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Abstract54

Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental55

processes, maintain cellular lineage specification, and can define or stratify cancer and other diseases.56

However, the wide variety of approaches available to interrogate these modifications has created a need for57

harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequenc-58

ing applications in clinical and basic research. Here, we present a multi-platform assessment and a global59

resource for epigenetics research from the FDA’s Epigenomics Quality Control (EpiQC) Group. The study60

design leverages seven human cell lines that are designated as reference materials and publicly available61

from the National Institute of Standards and Technology (NIST) and Genome in a Bottle (GIAB) consortium.62

These samples were subject to a variety of genome-wide methylation interrogation approaches across six63

independent laboratories, with a primary focus was on 5-methylcytosine modifications. Each sample was64

processed in twoormore technical replicates by threewhole-genomebisulfite sequencing (WGBS) protocols65

(TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl),66

one enzymatic deamination method (EMseq), targeted methylation sequencing (Illumina Methyl Capture67

EPIC), and single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies. After rig-68

orous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range69

of algorithms (Bismark, BitmapperBS, BWAMeth, and GemBS), we found overall high concordance between70

assays (R=0.87-R0.93), differences in efficency of read mapping and CpG capture and coverage, and plat-71

form performance. The data provided herein can guide continued used of these referencematerials in epige-72

nomics assays, aswell as provide best practices for epigenomics research and experimental design in future73

studies.74

Introduction75

DNA methylation plays a key role in the regulation of gene expression [1], disease onset [2], cellular devel-76

opment [1], age progression [3], and transposable element activity [4]. Whole Genome Bisulfite Sequencing77

(WGBS) is increasingly used for fundamental and clinical research of CpGmethylation. Numerous validated78

protocols and commercially available kits are available for WGBS library preparation ([5], [6], [7]). Other as-79

says to interrogate the epigenome include oxidative bisulfite sequencing [8], enzymatic deamination [9], and80

targeted approaches ([10], [11]), further accelerating the breadth and rate of discovery in genome-wide DNA81

methylation studies.82

As the field of epigenomics continues to advance, there is a need to establish definitive standards and83

benchmarks repesentative of the methylome. The Genome in a Bottle (GIAB) Consortium has recently es-84

tablished seven human cell lines as referencematerial to enable genomics benchmarking and discovery [12].85

Recent work has characterized the genomes of these cell lines (e.g. germline structural variant detection in86

[13]), but not yet at the epigenome level. Here, the FDA’s Epigenomics Quality Control (EpiQC) Group presents87

epigenomic sequence data across all seven GIAB reference cell lines, as well as a comparative analysis of88

targeted and genome-wide methylation protocols, to serve as a comprehensive resource for epigenetics89

research. We build on top of previous work done to compare the performance and biases of WGBS library90

kits (e.g. [6, 14, 15]) by evaluating both commonly used and newly available epigenomic library preparation91

kits across a broad set of samples that are used increasingly for benchmarking. We report the relative per-92
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formance of each kit, as measured by mapping efficiencies, CpG coverage, and methylation estimates, as93

well as characterizing the reproducibility and challenges of methylation estimation across the genome. We94

further sequenced these cell lines using long read technology on an Oxford Nanopore PromethION and com-95

pare its ability to characterize the epigenome alongside more common chemical/enzymatic conversion kits96

and short read sequencing. We also generated microarray data for these cell lines and provide guidelines97

for normalization of beta values, site filtration, and comparison to epigenetic sequence data. This reference98

dataset can act as a benchmarking resource and a reference point for future studies as epigenetics research99

becomes more widespread within the field of genomics.100

Results101

Study Design and Sequencing Outputs102

We generated epigenomic data for seven well-characterized human cell lines (HG001-HG007) that have re-103

cently been designated as reference materials for genomic benchmarking by the Genome in a Bottle (GIAB)104

Consortium [16]. These cell lines include NA12878 (HG001) from the CEPH Utah Reference Collection, as105

well as two family trios from the Personal Genome Project, one of Ashkenazi Jewish ancestry (HG002-4)106

and one of Han Chinese ancestry (HG005-7).107

Libraries for whole epigenome sequencing were prepared using a variety of common bisulfite and en-108

zymatic conversion kits, including NEBNext Enzymatic Methyl-Seq (referred to here as EMSeq), Swift Bio-109

sciencesAccel-NGSMethyl-Seq (MethylSeq), SPlinted LigationAdapter Tagging (SPLAT), NuGENTrueMethyl110

oxBS-Seq (TrueMethyl), and Illumina TruSeq DNAMethylation (TruSeq). Cell line genomic DNAwas acquired111

from Coriell, and one aliquot of each genome was extracted and distributed to six independent laboratories,112

each utilizing one library preparation method (Table 1).113

Each site prepared two technical replicates per cell line for their respective epigenetic assay. In the case114

of EMSeq, librarieswere prepared at two sites, designated as Lab 1 and Lab 2. All other siteswere designated115

as Lab 1 for their library type. In the case of TrueMethyl, pairs of replicates were made using a bisulfite-only116

treatment (BS) and an oxidative-bisulfite treatment (OX). All libraries were pooled into equamolar concentra-117

tions and sequenced in multiplex at one site (see methods), resulting in a range of 500M to 3.5B paired-end118

reads per replicate. The range of sequencing depth per replicated resulted from an imbalance in library119

pooling, as well as differences in shearing condition and size selection per library type (see methods).120

In addition to short read sequencing of epigenetic libraries, Oxford Nanopore R9.4.1 PromethION flow121

cells (referred to here as Nanopore) were run to generate long read sequence data for each genome, each122

ranging from 75B to 250B bases.123
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Data Quality Control124

We performed quality control of all sequence data generated within this study using FASTQC [17] (see Sup-125

plementary Data 1 for quality reports for every sample). As a measure of the success of the bisulfite or126

enzymatic convesion step of each library preparation, we estimated the cytosine conversion rate across127

CpG and non-CpG contexts (Figure S1a). CpG methylation levels fell in the expected 45%-65% range across128

all libraries (Methyl Capture EPIC, as an exception, showed lower rates, a reflection of targeting less methy-129

lated regions such as promoters and enhancers). Conversion of cytosines in non-CpG contexts was near130

zero as expected for all libraries, though CHG and CHH context conversion was somewhat eelevated for131

TruSeq libraries (Figure S1a) (see below for mapping and methylation calling that enabled these estimates).132

Depending on library preparation, different libraries had different completely unmethylated (lambda) or133

completely methylated (pUC19 plasmid) spiked-in controls (see methods). Methylation levels of these con-134

trols were very nearly 0% or 100% respectively across all libraries (Figure S1b), further reflecting the quality135

of the data.136

Mapping Efficiencies Per Epigenomic Library Type137

Following quality control, we examined the performance of reference-based read alignment andmethylation138

estimation for samples of each library type. Our pipeline of choice was bwa-meth (a common methylation-139

aware, reference-based read aligner) followedbyMethylDackel formethylation extraction, whichwas chosen140

for its high mapping efficiency, greatest mean depth of coverage per CpG, and speed (for a comparison141

of alignment and methylation calling pipelines, see the supplementary results, as well as Figure S2 and142

Figure S3). Each epigenomic assay had a distinct profile of mapping outcomes (Figure 1a). MethylSeq143

had the highest primary mapping rate and lowest secondary/unmapped rate. While EMSeq (Lab 1) and144

SPLAT had comparable primary mapping rates to MethylSeq, SPLAT had the highest fraction of unmapped145

reads. TrueMethyl had the highest rate of multi-mapped reads, while TruSeq returned the highest rate of146

PCR duplicate reads.147

As a measure of protocol efficiency, we estimated the total cytosine conversion in CpG contexts and148

found that each whole-methylome approach converted 45-65% of CpGs. As an estimate of conversion ef-149

ficiency, we also characterized methylation in CHG and CHH contexts and found all libraries to be close to150

the expected 0% range (nearing 100% conversion efficiency), except for TruSeq which neared 2% in CHG151

contexts and 1% in CHH contexts, and MethylSeq which approached 0.75% in CHH contexts (Figure S1).152

Each assay had a specific, tight profile of insert size distributions (Figure 1b). There was a strong rela-153

tionship within each assay between the estimated insert size and the percentage of total bases that were154
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trimmed prior to alignment (this included triming adapter content, low quality bases, and dovetailing bases155

between mates of a pair of reads). Libraries with insert sizes below 275bp had anywhere from 5-25% of156

total bases trimmed, while EMSeq libraries with >275bp insert sizes needed very few bases trimmed other157

than adapter content (Figure 1c). This particular pattern was seen due to the 150x150 chemistry used for158

sequencing, and the threshold for fragment size may be lower with shorter read sequencing.159

Imbalanced base trimming and unequal distribution of reads per replicate (see above) resulted in diver-160

gent genome coverage per assay (Figure 1d). Generally, a minimum of 20X coverage is considered suffi-161

ciently deep to characterize a genomic region, and EMSeq andMethylSeq had the highest percentage of the162

genome covered at 20X. This was followed by SPLAT, the oxidative and bisulite replicates of TrueMethyl,163

and lastly the TruSeq libraries, which had the lowest percentage of the genome covered at lower depths, but164

a long tail of high-coverage sites. TruSeq libraries also showed a high degree of dinucleotide bias favoring165

GC-rich regions compared to other libraries (Figure 1e), owing to the GC-biased random hexamer ligation166

step in its library preparation, as well as exposing samples to sodium bisulfite prior to DNA shearing.167

Reads fromwholemethylome librarieswere passed through an alignment andmethylation calling pipeline168

(see above). Reads were filtered from the methylation calling process if they did not map to the reference169

genome, if they were marked as a non-primary alignment (secondary/supplementary/duplicate reads), or170

if they were assigned a mapping quality score below MQ10. The fractions of reads that were filtered along171

the alignment pipeline (Figure S4) were highly assay-specific. At the end of this process, EMSeq libraries172

retained the highest percentage of reads for methylation calling (maximum 86%), followed by SPLAT (83%),173

MethylSeq (81%), TrueMethyl (80%), and finally TruSeq (77%). EMSeq also showed laboratory specificity, with174

lower rates of useable bases in libraries prepared using shorter fragment sizes (mean of 86% in Lab 1 versus175

73% in Lab 2) (seemethods). We observed no notable differences in read filtration rates between TrueMethyl176

libraries treated with potassium perruthenate (KRuO4) oxidation and those only exposed to sodium bisulfite.177

The average total percentage of useable bases is summarized per assay for HG002 in Table 2, and more178

detailed statistics for all cell lines are shown in Supplementary Table 2.179

We next calculated for each library type the relationship between raw total number of read pairs se-180

quenced versus the mean depth of coverage achieved per CpG (Figure 1f). We found that the rates were181

highly assay-specific, as seen above. Overall, in order to achieve a target mean depth of 20X per CpG, EM-182

Seq required the fewest reads ( 275-300M read pairs), folowed by MethylSeq (366M) and SPLAT (369M),183

then TruSeq (461M), and then TrueMethyl (692M), as noted in Table 2. In order to compare short read data184

to variably-lengthed long read data from Oxford Nanopore, we calculated the same relationship using total185

bases sequenced (Figure 1g). We found that Nanopore sequencing covered CpGs and called methylation at186

a similar rate per nucleotide as did any short read library type.187
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CpG Coverage and Downsampling188

We analyzed the distribution of CpG coverage across the genome per assay. In order to control for the189

effect of uneven sequencing depth, we first downsampled the methylation call sets for every replicate to190

a given mean coverage value. Downsampling can be done by either filtering the number of reads in an191

alignment (BAM files), or by randomly removing a fraction of observed cytosines and observed thymines192

per CpG within methylation call sets (bedGraph files). Because downsampling at the alignment level can193

be slow and demanding in terms of disk space and compute time, we set out to evaluate if the signal from194

downsampling cytosines within bedGraph files recapitulated downsampling aligned reads within BAM files.195

The two approaches yielded similar results in number of CpG sites detected, distribution of read counts, and196

methylation calls. bedGraph downsampling had the added benefit that the targeted average CpG coverage197

was more accurately estimated than when downsampling BAMs (Figure S5).198

Weproceededwithmethylation call sets that were normalized to amean of 20x coverage per site. Unless199

otherwise noted, these call sets comprised merged replicates per library type, and merged calls on positive200

and negative strands (i.e. reporting methylaton at the dinucleotide level rather than individual cytosines).201

The mean coverage per library shifted as expected, indicating the success of the downsampling approach202

(Figure S6a). Notably, the methylation percentage distribution also shifted, with the bimodal peaks at 0%203

and 100% becoming more pronounced, and putatively hemimethylated regions dropping out as a function204

of fewer observations per site resulting in lowered sensitivity (Figure S6b). We observed that downsampling205

below 20x exaggerated this effect. Downsampling also produced an assay-specific pattern of site dropout206

(Figure S7). Although the overwhelming number of sites are covered by all assays, we observed the high-207

est CpG dropout in TruSeq, followed by SPLAT, then MethylSeq, then TrueMethyl, then EMSeq, both when208

accounting for any coverage at all (>=1x) or coverage of >=50% of the overall mean value.209

Even after normalizing for mean CpG coverage, we observed a range of assay-specific empirical cumu-210

lative distributions (Figure 2a). In particular, TruSeq produced left and right tails of very low and very high211

coverage. We see this has an effect on reproducibility between replicates of the same assay (Figure 2b),212

where, compared to an expected distrubtion of cross-replicate concordance, TruSeq showed the highest213

variation, followed by TrueMethyl, while SPLAT, MethylSeq, and EMSeq were more reproducible than ex-214

pected. Intra-assay coverage reproducibility was relatively consistent above 20X coverage (r>0.98 for all215

assays), but broke down below 10X (r<=0.95 for all assays). We therefore recommend 20X as a minimum216

