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ABSTRACT8

Large scale white matter brain connections quantified via the structural connectome (SC) act as the backbone for the flow of

functional activation, which can be represented via the functional connectome (FC). Many studies have used statistical analysis

or computational modeling techniques to relate SC and FC at a global, whole-brain level. However, relatively few studies

have investigated the relationship between individual cortical and subcortical regions’ structural and functional connectivity

profiles, here called SC-FC coupling, or how this SC-FC coupling may be heritable or related to age, sex and cognitive abilities.

Here, we quantify regional SC-FC coupling in a large group of healthy young adults (22 to 37 years) using diffusion-weighted

MRI and resting-state functional MRI data from the Human Connectome Project. We find that while regional SC-FC coupling

strengths vary widely across cortical, subcortical and cerebellar regions, they were strongest in highly structurally connected

visual and subcortical areas. Additionally, depending on the region, SC-FC coupling varied across sexes and with age and

composite cognitive scores. Specifically, SC-FC coupling in the cerebellum tended to decrease with age while coupling in

medial fronto-orbital areas tended to increase with age. Males had stronger coupling in many regions, particularly in the right

orbito-frontal region and areas in the ventral attention and default mode networks, while females had higher coupling strength

in right hippocampus. Furthermore, increased SC-FC coupling in the right insula and decreased coupling in bilateral middle

cingulate and supplementary motor areas was associated with higher composite cognitive scores. Finally, we found SC-FC

coupling to be highly heritable, particularly in higher order default mode, dorsal/ventral attention and fronto-parietal networks.

Taken together, these results suggest regional structure-function coupling in young adults varies with age, is generally stronger

in males, is associated with composite cognitive scores and is highly heritable.

9

Introduction10

The question of how anatomy and physiology are related is one of the fundamental questions in biology, particularly in11

neuroscience where studies of form and function have led to fundamental discoveries. In the last few decades, the invention of12

MRI has enabled in vivo investigation of whole-brain, anatomical (white matter) and physiological (functional co-activation)13

brain networks in human populations. Studies analyzing multi-modal connectivity networks have produced a consensus that,14

to some extent, alignments exist between the brain’s anatomical structural connectome (SC) and its physiological functional15

connectome (FC)1–5. Recent work has focused on implementing computational models, including neural mass models, network16

diffusion models, graph theoretical or statistical approaches, that formalize the global relationship between SC and FC in17

both healthy and disordered populations6–9. Some of the main goals in joint structure-function connectome modeling are to18

understand how neural populations communicate via the SC backbone7, how functional activation spreads through the structural19

connectome8, to increase the accuracy of noisy connectivity measurements, to identify function-specific subnetworks10, to20

predict one modality from the other1 or to identify multi-modal mechanisms of recovery after injury11, 12. While useful, these21

modeling approaches are global in nature and ignore the regional variability in the structure-function relationship that, to date,22

has not been adequately quantified in adult populations.23

Recent publications mapping connectome properties to cognitive abilities have focused on using either FC or SC alone,24

or concatenating both together to reveal brain-behavior relationships13–17. Some recent studies have identified relationships25

between global, whole-brain SC-FC correlations and cognitive abilities or states of awareness. One such paper showed that26

stronger global SC-FC correlations were related to worse cognitive function in older adults with cognitive impairment18.27

Another study showed disorders of consciousness patients with fewer signs of consciousness had longer dwell times in dynamic28

FC states that were most similar to SC19. It has also been shown that SC-FC similarity decreases with increasing awareness29

levels in anesthetized monkeys20 and, similarly, decreases from deep sleep to wakefulness in humans21. Two studies, in severe30
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brain injury and mild traumatic brain injury, revealed that increasing "distance" between SC and FC was related to better31

recovery after injury11, 12. These studies all suggest a weaker coupling of SC and FC is related to better cognitive performance32

and increasing awareness/consciousness. In contrast, however, a recent study showed increased cognitive flexibility was33

associated with increased alignment of FC and SC22. Therefore, how SC-FC coupling relates to various cognitive functions,34

awareness or other brain states may vary with the behavioral measure and population in question.35

Even fewer studies have explored how the strength of the relationship between SC and FC may vary with age and sex.36

One such study in a small number of subjects (N = 14, 18 months to 18 years of age) showed increasing age was strongly37

related to higher global correlations between SC and FC (r = 0.74, p < 0.05)23. In one of the few studies to date of regional38

SC-FC coupling, Baum et. al (2020) studied a large number of developing subjects (N = 727, aged 8− 23 years old) and39

showed that the relationship between age and SC-FC coupling varied across brain regions, with some regions showing positive40

and fewer regions showing negative relationships. Furthermore, they showed that stronger SC-FC coupling in rostrolateral41

prefrontal cortex specifically was associated with development-related increases in executive function24. Another of regional42

