverage across HG002-HG007, with values ranging between the 5th and 95th percentiles for each

assay.
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(a) Concordance between microarray replicates across the epigenome, by normalization pipeline
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Figure 5: Microarray normalization and low-varying site definition. (a) Densities showing the percentage of DNA methy-
lation variation explained by cell line across the epigenome (N=677,520 overlapping CpG sites) for each normalization
method. (b) Raw beta values at each of the 59 SNP probes on the Illumina EPIC arrays, with samples colored by lab. (c)
Variance in methylation beta values (no normalization) within each genotype cluster at the 59 SNP probes, separated
and colored by lab. The dotted vertical line represents the 95th percentile. (d) Variance in methylation beta values (nor-
malized with funnorm + RCP) across the epigenome. Sites in the shaded area, which have less variation than 95% of
SNP probe genotype clusters, are defined as low-varying sites. (€) Percentage of methylation (normalized with funnorm
+ RCP) variance explained by cell line across the epigenome, stratified by high-varying vs. low-varying sites.
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(a) Variance explained by cell line, assay, and residual variation
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(b) Variance explained by cell line vs. coverage and CpG site variance
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Figure 6: (a) Density plots of sequencing/microarray concordance indicating the percent of variance explained (VE) by
cell line, assay (sequencing or microarray), and residual variation for 841,833 CpG sites with complete information in
all assays. (b) Distribution of percent variance explained by cell line in the sequencing/microarray variance partition
analysis as a function of beta value variance (binwidth=0.001) and median coverage (binwidth=1) at each CpG site. 90%
of the y-axis values fall between the outermost dotted lines for each bin along the x-axis.
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« Tables

Whole Genome Targeted
: NCBI Methyl TrueMethyl
Genome Coriell ID NIST ID . EM-Seq Nanopore | SPLAT — ST TruSeq EPIC
BioSample Seq Bisulfite | Oxidative
Lab 1 Lab 2 Lab1 Lab 1 Lab 1 Lab 1 Lab 1 Lab1 Lab1
7.8(4085)
CEPH 340 468 652 353 1093 514 338 267
GM12878 | HGOO1 | SAMIN03492678 5.1 (6117
Mother/Daughter 337 392 609 | 7 25533; 329 395 508 437 326
379 403 960 | w625 901 508 351 239
4.5 (7346)
Al Son GM24385 | HGO02 |SAMNO3283347 | - 399 650 Lo oo 801 04 pyes 609 335
1.4 (5064)
17.5(3533)
Al Fath GM24149 | HGO03 | SAMN03283345 | 397 829 ag(aze0) | 484 664 72 654 288
ather 354 419 838 | 11(s162) | 1353 367 344 568 337
1.4(5231)
17.4 (3492)
AJ Moth GM24143 | HGO04 | SAMNO3283346 | o3 381 959 6.0(4315) 453 802 519 340 235
other 294 173 779 11(s821) | 433 321 345 733 339
1.5 (5590)
89 451 2.5(2984)
Chinese Son GM24631 HG005 SAMNO03283350 430 497 7% 7.0 (5087) 922 605 360 709 243
s 2an 791 | 3g(s0r3) | 855 447 450 514 321
359 451 2.0(3987)
Chinese Father GM24694 HGO006 SAMNO03283348 344 422 741 1.4 (5197) 733 573 730 1012 247
o 156 815 Loiss0s) | 1050 631 220 698 265
352 466
Chinese Mother | GM24695 | HGO07 | SAMNO3283349 | 365 480 714 | 4s(aoo7) | 1343 638 575 993 234
387 176 665 | 16.1(5022) | 1035 1015 199 312 243

Table 1. Sequencing across all genomes analyzed in this study, including genomic and targeted assays.
Numbers within each genome/assay cell indicate millions of paired-end 150bp reads sequenced, with the
exception of PromethlON, which indicates millions of reads and mean read length in parentheses. Each
number represents one replicate sequenced for that genome/assay.
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EMSeq EMSeq Methyl TrueMethyl TrueMethyl

labl  lab2  seq AT e (ox)  Truseq

Insert Size (bp) 299 327 250 221 224 207 215
Mapping Rate (%) 97 93 98 97 85 86 95
Duplicate Rate (%) 9 25 12 8 20 20 21
Dinucleotide Bias 3 1 4 10 4 4 27
Score

Useable Bases (%) a0 77 74 81 70 67 60
Reads to reach 20x 5 303 366 369 446 496 692

CpG coverage (M)

MeanCpGDepth 43 13 9313 27,17 17,22 20,15 15,13 10,15
per replicate

% Genome-wide 100 100 100 100 100 100 100
CpGs > 1x cov
% Genome-wide

CpGs > 10x cov 94 92 91 89 91 90 74

Table 2. Summary statistics of mapping and library efficiency per WGBS protocol. Percent CpG capture
calculated with call sets normalized to 20x coverage.
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= Supplementary Methods

= Whole Methylome Sequencing Across Centers

ssa  Short-read sequencing details: The short-read sequencing libraries were collected from participating labo-
sss  ratories and sequenced centrally on NovaSeq 6000 systems at one or two sequencing centers.

856 Libraries were pooled by library type in high concentration equimolar stock pools (4 nM). After pooling,
s7 bead-based clean-up was performed to remove peaks <200 bp. Briefly, 0.7 X volume of NEBNext Sample
sss  Purification beads was added to the pools and incubated for 10 mins at room temperature. The beads
5o were clarified by placing on a magnet and washed twice with freshly prepared 80% ethanol. Beads were
so allowed to dry for 2 mins and resuspended in 0.1 X TE. The cleaned stock pools were quantified on an
st Agilent Bioanalyzer using High sensitivity DNA chip.

