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ABSTRACT

Large scale white matter brain connections quantified via the structural connectome (SC) act as the backbone for the flow of
functional activation, which can be represented via the functional connectome (FC). Many studies have used statistical analysis
or computational modeling techniques to relate SC and FC at a global, whole-brain level. However, relatively few studies
have investigated the relationship between individual cortical and subcortical regions’ structural and functional connectivity
profiles, here called SC-FC coupling, or how this SC-FC coupling may be heritable or related to age, sex and cognitive abilities.
Here, we quantify regional SC-FC coupling in a large group of healthy young adults (22 to 37 years) using diffusion-weighted
MRI and resting-state functional MRI data from the Human Connectome Project. We find that while regional SC-FC coupling
strengths vary widely across cortical, subcortical and cerebellar regions, they were strongest in highly structurally connected
visual and subcortical areas. Additionally, depending on the region, SC-FC coupling varied across sexes and with age and
composite cognitive scores. Specifically, SC-FC coupling in the cerebellum tended to decrease with age while coupling in
medial fronto-orbital areas tended to increase with age. Males had stronger coupling in many regions, particularly in the right
orbito-frontal region and areas in the ventral attention and default mode networks, while females had higher coupling strength
in right hippocampus. Furthermore, increased SC-FC coupling in the right insula and decreased coupling in bilateral middle
cingulate and supplementary motor areas was associated with higher composite cognitive scores. Finally, we found SC-FC
coupling to be highly heritable, particularly in higher order default mode, dorsal/ventral attention and fronto-parietal networks.
Taken together, these results suggest regional structure-function coupling in young adults varies with age, is generally stronger
in males, is associated with composite cognitive scores and is highly heritable.

Introduction

The question of how anatomy and physiology are related is one of the fundamental questions in biology, particularly in
neuroscience where studies of form and function have led to fundamental discoveries. In the last few decades, the invention of
MRI has enabled in vivo investigation of whole-brain, anatomical (white matter) and physiological (functional co-activation)
brain networks in human populations. Studies analyzing multi-modal connectivity networks have produced a consensus that,
to some extent, alignments exist between the brain’s anatomical structural connectome (SC) and its physiological functional
connectome (FC)!=>. Recent work has focused on implementing computational models, including neural mass models, network
diffusion models, graph theoretical or statistical approaches, that formalize the global relationship between SC and FC in
both healthy and disordered populations®. Some of the main goals in joint structure-function connectome modeling are to
understand how neural populations communicate via the SC backbone’, how functional activation spreads through the structural
connectome®, to increase the accuracy of noisy connectivity measurements, to identify function-specific subnetworks'?, to
predict one modality from the other! or to identify multi-modal mechanisms of recovery after injury'!: 2. While useful, these
modeling approaches are global in nature and ignore the regional variability in the structure-function relationship that, to date,
has not been adequately quantified in adult populations.

Recent publications mapping connectome properties to cognitive abilities have focused on using either FC or SC alone,
or concatenating both together to reveal brain-behavior relationships'>~!7. Some recent studies have identified relationships
between global, whole-brain SC-FC correlations and cognitive abilities or states of awareness. One such paper showed that
stronger global SC-FC correlations were related to worse cognitive function in older adults with cognitive impairment!8.
Another study showed disorders of consciousness patients with fewer signs of consciousness had longer dwell times in dynamic
FC states that were most similar to SC'°. It has also been shown that SC-FC similarity decreases with increasing awareness
levels in anesthetized monkeys?? and, similarly, decreases from deep sleep to wakefulness in humans>'. Two studies, in severe
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brain injury and mild traumatic brain injury, revealed that increasing "distance" between SC and FC was related to better
recovery after injury'!*12. These studies all suggest a weaker coupling of SC and FC is related to better cognitive performance
and increasing awareness/consciousness. In contrast, however, a recent study showed increased cognitive flexibility was
associated with increased alignment of FC and SC??. Therefore, how SC-FC coupling relates to various cognitive functions,
awareness or other brain states may vary with the behavioral measure and population in question.

Even fewer studies have explored how the strength of the relationship between SC and FC may vary with age and sex.
One such study in a small number of subjects (N = 14, 18 months to 18 years of age) showed increasing age was strongly
related to higher global correlations between SC and FC (r = 0.74, p < 0.05)>. In one of the few studies to date of regional
SC-FC coupling, Baum et. al (2020) studied a large number of developing subjects (N = 727, aged 8 — 23 years old) and
showed that the relationship between age and SC-FC coupling varied across brain regions, with some regions showing positive
and fewer regions showing negative relationships. Furthermore, they showed that stronger SC-FC coupling in rostrolateral
prefrontal cortex specifically was associated with development-related increases in executive function?*. Another of regional
SC-FC coupling analyzed data from a group of around 100 young adults and showed that, overall, regional SC-FC coupling
was stronger in females than in males and that there were sex-specific correlations of SC-FC coupling with cognitive scores>.

Several recent publications have revealed the varying degrees to which the brain’s FC?-2% and white matter microstructure,
measured with diffusion MRI summary statistics like fractional anisotropy and mean diffusivity, are heritable?®-3°. Very few
studies explore heritability of SC networks; however, some recent preliminary work investigated the relationships between gene
co-expression, single nucleitide polymorphisms (SNPs), FC, and SC in a developmental cohort®'. In particular, this recent
work suggests that gene co-expression and SNPs are consistently more strongly related to FC than to SC, and furthermore,
that the brain’s FC architecture is potentially the mediating factor between genetic variance and cognitive variance across the
developing population. However, none of these studies have investigated the heritability of regional SC-FC coupling.