SC-FC coupling analyzed data from a group of around 100 young adults and showed that, overall, regional SC-FC coupling43

was stronger in females than in males and that there were sex-specific correlations of SC-FC coupling with cognitive scores25.44

Several recent publications have revealed the varying degrees to which the brain’s FC26–28 and white matter microstructure,45

measured with diffusion MRI summary statistics like fractional anisotropy and mean diffusivity, are heritable29, 30. Very few46

studies explore heritability of SC networks; however, some recent preliminary work investigated the relationships between gene47

co-expression, single nucleitide polymorphisms (SNPs), FC, and SC in a developmental cohort31. In particular, this recent48

work suggests that gene co-expression and SNPs are consistently more strongly related to FC than to SC, and furthermore,49

that the brain’s FC architecture is potentially the mediating factor between genetic variance and cognitive variance across the50

developing population. However, none of these studies have investigated the heritability of regional SC-FC coupling.51

These studies of global, whole-brain SC-FC correlations, while informative, largely ignore regional variability of SC-FC52

coupling that may provide a more detailed picture of how anatomy and physiology vary with age, sex, genetics and cognitive53

abilities. There are only two studies to date investigating regional SC-FC coupling. The first used task-based FC in an adolescent54

population, focused on the cortex and did not assess heritability or sex differences24 while the second used a data from a55

moderately sized sample of young adults, did not consider the cerebellum and did not investigate the heritability of SC-FC56

coupling25. In this work, for the first time, we quantify the cortical, subcortical and cerebellar topography of SC-FC coupling at57

rest in a group of young adults, verify its reproducibility and quantify its association with age, sex and cognition. Moreover,58

due to the nature of the HCP data, we were also able to assess the patterns of heritability of regional SC-FC coupling. Accurate59

quantification of the relationship between the brain’s structural and functional networks at a regional level is imperative so we60

can understand how interacting brain circuits give rise to cognition and behavior, and how these relationships can vary with age,61

sex, cognition and genetics.62

Results63

We begin by presenting the regional SC-FC coupling values across unrelated young adults, comparing whole-brain SC-FC64

coupling to between- and within-network SC-FC coupling, and demonstrating this measure’s within-subject and out-of-sample65

reliability. We then map the regional relationships between whole-brain SC-FC coupling and age, sex and cognition. Finally,66

we demonstrate the heritability of whole-brain SC-FC coupling. Our data is comprised of MRI, demographic, cognitive and67

familial relationship data from a group of 941 young and healthy adults, curated by the Human Connectome Project32 (HCP).68

Individuals from the HCP’s S1200 release were included if they had four functional MRI scans, a diffusion MRI scan and a69

Total Cognition test score, see Supplementary Figure S1 for details. A fine-grained atlas (CC400)33 was used to partition the70

brain into 392 spatially contiguous, functionally defined cortical and subcortical regions. Two 392×392 weighted adjacency71

matrices were then constructed, representing whole brain SC and FC. FC was calculated via Pearson correlation of the regional72

time series. SC matrices were constructed using anatomically constrained probabilistic tractography; entries in the SC matrices73

were then a sum of the global filtering weights (SIFT2) of streamlines connecting pairs of regions, divided by the sum of the74

volumes of the two regions. Once the FC and SC were constructed, the regional SC-FC coupling vector was calculated for each75

individual in the following way. Each row in the SC matrix, representing a region’s SC to the rest of the brain, was correlated76

(via Spearman-rank) with the same region’s row in the FC, providing a regional SC-FC coupling vector of length 392 for each77

subject (Figure 1). We chose to use Spearman-rank correlation as it is straightforward to interpret, non-parametric (entries in78

SC are not Gaussian), and, furthermore, enables direct comparison of our results to previous work24, 25. To further assess the79

association of between and within-network coupling to the measure of whole-brain SC-FC coupling, we separately calculated,80

for each region, its between and within-network SC-FC coupling. Within-network SC-FC coupling for each region was the81

Spearman correlation of the structural and functional connections between that region and other regions in the same network;82

between-network SC-FC coupling the same calculation but between that region and regions outside of it’s assigned network.83
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Figure 1. Workflow for quantifying regional SC-FC coupling. The CC400 atlas was used to parcellate the gray matter

into 392 cortical and subcortical brain regions33. SC matrices were constructed based on probabilistic tractography aimed at

reconstructing white matter pathways. FC matrices, representing similarity of functional activation over time, were computed

by correlating average BOLD time series from the defined region pairs. For each subject, corresponding rows in the SC and FC

matrices were correlated via Spearman-rank to obtain that region’s SC-FC coupling value. The result is a vector of regional

SC-FC coupling, of length 392, for each individual.
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SC-FC coupling varies spatially, is consistent over time and is reproducible84