862 Sequencing Center 1: Pooled libraries were diluted to 1.5 nM. were loaded on a NovaSeq S4 flowcell with
s afinalloading concentration of 250 pM for all libraries with the exception of EM-Seq, which was loaded at 300
sa  PM. Unrelated standard libraries were added at 5% instead of PhiX to balance the base composition during
ss sequencing. All libraries were sequenced PE150 according to the manufacturer’s instructions (lllumina) with
ss targeted per replicate CG coverage of 20x.

867 Base calling was performed using RTA v3.4.4 In cases where libraries were not prepared with dual-unique
ss indices, they were demultiplexed using the expected index 2 sequence derived from the universal adapter.
s Demultiplexing and fastq generation was performed using Picard 2.20.6 using default settings except as

s listed below:

g7 picard ExtractIlluminaBarcodes MAX_NO_CALLS=0 MIN_MISMATCH_DELTA=2 MAX_MISMATCHES=2

g2 picard IlluminaBasecallsToFastq \

873 read_structure=100T8B8B100T RUN_BARCODE=A00336 \

874 LANE=<lane> FIRST_TILE=<tile> TILE_LIMIT=1 \

875 MACHINE_NAME=<instrument> FLOWCELL_BARCODE=<flowcell>

876 Sequencing Center 2: The high concentration equimolar stock library pools were sent to lllumina in order

sz to ameliorate depth of sequencing for the WGBS libraries. Libraries pools were diluted to 1.5 nM and a final
es  loading concentration of 300 pM was loaded on the flow cell with 5% PhiX. The libraries were sequenced
&o on an lllumina NovaSeq 6000 S4 flowcell with direct flow cell loading (XP workflow) according to manu-
so facturer’s instructions. MethylSeq, SPLAT and TruSeq pools were multiplexed on two lanes; SPLAT libraries
s on their own in the third lane; and TrueMethyl libraries on their own in the fourth lane. Base calling was
sz performed using RTA v3.4.4. Run data were uploaded to BaseSpace and fastq files were generated using

s default parameters.
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= Supplementary Results

=5 Alignment and Methylation Caller Comparisons

sss  The first step after data QC was to map reads to a reference genome and estimate levels of methylation per
sv  CpG. We evaluated the performance of commonly used alignment/methylation calling packages, includ-
s iNg Bismark [41], BitMapperBS [42], BSseker2 [43], bwa-meth [44], and gemBS [45]. For each software, we
seo aligned reads to the GRCh38 human reference genome, with a set of bisulfite controls appended as addi-
g0 tional contigs (see methods and Figure S2). We focused our analysis to Ashkenazi Son (HG002) data for
sn  these comparisons, using all replicates from each of the five short read epigenetic library types.

892 Although we successfully ran gemBS, its outputs were removed from further comparison for two rea-
sz sons: (1) the maximum likelihood-based modeling of methylation percentages did not allow for merging of
s« values across replicates, and (2) an unusually low percentage of CpGs were detected compared to all other
ss  platforms, prohibiting genome-wide comparison.

896 The mapping of reads showed aligner-specific distributions (Figure S3a). bwa-meth was able to map
s7 the highet percentage of reads to the reference genome, followed by bitmapperBS, BSSeeker2, and then
ss  Bismark. bwa-meth and Bismark tend to allow reads to align to multiple locations in the genome (marking
s0 these reads as secondary or supplementary alignments and ignoring them for methylation calling). BitMap-
w0 perBS and BSseeker2 more commonly kept reads unmapped rather than align them ambiguously, although
w1 Bismark had the highest rate of unmapped reads. All four softwares had similar rates of duplicate read
w2 Mmarking, except for BSseeker2 which tended to mark fewer reads as duplicates. It should be noted that
w0z an external program, Picard MarkDuplicates was used for deduplication in bwa-meth, BitMapperBS, and
. BSseeker2. Despite this, BSseeker2 samples still had fewer duplicate reads than other library types.

905 We then calculated the mapping effiency, defined as the percentage of bases aligned and retained for
w06 Mmethylation calling (see below for the effects of read filtration) divided by the total bases per replicate (Fig-
o7 Ure S3b), as well as the mean coverage achieved per CpG dinucleotide (Figure S3c). bwa-meth returned both
e the most efficient mapping rate, as well as the highest mean coverage per CpG within every dataset except
oo for TruSeq, where outputs from each software matched very closely. Generally, BitMapperBS scored second
o0 in efficiency and depth of coverage, followed by Bismark, then BSseeker2.

o The running time of each aligner was tested using one million random paired-end reads from each repli-
sz cate and run ten times, summarized in Supplementary Table 1. BitMapperBS was the fastest aligner, with
o an average of 550-650 read pairs processed per CPU core per second, with stable performance between
ou replicates. Bismark and bwa-meth showed equal alignment speed (about 200 read pairs per CPU core per

a5 second). However, Bismark showed the most variability of timing between runs.
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96 We then tested the distribution of CpGs called by each software (Figure S3d) to look for any aligner-
o specific biases. All four programs returned a nearly identical distribution of CpGs called throughout the
«s genome. The highest genomic enrichment was detected at 5'UTRs, protomer regions, and exonic regions
av by all programs. Therefore, even though mapping efficiency and CpG depth was influenced by software, the
w0 genomic distribution of CpGs was reliably called by all softwares examined.

o As a result of these comparisons, outputs from bwa-meth were used for all downstream analyses.

2 5-hydroxymethylcytosine Detection

w3 Total 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels within each cell line examined in
w4 this study were measured by LC-MS/MS (Supplementary Table 6). The estimated percentage of 5hmC levels
ws across all seven cell lines were below the limit of detection for this method.