These studies of global, whole-brain SC-FC correlations, while informative, largely ignore regional variability of SC-FC
coupling that may provide a more detailed picture of how anatomy and physiology vary with age, sex, genetics and cognitive
abilities. There are only two studies to date investigating regional SC-FC coupling. The first used task-based FC in an adolescent
population, focused on the cortex and did not assess heritability or sex differences’* while the second used a data from a
moderately sized sample of young adults, did not consider the cerebellum and did not investigate the heritability of SC-FC
coupling®. In this work, for the first time, we quantify the cortical, subcortical and cerebellar topography of SC-FC coupling at
rest in a group of young adults, verify its reproducibility and quantify its association with age, sex and cognition. Moreover,
due to the nature of the HCP data, we were also able to assess the patterns of heritability of regional SC-FC coupling. Accurate
quantification of the relationship between the brain’s structural and functional networks at a regional level is imperative so we
can understand how interacting brain circuits give rise to cognition and behavior, and how these relationships can vary with age,
sex, cognition and genetics.

Results

We begin by presenting the regional SC-FC coupling values across unrelated young adults, comparing whole-brain SC-FC
coupling to between- and within-network SC-FC coupling, and demonstrating this measure’s within-subject and out-of-sample
reliability. We then map the regional relationships between whole-brain SC-FC coupling and age, sex and cognition. Finally,
we demonstrate the heritability of whole-brain SC-FC coupling. Our data is comprised of MRI, demographic, cognitive and
familial relationship data from a group of 941 young and healthy adults, curated by the Human Connectome Project’”> (HCP).
Individuals from the HCP’s S1200 release were included if they had four functional MRI scans, a diffusion MRI scan and a
Total Cognition test score, see Supplementary Figure S1 for details. A fine-grained atlas (CC400)>* was used to partition the
brain into 392 spatially contiguous, functionally defined cortical and subcortical regions. Two 392 x 392 weighted adjacency
matrices were then constructed, representing whole brain SC and FC. FC was calculated via Pearson correlation of the regional
time series. SC matrices were constructed using anatomically constrained probabilistic tractography; entries in the SC matrices
were then a sum of the global filtering weights (SIFT2) of streamlines connecting pairs of regions, divided by the sum of the
volumes of the two regions. Once the FC and SC were constructed, the regional SC-FC coupling vector was calculated for each
individual in the following way. Each row in the SC matrix, representing a region’s SC to the rest of the brain, was correlated
(via Spearman-rank) with the same region’s row in the FC, providing a regional SC-FC coupling vector of length 392 for each
subject (Figure 1). We chose to use Spearman-rank correlation as it is straightforward to interpret, non-parametric (entries in
SC are not Gaussian), and, furthermore, enables direct comparison of our results to previous work?*% To further assess the
association of between and within-network coupling to the measure of whole-brain SC-FC coupling, we separately calculated,
for each region, its between and within-network SC-FC coupling. Within-network SC-FC coupling for each region was the
Spearman correlation of the structural and functional connections between that region and other regions in the same network;
between-network SC-FC coupling the same calculation but between that region and regions outside of it’s assigned network.
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Figure 1. Workflow for quantifying regional SC-FC coupling. The CC400 atlas was used to parcellate the gray matter
into 392 cortical and subcortical brain regions>. SC matrices were constructed based on probabilistic tractography aimed at
reconstructing white matter pathways. FC matrices, representing similarity of functional activation over time, were computed
by correlating average BOLD time series from the defined region pairs. For each subject, corresponding rows in the SC and FC
matrices were correlated via Spearman-rank to obtain that region’s SC-FC coupling value. The result is a vector of regional
SC-FC coupling, of length 392, for each individual.
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SC-FC coupling varies spatially, is consistent over time and is reproducible

The group average SC-FC coupling over 420 unrelated individuals is shown in Figure 2a. We found that, at the group level,
regional SC-FC coupling was almost entirely positive and varied greatly across cortical and subcortical areas, ranging from
—0.01 to 0.42. Visual and subcortical areas generally had higher SC-FC coupling than the other networks (see Figure 2b and
c¢), with values of 0.24 £ 0.07 and 0.24 £ 0.08, while limbic and default mode areas had significantly weaker SC-FC coupling
than the other networks (see Figure 2b and c, all FDR corrected p < 0.05), with values of 0.11 +0.04 and 0.14 +0.08. When
comparing whole-brain SC-FC coupling to the within and between-network coupling, we found that, unsurprisingly, whole
brain coupling was highly correlated with the between-network SC-FC coupling (Pearson’s » = 0.704, p = 0) and moderately
correlated with the within-network coupling (Pearson’s r = 0.416, p = 0). Within network coupling was higher overall than
between network coupling; within-network coupling was particularly high within certain visual regions (see Supplementary
Information Figure S2). Regions in the ventral attention network had the most disparate within and between-network coupling
strengths, where it had significantly lower within-network coupling than all other networks and significantly higher between-
network coupling than 5 of the other 8 networks (see Supplementary Figure S2). Finally, we observed that SC-FC coupling was
also moderately positively correlated with SC node degree (Pearson’s » = 0.281, p = 0) but not correlated with FC node degree
(see Supplementary Figure S3).
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Figure 2. Regional whole-brain SC-FC coupling varies spatially across the brain and is related to both within- and
between-network coupling. a displays the SC-FC coupling for each cortical and subcortical region in the CC400 atlas. b
shows the distribution of SC-FC coupling over regions grouped into nine different networks (the 7 cortical networks defined by
Yeo et al.**, subcortical and cerebellum/brain stem). ¢ shows the t-statistics for all pairwise comparisons of SC-FC coupling
across networks, calculated as the network on the y-axis versus the network on the x-axis. Those comparisons with FDR
corrected p > 0.05 are marked with ns. Visual and subcortical networks have higher SC-FC coupling than other networks
while limbic and default mode areas have weaker SC-FC coupling than other networks. Abbreviations: VIS - visual, SOM -
somatomotor, DATTN - dorsal attention, VATTN - ventral attention, LIM - limbic, FPN - frontoparietal, DMN - default mode,
SUB - subcortical, CER/BS - cerebellum and brain stem. d Relationship between whole brain SC-FC coupling and the
within-network SC-FC coupling (Pearson’s r = 0.416, p = 0). e Relationship between whole brain SC-FC coupling and the
between-network SC-FC coupling (Pearson’s r = 0.704, p = 0). f Relationship between within- and between-network SC-FC
coupling (Pearson’s r = 0.168, p = 8¢ — 4).