CpG dinucleotide coverage value (Figure S9).217

We restricted further analyses to Chromosome 1, which represents a significant portion of the genome218

( 10%), contains all difficult regions (such as tandem duplications and satellites), and is computationally219

much more tractable than a genome-wide analysis. When aligning CpGs covered in the 20X downsampled220
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libraries, we found that the majority of CpGs (>99%) were covered by all assays, with some assay-specific221

dropout (Figure 2c). Nanopore sequencing was able to cover the highest number of CpGs not covered by222

other assays, and TruSeq missed the highest number of CpGs covered by other assays (Figure 2d). Among223

the regions covered uniquely by Nanopore sequencing, about 20% were meaningful for epignetic regulation224

(promoter, TSS, or exonic sites), while the few CpGs uniquely captured by other assays were intronic or225

intergenic (Figure 2d). Despite the small number of differences of CpG coverage observed between assays,226

the total genomic annotation of sites covered was highly consistent (Figure S8).227

We also examined the coverage of CpG islands, shelves, and shores (Figure 2e). Nanopore returned the228

most even coverage across these annotations, while TruSeq showed elevated coverage relative to its overall229

mean in these GC-rich regions. EMSeq, MethylSeq, and SPLAT returned reduced coverage in CpG islands230

relative to their mean CpG coverage. This pattern was recapitulated around transcript start sites (TSS),231

where TruSeq was overrepresented, Nanopore and TrueMethyl stayed relatively flat, and EMSeq, MethylSeq,232

and SPLAT were respectively underrepresented in TSS (Figure 2f).233

Methylation Percentage across Genomic CpGs234

After comparing coverage of CpGs, we examined estimates of per-site methylation across assays. As235

expected, we found methylation percentages to be bimodally distributed with peaks near 0% and 100%236

methylation. All assays exhibited enrichment for fully methylated regions (Figure 3a), with the exception237

of Nanopore, which showed underrepresentation of fully methylated regions, a current limitation of its un-238

derlying base modification calling method (see methods). For short read approaches, we calculated and239

corrected for methylation bias (or "mbias"), a measurement of overinflated hypo- or hyper-methylation sig-240

nal toward the 5’ and 3’ ends of reads. Mbias analysis revealed assay-specific deviation at read ends (Fig-241

ure 3b). We trimmed bases uniquely for each sample where values began to inflate as recommended by242

MethylDackel. Mbias analysis also revealed overall methylation trends, with SPLAT and EMSeq tending to243

have the highest average methylation across reads, while TrueMethyl had the lowest among short read pro-244

tocols, and TruSeq was the most variably methylated per base across reads.245

We next assigned genomic features to each CpG and summarizedmethylation across regions in a meta-246

gene plot (Figure 3c). As expected, we found that methylation levels dropped significantly at TSS and247

then rose again beyond the 5’UTR in all assays. As detected in the global analysis, methylation captured248

by Nanopore was lower than by short read assays. Nevertheless, all assays including Nanopore showed249

highly similar methylation profiles around transcript start sites (TSS) genome-wide (Figure 3d). Correlation250

of methylation values across genome-wide CpGs was very high (Figure 3e). However, concordance broke251

down among all assays when restricting to sites with 20-80% methylation, where correlations were as low252
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as r=0.42 between Nanopore and TruSeq (Figure 3f). Therefore the majority of disagreement between as-253

says fell in CpG sites that were either hemimethylated, clonally complex, or undercovered with respect to the254

global mean. Although short read protocols had higher concordance with one another (r>0.93 for all pair-255

wise short read comparisons) than with Nanopore estimates, we found that methylation estimation from256

Nanopore base modification calling was comparable to short read protocols, with Pearson correlation val-257

ues around r=0.90 for all pairwise comparisons (Figure 3g).258

Family Trio Differential Methylation259

Differential methylation was examined at the family trio level. For each methylome assay, we used the260

replicate-combinedmethylation calls (includingmerging bisulfite andoxidative-bisulfite replicates for TrueMethyl)261

that were normalized to 20X mean coverage.262

A total of 2,298,846 CpG sites were present on Chromosome 1 in all six assays (EMSeq, MethylSeq,263

Nanopore, SPLAT, TrueMethyl, and TruSeq). Coverage levels on HG002 were positively correlated among264

EMSeq, MethylSeq, and TrueMethyl (Spearman’s ρ ≥ 0.24). SPLAT coverage was also correlated with these265

three assays as well as with TruSeq, which was only weakly correlated with any other assay. Nanopore266

coverage was uncorrelated with that of any other assay. The magnitude of pairwise coverage correlations267

within each assay varied considerably, with the highest levels observed for TruSeq (0.85 ≤ ρ ≤ 0.86), SPLAT268

(0.62 ≤ ρ ≤ 0.71), and MethylSeq (0.47 ≤ ρ ≤ 0.48), and the lowest for Nanopore (0.14 ≤ ρ0.22), EMSeq269

(0.28 ≤ ρ ≤ 0.31), and TrueMethyl (0.32 ≤ ρ ≤ 0.34).270

For each assay, differential methylation analysis was independently conducted at the family level (Ashke-271

nazi Trio HG002-HG004 against the Chinese Trio HG005-HG007). This also included a restriction to sites272

with 5X coverage in at least two out of three members of each family group, resulting in small data reduc-273

tions for EMSeq, MethylSeq, Nanopore, SPLAT, and TrueMethyl (3%, 4%, >1%, 4%, and 3%, respectively), and274

a greater loss for TruSeq (14%). Comparative analysis considered only the 1,928,536 CpG sites that met275

this criterion for all six assays. To assess consistency in sites identified as differentially methylated (DM)276

by each assay (DMA), we computed the fraction of DMA sites that were unique to each assay (a pseudo277

false-positive rate) (Supplementary Table 3). We also computed the total number of DM sites commonly278

identified by four or more assays (DM4+), which totaled 1.5% of the common sites. We then determined the279

percentage of DMA sites that were also DM4+ sites (a measure of specificity), as well as the percentage of280

DM4+ sites that were also DMA sites (a measure of sensitivity).281

For EMSeq, 26% of the sites identified as DM were unique to that assay, comparable to MethylSeq (26%)282

and SPLAT (29%). These three assays were also comparable in the percentage of DM sites that were identi-283

fied in at least three other assays (36%, 38%, and 35% for EMSeq, MethylSeq, and SPLAT, respectively), and284
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in the percentage of DM sites called by at least three other assays that they also detected (90%, 86%, and285

89%, respectively). TrueMethyl detected fewer DM sites overall, with 22% of sites unique to this assay and286

42% detected in at least three other assays. However, this did not correspond to a large decline in sensitivity,287

as 85% of the sites detected by three or more other assays were also identified by TrueMethyl. The small-288

est number of DM sites was identified in the Nanopore samples, with high specificity (17% unique DMAs289

and 56% of sites in DM4+) and lower sensitivity, identifying only 51% of the sites identified by four or more290

other assays. TruSeq, on the other hand, was associated with the largest number of DMA sites and had291

poor agreement with the other assays, with 43% unique sites, 38% of its sites identified in two or more other292

platforms, and only 71% of the sites identified by three or more platforms among its DMAs.293

Figure 4 illustrates the role of coverage variability for each platform. For each assay, the range between294

the 5th and 95th percentile of median coverage is shown along the x-axis, while the degree of agreement295

with other assays for DM sites is shown along the y-axis. We see that agreement declines at higher cov-296

erage levels, but this effect is minimal for EMSeq, MethylSeq, Nanopore, and TrueMethyl. Because SPLAT297

has a more heavy-tailed coverage distribution with stronger sample-to-sample correlations, the impact is298

more pronounced, while for TruSeq the coverage distribution is extremely diffuse and there is markedly299

poor agreement with other platforms in its upper coverage percentiles.300

Normalization of Array Data301

In addition to bisulfite sequencing, microarrays are another commonly used technique to interrogate the302

epigenome. For each cell line, across three laboratory sites, we generated 3-6 biological or technical repli-303

cates with microarray data from the Illumina MethylationEPIC Beadchip (850k array) (Table 1). As a first304

step before integrating microarray data with the sequencing data, we assessed the performance of differ-305

ent microarray normalization pipelines.306

We implemented 26 normalization pipelines with different combinations of between-array and within-307

array normalization methods. The between-array normalization methods evaluated were no normalization308

(None), quantile normalization (pQuantile) [18], functional normalization (funnorm) [19], ENmix [20], dasen309

[21], SeSAMe [22], andGaussianMixtureQuantileNormalization (GMQN) [23]. Thewithin-array normalization310

methods evaluated were no normalization (None), Subset-quantile Within Array Normalisation (SWAN) [24],311

peak-based correction (PBC) [25], and Regression on Correlated Probes (RCP) [26]. All combinations were312

implemented with the exception of pQuantile + SWAN and SeSAMe + SWAN, which were not possible due313

to incompatible R object types.314

We first performed principal component analysis (PCA) and visually inspected the first two principal315

components (PCs) for each normalization pipeline (Figure S10). Generally, samples from the same cell316
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line clustered together more tightly after normalization, although a few pipelines (PBC alone, GMQN alone,317

GMQN + PBC) did not show obvious improvement in replicate clustering. Most pipelines failed to clearly318

distinguish samples from cell lines HG005 and HG006, the Han Chinese father/son pair, from one another.319

A variance partition analysis was used to compute the percentage of methylation variance explained by320

cell line, lab, or residual variation at each CpG site in each normalized dataset. A superior normalization321

pipeline would have more variation explained by cell line across the epigenome compared to other pipelines322

as well as clear clustering of biological and technical replicates.323

Funnorm + RCP had the highest median across the epigenome (90.4%), although many pipelines had324

medians in the 85-90% range (Figure 5a). SeSAMe and RCP performed well (median > 85%) nomatter which325

methods they were combined with. While using RCP or SWAN usually improved performance compared to326

having no within-array normalization, using PBC for within-array normalization always reduced the median327

variance explained by cell line. For all downstream analyses, we used the funnorm + RCP normalized mi-328

croarray data because this pipeline had the highest median variance explained by cell line. Figure 5a shows329

the full distribution of variance explained by cell line across the epigenome for each normalization pipeline.330

Most pipelines had a bimodal distribution, so CpG sites typically had almost no variation explained by cell331

line or nearly 100% of variation explained by cell line.332

In light of previous work that has shown that microarray data is not reliable for sites with low popu-333

lation variation [27], we investigated whether sites with poor concordance between replicates (% variance334

explained near 0) overlapped with low-varying sites. We used the 59 SNP probes on the Illumina EPIC ar-335

ray to compute a data-driven threshold for categorizing sites as low varying (Figure 5b-d; see methods for336

details). We found that nearly all CpG sites in the normalized (funnorm + RCP) microarray data with poor337

concordance between replicates met our definition of low-varying sites (Figure 5e). This suggests that our338

data-driven definition of low-varying CpG sites, which can be applied to any Illumina 450k or 850k array339

dataset, may be useful for filtering out less reliable CpG sites before analysis.340

Normalized Microarray Concordance with Sequencing Data341

We performed 6 additional variance paritition analyses, adding samples from one sequencing assay (EM-342

Seq, MethylSeq, SPLAT, TrueMethyl, TruSeq, or Nanopore) at a time, to evaluate the concordance between343

microarray and downsampled 20X sequencing data. For each site and each sequencing assay, we estimate344

the percentage of methylation variance explained by cell line, assay (sequencing or microarray), and resid-345

ual variation. A higher percentage of variance explained by cell line indicates better agreement with the346

microarray data.347

Ternary density plots of the variance explained by cell line, assay, or residual variation show lower con-348
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cordance between the Nanopore sequencing data and the microarray data than other sequencing assays349

(Figure 6a). The five other sequencing assays (EMSeq, MethylSeq, SPLAT, TrueMethyl, and TruSeq) have a350

high density of sites where nearly 100% of the methylation variance in the merged seqeuencing/microarray351

dataset is explained by cell line. However, for all assays, there is a smaller peak of CpG sites where nearly352

100% of the methylation variance is explained by assay, indicating that there were some technical artifacts353

introduced by assay, but these technical artifacts were not widespread across the epigenome.354

We investigated what was driving poor concordance between assays at this subset of CpG sites and355

found a strong, non-linear relationship between the amount of variability at a CpG site and concordance356

(Figure 6b). The non-linear relationship between CpG site variance in the microarray data and concordance357

between assays indicates that there is a minimum amount of population variance needed for reproducibil-358

ity, but beyond this threshold more variation does not improve concordance. This confirms our proposed359

approach of estimating technical noise from the SNPs on the array to create a binary "low-varying" or "high-360

varying" classification for CpG sites.361

Because each cell line had 3-6microarray replicates and only one (merged replicate) sequencing sample,362

these results are largely driven by the microarray data and the estimates of the percentage of variation363

explained by cell line (vs. assay) are likely biased upward by this. Visual inspection of the joint distribution of364

microarray and sequencing beta values for all HG002 replicates (with sequencing replicates from the same365

lab merged) shows that there is substantial technical noise in the data when comparing any two assays366