926 In order to validate these results at base-level resolution, we used the NuGEN TrueMethyl oxBS-Seq library
o7 prepartion kit (aka TrueMethyl), which allows investigators to measure 5mC and 5hmC in an indirect manner
o8 0N the sequence level. For completeness, each cell line replicate was processed using both bisulfite only
a9 (BS =5mC + 5hmC) and an oxidative reaction prior to sodium bisulfite treatment (OX = 5mC).

930 Figure S12 shows that all cell lines have a higher level of 5mC compared to 5hmC (Figure S12a,b). The low
a1 5hmC levels were also observed at the single-nucleotide resolution level, with similar correlations between
w2 the two library preparations across all cell lines (Figure S12¢), and also within each cell lines (Figure S12d),
sas where the PCA plot shows little to no separation between libraries prepared using BS or OX protocols.

934 As stated above, preparation of BS and OX libraries in parallel allows the determination of 5mC, 5hmC
sss and C. We used the MLMLZ2R package to estimate the level of each cytosine state, for each CpG sequenced,
s Using HG002 as example (Figure S12e). The top panel shows that some CpG sites not only show 100% of
«w» @ specific cytosine mark (C = 100% unmethylated CpG, mC = 100% methylated CpG), but also a mixture of
ws  two (MC_C = methylated or unmethylated C; hmC_C = hydroxymethylated or unmethylated C; mC_hmC =
s Mmethylated or hydroxymethylated C) or of all cytosine mark (mC_hmC_C). Consistent with the LC-MS/MS
w0 quantitation, hmC marks were found in low proportions at some CpG sites. The results observed for HG002

an  were representative of all the 7 cell lines.

.« Biological Significance of Between-Family Trio Differential Methylation

s To determine the biological relevance of our results, we considered 51 CpGs on Chromosome 1 that had
s« been previously identified as differentially methylated in an array analysis of approximately 300 individuals

as from Caucasian-American, African-American, and Han Chinese-American populations [46]. Annotation and
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as methylation results from all 51 CpGs are available within Supplementary Table 5. Of the 7 sites with reported
a7 |PMD|>0.2 (Percent Methylation Difference) between Chinese-Americans and Caucasian-Americans, all had
as corresponding [PMD|>0.2 within the the microarray data. Additionally, 4 of these were identified as statisti-
ao  cally significant DMAs across all six sequencing assays (five short read library types and Oxford Nanopore).
0 Of the three remaining sites, the first (on the TASTR3 promoter) was significantly hypomethylated in the
o1 Chinese family for EMSeq, Nanopore, SPLAT, and TrueMethyl, the second (on the PM20D1 promoter) had
sz insufficient read coverage for TruSeq but was a DMA for the remaining assays, and the third (located on the
sz Clorf100 promoter) was identified as a DMA for only SPLAT although estimated PMD values were greater
s« than 0.1 for all assays. Notably, these sites were identified as methylation quantitative trait loci (meQTL) in
oss the original analysis. In addition to TASTR3, which is a sweetness taste receptor that is known to vary pheno-
6 typically between the Asian and Caucasian populations [47], there was strong concordance for 6 CpGs on the
o7 PM20D1 promoter, a gene associated with obesity and Alzheimer’s disease with demonstrated population-
oss  based variation [48, 49].

950 We additionally reviewed the collection of 29,802 sites on Chromosome 1 that were identified as dif-
wo ferentially methylated for four or more of the six sequencing assays. Following annotation with HOMER
s1  [50], analysis with DAVID [51] identified a subset of 133 genes associated with hypertension (Benjamini-
2 Hochberg adjusted p-value = 5.0E-13), 54 genes associated with osteoporosis (p = 5.0E-13), and 18 genes
%3 associated with atopic dermatitis (p =1.0E-5) according to the GAD database [52]. Only 1204 (4.0%) of these
ss Sites were included on the Infinium MethylEPIC array, and while annotation for these sites included 53 of the
ss hypertension-associated genes (p=3.3E-4) and 9 of those associated with atopic dermatitis (p=0.03), only
ss 17 of the genes identified with osteoporosis were included and this was an insufficient number to resultin a

%7 significant association.

s EMSeq Input Titration

o In order to investigate the impact of input DNA on detection and characterization of CpG methylation, we
o0 generated EM-Seq libraries using 10ng, 50ng, and 100ng aliquots of input DNA for each replicate for each
on member of the Chinese Han Trio in this study (HG005-7). We then randomly subsampled each run in silico
o2 to arandom set of 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp reads per input. At the lowest read
oz input, the less complex 10ng library covered CpGs greater than 50ng and 100ng libraries, though beyond 25M
o4 paired end reads the more complex (50/100ng) libraries surpassed the 10ng library in mean CpG coverage
o5 (Figure S13a). All three library types exhibited similar distributions of CpG coverage across read titrations,
o reflecting fringe technical noise contributing to mean depth differences at low inputs that were evened out

o7 with more input. This was further validated by looking at the intersection of CpGs covered by each input type
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o at each read filtration titer, where by 10M paired end reads the majority of sites were shared by all libraries,

os and notably the lowest input consistently covered the fewest unique CpGs (Figure S13c).

« Methyl EPIC Capture Correlations

1 We compared the whole epigenome libraries to sequencing replicates of Illumina Methyl Capture EPIC, a
sz reduced representation bisulfite approach interrogating roughly 3.3 million CpGs with a preference for CpG
«es islands and promoter regions. Results shown for HG002 are representative of all seven genomes. Methy-
s« lation percentage of CpGs within replicates of Capture EPIC were compared to shared sites among whole
s Methylome assays as well as Nanopore sequencing, with good Pearson correlation for all comparisons (av-
s erage r=0.85). Capture EPIC tended to overestimate fully methylated sites that were estimated to be closer
7 10 50-90% in other assays (Figure S14a).