Next, we tested the reliability and reproducibility of SC-FC coupling by examining its consistency within individuals over
time and across different populations of individuals. To test for consistency over time within the same individuals, we used data
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from a subset of 41 subjects who had a second MRI 6 months after the first. SC-FC coupling was indeed highly consistent
across this time period, with a mean difference of u = —0.002, limits of agreement LoA = u 40.034, see Figure 3a, and a
test-retest correlation of 0.977 (p = 1.397e — 264). Furthermore, we examined out-of-sample, across population reliability
in SC-FC coupling using a subset of 346 unrelated HCP subjects (age, 28.78 +-3.80 y; 148 males and 198 females), distinct
from the initial set of 420 unrelated subjects. Out-of-sample reliability was also high, with a small mean difference yu = 0.005
and limits of agreement LoA = u +0.012, see Figure 3b, and high correlation (Pearson’s r = 0.997, p = 0). Reliability of SC
node degree and FC node degree was also very high, with a test-retest and out-of-sample correlation of » = 0.995, p = 0 and
r=0.999, p = 0 for FC node degree and r = 0.998, p = 0 and r = 0.999, p = 0 for SC degree, respectively, see Supplementary
Figure S4.
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Figure 3. Test-retest and sample-replication results show good reliability and reproducibility of SC-FC coupling.a
Bland-Altman plot shows good agreement between the SC-FC coupling calculated in the same set of 41 subjects across two
MRI scans taken 6 months apart (mean difference g = —0.002 and limits of agreement LoA = u +0.034). b Bland-Altman
plot shows good agreement between the SC-FC coupling calculated from the original set of 420 subjects and another
out-of-sample set of 346 subjects (mean difference y = 0.005 and limits of agreement LoA =t +0.012).

Age, sex and cognition have region-specific, significant associations with SC-FC coupling

We used a generalized linear model (GLM) to quantify the association between different characteristics of interest and SC-FC
coupling. Specifically, subjects’ age, sex, total composite cognition score, years of education, intracranial volume (ICV),
in-scanner head motion as well as the two-way interactions terms of age*total cognition score, sex*total cognition score,
education*total cognition score and ICV*motion were included in the model. Significant positive associations with age were
found in bilateral medial orbito-frontal regions which belong to default mode network. Significantly negative associations with
age were found in the cerebellum (see Figure 4a, b and c). Males generally had higher SC-FC coupling than females, with
right orbito-frontal gyrus showing largest differences; females had higher SC-FC coupling in right hippocampus (Figure 4d, e
and f). Higher composite cognition scores were related to decreased SC-FC coupling in bilateral middle cingulate cortex and
supplementary motor area and increased SC-FC coupling in right insula (Figure 4g, h and i). There were a mix of positive and
negative associations found between SC-FC coupling and in-scanner head motion (see Supplementary Figure S5); no other
covariates in the GLM model had significant relationships with SC-FC coupling.

SC-FC coupling is heritable and not driven by FC or SC heritability

Next, we assessed the heritability of SC-FC coupling using a recently developed modeling approach that considers the level of
measurement error of the imaging biomarker in question’®. Specifically, a linear mixed effect (LME) model was designed to
independently estimate the inter- and intrasubject variation (representing the unstable, transient component and measurement
error) of the total phenotype variability. Heritability was defined as the proportion of intersubject variation attributable to
genetics. Overall, SC-FC coupling was highly heritable, particularly in higher-order dorsal/ventral attention, fronto-pareital
and default mode networks (mean heritability 0.46 £ 0.06, 0.43 £0.07, 0.454+0.07 and 0.44 4 0.09, respectively), see Figure
5a and b). SC-FC coupling in limbic and subcortical areas were significantly less heritable (mean heritability 0.26 £ 0.09
and 0.30+ 0.08) than the other seven networks (see Figure 5b and c, all FDR corrected p < 0.05). SC-FC coupling strength
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Figure 4. Associations between regional SC-FC coupling and age, sex and total cognition. a, d and g display regional 3
values from the GLM quantifying associations between SC-FC coupling and age, sex (blue indicates higher SC-FC coupling in
females, red higher in males) and total cognition scores, respectively. Areas with significant § values (after correction) are
outlined in black. b, e and h show the network-wise § values for age, sex and total cognition, respectively. ¢, f and i show the
t-statistics for all pairwise comparisons. Those comparisons with FDR corrected p > 0.05 are marked with ns.

6/17


https://doi.org/10.1101/2020.12.09.417725
http://creativecommons.org/licenses/by-nc/4.0/

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

165

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.09.417725; this version posted May 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

was weakly correlated with its heritability (Pearson’s r = 0.124, p = 6.2e¢ — 3, see Figure 5j), suggesting that SC-FC coupling
heritability is not driven by its magnitude. For comparison with SC and FC, we calculated the heritability of each modality’s
regional node strength (/1 norm of each row), see Figure 5d and g. FC had similar levels of heritability compared to SC-FC
coupling, while SC had lower overall levels of heritability. SC-FC coupling heritability was not reflective of just SC or FC
heritability, as evidenced by the significantly negative correlation between SC-FC coupling and SC heritability (Pearson’s
r=—0.318, p = 0) and the significantly positive correlation between SC-FC coupling and FC heritability (Pearson’s r = 0.311
,p = 0), see (Figure 51 and k). FC heritability was significantly negatively correlated with heritability of SC (Pearson’s
r=—0.144, p = 2.6¢ — 3).