The group average SC-FC coupling over 420 unrelated individuals is shown in Figure 2a. We found that, at the group level,85

regional SC-FC coupling was almost entirely positive and varied greatly across cortical and subcortical areas, ranging from86

−0.01 to 0.42. Visual and subcortical areas generally had higher SC-FC coupling than the other networks (see Figure 2b and87

c), with values of 0.24±0.07 and 0.24±0.08, while limbic and default mode areas had significantly weaker SC-FC coupling88

than the other networks (see Figure 2b and c, all FDR corrected p < 0.05), with values of 0.11±0.04 and 0.14±0.08. When89

comparing whole-brain SC-FC coupling to the within and between-network coupling, we found that, unsurprisingly, whole90

brain coupling was highly correlated with the between-network SC-FC coupling (Pearson’s r = 0.704, p = 0) and moderately91

correlated with the within-network coupling (Pearson’s r = 0.416, p = 0). Within network coupling was higher overall than92

between network coupling; within-network coupling was particularly high within certain visual regions (see Supplementary93

Information Figure S2). Regions in the ventral attention network had the most disparate within and between-network coupling94

strengths, where it had significantly lower within-network coupling than all other networks and significantly higher between-95

network coupling than 5 of the other 8 networks (see Supplementary Figure S2). Finally, we observed that SC-FC coupling was96

also moderately positively correlated with SC node degree (Pearson’s r = 0.281, p = 0) but not correlated with FC node degree97

(see Supplementary Figure S3).98

Figure 2. Regional whole-brain SC-FC coupling varies spatially across the brain and is related to both within- and

between-network coupling. a displays the SC-FC coupling for each cortical and subcortical region in the CC400 atlas. b

shows the distribution of SC-FC coupling over regions grouped into nine different networks (the 7 cortical networks defined by

Yeo et al.34, subcortical and cerebellum/brain stem). c shows the t-statistics for all pairwise comparisons of SC-FC coupling

across networks, calculated as the network on the y-axis versus the network on the x-axis. Those comparisons with FDR

corrected p > 0.05 are marked with ns. Visual and subcortical networks have higher SC-FC coupling than other networks

while limbic and default mode areas have weaker SC-FC coupling than other networks. Abbreviations: VIS - visual, SOM -

somatomotor, DATTN - dorsal attention, VATTN - ventral attention, LIM - limbic, FPN - frontoparietal, DMN - default mode,

SUB - subcortical, CER/BS - cerebellum and brain stem. d Relationship between whole brain SC-FC coupling and the

within-network SC-FC coupling (Pearson’s r = 0.416, p = 0). e Relationship between whole brain SC-FC coupling and the

between-network SC-FC coupling (Pearson’s r = 0.704, p = 0). f Relationship between within- and between-network SC-FC

coupling (Pearson’s r = 0.168, p = 8e−4).

Next, we tested the reliability and reproducibility of SC-FC coupling by examining its consistency within individuals over99

time and across different populations of individuals. To test for consistency over time within the same individuals, we used data100
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from a subset of 41 subjects who had a second MRI 6 months after the first. SC-FC coupling was indeed highly consistent101

across this time period, with a mean difference of µ = −0.002, limits of agreement LoA = µ ±0.034, see Figure 3a, and a102

test-retest correlation of 0.977 (p = 1.397e−264). Furthermore, we examined out-of-sample, across population reliability103

in SC-FC coupling using a subset of 346 unrelated HCP subjects (age, 28.78±3.80 y; 148 males and 198 females), distinct104

from the initial set of 420 unrelated subjects. Out-of-sample reliability was also high, with a small mean difference µ = 0.005105

and limits of agreement LoA = µ ±0.012, see Figure 3b, and high correlation (Pearson’s r = 0.997, p = 0). Reliability of SC106

node degree and FC node degree was also very high, with a test-retest and out-of-sample correlation of r = 0.995, p = 0 and107

r = 0.999, p = 0 for FC node degree and r = 0.998, p = 0 and r = 0.999, p = 0 for SC degree, respectively, see Supplementary108

Figure S4.109

Figure 3. Test-retest and sample-replication results show good reliability and reproducibility of SC-FC coupling.a

Bland-Altman plot shows good agreement between the SC-FC coupling calculated in the same set of 41 subjects across two

MRI scans taken 6 months apart (mean difference µ =−0.002 and limits of agreement LoA = µ ±0.034). b Bland-Altman

plot shows good agreement between the SC-FC coupling calculated from the original set of 420 subjects and another

out-of-sample set of 346 subjects (mean difference µ = 0.005 and limits of agreement LoA = µ ±0.012).