(Figure S11). For the same assay in two different labs, we see much better concordance between HG002367

beta values with microarrays than with EMSeq.368

Differential Methylation in Microarray Sites369

We took differentially methylated regions between family groups (see above) and restricted them to sites370

captured by the Illumina MethylationEPIC Beadchip (850k array) (see above). Of the 82,013 probes on the371

array that map to regions on Chromosome 1, 81,456 sites (99.3%) were detected at high depth by all six372

sequencing assays. Of these, the number of differentially methylated assays (DMAs) ranged from 1,027373

(Nanopore) to 4,267 (TruSeq). For EMSeq, MethylSeq, Nanopore, and TrueMethyl, over 99% of these DMA374

had estimated percent methylation difference (PMD) of 20% or greater between the family groups, while375

95% and 80% of DMAs met this criterion for SPLAT and TruSeq, respectively.376

To analyze concordance between the sequencing-based and array results, we computed the proportion377

of these DMAs for which a corresponding difference of at least 20% was observed for the arrays, with these378

array PMDs estimated via ANOVA models with random intercepts for each genome. As illustrated Supple-379

mentary Table 4, the overall agreement was comparable for four of the six methods with values ranging380
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from 55.5% (EMSeq) to 60.0% (TrueMethyl), with a higher level of 67.0% for Nanopore and a lower level of381

49.6% for TruSeq. However, among the 4,137 sites with array |PMD|>0.2, only 16.6% were Nanopore DMAs382

in comparison to 42-44% for all other assays, suggesting high precision but lower sensitivity for this assay.383

Discussion384

The EpiQC study provides a comprehensive epigenetic benchmarking resource using human cell lines es-385

tablished by the Genome in a Bottle Consortium as reference materials to advance genomics research. We386

provide datasets for a broad range of methylome sequencing assays, including short-read whole genome387

bisulfite sequencing (WGBS) and enzymatic deamination (EMSeq), and native 5-methylcytosine calling using388

OxfordNanopore long read sequencing. We also provided data from targeted approaches, including reduced389

representation bisulfite sequencing (Methyl Capture EPIC) and the Illumina Infinium MethylationEPIC 850k390

array. While most of the published and/or commercialized assays have been tested with some standard391

sample (e.g. GM12878), the sample used to benchmark each assay was drawn from different DNA aliquots,392

extracted from cells grown at different passage, and potentially grown in different media. Here, aliquots of393

the same gDNA were distributed across multiple laboratories, and used for all data generated. To remove394

additional variability, all libraries were sequenced on multiple flow cells of one Illumina NovaSeq 6000 (then395

a third flow cell on the same instrument type). For all assays, libraries were produced in duplicates, providing396

both inter- and intra-assay datasets.397

Benchmarking whole methylome sequencing technologies is important for determining which method398

will achieve the best performance, and to provide recommendations and standards for experimental design399

within future studies. Large projects such as the NIH Roadmap Epigenomics Project [28] the International400

Human Epigenome Consortium [29], and the Cancer Genome Atlas [30] have produced, compiled, and an-401

alyzed a vast amount of WGBS data comprising tissues and cell lines from normal and neoplastic tissues.402

Building upon these previous works, our study encompasses an up-to-date range of commonly used whole403

methylome assays as well as emerging methods such as enzymatic methylation and native 5mC calling404

from long read technologies, and provides data across 7 different reference material cell lines, providing a405

comprehensive examination of DNA methylation analysis methods.406

We found that the library prepration method of choice and parameters used within each protocol had407

an outsized impact on data quality and biological inference. Libraries with longer inserts benefitted from408

less adapter contamination, fewer dovetailing (overlapping) reads, and fewer low quality bases, which in-409

creased mapping efficiency and mean coverage per CpG. This is particularly impactful when one chooses410

to employ a cost-effective sequencing on an Illumina system with paired-end 150 bp reads, as was done411
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within this study. This sequencing scheme resulted in a highly variable depth of coverage per library prepa-412

ration. While imbalanced poolsmay account for some of the difference, library preparationmethods had the413

biggest impact. Except for TruSeq, all the other library preparations start with shearing of the gDNA. For the414

other bisulfite-dependent protocols, the DNA fragments range between 200-400, whereas EMSeq allows for415

longer fragments ( 550bp). TruSeq libraries tend to have short (130 bp) insert sizes and are therefore more416

suitable for 75 bp paired-end read lengths. To overcome the impact of imbalanced sequence depth, this417

study provides robust recommendations for downsampling across sequencing types, showing both how418

different downsampling schemes (i.e. at the BAM level or at the methylation bedGraph level) are compara-419

ble, and how downsampled datasets can be directly compared to one another to assess the performance420

of the assays themselves.421

The methods that have proven to have greater genome-wide evenness of coverage, namely Accel-NGS422

MethylSeq [15], SPLAT [6], and TrueMethyl [31] tend to have longer insert sizes (200–300 bp), fewer PCR du-423

plicates (down to a few percent, depending on sequencing platform), and high mapping efficiencies (>75%).424

The SPLAT libraries herein had shorter insert sizes than desired due to the use of 400 bp Covaris shearing425

prior to library preparation. To achieve insert sizes of >=300bp, the SPLAT authors now recommend us-426

ing DNA fragmented to 500-600 bp as input and to perform final library purification at 0.8x AMPure ratio427

to remove shorter fragments. The same recommendation may also improve the insert size for MethylSeq428

and TrueMethyl protocols. SPLAT is the only method in our evaluation that is not commercial/kit-based429

and could be comparatively 1̃0x cheaper per library [6]. This can be important when considering the sample430

preparation cost alongside sequencing costs.431

NEB’s EM-Seq protocol [32] compares favorably to the bisulfite sequencing-based approaches analyzed432

herein. In almost all comparisons EM-Seq libraries captures more CpG sites at equal or better coverage. We433

also show that themethylation signal achieved by native basemodification detection fromOxford Nanopore434

long read sequencing is highly comparable to short read bisulfite- and enzymatic-methylation sequencing,435

with average Pearson correlation values of r=0.90 for CpG methylation concordance. Moreover, Nanopore436

can detect a significant number of sites that short read assays miss, many of which occur in promoter and437

exonic regions that are potentially of biological significance.438

Beyond library preparation, the use of algorithmic tools has an impact on the performance of eachmethy-439

lome assay. Asymmetrical C-T distributions between DNA strands and reduced sequence complexity make440

epigenetic sequence alignment different from regular DNA processing. We compared common methyla-441

tion processing piplines and compared their mapping efficiencies, depth of coverage achieved per CpG, and442

computational time to run, and observed bwa-meth to provide the best performance when considering all443

of these factors. Notably, BitMapperBS was significantly faster and not far behind bwa-meth in terms of444
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mapping efficiency and CpG coverage.445

Another important parameter is the amount of data retained from aWGBS experiment following adapter446

and quality trimming, mapping and deduplication. Here, we show the effects of each mapping step on each447

methylome assay (Figure S4), and how reads are filtered along each step, including the estimated number448

of reads required to achieve a certain mean coverage per CpG (Table 2). Similarly, previous studies [5, 15]449

have implemented a metric to estimate the efficiency of WGBS genome coverage by determining the raw450

library size (number of PE 150 bp reads prior to filtering) required to achieve at least 30x coverage of 50%451

or more of the genome. We propose a modified version of the calculation proposed by Zhou and collegues,452

deriving the number of PE150 bp reads needed to achieve 20x average CpG coverage for a library, as this453

metric directly relates back to the CpG sites whosemethylation levels will be interrogated. We also calculate454

useable bases, reflecting the total bases used for methylation estimation out of the total bases sequenced455

for per library. Adoption of such metrics will make it significantly easier to compare and contrast results456

from different methods.457

Choice of computational algorithms is equally important in analyzingmethylationmicroarray data. In this458

study, we compared 26 different normalization pipelines. Many algorithms (SWAN, RCP, pQuantile, dasen,459

funnorm, ENmix, SeSAMe) generally performed well in this dataset, clustering replicates from the same cell460

line together while preserving differences between cell lines. Given the comparable performance of these461

methods, the best normalization pipeline will depend on the needs of individual studies. For instance, co-462

horts with multiple tissues may want to use the multi-tissue extension of funnorm, funTooNorm[33], and463

cohorts with very large sample sizes may want to use SeSAMe[22], which is the only single-sample normal-464

ization method we evaluated. All pipelines performed poorly at sites with low population variance, confirm-465

ing previous work [27]. We propose using the SNPs on the 850k array to calculate a data-driven threshold466

for classifying and filtering out low-varying sites before analysis. Previously published associations at sites467

with low population variation, which can also often be identified by their extreme (<5% or >95%) median468

methylation values[27], should be interpreted with caution. Aditionally, our data from EMSeq andmicroarray469

replicates across different labs Figure S11 support previous findings that the Illumina 850k array was more470

reproducible than TruSeq across paired technical replicates from 4 cord blood samples [34]. We conclude471

that overall, microarrays are a good option for researchers who are comfortable with a targeted assay.472

One final caveat for the data within this study is our use of high quality DNA from EBV-immortalized,473

B-lymphoblastoid cell lines. Using this highly controlled input, the methods examined within this study pro-474

ducedmostly comparable data. However, the performance of each kit may bemore variable on less optimal475

input DNA (lower input, more highly fragmented, etc.) that mirrors real clinical samples more closely. The476

optimal data herein should serve as a launch point for future studies of more realistic inputs.477
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Methods478

Genomic DNA479

The samples in this study comprise genomic DNA (gDNA) from seven EBV-immortalized B-lymphoblastoid480

cell lines designated as reference samples by the National Institute of Standards and Technolog (NIST)481

Genome in aBottle Consortium (see https://www.coriell.org/1/NIGMS/Collections/NIST-Reference-Materials).482

The NA12878 (HG001) cell line was selected as it is the most commonly used reference for benchmarking483

or generation of genomics datasets. Additionally, six cell lines representing two trios from the Personal484

Genome Project, which are consented for commercial redistribution, were also included. The HG002/3/4485

samples were provided by a son/father/mother trio of Ashkenazi Jewish ancestry, and the HG005/6/7 come486

from a Han Chinese son/father/mother trio.487

For each reference cell line, 100 ug genomic DNA (gDNA) was purchased from the Coriell Institute for488

Medical Research, along with viable cell lines for later growth and distribution. The gDNA was quantitated489

using Qubit Broad Range dsDNA kit and an aliquot from reference sample gDNA was distributed to six490

independent laboratories for NGS library preparation or microarray analysis.491

NGS Library Preparation492

Enzymatic Methyl-Seq (EMSeq): EMSeq libraries were prepared at two different laboratories using slightly493

altering protocols. At Lab1, genomic DNA was spiked in with 2 ng unmethylated lambda as well as 0.1 ng494

CpG methylated pUC19, and was then fragmented to 500 bp using a Covaris S2 (200 cycles per burst, 10%495

duty-cycle, intensity of 5 and treatment time of 50 seconds). At Lab2, genomic DNA was fragmented to496

450 bp using Covaris 130uL. While all replicates of HG001-004 were created using 100ng of DNA, both labs497

created replicates of HG005-007 using 100ng, 50ng, and 10ng of DNA in order to test the effects of input498

concentration. EM-seq libraries from both laboratories were prepared using the NEBNext Enzymatic Methyl-499

seq (E7120, NEB) kit following manufacturer’s instructions. Final libraries were amplified with NEBNext Q5U500

polymerase using 4 PCR cycles for 100 ng, 5 cycles for 50 ng and 7 cycles for 10 ng inputs. Libraries were501

quality controlled on a TapeStation 2200 HSD1000.502

503

Swift Biosciences Accel-NGS Methyl-Seq (MethylSeq): Libraries were prepared according to manufac-504

turer’s instructions (Swift) using dual-indexing primers. Briefly, 100ng of genomic DNAwas spiked in with 1%505

unmethylated Lambda gDNA, and fragmented to 350 bp (Covaris S220, 200 cycles per burst, 5% duty-factor,506

175W peak displayed power, duration of 50 seconds). Bisulfite conversion was performed using EZ DNA507

Methylation-Gold kit (Zymo Research). Adaptase was used to ligate adapters to the 3’ end of the bisulfite-508
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converted DNA, followed by primer extension, second strand synthesis, and ligation of adapter sequences509

at its 3’ end. The libraries were amplified for a total of 6 rounds using the Enzyme R3 provided with the kit.510

Libraries were quality controlled on a TapeStation 2200 HSD1000.511

512

SPlinted Ligation Adapter Tagging (SPLAT): 100ng gDNA was fragmented to 400 bp (Covaris E220, 200513

cycles per burst, 10% duty factor, 140 peak incident power PIP, 55s treatment time). Bisulfite conversion was514

performed using the EZ DNA Methylation-Gold kit (Zymo Research). SPLAT libraries were constructed as515

described previously [6]. Briefly, adapters with a protruding random hexamer were ligated at the 3’ end and516

5’ end of single-stranded DNA in consecutive reactions. The resulting libraries were amplified with 4 PCR517

cycles using KAPA HiFi Uracil+ PCR enzyme (Roche). Libraries were quality controlled on a TapeStation518

2200 HSD1000.519

520

NuGEN TrueMethyl oxBS-Seq (TrueMethyl): 200 ng of genomic DNA was spiked with 1% unmethylated521