Sensitivity analyses

We performed several sensitivity analyses to verify the robustness of the SC-FC coupling results to choices in data processing,
atlas definition and method of calculating SC-FC coupling. First, we recalculated SC-FC coupling using anatomically-derived
191 region atlas from FreeSurfer®® (Supplementary Figure S6); the coupling values appear very similar to the main SC-FC
results as do the results of the GLM analyses (Supplementary Figure S7). We also see good agreement with the main SC-FC
coupling values when using FC derived 1) without global signal regression (see Supplementary Figure S8) and 2) using partial
correlation (precision) (Supplementary Figure S9). Biases in tractography algorithms exist, including the effect of distance
between regions which we adjusted for somewhat using a global filtering approach®®. SC-FC coupling calculated using partial
Spearman-rank with distance between pairs of regions’ centroids as a covariate show similarities with the main coupling results
(Supplementary Figure S10). One noticeable difference between the two coupling calculations was weaker subcortical SC-FC
coupling when distance was considered in the calculation. We hypothesize this is due to the fact that subcortical structures are
further from the majority of cortical regions but also highly connected to all of them so covarying for distance has a greater
impact on its coupling measures. It is also known that tractography algorithms underestimate cross-hemisphere connections;
SC-FC coupling within a single hemisphere was very similar to whole-brain SC-FC coupling (Supplementary Figure S11),
indicating minimal effects of the under-estimated inter-hemispheric SC on the coupling calculations. Finally, we observe that
the varied race/ethnicity of the 941 individuals does not have much influence on heritability estimates; a subgroup analysis of
645 white, non-Hispanic individuals revealed consistent heritability patterns in SC-FC coupling (Pearson’s r = 0.972, p = 0),
see Supplementary Figure S12.

Discussion

In this paper, we quantified the strength of coupling between the structural and functional connectivity profiles of cortical,
subcortical and cerebellar brain regions in a large sample of healthy young adults. We demonstrate that SC-FC coupling is
strongest in visual and subcortical areas, weakest in limbic and default mode network regions and is consistent across time
and different sample populations. Furthermore, we show SC-FC coupling has a positive association with age in bilateral
orbito-frontal regions and a negative association with age in the cerebellum, is generally stronger in males, and that stronger
SC-FC coupling in the right insula and weaker coupling in bilateral middle cingulate and supplementary motor areas are related
to higher total composite cognition scores. Finally, we show SC-FC coupling is highly heritable, particularly in higher-order
dorsal/ventral attention, fronto-parietal control and default mode networks.

The ordering of cortical regions into anatomical hierarchies, wherein primary sensory regions are at the bottom and higher-
order association areas are at the top, provides a way to organize brain regions. Anatomical hierarchies defined by myelination
and white matter connectivity patterns have been shown to reflect functional and transcriptome specialization®’—3°. The cortical
SC-FC coupling pattern found in our young adult population, which tracks somewhat with SC degree (see Supplementary Figure
S3), further supports the argument that regional SC-FC coupling may be reflective of anatomical hierarchies**. Lower-order
regions of the visual network that have high cortical myelination and stronger SC node degree tended to have functional
activation patterns strongly aligned to their white matter connectivity profiles. Subcortical structures with the highest SC node
degree and lowest FC node degree (see Supplemental Figure S3) also had very high SC-FC coupling, possibly indicating
these regions’ roles as relay stations for functional signals traveling between cerebellar, sensory and other cortical regions.
Higher-order association areas with lower myelination and weaker SC node degree tend to have complex, dynamic functional
profiles that are less anchored by their structural connectivity profiles. Limbic structures that have lower signal-to-noise ratio
due to MR imaging artifacts** may as a result have weaker SC and FC node degree and SC-FC coupling. Finally, whole-brain
SC-FC coupling appeared to be more driven by between network coupling than within network coupling. This is likely because
of the larger overlap in regions included in the between-network calculation. One issue with calculating the within- and
between-network coupling is that the number of regions in the CC400 atlas assigned to each of the 7 Yeo networks is not equal
(range: 22 —79). Thus, the within and between-network coupling is biased and likely noisy for networks that have a smaller
number of regions than ones with a larger number of regions which complicates comparison.
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SC-FC coupling

Heritability of SC-FC coupling

Heritability of SC-FC coupling

Figure 5. SC-FC coupling heritability estimates. a, d and g Regional heritability estimates of SC-FC coupling, SC node
strength and FC node strength. b, e and h Regional heritability estimates of SC-FC coupling, grouped by functional network,
for SC-FC coupling, SC node strength and FC node strength, respectively. ¢, f and i Comparisons of heritability values between
networks (t-statistics); those with FDR corrected p > 0.05 are marked with ns. j SC-FC coupling heritability has a weak,
positive correlation with its signal strength (Pearson’s r = 0.124, p = 6.2¢ — 3). k and 1 Regional heritability estimates of
SC-FC coupling are significantly negatively correlated with regional heritability of SC node strength (Pearson’s r = —0.318,
p = 0) and significantly positively correlated with regional heritability of FC node strength (Pearson’s » = 0.311, p = 0).
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Functional activation flows not only through direct SC but also indirect, multi-synaptic white matter connections, which
likely contributes to divergence of SC and FC to varying degrees*!. Statistical, communication, biophysical and machine
learning models have been applied to better align FC and SC*7-842 Recent work has also found the strength of global
SC-FC correlation depends on how FC is calculated*?. In particular, that work showed FC calculated using partial correlation
(precision), which aims to isolate direct and remove the effect of indirect functional connections, had stronger correlations
with SC than standard FC calculated using full (Pearson) correlation. However, this observation was based on using Pearson
correlation to assess global similarity of the upper triangular portions of the SC and FC matrices, which may not be an
appropriate measure as SC is non-Gaussian. In fact, our analyses confirmed that using precision-based FC resulted in higher
SC-FC coupling than correlation-based FC, but only when using Pearson correlation to measure SC-FC coupling. When using
the more statistically appropriate Spearman correlation to assess the similarity of SC and FC, precision-based FC gives lower
values (about half the magnitude) compared to correlation-based FC (see Supplementary Figure S9). We hypothesize this
reduction in coupling may be driven by non-overlapping sparsity patterns that exist in both the SC and the precision-based FC.