Age, sex and cognition have region-specific, significant associations with SC-FC coupling110

We used a generalized linear model (GLM) to quantify the association between different characteristics of interest and SC-FC111

coupling. Specifically, subjects’ age, sex, total composite cognition score, years of education, intracranial volume (ICV),112

in-scanner head motion as well as the two-way interactions terms of age*total cognition score, sex*total cognition score,113

education*total cognition score and ICV*motion were included in the model. Significant positive associations with age were114

found in bilateral medial orbito-frontal regions which belong to default mode network. Significantly negative associations with115

age were found in the cerebellum (see Figure 4a, b and c). Males generally had higher SC-FC coupling than females, with116

right orbito-frontal gyrus showing largest differences; females had higher SC-FC coupling in right hippocampus (Figure 4d, e117

and f). Higher composite cognition scores were related to decreased SC-FC coupling in bilateral middle cingulate cortex and118

supplementary motor area and increased SC-FC coupling in right insula (Figure 4g, h and i). There were a mix of positive and119

negative associations found between SC-FC coupling and in-scanner head motion (see Supplementary Figure S5); no other120

covariates in the GLM model had significant relationships with SC-FC coupling.121

SC-FC coupling is heritable and not driven by FC or SC heritability122

Next, we assessed the heritability of SC-FC coupling using a recently developed modeling approach that considers the level of123

measurement error of the imaging biomarker in question26. Specifically, a linear mixed effect (LME) model was designed to124

independently estimate the inter- and intrasubject variation (representing the unstable, transient component and measurement125

error) of the total phenotype variability. Heritability was defined as the proportion of intersubject variation attributable to126

genetics. Overall, SC-FC coupling was highly heritable, particularly in higher-order dorsal/ventral attention, fronto-pareital127

and default mode networks (mean heritability 0.46±0.06, 0.43±0.07, 0.45±0.07 and 0.44±0.09, respectively), see Figure128

5a and b). SC-FC coupling in limbic and subcortical areas were significantly less heritable (mean heritability 0.26± 0.09129

and 0.30±0.08) than the other seven networks (see Figure 5b and c, all FDR corrected p < 0.05). SC-FC coupling strength130
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Figure 4. Associations between regional SC-FC coupling and age, sex and total cognition. a, d and g display regional β
values from the GLM quantifying associations between SC-FC coupling and age, sex (blue indicates higher SC-FC coupling in

females, red higher in males) and total cognition scores, respectively. Areas with significant β values (after correction) are

outlined in black. b, e and h show the network-wise β values for age, sex and total cognition, respectively. c, f and i show the

t-statistics for all pairwise comparisons. Those comparisons with FDR corrected p > 0.05 are marked with ns.
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was weakly correlated with its heritability (Pearson’s r = 0.124, p = 6.2e−3, see Figure 5j), suggesting that SC-FC coupling131

heritability is not driven by its magnitude. For comparison with SC and FC, we calculated the heritability of each modality’s132

regional node strength (l1 norm of each row), see Figure 5d and g. FC had similar levels of heritability compared to SC-FC133

coupling, while SC had lower overall levels of heritability. SC-FC coupling heritability was not reflective of just SC or FC134

heritability, as evidenced by the significantly negative correlation between SC-FC coupling and SC heritability (Pearson’s135

r =−0.318, p = 0) and the significantly positive correlation between SC-FC coupling and FC heritability (Pearson’s r = 0.311136

,p = 0), see (Figure 5l and k). FC heritability was significantly negatively correlated with heritability of SC (Pearson’s137

r =−0.144, p = 2.6e−3).138

Sensitivity analyses139

We performed several sensitivity analyses to verify the robustness of the SC-FC coupling results to choices in data processing,140

atlas definition and method of calculating SC-FC coupling. First, we recalculated SC-FC coupling using anatomically-derived141

191 region atlas from FreeSurfer35 (Supplementary Figure S6); the coupling values appear very similar to the main SC-FC142

results as do the results of the GLM analyses (Supplementary Figure S7). We also see good agreement with the main SC-FC143

coupling values when using FC derived 1) without global signal regression (see Supplementary Figure S8) and 2) using partial144

correlation (precision) (Supplementary Figure S9). Biases in tractography algorithms exist, including the effect of distance145

between regions which we adjusted for somewhat using a global filtering approach36. SC-FC coupling calculated using partial146

Spearman-rank with distance between pairs of regions’ centroids as a covariate show similarities with the main coupling results147

(Supplementary Figure S10). One noticeable difference between the two coupling calculations was weaker subcortical SC-FC148

coupling when distance was considered in the calculation. We hypothesize this is due to the fact that subcortical structures are149

further from the majority of cortical regions but also highly connected to all of them so covarying for distance has a greater150

impact on its coupling measures. It is also known that tractography algorithms underestimate cross-hemisphere connections;151