Lambda gDNA and fragmented to 400 bp (Covaris S220, 10% duty-factor, 140W peak incident power, 200522

cycles per burst, duration of 55 seconds). Fragmented DNA was processed for end-repair, A-tailing, and523

ligation using NEB’s methylated hairpin adapter. Ligation was performed at 16°C overnight in a thermocy-524

cler. The USER enzyme reaction was performed the next morning, according to the manufacturer’s protocol,525

and the adapter-ligated DNA cleaned up using 1.2:1 Ampure XP bead:ligated DNA ratio. Each ligation was526

then split into 2 aliquots to perform oxidation + bisulfite conversion or mock (water) + bisulfite conversion527

according to the OxBS module instructions (Tecan/NuGen). PCR amplification was performed using NEB’s528

dual-indexing primers and KAPAUracil+ HiFi enzyme for a total of 10 cycles. Libraries were quality controlled529

on a TapeStation 2200 HSD1000.530

531

Illumina TruSeq DNA Methylation (TruSeq): 100ng of genomic DNA was bisulfite converted using EZ DNA532

Methylation-Gold Kit (Zymo Research). Sequencing libraries were prepared according to the manufacturer’s533

protocol (Illumina). Briefly, the bisulfite-converted DNA was first primed by random hexamers containing a534

tag sequence on its 5’ end. Next, the bottom strand was extended and a 3’ end oligo added. The libraries535

were amplifiedwith 10PCRcycles using the FailSafe PCRenzyme (Illumina/Epicentre). Librarieswere quality536

controlled on a TapeStation 2200 HSD1000.537

538

Illumina Methyl Capture EPIC: 500ng of genomic DNA was prepared according to the manufacturer’s proto-539

col (Illumina), including a spike-in of 2 ng of unmethylated lambda. Briefly, the genomic DNAwas fragmented540

to 200 bp using a Covaris S220 (10% duty-cycle, 175W peak incident power, 200 cycles per burst, duration of541
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360 seconds). The fragmented DNAwas next purified using AMpure XP beads, end repaired and A-tailed, be-542

fore ligation of single index adapters with methylated cytosines. Libraries cleaned using AMpure XP beads,543

then pooled in 3- and 4-plex. The pools were denatured to single stranded DNA before hybridization to the544

RNA baits provided with the kit. After cleanups of the hybridizations according to the manufacturer’s pro-545

tocol, the captured strands were process for library amplification by PCR using KAPA Uracil+ HiFi enzyme546

(Roche) and TrueSeq primers included in the kit. Libraries were quality controlled on a TapeStation 2200547

HSD1000..548

549

Oxford Nanopore Library Preparation: Genomic DNA was quantified using a Qubit 4 Fluorometer (Ther-550

moFisher Q33238) and librarieswere prepaird using a Ligation SequencingKit (SQK-LSK109, OxfordNanopre551

Technologies). Briefly, 1000ng of genomic DNA was end-repaired and dA-tailed using the NEBNext End552

Repair/dA-tailing module, and then sequencing adapters were ligated. DNA fragments below 4kb were re-553

moved using the long fragment wash protocol option according to the manufacturer’s protocol.554

EPIC Microarrays555

Illumina Infinium MethylationEPIC BeadChip (850k array): Bisulfite conversion was performed using the556

EZ DNA Methylation Kit (Zymo Research) with 250 ng of DNA per sample. The bisulfite converted DNA557

was eluted in 15 µl according to the manufacturer’s protocol, evaporated to a volume of <4 µl, and used for558

methylation analysis on the 850k array according to the manufacturer’s protocol (Illumina).559

Microarray experiments were run at three different labs, denoted Lab A, B, and C to distinguish them from560

the sequencing labs (Lab 1 and Lab 2). The resulting dataset contains 30 samples, with each of the seven561

cell lines (HG001-HG007) having between three and six replicates (biological or technical). Two technical562

replicates were generated for each cell line at lab A, one replicate from each cell line was generated at lab563

B, and three technical replicates were generated for the Han Chinese family trio cell lines (HG005-HG007)564

at lab C.565

LC-MSMS Quantification566

LC-MS/MS quantification of 5mC and 5hmC: Genomic DNA from HG001-007 cell lines was used for the567

analysis. Samples were digested into nucleosides using Nucleoside digestion mix (M0649S, New England568

Biolabs) following manufacturers protocol. Briefly, 200 ng of each sample was digested in a total volume of569

20 µl using 1 µl of the digestion mix. Samples were incubated at 37°C for 2 hours.570

LC-MS/MS analysis was performed using two biological duplicates and two technical duplicates by in-571

jecting digested DNA on an Agilent 1290 UHPLC equipped with a G4212A diode array detector and a 6490A572
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Triple Quadrupole Mass Detector operating in the positive electrospray ionization mode (+ESI). UHPLC was573

performed on a Waters XSelect HSS T3 XP column (2.1 × 100 mm, 2.5 µm) using a gradient mobile phase574

consisting of 10 mM aqueous ammonium formate (pH 4.4) and methanol. Dynamic multiple reaction mon-575

itoring (DMRM) mode was employed for the acquisition of MS data. Each nucleoside was identified in the576

extracted chromatogram associated with its specific MS/MS transition: dC [M+H]+ at m/z 228-112, 5mC577

[M+H]+ at m/z 242-126, and 5hmC [M+H]+ at m/z 258-142. External calibration curves with known amounts578

of the nucleosides were used to calculate their ratios within the analyzed samples.579

DNA Sequencing580

Illumina sequencing: The short-read sequencing libraries were collected from participating laboratories and581

sequenced centrally at two sequencing centers. Libraries were pooled by library type in high concentration582

equimolar stock pools (4 nM). After pooling, bead-based clean-up was performed to remove peaks <200583

bp. The cleaned stock pools were quantified on an Agilent Bioanalyzer using High sensitivity DNA chip and584

subsequently diluted to 1.5 nM prior to sequencing on Illumina NovaSeq 6000 S4 flowcells PE150 read-585

length to a targeted minimum per replicate CG coverage of 20x. Base calling was performed using RTA586

v3.4.4. Additional details about the sequencing parameters can be found in the Supplementary Materials587

and Methods.588

Oxford Nanopore Sequencing: The Nanopore libraries were run simultaneously on seven FLO-PRO002589

flowcells for 64 hours on a PromethION Beta device to maximize yield. FAST5 files were generated using590

default parameters within MinKNOW on the PromethION machine. Base calls and base modification calls591

were generated using Megalodon v2.2.9 (https://nanoporetech.github.io/megalodon/) with guppy v4.2.2592

(https://community.nanoporetech.com/downloads/guppy) as the basecaller backend. The MinION DNA593

R9.4.1 5mC configuration file from the Rerio database (https://github.com/nanoporetech/rerio) was used594

as the base modification model. The MinION model was chosen because it maintained more consistent595

peaks at 0% and 100% methylation as compared to the PromethION model.596

Data Quality Control597

FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to evaluate the quality of598

sequencing data, including base qualities, GC content, adapter content, and overrepresentation analysis.599

Adapter sequenceswere trimmed using FASTP [35] with aminimum length of two bases, quality filtering dis-600

abled, and forced poly-G trimming. The data generated using the Swift Methyl-Seq kit were further trimmed601

for an additional 10bp on the 3’ end of R1 and 10bp on the 5’ end of R2 to remove Adaptase sequence intro-602

duced during library prepartion.603
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Alignment and Methylation Calling604

Alignment comparison was conducted on sample HG002. All short read WGBS libraries were aligned to the605

human reference genome (build GRCh38) with additional contigs included representing bisulfite controls606

spiked within pooled libraries, including lambda, T4, and Xp12 phages, as well as cloning vector plasmid607

pUC19. The Epstein-Barr Virus (EBV) sequence was also included as a decoy contig to account for use of608

EBV to immortalize B-lymphocytic cell lines.609

610

BISMARK:Adapter-trimmed readswere aligned using twoparallel instances of BISMARKv0.23.0 (https://github.com/FelixKrueger/Bismark/)611

per replicate and bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) as the read aligner. BAM612

fileswere position sorted using sambamba sort (https://lomereiter.github.io/sambamba/) and deduplicated613

using deduplicate_bismark with default paramters. Methylation was called using bismark_methylation_-614

extractor using 2 multicore instances and default parameters and strands were merged into dinucleotdie615

contexts using MethylDackel (https://github.com/dpryan79/MethylDackel) mergeContext.616

617

BitMapperBS:Alignmentwas run using default parameterswithin BitMapperBS v1.0.2.2 on adapter-trimmed618

FASTQs and the resulting BAMs were position sorted using sambamba sort. Alignments were dedupli-619

cated using Picard MarkDuplicates (https://broadinstitute.github.io/picard). Methylation was extracted us-620

ingMethylDackel extract and strands weremerged into dinucleotide context usingMethylDackel mergeCon-621

text.622

623

BSSeeker2: Adapter-trimmed readswere aligned across four threadswithin BSSeeker2 using bowtie2 as the624

aligner per user guide recommendation. Alignments were sorted using sambamba sort and deduplicated625

using Picard MarkDuplicates. Methylation was called within bs_seeker2-call_methylation and strands were626

merged into dinucleotdie contexts using MethylDackel mergeContext.627

628

bwa-meth: Adapter-trimmed reads were aligned using bwa-meth v0.2.1 with default parameters and con-629

verted into BAM format using sambamba view. Alignmens were then position sorted with sambamba630

sort and deduplicated using Picard MarkDuplicates. Methylation was called with MethylDackel extract and631

strands were merged into dinucleotdie contexts using MethylDackel mergeContext632

633

gemBS: gemBS v3.2.0 (https://github.com/heathsc/gemBS) requires two set-up files to enable analysis.634

The first file is a metadata sheet, in which sample barcodes were provided in assay/lab/genome/replicate635

format (e.g. EMSeq_LAB01_HG001_REP01). The second file is a configuration sheet, in which default param-636
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eters were applied, including MAPQ threshold of 10, base quality threshold of 13, reference bias of 2, 5’ trim637

of 5bp, 3’ trim of 0bp, removing improper pairs, marking duplicate reads, diploid alignment, auto conversion,638

and all files generated (CpG, non-CpG, bedMethyl, and bigWig). These files were fed into gemBS which uses639

GEM3 for alignment and BScall for methylation calling.640

Downsampling Methylation Calls641

The 5-methylcytosine bedGraph files generated by the bwa-meth aligner (see results for rationale to pro-642

ceed with bwa-meth calls for secondary analyses) were normalized such that each call set had a given643

mean global coverage per CpG. In order to maximize coverage per library, all technical replicates were com-644

bined per library type per cell line per laboratory (e.g., all replicates for EM-Seq HG002 from Laboratory645

1 were combined) by summing up the methylated and unmethylated counts per CpG site. Next, counts646

along the positive and negative strands were merged in order to produce one value per CpG dinucleotide647

using MethylDackel mergeContext. The resulting replicate-CpG-merged bedgraphs were downsampled us-648

ing https://github.com/nebiolabs/methylation_tools/ downsample_methylKit.py where a fraction of counts649

kept corresponding to the desired downsampling depth.650

To compare downsampling from mapped reads (BAM files) in comparison to bedGraph files, the BAM651

files from all replicates representing EMSeqHG006 (Lab 1) were respectivelymerged using samtoolsmerge.652

The merged BAMs were then downsampled using samtools view using the −s parameter, calculating the653

fraction of reads necessary to achieve the desired mean coverage per BAM. Methylation was called on654

these BAM files using the same methodology as above. The strands were merged by CpG dinucleotide655

using MethylDackel merge context, creating one methylation call per CpG site. The procedure is outlined in656

Figure S5.657

Differential Methylation658

Differential methylation between the two family groups (Ashkenazi Jewish Trio, HG002-HG004 vs Chinese659

Han Trio, HG005-HG007) was assessed at each site on Chromosome 1 for which at least two samples per660

group were covered by 5 or more reads. Following aggregation of replicates, strand merging, and down-661

sampling to mean 20X coverage, analysis was independently conducted via logistic region for each of six662

platforms (Methyl-seq, EM-seq, Nanopore, TruSeq, SPLAT, and TrueMethyl) using the standard “glm” func-663

tion in R. p-values were adjusted using the Benjamini-Hochberg correction and adjusted values < 0.05 were664

considered statistically significant. Comparisons among platforms considered only sites that were present665

for all assays.666
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Microarray Normalization667

Microarray normalization methods were divided into two broad categories: between-array normalization668

and within-array normalization. Between-array normalization is used to reduce technical variation while pre-669

serving biological variation between samples, while within-array normalization is used to correct for the670

two different probe designs on the Illumina methylation arrays, which have been observed to have differ-671

ent dynamic ranges [25]. The between-array normalization methods evaluated were pQuantile [18], funnorm672

[19], ENmix [20], dasen [21], SeSAMe [22], and GMQN [23]. We implemented all possible combinations of673

between-array and within-array normalization methods as well as each method individually. Samples from674

all 3 labs were normalized together as one joint dataset.675

In order to evaluate the performance of each pipeline, all 30microarray samples from 3 labs were pooled676

together in a variance partition analysis [36]. For each pipeline and at each CpG site, the percentage of677

variation in DNA methylation beta values explained by cell line and lab was calculated. Additionally, we678

performed principal components analysis (PCA) and visually inspeced clustering of technical and biological679

replicates across all normalization pipelines.680

After normalization, we used the 59 SNP probes on the 850k array, meant to identify sample swaps [37],681

to define a data-driven classification of low-varying sites. Previous studies have found that low-varying sites682

have poor reproducibility on the Illumina arrays [27] and have suggested data-driven probe filtering using683

technical replicates [38, 39] or beta value ranges [27]. However, not all studies have technical replicates,684

and previously proposed beta value range cutoffs for one experiment may not be generalizable to another685

experiment. We first called genotype clusters based on the beta values at each of the 59 SNP probe within686

each of the 3 different labs (??b). Although we used a naïve approach for calling genotypes (<25% methy-687

lation=cluster 1, 25-50% methylation = cluster 2, >75% methylation = cluster 3), which was sufficient for the688

clear separation in our dataset (??b), more sophisticated methods [40] can be used for datasets with less689

clear separation and/or outlier values. In theory, because these 59 SNP probes are meant to measure geno-690

types, cell lines with the same genotype should have exactly the same readout in an experiment without any691

technical noise. Therefore, we can use variance within genotype clusters from the same experiment as a692

measure of technical noise and determine theminimumpopulation variation needed to exceed the observed693

technical variation. Within each of the 3 labs, we calculated methylation variance at each SNP probe within694

each genotype cluster, giving us a distribution of observed technical noise (??c). To avoid being overly con-695

servative due to outlier values at these 59 SNP probes, we use the 95th percentile of these genotype cluster696

variances as the threshold for defining low-varying sites (??c-d).697
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Sequencing Performance in Micorarray Sites698