Despite the limited age range of our sample (22-37 years) we still observed a few associations between SC-FC coupling
and age, with stronger medial orbito-frontal SC-FC coupling and weaker cerebellar coupling being related to increased age.
Processes like synaptic pruning, functional diversification and myelination that may impact SC-FC coupling, and are classically
associated with adolescent populations, are still occurring in young adults through at least the mid-20s. Orbitofrontal regions of
the prefrontal cortex, particularly important in impulse control, are among the last regions in the brain to fully develop***.
Interestingly, Baum et al. (2020) found mostly age-related increases (including in medial orbitofrontal regions in agreement
with our current findings) and some decreases in SC-FC coupling with increased age during adolescence. Their age-related
associations were indeed much more widespread than our findings in young adults, indicating, unsurprisingly, more dynamic
SC-FC coupling in adolescence that continues in some prefrontal regions into young adulthood. We also show sex differences
in SC-FC coupling, with males generally having stronger coupling, particularly in right orbito-frontal, default mode and ventral
attention networks. Females have higher coupling only in right hippocampus/parahippocampal gyrus. This disagrees with
recent findings in young adults that females had overall greater SC-FC coupling than their male counterparts, particularly
in left inferior frontal gyrus, left inferior parietal lobe, right superior frontal gyrus and right superior parietal gyrus>. They
furthermore found higher SC-FC coupling in males in right insula, left hippocampus and right parahippocampal gyrus>>. Both
studies did agree on males having larger SC-FC coupling in right supramarginal gyrus and right insula, but the rest of the results
diverge. We hypothesize this may be due to differences in sample size/characteristics or imaging acquisition/preprocessing
strategies; particularly important when investigating sex differences is consideration of brain volume and subject motion.
Unlike?®, our GLM framework controlled for covariates like in-scanner motion and intracranial volume which have known sex
differences and a complex relationship with BOLD signals*®47.

Most previous publications investigating SC-FC relationships and their cognitive implications have explored correlations
between impairment or cognition with the strength of the correlation between global, whole-brain SC and FC'%2%4%:4% Studies
in control populations have revealed worse cognitive performance in healthy aging was associated with longer latency in
dynamic FC states that are more similar to SC*’ and that cognitive flexibility was associated with FC’s alignment with SC??.
Studies in individuals with neurological disorders have shown that SC-FC similarity increases with dementia diagnosis and
individuals’ performance on memory tasks*® and that increasing awareness levels in individuals with disorders of consciousness
are related to longer latency in dynamic FC states less similar to SC'°. Regional SC-FC coupling was found to be differently
correlated with cognitive function in females and males; specifically, poorer working memory in females was related to
weaker SC-FC coupling in local (non-hub/feeder) connections and better reasoning ability in males was related to stronger
SC-FC coupling in rich-club hub connections®. In their adolescent population, Baum et al. (2020) found mostly positive
correlations between executive function and SC-FC coupling, particularly in rostro-lateral frontal and medial occipital regions;
the only region to show the negative associations with cognitive scores was the right primary motor cortex>*. In agreement
with their findings, we also observe a negative association of regional SC-FC coupling in supplementary motor areas (as
well as middle cingulate) with total cognition scores. We also observe positive correlations between SC-FC coupling in right
anterior insula/putamen, a region very nearby the rostro-lateral prefrontal area identified in Baum et al. (2020), indicating
stronger coupling in this area was related to better total cognition scores. The insula is a center of integration of many different
domains of brain function; a meta-analysis of the function of the insula revealed an anterio-ventral social-emotional region, a
mid-posterior sensorimotor region, a central olfacto-gustatory region, and an anterior-dorsal cognitive region>’. The anterior
insula region we found to have associations between SC-FC coupling and total cognition score overlaps most with the cognitive
and social-emotional regulation portions of the insula. Stronger agreement in structure and functional connections in such a
highly functionally diverse part of the brain that balances internal states with external environmental responses could indicate a
better coordination of unimodal and transmodal systems.

For the first time, we show that regional SC-FC coupling is highly heritable across the brain (with values up to 0.64),
particularly in higher order dorsal/ventral attention, fronto-parietal and default mode networks. We find that regional SC-FC
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coupling heritability is of similar magnitude to FC heritability, and that both are more heritable than SC. Furthermore, we saw
that SC-FC coupling heritability was not driven strongly by one modality or the other; in fact, it was moderately correlated
with both but in opposing directions. Previous studies have shown heritability of FC profiles, with the default mode network
having highest heritability (estimates ranging from 0.42 — 0.8) and motor and visual areas having lowest heritability estimates
(0.2—0.3)*>3!. Our results showed heritability of FC degree in default mode network was indeed significantly higher than
almost all the other networks. From the reliability analysis, it does not appear that the SC’s lower heritability values are due
to increased measurement noise, as SC node strength was as reliable as FC and SC-FC coupling. However, the model does
use estimates of between-measure variability based on repeat measurements to account for noise in the heritability estimates,
and having only had one SC per subject means within-measure variability is not considered in the SC heritability calculation.
Interestingly, we found highest SC heritability in limbic and subcortical networks, which were the networks with the lowest
heritability in FC and SC-FC coupling. Previous work has suggested different genetic signatures underlying brain anatomy and
physiology>!. However, these areas do tend to have the most noise in fMRI which could also contribute to lower FC heritability
estimates. One recent study quantifying anatomical heritability of the size of cortical areas (as defined by FC) showed unimodal
motor/sensory networks had higher heritability (0.44) relative to heteromodal association networks (0.33)°>. We do show
mixed agreement with their findings in that unimodal visual networks, but not somato-motor networks, had highest anatomical
SC heritability across cortical networks.