SC-FC coupling within a single hemisphere was very similar to whole-brain SC-FC coupling (Supplementary Figure S11),152

indicating minimal effects of the under-estimated inter-hemispheric SC on the coupling calculations. Finally, we observe that153

the varied race/ethnicity of the 941 individuals does not have much influence on heritability estimates; a subgroup analysis of154

645 white, non-Hispanic individuals revealed consistent heritability patterns in SC-FC coupling (Pearson’s r = 0.972, p = 0),155

see Supplementary Figure S12.156

Discussion157

In this paper, we quantified the strength of coupling between the structural and functional connectivity profiles of cortical,158

subcortical and cerebellar brain regions in a large sample of healthy young adults. We demonstrate that SC-FC coupling is159

strongest in visual and subcortical areas, weakest in limbic and default mode network regions and is consistent across time160

and different sample populations. Furthermore, we show SC-FC coupling has a positive association with age in bilateral161

orbito-frontal regions and a negative association with age in the cerebellum, is generally stronger in males, and that stronger162

SC-FC coupling in the right insula and weaker coupling in bilateral middle cingulate and supplementary motor areas are related163

to higher total composite cognition scores. Finally, we show SC-FC coupling is highly heritable, particularly in higher-order164

dorsal/ventral attention, fronto-parietal control and default mode networks.165

The ordering of cortical regions into anatomical hierarchies, wherein primary sensory regions are at the bottom and higher-166

order association areas are at the top, provides a way to organize brain regions. Anatomical hierarchies defined by myelination167

and white matter connectivity patterns have been shown to reflect functional and transcriptome specialization37–39. The cortical168

SC-FC coupling pattern found in our young adult population, which tracks somewhat with SC degree (see Supplementary Figure169

S3), further supports the argument that regional SC-FC coupling may be reflective of anatomical hierarchies24. Lower-order170

regions of the visual network that have high cortical myelination and stronger SC node degree tended to have functional171

activation patterns strongly aligned to their white matter connectivity profiles. Subcortical structures with the highest SC node172

degree and lowest FC node degree (see Supplemental Figure S3) also had very high SC-FC coupling, possibly indicating173

these regions’ roles as relay stations for functional signals traveling between cerebellar, sensory and other cortical regions.174

Higher-order association areas with lower myelination and weaker SC node degree tend to have complex, dynamic functional175

profiles that are less anchored by their structural connectivity profiles. Limbic structures that have lower signal-to-noise ratio176

due to MR imaging artifacts40 may as a result have weaker SC and FC node degree and SC-FC coupling. Finally, whole-brain177

SC-FC coupling appeared to be more driven by between network coupling than within network coupling. This is likely because178

of the larger overlap in regions included in the between-network calculation. One issue with calculating the within- and179

between-network coupling is that the number of regions in the CC400 atlas assigned to each of the 7 Yeo networks is not equal180

(range: 22−79). Thus, the within and between-network coupling is biased and likely noisy for networks that have a smaller181

number of regions than ones with a larger number of regions which complicates comparison.182
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Figure 5. SC-FC coupling heritability estimates. a, d and g Regional heritability estimates of SC-FC coupling, SC node

strength and FC node strength. b, e and h Regional heritability estimates of SC-FC coupling, grouped by functional network,

for SC-FC coupling, SC node strength and FC node strength, respectively. c, f and i Comparisons of heritability values between

networks (t-statistics); those with FDR corrected p > 0.05 are marked with ns. j SC-FC coupling heritability has a weak,

positive correlation with its signal strength (Pearson’s r = 0.124, p = 6.2e−3). k and l Regional heritability estimates of

SC-FC coupling are significantly negatively correlated with regional heritability of SC node strength (Pearson’s r =−0.318,

p = 0) and significantly positively correlated with regional heritability of FC node strength (Pearson’s r = 0.311, p = 0).
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Functional activation flows not only through direct SC but also indirect, multi-synaptic white matter connections, which183

likely contributes to divergence of SC and FC to varying degrees41. Statistical, communication, biophysical and machine184

learning models have been applied to better align FC and SC3, 7, 8, 42. Recent work has also found the strength of global185

SC-FC correlation depends on how FC is calculated43. In particular, that work showed FC calculated using partial correlation186

(precision), which aims to isolate direct and remove the effect of indirect functional connections, had stronger correlations187

with SC than standard FC calculated using full (Pearson) correlation. However, this observation was based on using Pearson188

correlation to assess global similarity of the upper triangular portions of the SC and FC matrices, which may not be an189

appropriate measure as SC is non-Gaussian. In fact, our analyses confirmed that using precision-based FC resulted in higher190

SC-FC coupling than correlation-based FC, but only when using Pearson correlation to measure SC-FC coupling. When using191

the more statistically appropriate Spearman correlation to assess the similarity of SC and FC, precision-based FC gives lower192

values (about half the magnitude) compared to correlation-based FC (see Supplementary Figure S9). We hypothesize this193

reduction in coupling may be driven by non-overlapping sparsity patterns that exist in both the SC and the precision-based FC.194