088 Using 20X downsampled methylation data, the shared CpG coverage on Chromosome 1in Capture EPIC
w0 Sites was highly consistent with overall methylome coverage (Figure 2). Nanopore missed the fewest sites

0 covered by EPIC (n=5,179), while TruSeq missed the most (n=21,712).
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Figure S1: Measurement of sequencing control samples (a) Estimated methylation percentage in CpG, CHG, and CHH
contexts per assay. Efficient conversion results in near-zero converted cytosines in CHG and CHH contexts. (b) Esti-
mated methylation percentage in unmethylated controls, showing only assays that had these controls spiked in as a
part of their library preparation.
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Figure S2: Flowchart showing recommended steps for read quality control, reference-based read alignment, and methy-
lation extraction, for each methylation package analyzed.

S7


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) Primary Mapped Multi—-Mapped Duplicated Unmapped
1000 +——F%5— ° ® 30+ 8
2] g % 7.5 o 2
= 90 o - 20{ = © ® 201§ 2
o o 9@ © l o ) 8
o g 8¢ 501 8 8
S 80 3 8 o o
o 8 N 0 101 © 9
R 2.5 10+ 8
o g g
701 ¢ o
8 T T T O.O- T T T T T T T T O- T T T T
Bis Bit Bsk Bwa Bis Bit Bsk Bwa Bis Bit Bsk Bwa Bis Bit Bsk Bwa
(b) Bases Mapped
EMSeq MethylSeq SPLAT TrueMethyl TruSeq
100
_ 901
C
S 801
704
L1R1 L1R2 L2R1 L2R2 L1R1 L1R2 L1R1 L1R2 BS1 BS2 OX1 OX2 L1R1 L1R2
CpG Coverage
(c) EMSeq MethylSeq SPLAT TrueMethy! TruSeq
15
< 101
3
ik o [
L1R1 L1R2 L2R1 L2R2 L1R1 L1R2 L1R1 L1R2 BS1 BS2 OX1 OX2 L1R1 L1R2
O bismark © bitmapperbs O bsseeker2 @ bwameth
(d)
3UTR 5UTR Exon Intergenic Intron miRNA ncRNA Promoter pseudo TTS
2.0/ I g
= s S
S 154 Izl
S 1.0 =
5 o III] . III]:::
8’ = 75 =
- 0.0+ -=="= ‘-‘ ________________ e [ BSEITTEEE [ BSEITTmee (0 ESRITTmeel | ERRCTTmme [ BT
-0.51——— T+

Figure S3: Comparison of outputs for each methylation detection pipeline. All figures show analysis of all HG002 sam-
ples for each short read epigenomic assay. (a) Distribution of reference-based read alignment outcomes, including
primary mapped reads (both mates mapped in correct orientation within a certain distance), multi-mapped reads (read
pairs containing secondary or supplementary alignments), reads marked as PCR or optical duplicates, and unmapped
reads. Ambiguous and duplicate reads can be a subset of properly aligned reads. (b) Mapping efficiency per pipeline as
measured by the total percentage of reads aligned to the reference genome. L1and L2 = Lab 1/2; R1 and R2 = Replicate
1/2; BS1 and BS2 = bisulfite treatment replicates 1/2; OX1 and OX2 = oxidative-bisulfite replicates 1/2. (c) The mean
coverage per CpG across the genome per pipeline. (d) The regions of the genomes covered per pipeline, measured as
log2 enrichment against a null genomic distribution.
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Figure S4: Read retention rate. The fraction of total reads that are retained after each step of the epigenome alignment
process is shown per assay. Properly mapped = both mates of a pair were mapped in the correct orientation within a
Tkb distance. Dedup = removing reads that are marked as duplicates. MQ = Mapping Quality.
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Figure S5: Downsampling evaluation for EMSeq / HG006. (a) Outline of the downsampling procedure and naming
scheme of the downsampled libraries. (b) Pairwise correlation matrix of methylation values for the EMSeq HG006
library from Lab 1. Scatter plots of the methylation values are shown in the lower left. Histograms of the methylation
values per library are shown across the diagonal. Pairwise Pearson (rho) and Spearman (p) correlation coefficients, root
mean square error (RMSE), and the number of CpG dinucleotides with >= 5x coverage in both libraries are shown in the
upper right. (c) Statistics over the methylation percentage distributions and observed read coverage of CpG sites in the
various bedGraph files. (d) RMSE, Pairwise Pearson (p) and Spearman (rho) correlations between downsampled BAM
and bedGraph files in comparison to the original 44x average coverage BAM file. (e) Histograms of the CG dinucelotide
read coverage of each bedGraph file prior (44x BAM) to and after downsampling the BAM or bedGraph.
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Figure S7: UpSet plots showing shared coverage of CpGs across assays across downsampling schema, with a minimum
of 1x cov per CpG on the left and a minimum of 50% of the downsampling scheme on the right (e.g. minimum of 5x
coveage for 10x downsampled data).
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Figure S8: Annotating CpGs covered by each assay using normalized mean 20x coverage data, showing the consistency
of coverage genome-wide. Up5kb = 5kb upstream of promoter regions. Promoter = Tkb upstream of transcript start sites.
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Figure S9: Pearson correlations of methylation percentage estimation within each assay, comparing the total data (y-
axes) against their respective downsampled schema (x-axes), for combined replicates of HG002 libraries. Pearson
values are shown above each comparison, as well as marginal histograms showing methylation percentage distribu-
tions. For TruSeq, the total data returned a mean coverage of 35X, meaning that a comparison to 40X downsampling
was not possible.
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Figure S11: Distribution of beta values across HG002 samples at 841,833 CpG sites with complete information in all
assays. Beta values for the assay on the x axis were binned (binwidth=0.01) to calculate beta value deciles for the assay
on the y axis, indicated by the color transparency. 90% of the y-axis values fall between the outermost dotted lines for
each bin along the x-axis. Marginal histograms for each assay are shown above the assay label.
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Figure S12: Capture of 5mC and 5hmC from TrueMethyl replicates, including bisulfite-only (bs) and oxidative bisulfite
(ox). (a) Percent of inferred 5mC among all cytosines in the genome. (b) Percent of inferred 5hmC among all cytosines
in the genome. (c) Pearson correlation of replicates across genomes between oxidative and bisulfite replicates. (d)
Unsupervised clustering of samples, including OX and BS samples.
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Figure S13: EM-Seq read titration experiment. Replicates generated using 10ng, 50ng, and 100ng of input DNA for
HG005, HG006, and HGOO7 were randomly downsampled to 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp input
reads. (a) Distribution of mean depth of CpGs covered for each input amount. (b) Read coverage distributions per input
type per downsampled read amount. (c) UpSet plots showing the intersections of CpGs shared by each downsampling
scheme, as well as uniquely covered CpGs.
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Figure S14: (a) Pearson correlation of percent methylation estimates of Methyl Seq EPIC Capture versus each whole
methylome library. All values are shown for Chromosome 1 of HG0O02 replicates. (b) Distribution of CpGs covered (in
yellow) or missed (in blue) by each assay on Chromosome 1. Total values are shown per assay in the table on the right.
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» Supplementary Tables