Variance partition analyses [36]were used to compare themicroarray anddownsampled sequencing datasets699

and assess concordance between microarray and sequencing assays. Each of the variance partition anal-700

yses included all microarray replicates, normalized with funnorm + RCP, and one sequencing sample per701

cell line with all replicates merged. The percent of variation in DNA methylation explained by cell line, assay702

(sequencing or microarray), and residual variation was calculated at each CpG site. This produced 6 sets703

of results, one per sequencing assay. The percentage of variation explained by cell line at each site was704

used as a measure of cross-platform concordance between each sequencing platform and the microarray705

data. The variance partition results presented are restricted to CpG sites that were measured in all 7 cell706

lines across all 7 assays (N=841,883) to ensure a fair comparison.707

Data Availability708

All data sequenced for this study is available within SRA under accession number SRR8324451. All code709

used to process data and generate files is publicly available on Github at https://github.com/Molmed/epiqc.710
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Figure 1 – Genome Alignment and CpG Calling

Figure 1: Sequencing and alignment metrics of whole methylome libraries, including all replicates across all cell lines.
EM=EMSeq; MS=MethylSeq; SP=SPLAT; TS=TruSeq; TM=TrueMethyl. (a) Distribution of reference-based read align-
ment outcomes, including primary mapped reads (both mates mapped in correct orientation within a certain distance),
multi-mapped reads (read pairs containing secondary or supplementary alignments), reads marked as PCR or optical
duplicates, and unmapped reads. Ambiguous and duplicate reads can be a subset of properly aligned reads. (b) Me-
dian insert size distributions derived from distance between aligned paired end reads. (c) Percentage of bases trimmed
per replicate, either due to low base quality, adapter content, or dovetailing reads. (d) Cumulative genomic coverage
plot, averaged across cell line per assay. Coverage is cut off at 200x in this plot, but extends beyond for all assays. (e)
Nucleotide bias plot showing the log2 enrichment of covered versus expected mono- and di-nucleotides. (f) The rela-
tionship between the number of read pairs sequenced per assay and the mean depth of coverage per CpG dinucleotide,
showing sequencing depth required to achieve a certain level of coverage. 20x CpG coverage is shown as the dotted
line. (g) Same as (f), but plotted using total bases sequenced, to include Oxford Nanopore sequencing, which produces
variable read lengths.
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Figure 2 – CpG Coverage across the Genome
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Figure 2: Coverage of CpGs across the genome. All samples visualized here were downsampled to 20X mean coverage
per CpG. (a) Empirical cumulative distribution functions for median coverage, averaged across samples for HG002-
HG007. (b) Standard deviation between replicate beta values for HG002 as a function of average coverage. The ex-
pected curve (computed based on the assumption that replicate beta values are independent and identically distributed
estimates of a common proportion p) is added as a solid black curve. (c) Intersection of CpG coverage (min 5x) across
Chromosome 1. Exact values of CpGs covered per assay are shown on the right. (d) Count and genomic annotation
for CpGs uniquely covered by an assay (left) and uniquely not covered by an assay (right). Up5kb = 5kb upstream dis-
tance from promoter region; Promoter = within 1kb upstream of transcript start site. (e) Distribution of coverage in CpG
shelves, shores, and islands. EM=EMSeq; MS=MethylSeq; SP=SPLAT; TS=TruSeq; TM=TrueMethyl. (f) Mean coverage
curves around transcript start sites (TSS).
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Figure 3: Estimates of methylation per CpG across the genome for HG002. All samples visualized here were downsam-
pled to 20X mean coverage per CpG. (a) Methylation percentage distributons per assay. (b) Methylation bias (mbias)
plots showing mean methylation per base for short read assays (Nanopore excluded here). Dotted lines indicate rec-
ommended cutoffs for methylation calling for these data. Original Top/bottom refer to mappings to bisulfite-converted
strands in the reference genome. (c) Metagene plot showing mean methylation across genomic feature per assay. Pro-
moter regions span 1kb upstream of transcript start sites (TSS). (d)Meanmethylation curves surrounding TSS across all
genes. (e) Pearson correlationmatrix of genome-widemethylation estimates. (f) Pearson correlationmatrix of methyla-
tion estimates for sites wheremethylation was estimated to be between 20-80%. (g) Methylation percentage correlation
between Oxford Nanopore and all other assays. Pearson correlation values shown on top. Marginal histograms show
methylation curves per assay.
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Figure 4 – Differential Methylation across Family Trios
(a)

(c)

(b)

(d)

(f)(e)

Figure 4: Mosaic plots illustrating agreement between assays for differentially methylated per assay (DMA) sites as
coverage levels vary. Rows represent the number of the six assays for which each DMA site was also identified, with
values ranging from 1 (indicating no other assays, shaded in red) to 6 (indicating all assays, shaded in purple). Columns
indicate the median coverage across HG002-HG007, with values ranging between the 5th and 95th percentiles for each
assay.
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(a) Concordance between microarray replicates across the epigenome, by normalization pipeline 

(b) Beta values at 59 SNP probes (c) Variance within genotype clusters at 59 SNP probes

(e) Concordance between microarray replicates at high-
vs. low-varying sites  

(d) Variance across all CpG sites after 
normalization

Figure 5: Microarray normalization and low-varying site definition. (a) Densities showing the percentage of DNA methy-
lation variation explained by cell line across the epigenome (N=677,520 overlapping CpG sites) for each normalization
method. (b) Raw beta values at each of the 59 SNP probes on the Illumina EPIC arrays, with samples colored by lab. (c)
Variance in methylation beta values (no normalization) within each genotype cluster at the 59 SNP probes, separated
and colored by lab. The dotted vertical line represents the 95th percentile. (d) Variance in methylation beta values (nor-
malized with funnorm + RCP) across the epigenome. Sites in the shaded area, which have less variation than 95% of
SNP probe genotype clusters, are defined as low-varying sites. (e) Percentage of methylation (normalized with funnorm
+ RCP) variance explained by cell line across the epigenome, stratified by high-varying vs. low-varying sites.
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(a)  Variance explained by cell line, assay, and residual variation

(b) Variance explained by cell line vs. coverage and CpG site variance

Figure 6: (a) Density plots of sequencing/microarray concordance indicating the percent of variance explained (VE) by
cell line, assay (sequencing or microarray), and residual variation for 841,833 CpG sites with complete information in
all assays. (b) Distribution of percent variance explained by cell line in the sequencing/microarray variance partition
analysis as a function of beta value variance (binwidth=0.001) and median coverage (binwidth=1) at each CpG site. 90%
of the y-axis values fall between the outermost dotted lines for each bin along the x-axis.
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Tables851

Targeted

Bisulfite Oxidative
Lab 1 Lab 2 Lab 1 Lab 1 Lab 1 Lab 1 Lab 1 Lab 1 Lab 1

CEPH 
Mother/Daughter

GM12878 HG001 SAMN03492678 340
337

468
392

652 
609

7.8 (4085)
5.1 (6117)
2.5 (5583)

353 
329

1093 
395

514       
508

338   
437

267      
326

AJ Son GM24385 HG002 SAMN03283347
379
357

403
399

960 
650

13.3 (3867)
 4.5 (7346) 
1.6 (5126)
1.4 (5064)

625 
801

901 
504

508       
447

351    
609

239      
335

AJ Father GM24149 HG003 SAMN03283345
77

354
397
419

829 
838

17.5 (3533)
 4.8 (3760)      
1.1 (5162)
1.4 (5231)             

484
1353

664    
367

272       
344

654    
568

288
337

AJ Mother GM24143 HG004 SAMN03283346
313
294

381
173

959 
779

17.4 (3492)
6.0 (4315)
1.1 (5821)
1.5 (5590)

453 
433

802    
321

519         
345

340    
733

235
339

Chinese Son GM24631 HG005 SAMN03283350
89

430
313

451
497
244

796 
791

2.5 (2984)
7.0 (5087)

13.8 (5073)

922 
855

605    
447

360         
450

709      
514

243
321

Chinese Father GM24694 HG006 SAMN03283348
359
344
412

451
422
186

741 
815

2.0 (3987)
1.4 (5197)
1.0 (5505)

733
1050

573    
631

730        
220

1012   
698

247
265

Chinese Mother GM24695 HG007 SAMN03283349
352
365
387

466
480
176

714 
665

4.5 (4907)
16.1 (5022)

1343
1035

638   
1015

575          
199

993    
312

234
243

Whole Genome

EM-Seq EPICNIST IDCoriell IDGenome
NCBI 

BioSample
Methyl

Seq
TruSeqSPLATNanopore

TrueMethyl

Table 1. Sequencing across all genomes analyzed in this study, including genomic and targeted assays.
Numbers within each genome/assay cell indicate millions of paired-end 150bp reads sequenced, with the
exception of PromethION, which indicates millions of reads and mean read length in parentheses. Each

number represents one replicate sequenced for that genome/assay.
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EMSeq 
Lab 1

EMSeq 
Lab 2

Methyl
Seq SPLAT TrueMethyl

(BS)
TrueMethyl

(OX) TruSeq

Insert Size (bp) 299 327 250 221 224 207 215
Mapping Rate (%) 97 93 98 97 85 86 95
Duplicate Rate (%) 9 25 12 8 20 20 21
Dinucleotide Bias 
Score 3 1 4 10 4 4 27

Useable Bases (%) 90 77 74 81 70 67 60
Reads to reach 20x 
CpG coverage (M) 275 303 366 369 446 496 692

Mean CpG Depth 
per replicate 13, 13 13, 13 27, 17 17, 22 20, 15 15, 13 10, 15

% Genome-wide 
CpGs > 1x cov 100 100 100 100 100 100 100

% Genome-wide 
CpGs > 10x cov 94 92 91 89 91 90 74

Table 2. Summary statistics of mapping and library efficiency per WGBS protocol. Percent CpG capture
calculated with call sets normalized to 20x coverage.
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Supplementary Methods852

Whole Methylome Sequencing Across Centers853

Short-read sequencing details: The short-read sequencing libraries were collected from participating labo-854

ratories and sequenced centrally on NovaSeq 6000 systems at one or two sequencing centers.855

Libraries were pooled by library type in high concentration equimolar stock pools (4 nM). After pooling,856

bead-based clean-up was performed to remove peaks <200 bp. Briefly, 0.7 X volume of NEBNext Sample857

Purification beads was added to the pools and incubated for 10 mins at room temperature. The beads858

were clarified by placing on a magnet and washed twice with freshly prepared 80% ethanol. Beads were859

allowed to dry for 2 mins and resuspended in 0.1 X TE. The cleaned stock pools were quantified on an860

Agilent Bioanalyzer using High sensitivity DNA chip.861

Sequencing Center 1: Pooled libraries were diluted to 1.5 nM. were loaded on a NovaSeq S4 flowcell with862

a final loading concentration of 250pM for all librarieswith the exception of EM-Seq, whichwas loaded at 300863

pM. Unrelated standard libraries were added at 5% instead of PhiX to balance the base composition during864

sequencing. All libraries were sequenced PE150 according to themanufacturer’s instructions (Illumina) with865

targeted per replicate CG coverage of 20x.866

Base callingwas performed using RTA v3.4.4 In caseswhere libraries were not preparedwith dual-unique867

indices, they were demultiplexed using the expected index 2 sequence derived from the universal adapter.868

Demultiplexing and fastq generation was performed using Picard 2.20.6 using default settings except as869

listed below:870

picard ExtractIlluminaBarcodes MAX_NO_CALLS=0 MIN_MISMATCH_DELTA=2 MAX_MISMATCHES=2871

picard IlluminaBasecallsToFastq \872

read_structure=100T8B8B100T RUN_BARCODE=A00336 \873

LANE=<lane> FIRST_TILE=<tile> TILE_LIMIT=1 \874

MACHINE_NAME=<instrument> FLOWCELL_BARCODE=<flowcell>875

Sequencing Center 2: The high concentration equimolar stock library pools were sent to Illumina in order876

to ameliorate depth of sequencing for the WGBS libraries. Libraries pools were diluted to 1.5 nM and a final877

loading concentration of 300 pM was loaded on the flow cell with 5% PhiX. The libraries were sequenced878

on an Illumina NovaSeq 6000 S4 flowcell with direct flow cell loading (XP workflow) according to manu-879

facturer’s instructions. MethylSeq, SPLAT and TruSeq pools were multiplexed on two lanes; SPLAT libraries880

on their own in the third lane; and TrueMethyl libraries on their own in the fourth lane. Base calling was881

performed using RTA v3.4.4. Run data were uploaded to BaseSpace and fastq files were generated using882

default parameters.883
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Supplementary Results884