Despite the limited age range of our sample (22-37 years) we still observed a few associations between SC-FC coupling195

and age, with stronger medial orbito-frontal SC-FC coupling and weaker cerebellar coupling being related to increased age.196

Processes like synaptic pruning, functional diversification and myelination that may impact SC-FC coupling, and are classically197

associated with adolescent populations, are still occurring in young adults through at least the mid-20s. Orbitofrontal regions of198

the prefrontal cortex, particularly important in impulse control, are among the last regions in the brain to fully develop44, 45.199

Interestingly, Baum et al. (2020) found mostly age-related increases (including in medial orbitofrontal regions in agreement200

with our current findings) and some decreases in SC-FC coupling with increased age during adolescence. Their age-related201

associations were indeed much more widespread than our findings in young adults, indicating, unsurprisingly, more dynamic202

SC-FC coupling in adolescence that continues in some prefrontal regions into young adulthood. We also show sex differences203

in SC-FC coupling, with males generally having stronger coupling, particularly in right orbito-frontal, default mode and ventral204

attention networks. Females have higher coupling only in right hippocampus/parahippocampal gyrus. This disagrees with205

recent findings in young adults that females had overall greater SC-FC coupling than their male counterparts, particularly206

in left inferior frontal gyrus, left inferior parietal lobe, right superior frontal gyrus and right superior parietal gyrus25. They207

furthermore found higher SC-FC coupling in males in right insula, left hippocampus and right parahippocampal gyrus25. Both208

studies did agree on males having larger SC-FC coupling in right supramarginal gyrus and right insula, but the rest of the results209

diverge. We hypothesize this may be due to differences in sample size/characteristics or imaging acquisition/preprocessing210

strategies; particularly important when investigating sex differences is consideration of brain volume and subject motion.211

Unlike25, our GLM framework controlled for covariates like in-scanner motion and intracranial volume which have known sex212

differences and a complex relationship with BOLD signals46, 47.213

Most previous publications investigating SC-FC relationships and their cognitive implications have explored correlations214

between impairment or cognition with the strength of the correlation between global, whole-brain SC and FC19, 22, 48, 49. Studies215

in control populations have revealed worse cognitive performance in healthy aging was associated with longer latency in216

dynamic FC states that are more similar to SC49 and that cognitive flexibility was associated with FC’s alignment with SC22.217

Studies in individuals with neurological disorders have shown that SC-FC similarity increases with dementia diagnosis and218

individuals’ performance on memory tasks48 and that increasing awareness levels in individuals with disorders of consciousness219

are related to longer latency in dynamic FC states less similar to SC19. Regional SC-FC coupling was found to be differently220

correlated with cognitive function in females and males; specifically, poorer working memory in females was related to221

weaker SC-FC coupling in local (non-hub/feeder) connections and better reasoning ability in males was related to stronger222

SC-FC coupling in rich-club hub connections25. In their adolescent population, Baum et al. (2020) found mostly positive223

correlations between executive function and SC-FC coupling, particularly in rostro-lateral frontal and medial occipital regions;224

the only region to show the negative associations with cognitive scores was the right primary motor cortex24. In agreement225

with their findings, we also observe a negative association of regional SC-FC coupling in supplementary motor areas (as226

well as middle cingulate) with total cognition scores. We also observe positive correlations between SC-FC coupling in right227

anterior insula/putamen, a region very nearby the rostro-lateral prefrontal area identified in Baum et al. (2020), indicating228

stronger coupling in this area was related to better total cognition scores. The insula is a center of integration of many different229

domains of brain function; a meta-analysis of the function of the insula revealed an anterio-ventral social-emotional region, a230

mid-posterior sensorimotor region, a central olfacto-gustatory region, and an anterior-dorsal cognitive region50. The anterior231

insula region we found to have associations between SC-FC coupling and total cognition score overlaps most with the cognitive232

and social-emotional regulation portions of the insula. Stronger agreement in structure and functional connections in such a233

highly functionally diverse part of the brain that balances internal states with external environmental responses could indicate a234

better coordination of unimodal and transmodal systems.235

For the first time, we show that regional SC-FC coupling is highly heritable across the brain (with values up to 0.64),236

particularly in higher order dorsal/ventral attention, fronto-parietal and default mode networks. We find that regional SC-FC237
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coupling heritability is of similar magnitude to FC heritability, and that both are more heritable than SC. Furthermore, we saw238

that SC-FC coupling heritability was not driven strongly by one modality or the other; in fact, it was moderately correlated239

with both but in opposing directions. Previous studies have shown heritability of FC profiles, with the default mode network240

having highest heritability (estimates ranging from 0.42−0.8) and motor and visual areas having lowest heritability estimates241