Step Software No. Reads [Mean Time (min) |Standard Dev (min)
Bismark 1M 19.33 1.74

Alignment BitmapperBS | 1M 11.98 3.76
BSseeker2 |[1M 65.76 3.5

bwa-meth 1M 29.92 6.17

Bismark 1M 2.86 0.9

. |BitmapperBS |1M 1.97 0.17

Meth Calling [5cceekerz 1M 39.87 17.4
bwa-meth 1M 0.24 0.07

Supplementary Table 1. Timing comparison of each alignment and methylation estimation software. Ten
permutations of each software were run, and the mean times are reported, as well as the standard
deviation per sotware.
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Insert Size HG001 HGO002 HGO003 HG004 HGO005 HG006 HGO07 mean stDev
EMSeqLABO1 297.1 299.6 349.75 288.95 300.53 298.23 330.3 309.21 22.11
EMSeqLABO2 325.8 327.95 326.35 328.15 320.2 325.47 358.57 330.35 12.72

MethylSeq 249.77 250.93 250.88 247.13 249.67 256.45 247.78 250.37 3.04
SPLAT 214.83 217.81 220.71 223.74 220.34 223.85 224.18 220.78 3.52
TruSeq 218.58 217.68 219.88 216.77 214.67 217.58 215.78 217.28 1.74

TrueMethylOX 207.7 203.83 209.95 205.93 211.8 211.5 204.4 207.87 3.3
TrueMethylBS 228.6 220.67 226.5 224.2 224.73 227.4 219 224.44 3.52
EPIC 225.7 227.45 225.65 227 229.65 229.7 227.7 227.55 1.65
Primary Mapping % HG001 HG002 HG003 HG004 HGO005 HG006 HGO07 mean stDev
EMSeqLABO1 97.48 97.63 97.37 97.87 97.14 097.36 97.32 97.45 0.24
EMSeqLABO2 94.89 93.27 94.09 094.46 91.97 094.27 93.33 093.75 0.98

MethylSeq 98.4 9836 98.32 98.41 98.16 98.36 98.39 98.34 0.09
SPLAT 96.44 97.18 96.92 97.21 97.07 97.48 97.24 97.08 0.33
TruSeq 95.33 9545 95.23 9558 9551 9555 9537 09543 0.13

TrueMethylOX 85.95 84.53 87.43 87.01 8564 87.15 8511 86.12 1.11
TrueMethylBS 85.17 835 86.66 86.06 84.73 86.4 84.2 8525 1.18

EPIC 98.27 98.31 98.37 98.12 98.28 98.27 98.23 98.26 0.08
Duplicate % HG001 HGO002 HGO003 HG004 HGO05 HGO006 HGO07 mean stDev
EMSeqLABO1 9.28 9.13 9.15 8.65 11.28 12.1 106 10.03 1.3
EMSeqLABO2 23.61 25.03 23.97 2337 27.08 23.68 25.11 2455 1.31
MethylSeq 13.75 13.77 13.84 14.42 13,56 14.44 13.32 13.87 0.42
SPLAT 12.37 12.02 11.63 109 11.88 10.86 13.28 11.85 0.84
TruSeq 21.73 2253 27.26 2435 25.86 31.57 25.77 25.58 3.28

TrueMethylOX 21.24 21.66 18.19 19.48 20.86 19.56 21.21 20.31 1.26
TrueMethylBS 21.29 21.95 17.89 18.72 20.15 18.66 20.22 19.84 1.48

EPIC 66.42 67.43 629 6392 69.21 695 68.24 66.8 2.56
Dinucleotide Bias HG001 HG002 HG003 HG004 HGO05 HG006 HGO07 mean stDev
EMSeqLABO1 3.77 2.97 3.36 2.98 2.7 2.69 2.99 3.07 0.38
EMSeqlLABO2 1.12 0.84 1.16 0.98 1.14 1.11 1.1 1.06 0.11
EPIC 26.58 26.74 26.59 26.69 26.43 26.36 26.93 26.62 0.19
MethylSeq 3.4 3.71 3.43 3.41 3.47 3.53 3.52 3.5 0.11
SPLAT 6.95 7.58 5.55 6.36 6.66 6.24 5.8 6.45 0.69
TrueMethyIBS 3.43 3.44 3.8 3.3 3.73 3.61 3.99 3.61 0.24
TrueMethylOX 3.3 3.71 3.64 3.71 3.72 3.72 3.71 3.64 0.16
TruSeq 24.66 23.09 24.1 23.69 23.13 2336 23.83 23.69 0.56