Alignment and Methylation Caller Comparisons885

The first step after data QC was to map reads to a reference genome and estimate levels of methylation per886

CpG. We evaluated the performance of commonly used alignment/methylation calling packages, includ-887

ing Bismark [41], BitMapperBS [42], BSseker2 [43], bwa-meth [44], and gemBS [45]. For each software, we888

aligned reads to the GRCh38 human reference genome, with a set of bisulfite controls appended as addi-889

tional contigs (see methods and Figure S2). We focused our analysis to Ashkenazi Son (HG002) data for890

these comparisons, using all replicates from each of the five short read epigenetic library types.891

Although we successfully ran gemBS, its outputs were removed from further comparison for two rea-892

sons: (1) the maximum likelihood-based modeling of methylation percentages did not allow for merging of893

values across replicates, and (2) an unusually low percentage of CpGs were detected compared to all other894

platforms, prohibiting genome-wide comparison.895

The mapping of reads showed aligner-specific distributions (Figure S3a). bwa-meth was able to map896

the highet percentage of reads to the reference genome, followed by bitmapperBS, BSSeeker2, and then897

Bismark. bwa-meth and Bismark tend to allow reads to align to multiple locations in the genome (marking898

these reads as secondary or supplementary alignments and ignoring them for methylation calling). BitMap-899

perBS and BSseeker2 more commonly kept reads unmapped rather than align them ambiguously, although900

Bismark had the highest rate of unmapped reads. All four softwares had similar rates of duplicate read901

marking, except for BSseeker2 which tended to mark fewer reads as duplicates. It should be noted that902

an external program, Picard MarkDuplicates was used for deduplication in bwa-meth, BitMapperBS, and903

BSseeker2. Despite this, BSseeker2 samples still had fewer duplicate reads than other library types.904

We then calculated the mapping effiency, defined as the percentage of bases aligned and retained for905

methylation calling (see below for the effects of read filtration) divided by the total bases per replicate (Fig-906

ure S3b), as well as themean coverage achieved per CpG dinucleotide (Figure S3c). bwa-meth returned both907

the most efficient mapping rate, as well as the highest mean coverage per CpG within every dataset except908

for TruSeq, where outputs from each softwarematched very closely. Generally, BitMapperBS scored second909

in efficiency and depth of coverage, followed by Bismark, then BSseeker2.910

The running time of each aligner was tested using one million random paired-end reads from each repli-911

cate and run ten times, summarized in Supplementary Table 1. BitMapperBS was the fastest aligner, with912

an average of 550-650 read pairs processed per CPU core per second, with stable performance between913

replicates. Bismark and bwa-meth showed equal alignment speed (about 200 read pairs per CPU core per914

second). However, Bismark showed the most variability of timing between runs.915
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We then tested the distribution of CpGs called by each software (Figure S3d) to look for any aligner-916

specific biases. All four programs returned a nearly identical distribution of CpGs called throughout the917

genome. The highest genomic enrichment was detected at 5’UTRs, protomer regions, and exonic regions918

by all programs. Therefore, even though mapping efficiency and CpG depth was influenced by software, the919

genomic distribution of CpGs was reliably called by all softwares examined.920

As a result of these comparisons, outputs from bwa-meth were used for all downstream analyses.921

5-hydroxymethylcytosine Detection922

Total 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels within each cell line examined in923

this study weremeasured by LC-MS/MS (Supplementary Table 6). The estimated percentage of 5hmC levels924

across all seven cell lines were below the limit of detection for this method.925

In order to validate these results at base-level resolution, we used theNuGENTrueMethyl oxBS-Seq library926

prepartion kit (aka TrueMethyl), which allows investigators tomeasure 5mC and 5hmC in an indirect manner927

on the sequence level. For completeness, each cell line replicate was processed using both bisulfite only928

(BS = 5mC + 5hmC) and an oxidative reaction prior to sodium bisulfite treatment (OX = 5mC).929

Figure S12 shows that all cell lines have a higher level of 5mC compared to 5hmC (Figure S12a,b). The low930

5hmC levels were also observed at the single-nucleotide resolution level, with similar correlations between931

the two library preparations across all cell lines (Figure S12c), and also within each cell lines (Figure S12d),932

where the PCA plot shows little to no separation between libraries prepared using BS or OX protocols.933

As stated above, preparation of BS and OX libraries in parallel allows the determination of 5mC, 5hmC934

and C. We used the MLML2R package to estimate the level of each cytosine state, for each CpG sequenced,935

using HG002 as example (Figure S12e). The top panel shows that some CpG sites not only show 100% of936

a specific cytosine mark (C = 100% unmethylated CpG, mC = 100% methylated CpG), but also a mixture of937

two (mC_C = methylated or unmethylated C; hmC_C = hydroxymethylated or unmethylated C; mC_hmC =938

methylated or hydroxymethylated C) or of all cytosine mark (mC_hmC_C). Consistent with the LC-MS/MS939

quantitation, hmCmarks were found in low proportions at some CpG sites. The results observed for HG002940

were representative of all the 7 cell lines.941

Biological Significance of Between-Family Trio Differential Methylation942

To determine the biological relevance of our results, we considered 51 CpGs on Chromosome 1 that had943

been previously identified as differentially methylated in an array analysis of approximately 300 individuals944

from Caucasian-American, African-American, and Han Chinese-American populations [46]. Annotation and945
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methylation results from all 51 CpGs are available within Supplementary Table 5. Of the 7 sites with reported946

|PMD|>0.2 (Percent Methylation Difference) between Chinese-Americans and Caucasian-Americans, all had947

corresponding |PMD|>0.2 within the the microarray data. Additionally, 4 of these were identified as statisti-948

cally significant DMAs across all six sequencing assays (five short read library types and Oxford Nanopore).949

Of the three remaining sites, the first (on the TAS1R3 promoter) was significantly hypomethylated in the950

Chinese family for EMSeq, Nanopore, SPLAT, and TrueMethyl, the second (on the PM20D1 promoter) had951

insufficient read coverage for TruSeq but was a DMA for the remaining assays, and the third (located on the952

C1orf100 promoter) was identified as a DMA for only SPLAT although estimated PMD values were greater953

than 0.1 for all assays. Notably, these sites were identified as methylation quantitative trait loci (meQTL) in954

the original analysis. In addition to TAS1R3, which is a sweetness taste receptor that is known to vary pheno-955

typically between the Asian andCaucasian populations [47], therewas strong concordance for 6 CpGs on the956

PM20D1 promoter, a gene associated with obesity and Alzheimer’s disease with demonstrated population-957

based variation [48, 49].958

We additionally reviewed the collection of 29,802 sites on Chromosome 1 that were identified as dif-959

ferentially methylated for four or more of the six sequencing assays. Following annotation with HOMER960

[50], analysis with DAVID [51] identified a subset of 133 genes associated with hypertension (Benjamini-961

Hochberg adjusted p-value = 5.0E-13), 54 genes associated with osteoporosis (p = 5.0E-13), and 18 genes962

associated with atopic dermatitis (p =1.0E-5) according to the GAD database [52]. Only 1204 (4.0%) of these963

sites were included on the InfiniumMethylEPIC array, and while annotation for these sites included 53 of the964

hypertension-associated genes (p=3.3E-4) and 9 of those associated with atopic dermatitis (p=0.03), only965

17 of the genes identified with osteoporosis were included and this was an insufficient number to result in a966

significant association.967

EMSeq Input Titration968

In order to investigate the impact of input DNA on detection and characterization of CpG methylation, we969

generated EM-Seq libraries using 10ng, 50ng, and 100ng aliquots of input DNA for each replicate for each970

member of the Chinese Han Trio in this study (HG005-7). We then randomly subsampled each run in silico971

to a random set of 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp reads per input. At the lowest read972

input, the less complex 10ng library covered CpGs greater than 50ng and 100ng libraries, though beyond 25M973

paired end reads the more complex (50/100ng) libraries surpassed the 10ng library in mean CpG coverage974

(Figure S13a). All three library types exhibited similar distributions of CpG coverage across read titrations,975

reflecting fringe technical noise contributing to mean depth differences at low inputs that were evened out976

withmore input. This was further validated by looking at the intersection of CpGs covered by each input type977
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at each read filtration titer, where by 10M paired end reads the majority of sites were shared by all libraries,978

and notably the lowest input consistently covered the fewest unique CpGs (Figure S13c).979

Methyl EPIC Capture Correlations980

We compared the whole epigenome libraries to sequencing replicates of Illumina Methyl Capture EPIC, a981

reduced representation bisulfite approach interrogating roughly 3.3 million CpGs with a preference for CpG982

islands and promoter regions. Results shown for HG002 are representative of all seven genomes. Methy-983

lation percentage of CpGs within replicates of Capture EPIC were compared to shared sites among whole984

methylome assays as well as Nanopore sequencing, with good Pearson correlation for all comparisons (av-985

erage r=0.85). Capture EPIC tended to overestimate fully methylated sites that were estimated to be closer986

to 50-90% in other assays (Figure S14a).987

Using 20X downsampled methylation data, the shared CpG coverage on Chromosome 1 in Capture EPIC988

sites was highly consistent with overall methylome coverage (Figure 2). Nanopore missed the fewest sites989

covered by EPIC (n=5,179), while TruSeq missed the most (n=21,712).990
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Supplementary Figures991
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Figure S1: Measurement of sequencing control samples (a) Estimated methylation percentage in CpG, CHG, and CHH
contexts per assay. Efficient conversion results in near-zero converted cytosines in CHG and CHH contexts. (b) Esti-
mated methylation percentage in unmethylated controls, showing only assays that had these controls spiked in as a
part of their library preparation.
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Figure S2: Flowchart showing recommended steps for read quality control, reference-based read alignment, andmethy-
lation extraction, for each methylation package analyzed.
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Figure S3: Comparison of outputs for each methylation detection pipeline. All figures show analysis of all HG002 sam-
ples for each short read epigenomic assay. (a) Distribution of reference-based read alignment outcomes, including
primary mapped reads (both mates mapped in correct orientation within a certain distance), multi-mapped reads (read
pairs containing secondary or supplementary alignments), reads marked as PCR or optical duplicates, and unmapped
reads. Ambiguous and duplicate reads can be a subset of properly aligned reads. (b) Mapping efficiency per pipeline as
measured by the total percentage of reads aligned to the reference genome. L1 and L2 = Lab 1/2; R1 and R2 = Replicate
1/2; BS1 and BS2 = bisulfite treatment replicates 1/2; OX1 and OX2 = oxidative-bisulfite replicates 1/2. (c) The mean
coverage per CpG across the genome per pipeline. (d) The regions of the genomes covered per pipeline, measured as
log2 enrichment against a null genomic distribution.
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Figure S4: Read retention rate. The fraction of total reads that are retained after each step of the epigenome alignment
process is shown per assay. Properly mapped = both mates of a pair were mapped in the correct orientation within a
1kb distance. Dedup = removing reads that are marked as duplicates. MQ = Mapping Quality.
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Beta-value statistics
Min. 0.00 0.00 0.00 0.00 0.00

1st Qu. 0.36 0.36 0.35 0.42 0.43
Median 0.77 0.77 0.76 0.79 0.79
Mean 0.64 0.64 0.63 0.66 0.66

3rd Qu. 1.00 1.00 0.94 0.94 0.93
Max. 1.00 1.00 1.00 1.00 1.00

Coverage statistics
Min. 1 1 1 1 1

1st Qu. 7 7 14 16 33
Median 9 10 18 20 39
Mean 9.0 10.0 17.9 20.4 38.4

3rd Qu. 11 12 21 24 44
Max. 1930 1130 1932 2946 5478
99% 18 19 31 35 60
95% 15 16 27 30 53

e)

Figure S5: Downsampling evaluation for EMSeq / HG006. (a) Outline of the downsampling procedure and naming
scheme of the downsampled libraries. (b) Pairwise correlation matrix of methylation values for the EMSeq HG006
library from Lab 1. Scatter plots of the methylation values are shown in the lower left. Histograms of the methylation
values per library are shown across the diagonal. Pairwise Pearson (rho) and Spearman (p) correlation coefficients, root
mean square error (RMSE), and the number of CpG dinucleotides with >= 5x coverage in both libraries are shown in the
upper right. (c) Statistics over the methylation percentage distributions and observed read coverage of CpG sites in the
various bedGraph files. (d) RMSE, Pairwise Pearson (p) and Spearman (rho) correlations between downsampled BAM
and bedGraph files in comparison to the original 44x average coverage BAM file. (e) Histograms of the CG dinucelotide
read coverage of each bedGraph file prior (44x BAM) to and after downsampling the BAM or bedGraph.
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Supp Fig 6
(a)

(b)

Figure S6: CpG coverage and methylation percentage distributions for complete and downsampled libraries per assay.
All values are shown for replicates of HG002. ds = downsample, indicating the mean CpG coverage samples were
normalized to. Vertical dotted lines indicate median coverage/methylation percentage.
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Figure S7: UpSet plots showing shared coverage of CpGs across assays across downsampling schema, with aminimum
of 1x cov per CpG on the left and a minimum of 50% of the downsampling scheme on the right (e.g. minimum of 5x
coveage for 10x downsampled data).
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Figure S8: Annotating CpGs covered by each assay using normalizedmean 20x coverage data, showing the consistency
of coverage genome-wide. Up5kb = 5kb upstreamof promoter regions. Promoter = 1kb upstreamof transcript start sites.
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Supp Fig 9