(0.2−0.3)26, 51. Our results showed heritability of FC degree in default mode network was indeed significantly higher than242

almost all the other networks. From the reliability analysis, it does not appear that the SC’s lower heritability values are due243

to increased measurement noise, as SC node strength was as reliable as FC and SC-FC coupling. However, the model does244

use estimates of between-measure variability based on repeat measurements to account for noise in the heritability estimates,245

and having only had one SC per subject means within-measure variability is not considered in the SC heritability calculation.246

Interestingly, we found highest SC heritability in limbic and subcortical networks, which were the networks with the lowest247

heritability in FC and SC-FC coupling. Previous work has suggested different genetic signatures underlying brain anatomy and248

physiology51. However, these areas do tend to have the most noise in fMRI which could also contribute to lower FC heritability249

estimates. One recent study quantifying anatomical heritability of the size of cortical areas (as defined by FC) showed unimodal250

motor/sensory networks had higher heritability (0.44) relative to heteromodal association networks (0.33)52. We do show251

mixed agreement with their findings in that unimodal visual networks, but not somato-motor networks, had highest anatomical252

SC heritability across cortical networks.253

Limitations and Future Work254

The results of the analyses in this work are limited by the characteristics of the individuals in the HCP young adult data set. As255

seen in previous work, SC-FC coupling relationships may vary differently with age across the lifespan, so interpretations of our256

current findings should be restricted to young adult populations. There are also limitations in the imaging modalities themselves257

that should be discussed. Motion is an important confound in fMRI and must be mitigated as much as possible; in addition258

to motion correction and global signal regression, we performed censoring of high motion frames which has been shown to259

further mitigate these effects53 and included motion as a covariate in the GLM analysis. Tractography algorithms are known260

to produce streamlines that are not fully reflective of actual anatomical connections54, 55. Here, we somewhat mitigate this261

effect by using a global filtering algorithm, which has been shown to result in streamlines that are more reflective of underlying262

anatomy36. Measuring cognition is not an easy task; we chose here to investigate the highest-level composite score (total263

cognition) but future work could explore more specific cognitive scores like crystallized and fluid intelligence. Furthermore, in264

this whole-brain, atlased-based analysis of SC-FC coupling, all connections and regions are treated identically, even those in265

the cerebellum, subcortex and brainstem. We believe that these regions play a very important role in overall patterns of brain266

activity and white matter connections so we included them here; however, we also acknowledge that their microanatomy and267

anatomical connection type (inhibitory vs excitatory) may differ from that of cortical regions. Future work may attempt to268

modify the SC-FC coupling measure to account for these differences, e.g. treating inhibitory connections differently from269

excitatory connections. Finally, the approach we used to estimate heritability assumes levels of genetic similarity based on270

kinship, as classically implemented26, instead of the more recent approaches that use geneotype data. These recent methods271

rely on genetic similarity estimates derived from genotype data and thus can be more refined than estimates based on average272

family relationships. However, genotype-based heritability today is typically computed based on common SNPs and do not273

account for rare alleles and other types of genetic variation not correlated with common SNPs. Future work will incorporate274

geneotype data to extend the current estimates of SC-FC coupling heritability.275

Conclusions276

Understanding how macroscopic anatomical and physiological connectomes are intertwined and can influence behavior or be277

influenced by an individual’s characteristics or environment is an important, unanswered question in human neuroscience. Here,278

we use neuroimaging, demographic/familial relationship information and cognitive measures in a large population of young279

healthy adults to begin to uncover some of these associations. We show that regional structure-function coupling is strongest280

in highly structurally connected visual and subcortical regions, varies with age and sex, is related to composite cognitive281

scores and is highly heritable. Taken together, these results demonstrate that investigating structure-function relationships at a282

macroscopic scale can reveal important knowledge in the study of brain form and function.283

Methods284

Data Description285

The data for this study comes from the publicly available HCP database containing high-resolution, preprocessed anatomical,286

diffusion and resting-state functional MRI data. Specifically, we use WU-Minn HCP minimally processed S1200 release which287

includes high-resolution 3T MR scans, demographics, behavioral and cognitive scores for a population of 1113 young healthy288

adults (age 22 to 37 years). For the SC-FC coupling results shown in Figure 2, we used the subset of 420 unrelated subjects that289
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had all four fMRI scans and a complete dMRI scan. Forty-one subjects in HCP had a second MRI scan approximately six290

months after the first scan (test-retest). The replication (out-of-sample) analysis used another subset of 346 unrelated HCP291

subjects (age, 28.78±3.80 y; 148 males and 198 females), distinct from the initial set of 420 unrelated subjects. It should be292

noted that, while each set of subjects did not contain relatives within them, there may be some familial relationships across the293

two sets of subjects which could result in an overestimation of the out-of-sample reliability. For the GLM analyses shown in294