Limitations and Future Work

The results of the analyses in this work are limited by the characteristics of the individuals in the HCP young adult data set. As
seen in previous work, SC-FC coupling relationships may vary differently with age across the lifespan, so interpretations of our
current findings should be restricted to young adult populations. There are also limitations in the imaging modalities themselves
that should be discussed. Motion is an important confound in fMRI and must be mitigated as much as possible; in addition
to motion correction and global signal regression, we performed censoring of high motion frames which has been shown to
further mitigate these effects’® and included motion as a covariate in the GLM analysis. Tractography algorithms are known
to produce streamlines that are not fully reflective of actual anatomical connections®*>>. Here, we somewhat mitigate this
effect by using a global filtering algorithm, which has been shown to result in streamlines that are more reflective of underlying
anatomy>®. Measuring cognition is not an easy task; we chose here to investigate the highest-level composite score (total
cognition) but future work could explore more specific cognitive scores like crystallized and fluid intelligence. Furthermore, in
this whole-brain, atlased-based analysis of SC-FC coupling, all connections and regions are treated identically, even those in
the cerebellum, subcortex and brainstem. We believe that these regions play a very important role in overall patterns of brain
activity and white matter connections so we included them here; however, we also acknowledge that their microanatomy and
anatomical connection type (inhibitory vs excitatory) may differ from that of cortical regions. Future work may attempt to
modify the SC-FC coupling measure to account for these differences, e.g. treating inhibitory connections differently from
excitatory connections. Finally, the approach we used to estimate heritability assumes levels of genetic similarity based on
kinship, as classically implemented®®, instead of the more recent approaches that use geneotype data. These recent methods
rely on genetic similarity estimates derived from genotype data and thus can be more refined than estimates based on average
family relationships. However, genotype-based heritability today is typically computed based on common SNPs and do not
account for rare alleles and other types of genetic variation not correlated with common SNPs. Future work will incorporate
geneotype data to extend the current estimates of SC-FC coupling heritability.

Conclusions

Understanding how macroscopic anatomical and physiological connectomes are intertwined and can influence behavior or be
influenced by an individual’s characteristics or environment is an important, unanswered question in human neuroscience. Here,
we use neuroimaging, demographic/familial relationship information and cognitive measures in a large population of young
healthy adults to begin to uncover some of these associations. We show that regional structure-function coupling is strongest
in highly structurally connected visual and subcortical regions, varies with age and sex, is related to composite cognitive
scores and is highly heritable. Taken together, these results demonstrate that investigating structure-function relationships at a
macroscopic scale can reveal important knowledge in the study of brain form and function.

Methods

Data Description

The data for this study comes from the publicly available HCP database containing high-resolution, preprocessed anatomical,
diffusion and resting-state functional MRI data. Specifically, we use WU-Minn HCP minimally processed S1200 release which
includes high-resolution 3T MR scans, demographics, behavioral and cognitive scores for a population of 1113 young healthy
adults (age 22 to 37 years). For the SC-FC coupling results shown in Figure 2, we used the subset of 420 unrelated subjects that
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had all four fMRI scans and a complete dMRI scan. Forty-one subjects in HCP had a second MRI scan approximately six
months after the first scan (test-retest). The replication (out-of-sample) analysis used another subset of 346 unrelated HCP
subjects (age, 28.78 +3.80 y; 148 males and 198 females), distinct from the initial set of 420 unrelated subjects. It should be
noted that, while each set of subjects did not contain relatives within them, there may be some familial relationships across the
two sets of subjects which could result in an overestimation of the out-of-sample reliability. For the GLM analyses shown in
Figure 4, we took the 415 subjects from the unrelated set of 420 that had total composite cognitive scores (age, 28.69 + 3.69
years; 213 males, 202 females). For the heritability analysis shown in Figure 5, we analyzed 941 subjects (age, 28.67 +3.70
years; 441 males, 500 females) from 425 different families. In this set of 941 subjects that had all four fMRI scans and a dMRI
scan, there were 116 MZ twin pairs, 61 DZ twin pairs, 455 full siblings and 132 singletons (single-birth individuals without
siblings).

Construction of the Structural Connectomes

HCP subjects were scanned on a customized Siemens 3T “Connectome Skyra” housed at Washington University in St. Louis.
The HCP diffusion data (1.25mm isotropic voxels, TR/TE = 5520/89.5ms, 3x multiband acceleration, b=1000,2000,3000, 90
directions/shell, collected with both left-right and right-left phase encoding) were first minimally preprocessed by the HCP
consortium to correct for motion, EPI and eddy-current distortion, and registered to each subject’s T1 anatomical scan®®. A
multi-shell, multi-tissue constrained spherical deconvolution (CSD) model was computed in MRtrix3 to estimate the orientation
distribution function’’. We used a probabilistic (iFOD2°®), anatomically constrained (ACT>?) tractography algorithm with
dynamic white-matter seeding to create individual, whole-brain tractograms containing 5 million streamlines for each subject.
To better match the whole brain tractogram to diffusion properties of the observed data, we also computed streamline weights
that are designed to reduce known biases in tractography data (SIFT23¢). Finally, the tractograms were used to estimate SC
weights for the CC40033 atlas. The SC between any two regions was the SIFT2-weighted sum of streamlines connecting those
regions divided by the sum of the gray matter volume of those regions. The result was an ROI-volume normalized pairwise SC
matrix for each subject.