Useable Bases% HG001 HG002 HG003 HG004 HGO005 HG006 HGO07 mean stDev
EMSeqLABO1 90.21 90.35 90.26 90.71 87.88 87.61 88.89 89.42 1.27
EMSeqLABO2 76.01 74.6 7551 76.16 72.62 76.01 51.56 71.78 9

EPIC 33.2 3221 36.69 3567 3046 30.17 31.4 3283 252
MethylSeq 7446 745 7455 73.8 7477 7401 749 74.43 0.39
SPLAT 78.9 80.62 81.19 83 81.43 82,79 814 8133 1.38

TrueMethylBS 70.21 66.6 71.08 70.13 70.03 71.69 7197 70.24 1.78
TrueMethylOX 67.53 66.49 6845 685 68.07 68.66 66.78 67.78 0.87
TruSeq 62.68 62.98 60.23 61.19 60.29 6258 51.03 60.14 4.17

Supplementary Table 2 Read and mapping statistics for all cell lines. stDev = standard deviation. Values

shown are averages across replicates for each library. Useable bases are calculated as the total mapped
bases as a percentage of the total number of bases sequenced.
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Number of Common Sites for all Assays 2298846 Assa

Common Sites with 5X for all Assays (C5X Sites) 1928536

DM Sites in 3 or more platforms on C5X sites (DM4+) 29802 | EM-Seq| Methyl-Seq | Nanopore | SPLAT | TrueMethyl | TruSeq
Percentage of all common sites with 5X Coverage 97% 96% 100%| 96% 97%| 86%
Number of DM Sites for this assay on C5X Sites (DMA) 74054 67621 26868| 76591 59516| 87170
Percentage DMA unique to this platform 26% 26% 17%| 29% 22%| 42%
Percentage of DMA sites in DM4+ 36% 38% 56%| 35% 42% 27%
Percentage of DM4+ in DMA sites 90% 86% 51%| 89% 85%| 79%

Supplementary Table 3 Statistics for differentially methylated sites across assays.

S-22


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

EMSeq MethylSeq Nanopore SPLAT TrueMethyl TruSeq

Number of DMAs mapped to array 3296 2964 1027 3228 2750 4267
Number DMAs with |PMD| > .2 3279 2942 1026 3092 2743 3404

% DMAs with |PMD| >.2 and array |PMD| > .2 55.5%  58.8% 67.0% 57.3%  60.0% 49.6%
Number Hypermethylated in HGO05-HG007 2505 2358 721 2368 2092 2432

% Hymermethylated DMAs with array PMD > .2 57.0% 60.3% 69.1% 58.6% 62.0% 52.4%
Number Hypomethylated in HGO05-HGO007 774 584 305 724 651 972

% Hypomethylated DMAs with array PMD < -.2 50.4% 53.1% 62.0% 53.0% 53.8% 42.7%
% of sites with array |PMD|>.2 identified as DMAs 44.0% 41.9% 16.6% 43.5% 39.8% 42.7%

Supplementary Table 4 Concordance between assays of differentially methylated sites per assay (DMAs)
with respect to microarray sites. PMD = Percent Methylation Difference, calculated as an absolute value.

S-23


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

TargetiD African Caucasian Asian Asian- FDR Chr. | Position (HG19) | Position (HG38) Gene Feature Variance meQTL EMSeq Methylseq  [Nanopore SPLAT TrueMethyl Truseq Illumina
American |American American |Caucacian