0
25
50
75

100
0 25 50 75 10
0

40x

To
ta

l E
M

se
q 

(5
3X

)
r = 0.995

0
25
50
75

100

0 25 50 75 10
0

30x

r = 0.990

0
25
50
75

100

0 25 50 75 10
0

20x

r = 0.980

0
25
50
75

100

0 25 50 75 10
0

10x

r = 0.951

0
25
50
75

100

0 25 50 75 10
0

5x

r = 0.895

0
25
50
75

100

0 25 50 75 10
0

40x

To
ta

l M
et

hy
lS

eq
 (4

4X
)

r = 0.998

0
25
50
75

100
0 25 50 75 10
0

30x

r = 0.993

0
25
50
75

100

0 25 50 75 10
0

20x

r = 0.982

0
25
50
75

100

0 25 50 75 10
0

10x

r = 0.952

0
25
50
75

100

0 25 50 75 10
0

5x

r = 0.898

0
25
50
75

100

0 25 50 75 10
0

40x

To
ta

l S
PL

AT
 (3

9X
)

r = 0.998

0
25
50
75

100

0 25 50 75 10
0

30x

r = 0.992

0
25
50
75

100
0 25 50 75 10
0

20x

r = 0.981

0
25
50
75

100

0 25 50 75 10
0

10x

r = 0.951

0
25
50
75

100

0 25 50 75 10
0

5x

r = 0.896

0
25
50
75

100

0 25 50 75 10
0

40x

To
ta

l T
ru

eM
et

hy
l (

73
X)

r = 0.996

0
25
50
75

100

0 25 50 75 10
0

30x

r = 0.990

0
25
50
75

100

0 25 50 75 10
0

20x

r = 0.979

0
25
50
75

100
0 25 50 75 10
0

10x

r = 0.947

0
25
50
75

100

0 25 50 75 10
0

5x

r = 0.890

0
25
50
75

100

0 25 50 75 10
0

30x

To
ta

l T
ru

Se
q 

(2
5X

)

r = 0.993

0
25
50
75

100

0 25 50 75 10
0

20x

r = 0.982

0
25
50
75

100

0 25 50 75 10
0

10x

r = 0.952

0
25
50
75

100
0 25 50 75 10
0

5x

r = 0.898

To
ta

l T
ru

Se
q

(3
5x

)

Figure S9: Pearson correlations of methylation percentage estimation within each assay, comparing the total data (y-
axes) against their respective downsampled schema (x-axes), for combined replicates of HG002 libraries. Pearson
values are shown above each comparison, as well as marginal histograms showing methylation percentage distribu-
tions. For TruSeq, the total data returned a mean coverage of 35X, meaning that a comparison to 40X downsampling
was not possible.
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Figure S10: First two principal components (PCs) calculated from 678,597 CpG sites with complete information in all
normalized microarray datasets, by normalization pipeline.
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Figure S11: Distribution of beta values across HG002 samples at 841,833 CpG sites with complete information in all
assays. Beta values for the assay on the x axis were binned (binwidth=0.01) to calculate beta value deciles for the assay
on the y axis, indicated by the color transparency. 90% of the y-axis values fall between the outermost dotted lines for
each bin along the x-axis. Marginal histograms for each assay are shown above the assay label.
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Figure S12: Capture of 5mC and 5hmC from TrueMethyl replicates, including bisulfite-only (bs) and oxidative bisulfite
(ox). (a) Percent of inferred 5mC among all cytosines in the genome. (b) Percent of inferred 5hmC among all cytosines
in the genome. (c) Pearson correlation of replicates across genomes between oxidative and bisulfite replicates. (d)
Unsupervised clustering of samples, including OX and BS samples.
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Figure S13: EM-Seq read titration experiment. Replicates generated using 10ng, 50ng, and 100ng of input DNA for
HG005, HG006, and HG007 were randomly downsampled to 1M, 5M, 10M, 25M, 50M, and 100M paired end 150bp input
reads. (a) Distribution of mean depth of CpGs covered for each input amount. (b) Read coverage distributions per input
type per downsampled read amount. (c) UpSet plots showing the intersections of CpGs shared by each downsampling
scheme, as well as uniquely covered CpGs.
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Figure S14: (a) Pearson correlation of percent methylation estimates of Methyl Seq EPIC Capture versus each whole
methylome library. All values are shown for Chromosome 1 of HG002 replicates. (b) Distribution of CpGs covered (in
yellow) or missed (in blue) by each assay on Chromosome 1. Total values are shown per assay in the table on the right.
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Supplementary Tables992

Step Software No. Reads Mean Time (min) Standard Dev (min)
Bismark 1M 19.33 1.74
BitmapperBS 1M 11.98 3.76
BSseeker2 1M 65.76 3.5
bwa-meth 1M 29.92 6.17
Bismark 1M 2.86 0.9
BitmapperBS 1M 1.97 0.17
BSseeker2 1M 39.87 17.4
bwa-meth 1M 0.24 0.07

Alignment

Meth Calling

Supplementary Table 1. Timing comparison of each alignment and methylation estimation software. Ten
permutations of each software were run, and the mean times are reported, as well as the standard

deviation per sotware.
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Insert Size HG001 HG002 HG003 HG004 HG005 HG006 HG007 mean stDev
EMSeqLAB01 297.1 299.6 349.75 288.95 300.53 298.23 330.3 309.21 22.11
EMSeqLAB02 325.8 327.95 326.35 328.15 320.2 325.47 358.57 330.35 12.72
MethylSeq 249.77 250.93 250.88 247.13 249.67 256.45 247.78 250.37 3.04
SPLAT 214.83 217.81 220.71 223.74 220.34 223.85 224.18 220.78 3.52
TruSeq 218.58 217.68 219.88 216.77 214.67 217.58 215.78 217.28 1.74

TrueMethylOX 207.7 203.83 209.95 205.93 211.8 211.5 204.4 207.87 3.3
TrueMethylBS 228.6 220.67 226.5 224.2 224.73 227.4 219 224.44 3.52

EPIC 225.7 227.45 225.65 227 229.65 229.7 227.7 227.55 1.65
Primary Mapping % HG001 HG002 HG003 HG004 HG005 HG006 HG007 mean stDev

EMSeqLAB01 97.48 97.63 97.37 97.87 97.14 97.36 97.32 97.45 0.24
EMSeqLAB02 94.89 93.27 94.09 94.46 91.97 94.27 93.33 93.75 0.98
MethylSeq 98.4 98.36 98.32 98.41 98.16 98.36 98.39 98.34 0.09
SPLAT 96.44 97.18 96.92 97.21 97.07 97.48 97.24 97.08 0.33
TruSeq 95.33 95.45 95.23 95.58 95.51 95.55 95.37 95.43 0.13

TrueMethylOX 85.95 84.53 87.43 87.01 85.64 87.15 85.11 86.12 1.11
TrueMethylBS 85.17 83.5 86.66 86.06 84.73 86.4 84.2 85.25 1.18

EPIC 98.27 98.31 98.37 98.12 98.28 98.27 98.23 98.26 0.08
Duplicate % HG001 HG002 HG003 HG004 HG005 HG006 HG007 mean stDev
EMSeqLAB01 9.28 9.13 9.15 8.65 11.28 12.1 10.6 10.03 1.3
EMSeqLAB02 23.61 25.03 23.97 23.37 27.08 23.68 25.11 24.55 1.31
MethylSeq 13.75 13.77 13.84 14.42 13.56 14.44 13.32 13.87 0.42
SPLAT 12.37 12.02 11.63 10.9 11.88 10.86 13.28 11.85 0.84
TruSeq 21.73 22.53 27.26 24.35 25.86 31.57 25.77 25.58 3.28

TrueMethylOX 21.24 21.66 18.19 19.48 20.86 19.56 21.21 20.31 1.26
TrueMethylBS 21.29 21.95 17.89 18.72 20.15 18.66 20.22 19.84 1.48

EPIC 66.42 67.43 62.9 63.92 69.21 69.5 68.24 66.8 2.56
Dinucleotide Bias HG001 HG002 HG003 HG004 HG005 HG006 HG007 mean stDev
EMSeqLAB01 3.77 2.97 3.36 2.98 2.7 2.69 2.99 3.07 0.38
EMSeqLAB02 1.12 0.84 1.16 0.98 1.14 1.11 1.1 1.06 0.11

EPIC 26.58 26.74 26.59 26.69 26.43 26.36 26.93 26.62 0.19
MethylSeq 3.4 3.71 3.43 3.41 3.47 3.53 3.52 3.5 0.11
SPLAT 6.95 7.58 5.55 6.36 6.66 6.24 5.8 6.45 0.69

TrueMethylBS 3.43 3.44 3.8 3.3 3.73 3.61 3.99 3.61 0.24
TrueMethylOX 3.3 3.71 3.64 3.71 3.72 3.72 3.71 3.64 0.16

TruSeq 24.66 23.09 24.1 23.69 23.13 23.36 23.83 23.69 0.56
Useable Bases % HG001 HG002 HG003 HG004 HG005 HG006 HG007 mean stDev
EMSeqLAB01 90.21 90.35 90.26 90.71 87.88 87.61 88.89 89.42 1.27
EMSeqLAB02 76.01 74.6 75.51 76.16 72.62 76.01 51.56 71.78 9

EPIC 33.2 32.21 36.69 35.67 30.46 30.17 31.4 32.83 2.52
MethylSeq 74.46 74.5 74.55 73.8 74.77 74.01 74.9 74.43 0.39
SPLAT 78.9 80.62 81.19 83 81.43 82.79 81.4 81.33 1.38

TrueMethylBS 70.21 66.6 71.08 70.13 70.03 71.69 71.97 70.24 1.78
TrueMethylOX 67.53 66.49 68.45 68.5 68.07 68.66 66.78 67.78 0.87

TruSeq 62.68 62.98 60.23 61.19 60.29 62.58 51.03 60.14 4.17

Supplementary Table 2 Read and mapping statistics for all cell lines. stDev = standard deviation. Values
shown are averages across replicates for each library. Useable bases are calculated as the total mapped

bases as a percentage of the total number of bases sequenced.
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Number of Common Sites for all Assays 2298846
Common Sites with 5X for all Assays (C5X Sites) 1928536
DM Sites in 3 or more platforms on C5X sites (DM4+) 29802

97% 96% 100% 96% 97% 86%
74054 67621 26868 76591 59516 87170

26% 26% 17% 29% 22% 42%
36% 38% 56% 35% 42% 27%
90% 86% 51% 89% 85% 79%Percentage of DM4+ in DMA sites

EM-Seq Methyl-Seq SPLAT

Assay

TruSeqTrueMethyl
Percentage of all common sites with 5X Coverage  
Number of DM Sites for this assay on C5X Sites (DMA)
Percentage DMA unique to this platform
Percentage of DMA sites in DM4+

Nanopore

Supplementary Table 3 Statistics for differentially methylated sites across assays.
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EMSeq MethylSeq Nanopore SPLAT TrueMethyl TruSeq
Number of DMAs mapped to array 3296 2964 1027 3228 2750 4267

Number DMAs with |PMD| > .2 3279 2942 1026 3092 2743 3404
% DMAs with |PMD| >.2 and array |PMD| > .2 55.5% 58.8% 67.0% 57.3% 60.0% 49.6%

Number Hypermethylated in HG005-HG007 2505 2358 721 2368 2092 2432
% Hymermethylated DMAs with array PMD > .2 57.0% 60.3% 69.1% 58.6% 62.0% 52.4%

Number Hypomethylated in HG005-HG007 774 584 305 724 651 972
% Hypomethylated DMAs with array PMD < -.2 50.4% 53.1% 62.0% 53.0% 53.8% 42.7%

% of sites with array |PMD|>.2 identified as DMAs 44.0% 41.9% 16.6% 43.5% 39.8% 42.7%

Supplementary Table 4 Concordance between assays of differentially methylated sites per assay (DMAs)
with respect to microarray sites. PMD = Percent Methylation Difference, calculated as an absolute value.