Construction of the Functional Connectomes

There were four gradient-echo EPI resting-state fMRI runs (2.0mm isotropic voxels, TR/TE = 720/33.1ms, 8x multiband
acceleration, FoV = 208 x 180 mm?, FA = 52°, 72 slices) of approximately 15 minutes each, with two runs in one session and
two in a second session, where each session included both right-left and left-right phase encoding. There were 1200 volumes
for each run and a total of 4800 volumes (1200 volumes x 4 runs) for each subject. The data were minimally preprocessed>®
and ICA+FIX%0-0 denoised by the HCP consortium®2. For each time series, motion and global signal outlier timepoints were
identified using an approach adapted from the Artifact Detection Tools (ART) from the CONN Toolbox®. Motion outliers
were identified by applying motion parameter estimates to a set of 6 control points at the face centers of a 140 x 180 x 115mm
brain-sized bounding box, and selecting all timepoints where any face center moved by more 0.9mm. Global signal outliers were
identified by computing the temporal derivative of the global mean time series across the brain, prior to any additional temporal
filtering aside from a linear detrending, and selecting time points where this temporal derivative deviated from the temporal
mean by 5 standard deviations. Timepoints that met any of these outlier conditions, as well as their neighboring timepoints, as
well as the first 10 volumes from each scan, were ignored during subsequent processing and analysis. Additional nuisance
regressors included an offset term, linear trend, 6 motion parameters and their derivatives, squares, and squared derivatives
(24 motion regressors), and 10 Anatomical CompCor (aCompCor) regressors to reduce the contribution of signals related to
white matter and CSF (5 principal components from each, using FreeSurfer-derived masks eroded by 2mm). Simultaneous
with the nuisance time series regression, we regressed out the effect of global gray matter signal and its temporal derivative®*.
Outlier-free temporal filtering was performed after nuisance regression, using a discrete cosine transform (DCT) projection
filter. Outlier-free correlation analyses ignored the censored timepoints. In scanner motion for each individual was quantified
by averaging the overall frame-wise displacement for each of the four fMRI scans. FC matrices ¥ were calculated using the
Pearson correlation between each region-pair’s average time series in the CC400 atlas®3, resulting in four FC matrices for each
subject. For all the analyses except heritability, the 4 FC matrices were averaged together. The heritability analysis uses each of
the individual’s 4 scans independently to incorporate between-measurement variability into its estimates of heritability?°.

Calculation of SC-FC Coupling

SC-FC coupling was constructed by calculating the Spearman-rank correlation between a row of the SC matrix with the
corresponding row of the FC matrix (excluding the self-connection). The result of this step in the analysis is, for each individual,
a vector of length 392 that represents the regional SC-FC coupling strength, or structure-function alignment, for each of the
392 regions in the atlas. We chose non-parametric Spearman-rank correlation to quantify the similarity of a region’s structural
and functional connectivity pattern to the rest of the brain as it is a measure that is straightforward and easily interpreted and,
importantly, accommodates the non-Gaussianity of the entries in the SC. In addition, we wanted to compare the results found

1117


https://doi.org/10.1101/2020.12.09.417725
http://creativecommons.org/licenses/by-nc/4.0/

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.09.417725; this version posted May 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

here in young adults to previous work using a similar approach in adolescents wherein Spearman-rank correlation was used to
quantify SC-FC alignment>*. To assess the association of between and within-network coupling to whole-brain coupling, we
separately calculated, for each region, its between and within-network SC-FC coupling as follows. Within-network SC-FC
coupling for each region was the Spearman correlation of the structural and functional connections between that region and
other regions in the same network; between-network SC-FC coupling was the same calculation but between that region and
regions outside of it’s assigned network. To compare these two network-specific measures to whole brain SC-FC coupling, we
calculated Pearson correlation between the measures; p-values were calculated using a permutation test with 10000 resamples.
We also performed several ancillary analyses to verify the robustness of our SC-FC coupling results to choices in data
processing, atlas definition and method of calculating SC-FC coupling. To validate the main findings with the functionally-
defined CC400 atlas, we also used an anatomically-derived 191 region atlas from FreeSurfer, with 148 cortical regions from
Destrieux + 16 subcortical regions from FreeSurfer’s aseg volume and 27 cerebellar regions from SUIT. We also included
two additional versions of FC: one without global signal regression and one calculated using partial correlation, or precision.
It is known that there are biases that exist in tractography algorithms, specifically in the effect of distance between regions.
Therefore, we also calculated SC-FC coupling using partial Spearman-rank with distance between region-pair centroids as a
covariate. Finally, it is known that tractography algorithms underestimate cross-hemisphere connections; therefore we also
calculated SC-FC coupling within a single hemisphere for comparison to the whole-brain SC-FC coupling measure.

Interpretation of statistical measures

We constructed violin plots in each figure to demonstrate the distribution of the various measures across nine different networks.
The median of each distribution is represented with a dashed line and the quartiles are represented using dotted lines; the shape
of the violin is representative of the underlying data. Pairwise comparisons were done within the networks and the heatmaps in
each figure show the unpaired t-statistic comparing the network level values. Significance of the t-statistic was quantified using
a permutation test with 10000 random re-samples. This was done to avoid bias introduced via the number of atlas regions in
each network. All p-values (for t-tests or correlations) reported are two-sided.