16590012 0.84] 0.85 0.62] -0.232.73€-29 1 1265354 1329974{TAS1R3 Promoter AS ves -0.7629 1-0.6364 -0.3709/-0.6693 {-0.6275 -0.399 -0.2610
cg23611477 0.89| 0.81 0.75] -0.06[4.116-11 1 1644835 1713396 | CDK11A;CDK118 Body;Promoter AF yes NA 0.4202 0.0614NA NA 0.0538;
0.28 0.15 0.14 -0.01]2.76€-17 1 1655867 | 1724428 CDK118;CDK11 Promoter AF no. -0.0133  |0.0033 0.013]0.0111 0.0147 0.0057
03396347 0.73 0.60 0.61 0.01]1.08E-05 1 1875803 1944364 AF yes -0.0497 _|-0.1173 0.0269(-0.239 0.0752 -0.0173
0.62 0.6 0.52] -0.14[1.24£-05 1 2003864] 2072425 PRKCZ Promoter As no 0.0687_|0.0143 ~0.0531[-0.2671_|-0.1202 -0.0499
cg10761639 0.74] 0.84 0.69 -0.15]1.09€-17 1 2023794 2092355 | PRKCZ Promoter CcA yes 0.0025 0.0335 -0.1343[-0.0615 |-0.0867 -0.0425
24499605 0.45 0.32 0.43] 0.11[1.766-14 1 3142925 3226361 PROM16 Bod) A no 0061 [0.0478 0.1165[0.0104 _|-0.0335 0.0281,
cg14654471 0.91 0.89 0.75] -0.14[3.57€14 1 5937169] 5877109 [NPHP4 Bod) As yes 0.0249_[0.0024 ~0.0453[0.0282_|-0.0055 -0.1263
813549940 0.64 0.81 0.81 0.00{2.30E-12 1 6390053 6329993| ACOT7. Body AF yes -0.2485 |-0.1441 -0.214]-0.1369 _|-0.0986 -0.1473
23914842 0.32 0.39 0.50 0.11]1.21E-07 1 9327170 9267111 |H6PD 3UTR AS yes -0.0111 |-0.1046 -0.0248/-0.2128 [-0.1016 0.0269
€g01017257 0.57] 0.48 0.61 0.13]3.62E-05 1 15059738 | 14733242 [KIAA1026/KAZN Body;Bod CcA yes 0.7907 0.649 0.6319]0.61. 0.5573 0.6381)
04850659 0.31 0.26 0.40 0.14]1.05€-08 1 17019133 16692638 | ESPNP. Body AS no. -0.1329 [NA -0.0215]-0.0769 | NA -0.0007
16558994 0.30 0.21 0.36 0.15]2.37E-05 1 21023132 Bod CA yes 0 0.0968 0 -0.0176
518150584 0.57 0.50 0.64 0.14]6.28E-04 1 23887816 Promoter CA no 0.083 0.0777 0.0 0.1313
19276111 0.43 0.55 0.49 -0.06]2.33€-03 1 24229232 Promoter AF no -0.0678 |0.0343 -0.14 -0.2102
120415053 0.54] 0.62 0.74) 0.12[1.60-05 1 26527928 Bod) AS yes 0.0882_ [0.0313 0.1282 0.1243
802251754 0.50 0.29 0.18 -0.11|3.50€-20 1 28572299 AF/AS yes 0.3134 |-0.3603 -0.4901 -0.4259
14781242 0.66 0.81 0.84 0.03]9.37E-14 1 32738251 Promoter AF yes 0.0052 -0.1846 0.0507 -0.0160
06917450 0.29] 0.27 0.54] 0.27]2.31616 1| 3sisees Promoter As yes 0.5083_[0.5241 0.4751 0.5093
0.69 0.57 0.64 0.07]1.73€-02 1 42384390 Promoter CcA no. -0.2774 |-0.185 -0.0661 -0.2571
02927682 0.37 0.40 0.49 0.09]1.75E-03 1 54844424 Bod AS yes 0.2256 0.1371 0.10! 0.2199
c£10760651 0.48] 037 0.50) 0.13[1.066:04 1| seoes184] A yes 02962 [0.3508 0.346] 01705,
810631373 0.41 0.29 0.36 0.07]2.25€-04 1 89457642 88991959 | RBMXL1;CCBL2. Promoter;Promoter A yes 0.1154 0.0038 0.0936 0.1258
09408571 0.59] 0.6 0.75] 0.09]5.84£-07 1| 101003634] 100538078 GPRas Promoter AF yes 01117 _[0.0329 ~0.0697 0.0979.
0.30 038 053] 0.15]5.656-08 1| 101003688 100538132 | GPR8s. Promoter AS yes 01265 0135 01149 01493,
§25210 0.25 0.28 0.46 0.18]2.81E-09 1 110254828 109712206 | GSTMS Promoter AS yes -0.4127 |-0.1016 -0.208 -0.1339.
02193146 0.64] 0.79 0.76] -0.03[6.37€-06 1| 110752257 110209635 ncRNA promoter AF no 01198 [0.0101 0.0234] ~0.0285
524853868 0.51 0.49 0.66 0.17]2.26€-05 1 146555624 147084075 AS yes 0.3135 0.5334 0.1769 0.1400
g1350: 0.66) 0.63 0.77 0.148.15E-05 1 147826191 148354063 AS yes -0.0759 _|-0.1163 -0.0008| -0.0616
0.45 0.41 0.22] -0.19[7.67€-15 1] 154839909| 154867433 [ KNN3 Bod) As yes [0.5463 0,508 ~0.4614] 0.5778
823915527 0.50 0.36 0.39 0.03]2.45€-05 1 161368787 16139899 AF yes 0.2098 0.2852 0.1048 0.2215
12092579 0.38 0.23 0.29 0.06[2.07E-06 1 178380975 178411840 | RASAL2 Bod AF no. -0.2273 |-0.3367 -0.0571 -0.3504
1868 0.36 0.30 0.24 -0.06[3.09E-05 1| 199481399 199512271 AF ves 02709 _|0.1163 ~0.071 0.1315
518222590 0.41 0.35 0.48 0.13]1.21E-10 1 204290972 20431]844|P1EKHA6 Promoter CcA yes 0.1774 0.1619 0.0542 0.1857
20240347 0.46 0.31 0.35 0.04]1.72E-04 1 204465584 204496456 AF yes 0.0271 -0.0594 0.1 0.0815
cg17178900 0.28] 0.50] 0.24] ~0.26[2.76E-10 1| 205818956 205849828 [ PM20D1 Bod, A yes [0.4676 0.5 ~0.4076] 05164
26354017 0.31 0.50 0.28 -0.22]1.98E-08 1 205819088 | 205849960 | PM20D1 Promoter CA yes -0.5308 _|-0.4969 -0.4403 -0.4909
14159672 0.30] 0.48 0.26] -0.22[5.50€-11 1| 205819179] 205850051 PM2001 Promoter A yes 0.6875_|0.6542 -0.643 0.6134
514893161 0.26 0.38 0.22 -0.16]2.00€-11 1 205819251 205850123 [PM20D1 Promoter CcA yes -0.5273  |-0.4989 -0.5044] -0.4443
11965913 0.15 0.30] 0.11 -0.19]9.61E-14 1 205819406 ZDSESUZ73|PMZOD1 Promoter CA yes -0.1019 _|-0.2599 -0.1607. -0.2005
24503407 0.25 0.43 0.21 0.22[1.11E-13 1| 205819492 205850364 PM20D1 Promoter cA yes 0.6528_|-0.5719 -0.5636] 0.5648
07157834 0.33 0.46 0.28 -0.18]2.78€-09 1 205819609 205850481 [PM20D1 Promoter CcA yes -0.5907 |-0.6364 -0.4552 -0.5779
0.62 0.48 0.46 -0.02]1.01E-06 1 232941706 232805960 [ KIAA1383/MAP10 Promoter AF yes 0.1941 0.1563 0.2429 0.1942
0.49| 0.32 0.33] 0.01[7.126:09 1| 2301775 232806029 k1A 10 Promoter AF yes 0.0731_[-0.0597 0.1212 0.0826,
0.46 0.39 0.51 0.12]3.25E-04 1 234977572 234841825 CA no. 0.2911 0.332 0.1873 0.3384
0.40] 0.46 0.22] ~0.24[5.74-19 1| aaas17177] 244353875 C1orf100 Promoter As yes 0.1061_|-0.1756 ~0.1901 ~0.2268
19368911 0.61 0.70] 0.75] 0.05[1.016:07 1| 245541456 245378154]KIF268 Bod) AF no 02452 __[0.0935 02145 0.1769
04134399 0.28 0.15 0.28 0.13]9.18E-09 1 246231142 246067840 [SMYD3 Body CA no. -0.082 -0.0981 0.0651 -0.0326
cg04798314. 0.51 0.66 0.84 0.18[2.266-13 1| 246668601 246505299 SMYD3 Bod! AS ves 0.0724__|0.1592 -0.0085 0.0321
09226051 0.42 0.40] 0.30 -0.10[4.03-03 1| 247611502 247448200 NLRP3 Bod, As yes -0.0714 [-0.154 -0.017 0.2073
§15829088 0.33 0.37 0.45] 0.08[3.36E-04. 1| 247802935 247639633 ] ncRNA promoter AS yes 0.0851 |-0.0693 0.0111 -0.0053