S-23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2020.12.14.421529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.421529
http://creativecommons.org/licenses/by-nc-nd/4.0/


TargetID African 
American

Caucasian 
American

Asian 
American

Asian-
Caucacian

FDR Chr. Position (HG19) Position (HG38) Gene Feature Variance meQTL EMSeq MethylSeq Nanopore SPLAT TrueMethyl TruSeq Illumina

cg16590012 0.84 0.85 0.62 -0.23 2.73E-29 1 1265354 1329974 TAS1R3 Promoter AS yes -0.7629 -0.6364 -0.3709 -0.6693 -0.6275 -0.399 -0.2610
cg23611477 0.89 0.81 0.75 -0.06 4.11E-11 1 1644835 1713396 CDK11A;CDK11B Body;Promoter AF yes NA 0.4202 0.0614 NA NA NA 0.0538
cg00669623 0.28 0.15 0.14 -0.01 2.76E-17 1 1655867 1724428 CDK11B;CDK11A Promoter AF no -0.0133 0.0033 0.013 0.0111 0.0147 -0.018 0.0057
cg03396347 0.73 0.60 0.61 0.01 1.08E-05 1 1875803 1944364 AF yes -0.0497 -0.1173 0.0269 -0.239 0.0752 -0.04 -0.0173
cg00095688 0.62 0.66 0.52 -0.14 1.24E-05 1 2003864 2072425 PRKCZ Promoter AS no -0.0687 -0.0143 -0.0531 -0.2671 -0.1292 -0.0435 -0.0499
cg10761639 0.74 0.84 0.69 -0.15 1.09E-17 1 2023794 2092355 PRKCZ Promoter CA yes 0.0025 0.0335 -0.1343 -0.0615 -0.0867 -0.0412 -0.0425
cg24499605 0.45 0.32 0.43 0.11 1.76E-14 1 3142925 3226361 PRDM16 Body CA no 0.061 0.0478 0.1165 0.0104 -0.0335 0.129 0.0281
cg14654471 0.91 0.89 0.75 -0.14 3.57E-14 1 5937169 5877109 NPHP4 Body AS yes -0.0249 0.0024 -0.0453 0.0282 -0.0055 0.0189 -0.1263
cg13549940 0.64 0.81 0.81 0.00 2.30E-12 1 6390053 6329993 ACOT7 Body AF yes -0.2485 -0.1441 -0.214 -0.1369 -0.0986 -0.1721 -0.1473
cg23914842 0.32 0.39 0.50 0.11 1.21E-07 1 9327170 9267111 H6PD 3'UTR AS yes -0.0111 -0.1046 -0.0248 -0.2128 -0.1016 -0.0768 0.0269
cg01017257 0.57 0.48 0.61 0.13 3.62E-05 1 15059738 14733242 KIAA1026/KAZN Body;Body CA yes 0.7907 0.649 0.6319 0.6125 0.5573 0.617 0.6381
cg04850659 0.31 0.26 0.40 0.14 1.05E-08 1 17019133 16692638 ESPNP Body AS no -0.1329 NA -0.0215 -0.0769 NA -0.0618 -0.0007
cg16558994 0.30 0.21 0.36 0.15 2.37E-05 1 21023132 20696639 KIF17 Body CA yes 0 0.0968 0 NA -0.0179 0.0052 -0.0176
cg18150584 0.57 0.50 0.64 0.14 6.28E-04 1 23887816 23561326 ID3 Promoter CA no 0.083 0.0777 0.025 0.2504 0.0816 0.2045 0.1313
cg19276111 0.43 0.55 0.49 -0.06 2.33E-03 1 24229232 23902742 CNR2 Promoter AF no -0.0678 0.0343 -0.14 -0.0744 -0.1275 -0.0814 -0.2102
cg20415053 0.54 0.62 0.74 0.12 1.60E-05 1 26527928 26201437 CATSPER4 Body AS yes 0.0882 0.0313 0.1282 0.2414 0.0432 0.1908 0.1243
cg02251754 0.50 0.29 0.18 -0.11 3.50E-20 1 28572299 28245788 AF/AS yes -0.3134 -0.3603 -0.4901 -0.4694 -0.4127 -0.4026 -0.4259
cg14781242 0.66 0.81 0.84 0.03 9.37E-14 1 32738251 32272650 LCK Promoter AF yes 0.0052 -0.1846 0.0507 0.0287 -0.1409 -0.0417 -0.0160
cg06917450 0.29 0.27 0.54 0.27 2.31E-16 1 38156652 37690980 C1orf109 Promoter AS yes 0.5083 0.5241 0.4751 0.439 0.4331 0.4884 0.5093
cg26038582 0.69 0.57 0.64 0.07 1.73E-02 1 42384390 41918719 HIVEP3 Promoter CA no -0.2774 -0.185 -0.0661 0.021 -0.234 0.131 -0.2571
cg02927682 0.37 0.40 0.49 0.09 1.75E-03 1 54844424 54378751 SSBP3 Body AS yes 0.2256 0.1371 0.105 0.1135 0.138 0.2669 0.2199
cg10760651 0.48 0.37 0.50 0.13 1.06E-04 1 86968184 86502501 CA yes 0.2962 0.3508 0.346 0.323 0.2832 0.2422 0.1705
cg10631373 0.41 0.29 0.36 0.07 2.25E-04 1 89457642 88991959 RBMXL1;CCBL2 Promoter;Promoter CA yes 0.1154 0.0038 0.0936 0.1048 0.1652 -0.0228 0.1258
cg09408571 0.59 0.66 0.75 0.09 5.84E-07 1 101003634 100538078 GPR88 Promoter AF yes 0.1117 0.0329 -0.0697 -0.0308 0.2187 0.0961 0.0979
cg06223162 0.30 0.38 0.53 0.15 5.65E-08 1 101003688 100538132 GPR88 Promoter AS yes 0.1265 0.1352 0.1149 0.132 0.0938 0.1667 0.1493
cg25210835 0.25 0.28 0.46 0.18 2.81E-09 1 110254828 109712206 GSTM5 Promoter AS yes -0.4127 -0.1016 -0.208 0.0643 -0.0629 -0.2639 -0.1339
cg02193146 0.64 0.79 0.76 -0.03 6.37E-06 1 110752257 110209635 ncRNA promoter AF no 0.1198 0.0101 0.0234 0.0045 -0.075 -0.0532 -0.0285
cg24853868 0.51 0.49 0.66 0.17 2.26E-05 1 146555624 147084075 AS yes 0.3135 0.5334 0.1769 0.2033 0.1937 0.2011 0.1400
cg13502125 0.66 0.63 0.77 0.14 8.15E-05 1 147826191 148354063 AS yes -0.0759 -0.1163 -0.0008 0.0058 -0.0483 0.1103 -0.0616
cg09359103 0.45 0.41 0.22 -0.19 7.67E-15 1 154839909 154867433 KCNN3 Body AS yes -0.5463 -0.5508 -0.4614 -0.541 -0.4958 -0.5729 -0.5778
cg23915527 0.50 0.36 0.39 0.03 2.45E-05 1 161368787 161398997 AF yes 0.2098 0.2852 0.1048 0.1548 0.0742 0.2871 0.2215
cg12092579 0.38 0.23 0.29 0.06 2.07E-06 1 178380975 178411840 RASAL2 Body AF no -0.2273 -0.3367 -0.0571 -0.3965 -0.4271 -0.3319 -0.3504
cg21868798 0.36 0.30 0.24 -0.06 3.09E-05 1 199481399 199512271 AF yes 0.2709 0.1163 -0.0715 0.1599 0.1324 0.1697 0.1315
cg18222590 0.41 0.35 0.48 0.13 1.21E-10 1 204290972 204321844 PLEKHA6 Promoter CA yes 0.1774 0.1619 0.0542 0.1112 0.1024 0.1 0.1857
cg20240347 0.46 0.31 0.35 0.04 1.72E-04 1 204465584 204496456 AF yes 0.0271 -0.0594 -0.1258 0.029 -0.0769 0.1378 0.0815
cg17178900 0.28 0.50 0.24 -0.26 2.76E-10 1 205818956 205849828 PM20D1 Body CA yes -0.4676 -0.555 -0.4076 -0.4483 -0.5194 -0.6068 -0.5164
cg26354017 0.31 0.50 0.28 -0.22 1.98E-08 1 205819088 205849960 PM20D1 Promoter CA yes -0.5308 -0.4969 -0.4403 -0.6205 -0.5653 -0.6419 -0.4909
cg14159672 0.30 0.48 0.26 -0.22 5.54E-11 1 205819179 205850051 PM20D1 Promoter CA yes -0.6875 -0.6542 -0.643 -0.5692 -0.6211 -0.6649 -0.6134
cg14893161 0.26 0.38 0.22 -0.16 2.00E-11 1 205819251 205850123 PM20D1 Promoter CA yes -0.5273 -0.4989 -0.5044 -0.5009 -0.3619 -0.4667 -0.4443
cg11965913 0.15 0.30 0.11 -0.19 9.61E-14 1 205819406 205850278 PM20D1 Promoter CA yes -0.1019 -0.2599 -0.1607 -0.1985 -0.2434 -0.2879 -0.2005
cg24503407 0.25 0.43 0.21 -0.22 1.11E-13 1 205819492 205850364 PM20D1 Promoter CA yes -0.6528 -0.5719 -0.5636 -0.5621 -0.6911 NA -0.5648
cg07157834 0.33 0.46 0.28 -0.18 2.78E-09 1 205819609 205850481 PM20D1 Promoter CA yes -0.5907 -0.6364 -0.4552 -0.5556 -0.6012 -0.3885 -0.5779
cg06935979 0.62 0.48 0.46 -0.02 1.01E-06 1 232941706 232805960 KIAA1383/MAP10 Promoter AF yes 0.1941 0.1563 0.2429 0.1696 0.3363 0.2297 0.1942
cg00951395 0.49 0.32 0.33 0.01 7.12E-09 1 232941775 232806029 KIAA1383/MAP10 Promoter AF yes 0.0731 -0.0597 -0.1212 0.071 -0.0593 0.0451 0.0826
cg02889973 0.46 0.39 0.51 0.12 3.25E-04 1 234977572 234841825 CA no 0.2911 0.332 0.1873 0.3361 0.3551 0.1044 0.3384
cg09033006 0.40 0.46 0.22 -0.24 5.74E-19 1 244517177 244353875 C1orf100 Promoter AS yes -0.1061 -0.1756 -0.1901 -0.206 -0.2146 -0.2098 -0.2268
cg19368911 0.61 0.70 0.75 0.05 1.01E-07 1 245541456 245378154 KIF26B Body AF no 0.2452 0.0935 0.2145 0.2595 0.1635 0.0662 0.1769
cg04134399 0.28 0.15 0.28 0.13 9.18E-09 1 246231142 246067840 SMYD3 Body CA no -0.082 -0.0981 0.0651 -0.066 -0.0339 -0.14 -0.0326
cg04798314 0.51 0.66 0.84 0.18 2.26E-13 1 246668601 246505299 SMYD3 Body AS yes -0.0724 0.1592 -0.0085 -0.0506 -0.0733 0.0421 -0.0321
cg09226051 0.42 0.40 0.30 -0.10 4.03E-03 1 247611502 247448200 NLRP3 Body AS yes -0.0714 -0.154 -0.017 -0.1633 0.034 -0.0239 -0.2073
cg15829088 0.33 0.37 0.45 0.08 3.36E-04 1 247802935 247639633 ncRNA promoter AS yes 0.0851 -0.0693 0.0111 -0.2654 0 -0.0899 -0.0053

Supplementary Table 5 Population Variance agreement. A total of 52 CpGs on chromosome 1 that had
been identified as differentially methylated between ethnic populations were annotated and compared for

concordance of differential signal between microarray and sequencing data.
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Name dC dmC dmC dhmC dmC/dC dhmC/dmC dhmC/dC
CP_01 5680.727 156.3333 2143.964 0.922163 2.75% 0.04% 0.0012%
CP_01 5721.555 157.2296 2212.077 0.966647 2.75% 0.04% 0.0012%
CP_02 6134.437 206.1124 2915.523 1.078334 3.36% 0.04% 0.0012%
CP_02 6097.877 206.3662 2893.051 0.969016 3.38% 0.03% 0.0011%
CP_03 6676.031 212.3023 2979.854 0.756934 3.18% 0.03% 0.0008%
CP_03 6742.651 211.5162 2948.914 0.739288 3.14% 0.03% 0.0008%
CP_04 5223.132 188.2691 2588.429 0.592667 3.60% 0.02% 0.0008%
CP_04 5224.774 191.126 2560.265 0.56839 3.66% 0.02% 0.0008%
CP_05 5487.878 192.3814 2680.448 0.828852 3.51% 0.03% 0.0011%
CP_05 5523.128 193.3392 2646.98 0.784192 3.50% 0.03% 0.0010%
CP_06 5962.204 217.7679 2979.255 0.724408 3.65% 0.02% 0.0009%
CP_06 6041.553 217.7672 3002.681 0.686946 3.60% 0.02% 0.0008%
CP_07 5819.142 205.9319 2860.277 0.884028 3.54% 0.03% 0.0011%
CP_07 5733.883 204.7114 2814.214 0.937631 3.57% 0.03% 0.0012%
CP_08 3620.176 99.23043 1362.303 0.646334 2.74% 0.05% 0.0013%
CP_08 3674.493 98.73453 1356.403 0.582917 2.69% 0.04% 0.0012%
CP_09 2835.62 91.63515 1259.922 0.537728 3.23% 0.04% 0.0014%
CP_09 2872.229 92.00553 1250.31 0.520239 3.20% 0.04% 0.0013%
CP_10 2832.307 85.18032 1167.688 0.370097 3.01% 0.03% 0.0010%
CP_10 2864.241 86.2764 1175.466 0.351737 3.01% 0.03% 0.0009%
CP_11 2987.18 104.5185 1423.736 0.548236 3.50% 0.04% 0.0013%
CP_11 2989.671 104.0718 1431.635 0.452427 3.48% 0.03% 0.0011%
CP_12 2999.949 102.7485 1410.854 0.489238 3.43% 0.03% 0.0012%
CP_12 3048.796 103.0123 1399.723 0.54343 3.38% 0.04% 0.0013%
CP_13 3258.307 113.3027 1535.199 0.48512 3.48% 0.03% 0.0011%
CP_13 3199.5 111.8209 1519.138 0.476289 3.49% 0.03% 0.0011%
CP_14 3324.166 113.9253 1545.66 0.634276 3.43% 0.04% 0.0014%
CP_14 3266.074 112.9173 1530.64 0.60005 3.46% 0.04% 0.0014%
CP_15 0 0.681001
CP_15 0 0.689081

For 5hmC detection, a second higher volume injection is performed to bring it into range of detection
Valudes in red are lower than the lower limit of detection
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Supplementary Table 6 LC-MS/MS quantification of dC, dmC and dhmC in fmoles from digested genomic
DNA (HG001-HG007) samples. For the detection of 5hmC a second higher volume injection was

performed. The two dmC quantification values correspond to the two injections. Percentage of 5hmC in
these samples is very low and below the limit of detection of the method.
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