Reliability of SC-FC coupling, SC node strength and FC node strength was assessed by calculating Pearson correlation
between the three measures extracted from the test and retest visits (N = 41) and between the measures extracted from the
original sample (N = 420) the out-of-sample population (N = 346). Bland-Altman plots were also used to quantify the reliability
of SC node strength, FC node strength and SC-FC coupling, which gave us level of agreement (LoA) for each of the measures.
The mean difference, also called the bias, is calculated by

=

d= d;

1
iz
and the LoA between the test-retest and out-of-sample replication studies are defined by a 95% prediction interval of a particular

value of the difference which are computed as

d=+1.96S,

where Sy = /- YL (d; —d)>.

Quantifying relationships between SC-FC coupling, age, sex and cognition

There are several different covariates that we hypothesized may have significant relationships with SC-FC coupling, namely,
age, sex, years of education, total cognition score, intracranial volume (ICV) and in-scanner head motion. The Total Cognition
score, measured using the tests in the NIH toolbox, is the average of the crystallized score (including Picture Vocabulary and
Reading Recognition measures) and fluid score (including Dimensional Change Card Sort, Flanker Inhibitory Control and
Attention, Picture Sequence Memory, List Sorting, and Pattern Comparison measures). To calculate in-scanner head motion for
each subject, we averaged the frame-wise displacement over each volume in the fMRI time series, and then took the average
across the four fMRI scans. Finally, using a generalized linear model (GLM) approach, we assessed regional associations
between SC-FC coupling and in-scanner motion, demographics and cognitive scores, plus four interaction terms (age*cognitive
score, sex*cognitive score, years education*cognitive score and ICV*motion). The four interaction terms we included in the
GLM were those pairs of variables that we hypothesized may have non-negligible interactions.

10
yi=Po+ Y Bixi
i=i

where yy is the SC-FC coupling of length n (number of subjects) for region k = 1,2,...392, B is the intercept and f3; are the
coefficients for each covariate x;, also a vector of length n. SC-FC coupling values were Fisher r-to-z transformed for improving
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normality. All p values for the regression coefficients were FDR corrected for multiple corrections and analyzed for significance
at a level of o = 0.05.

Quantifying the heritability of SC-FC coupling

LME models were developed to disentangle inter- versus intra-subject variation®. This LME approach was recently adapted
for and applied to HCP data to quantify heritability of functional connectome fingerprints with respect to the inter-subject
component, while removing the effect of transient changes across observations of a single subject?®. This approach allows
examination of the association between the genetic relationship and phenotypic similarity, while accounting for shared
environment of siblings. Specifically, we write the following:

Yij = %ijP + %+ &;

where i=1,2,...,nand j =1,2,...m;. m; is the total number of repeated measures for subject i. The variable y;; is the phenotype
measurement for subject i for measurement j, x;; contains all the g covariates while the vector B, also of length g, contains the
unknown fixed population-level effects. The scalar y; donates the subject-specific deviation from the population mean and &;;
describes denotes the intra-subject measurement error (transient component) of y;; and is assumed to be independent of the
random effects and independent between repeated measurements. Stacking all subjects and all repeated observations into a
single vector, we have

y=xB+Ty+e,

where y is the phenotype vector of length n;51q; = Y| m;, X is the covariate matrix of dimension g X n,:4;, T is a block diagonal
matrix of dimension 741 X ngup;j, ¥ is a vector of length ny,,; and € is a vector of length 7;,:,;. We consider ¥ to be the sum of
three different effects: additive genetic effect g ~ N (0, G/%K), shared (common) environmental effect ¢ ~ N (0, GéA) and unique
(subject-specific) environmental effect e ~ N(0, G%Intml). Here, oﬁ, Gg and Gl% are the additive genetic variance, common
environmental variance and unique environmental variance, respectively. The matrix K is the m X m genetic similarity matrix
derived from the pedigree information where K;; is 1 for monozygotic twins, 1/2 for dizygotic twins and full siblings and O
for unrelated individuals. The matrix A is an ng;; X ng,,; matrix indicating shared environment, that is, if the two subjects i
and j have the same parents then A;; is set to 1, otherwise it is set to 0. Finally, the matrix I, is the identity matrix of size
Nsubj X Ngypj. Intra-subject variation is assumed to follow a Gaussian distribution, € ~ N (0, G,%,,Inwwl). Thus, the covariance
matrix of y is

covly] = ot TKT? + 6ZTAT? + 62TT” + 0 Ln,,pa-
Finally, we can define the non-transient heritability of a given trait as the proportion of stable, non-transient inter-subject
variation that can be explained by genetic variation in the population as

2 _ oi
02 +0%+ 0}

Unbiased estimates of the variance components Gj, Gé, G,% and 61‘24 were obtained using the restricted maximum likelihood
(ReML) algorithm®. We estimated the nontransient heritability of regional SC-FC coupling (4 measurements per subject), SC
node strength as calculated via the sum of rows, excluding the diagonal (1 measurement per subject) and FC node strength as
calculated via the sum of absolute value of rows, excluding the diagonal (4 measurements per subject). SC-FC coupling, FC
node degree and SC node degree were standardized before calculating heritability. Age, sex and handedness were taken as
fixed-effect covariates in each of the heritability models. Finally, because there may be differences in genetic similarity patterns
across race/ethnicity, we re-calculated heritability of the various measures using a homogeneous sub-set of white, non-Hispanic
individuals (N = 645).

Data availability

HCP data are publicly available at www . humanconnectome . org. Certain HCP data are restricted to protect subject privacy,
such as genetic, medical, and neuropsychiatric information. Source data are provided with this paper.

Code availability

Python code to reproduce the main results of this paper is publicly available at https://github.com/zijin-gu/
scfc—-coupling. Preprocessing code is available upon request.
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