Supplementary Table 5 Population Variance agreement. A total of 52 CpGs on chromosome 1 that had
been identified as differentially methylated between ethnic populations were annotated and compared for
concordance of differential signal between microarray and sequencing data.

S-24


https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.14.421529; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

fmoles of different forms identified

Name dC dmC dmC dhmC |dmC/dC|dhmC/dmC |dhmC/dC
HGOO1 CP 01| 5680.727 | 156.3333 | 2143.964 | 0.922163 | 2.75% 0.04% 0.0012%
CP 01| 5721.555 | 157.2296 | 2212.077 | 0.966647 | 2.75% 0.04% 0.0012%
HGOO2 CP 02| 6134.437 | 206.1124 | 2915.523 | 1.078334 | 3.36% 0.04% 0.0012%
: CP 02| 6097.877 | 206.3662 | 2893.051 | 0.969016 | 3.38% 0.03% 0.0011%
*5 HGOO3 CP 03| 6676.031 | 212.3023 | 2979.854 | 0.756934 | 3.18% 0.03% 0.0008%
= CP 03| 6742.651|211.5162 | 2948.914 | 0.739288 | 3.14% 0.03% 0.0008%
2 HG004 CP 04| 5223.132 | 188.2691 | 2588.429 | 0.592667 | 3.60% 0.02% 0.0008%
© CP 04| 5224774 | 191.126 | 2560.265 | 0.56839 | 3.66% 0.02% 0.0008%
§, HGOOS CP 05| 5487.878 | 192.3814 | 2680.448 | 0.828852 | 3.51% 0.03% 0.0011%
3 CP 05| 5523.128 | 193.3392 | 2646.98 | 0.784192 | 3.50% 0.03% 0.0010%
[ HGO06 CP 06| 5962.204 | 217.7679 | 2979.255 | 0.724408 | 3.65% 0.02% 0.0009%
CP 06| 6041.553 | 217.7672 | 3002.681 | 0.686946 | 3.60% 0.02% 0.0008%
HGOO7 CP 07| 5819.142 | 205.9319 | 2860.277 | 0.884028 | 3.54% 0.03% 0.0011%
CP 07| 5733.883 | 204.7114 | 2814.214 | 0.937631 | 3.57% 0.03% 0.0012%
HGOO1 CP 08| 3620.176 | 99.23043 | 1362.303 | 0.646334 | 2.74% 0.05% 0.0013%
CP 08| 3674.493 | 98.73453 | 1356.403 | 0.582917 | 2.69% 0.04% 0.0012%
HG002 CP 09| 2835.62 | 91.63515 | 1259.922 | 0.537728 | 3.23% 0.04% 0.0014%
';‘J CP 09| 2872.229 | 92.00553 | 1250.31 | 0.520239 | 3.20% 0.04% 0.0013%
5 HGOO3 CP 10| 2832.307 | 85.18032 | 1167.688 | 0.370097 | 3.01% 0.03% 0.0010%
= CP 10| 2864.241 | 86.2764 | 1175.466 | 0.351737 | 3.01% 0.03% 0.0009%
2 HGOO4 CP 11| 2987.18 | 104.5185 | 1423.736 | 0.548236 | 3.50% 0.04% 0.0013%
= CP 11| 2989.671| 104.0718 | 1431.635 | 0.452427 | 3.48% 0.03% 0.0011%
§° HGOOS CP 12| 2999.949 | 102.7485 | 1410.854 | 0.489238 | 3.43% 0.03% 0.0012%
3 CP 12| 3048.796 | 103.0123 | 1399.723 | 0.54343 | 3.38% 0.04% 0.0013%
o HGOO6 CP 13| 3258.307 | 113.3027 | 1535.199 | 0.48512 | 3.48% 0.03% 0.0011%
CP 13| 3199.5 |111.8209]| 1519.138 | 0.476289 | 3.49% 0.03% 0.0011%
HGOO7 CP 14| 3324.166 | 113.9253 | 1545.66 | 0.634276 | 3.43% 0.04% 0.0014%
CP 14| 3266.074 | 112.9173 | 1530.64 | 0.60005 | 3.46% 0.04% 0.0014%
Blank CP 15 0 0.681001
CP 15 0 0.689081

Supplementary Table 6 LC-MS/MS quantification of dC, dmC and dhmC in fmoles from digested genomic
DNA (HG001-HGO007) samples. For the detection of 5hmC a second higher volume injection was
performed. The two dmC quantification values correspond to the two injections. Percentage of 5hmC in
these samples is very low and below the limit of detection of the method.
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