Figure 4, we took the 415 subjects from the unrelated set of 420 that had total composite cognitive scores (age, 28.69±3.69295

years; 213 males, 202 females). For the heritability analysis shown in Figure 5, we analyzed 941 subjects (age, 28.67±3.70296

years; 441 males, 500 females) from 425 different families. In this set of 941 subjects that had all four fMRI scans and a dMRI297

scan, there were 116 MZ twin pairs, 61 DZ twin pairs, 455 full siblings and 132 singletons (single-birth individuals without298

siblings).299

Construction of the Structural Connectomes300

HCP subjects were scanned on a customized Siemens 3T “Connectome Skyra” housed at Washington University in St. Louis.301

The HCP diffusion data (1.25mm isotropic voxels, TR/TE = 5520/89.5ms, 3x multiband acceleration, b=1000,2000,3000, 90302

directions/shell, collected with both left-right and right-left phase encoding) were first minimally preprocessed by the HCP303

consortium to correct for motion, EPI and eddy-current distortion, and registered to each subject’s T1 anatomical scan56. A304

multi-shell, multi-tissue constrained spherical deconvolution (CSD) model was computed in MRtrix3 to estimate the orientation305

distribution function57. We used a probabilistic (iFOD258), anatomically constrained (ACT59) tractography algorithm with306

dynamic white-matter seeding to create individual, whole-brain tractograms containing 5 million streamlines for each subject.307

To better match the whole brain tractogram to diffusion properties of the observed data, we also computed streamline weights308

that are designed to reduce known biases in tractography data (SIFT236). Finally, the tractograms were used to estimate SC309

weights for the CC40033 atlas. The SC between any two regions was the SIFT2-weighted sum of streamlines connecting those310

regions divided by the sum of the gray matter volume of those regions. The result was an ROI-volume normalized pairwise SC311

matrix for each subject.312

Construction of the Functional Connectomes313

There were four gradient-echo EPI resting-state fMRI runs (2.0mm isotropic voxels, TR/TE = 720/33.1ms, 8x multiband314

acceleration, FoV = 208×180 mm2, FA = 52◦, 72 slices) of approximately 15 minutes each, with two runs in one session and315

two in a second session, where each session included both right-left and left-right phase encoding. There were 1200 volumes316

for each run and a total of 4800 volumes (1200 volumes × 4 runs) for each subject. The data were minimally preprocessed56
317

and ICA+FIX60, 61 denoised by the HCP consortium62. For each time series, motion and global signal outlier timepoints were318

identified using an approach adapted from the Artifact Detection Tools (ART) from the CONN Toolbox63. Motion outliers319

were identified by applying motion parameter estimates to a set of 6 control points at the face centers of a 140×180×115mm320

brain-sized bounding box, and selecting all timepoints where any face center moved by more 0.9mm. Global signal outliers were321

identified by computing the temporal derivative of the global mean time series across the brain, prior to any additional temporal322

filtering aside from a linear detrending, and selecting time points where this temporal derivative deviated from the temporal323

mean by 5 standard deviations. Timepoints that met any of these outlier conditions, as well as their neighboring timepoints, as324

well as the first 10 volumes from each scan, were ignored during subsequent processing and analysis. Additional nuisance325

regressors included an offset term, linear trend, 6 motion parameters and their derivatives, squares, and squared derivatives326

(24 motion regressors), and 10 Anatomical CompCor (aCompCor) regressors to reduce the contribution of signals related to327

white matter and CSF (5 principal components from each, using FreeSurfer-derived masks eroded by 2mm). Simultaneous328

with the nuisance time series regression, we regressed out the effect of global gray matter signal and its temporal derivative64.329

Outlier-free temporal filtering was performed after nuisance regression, using a discrete cosine transform (DCT) projection330

filter. Outlier-free correlation analyses ignored the censored timepoints. In scanner motion for each individual was quantified331

by averaging the overall frame-wise displacement for each of the four fMRI scans. FC matrices Σ were calculated using the332

Pearson correlation between each region-pair’s average time series in the CC400 atlas33, resulting in four FC matrices for each333

subject. For all the analyses except heritability, the 4 FC matrices were averaged together. The heritability analysis uses each of334

the individual’s 4 scans independently to incorporate between-measurement variability into its estimates of heritability26.335

Calculation of SC-FC Coupling336

SC-FC coupling was constructed by calculating the Spearman-rank correlation between a row of the SC matrix with the337

corresponding row of the FC matrix (excluding the self-connection). The result of this step in the analysis is, for each individual,338

a vector of length 392 that represents the regional SC-FC coupling strength, or structure-function alignment, for each of the339

392 regions in the atlas. We chose non-parametric Spearman-rank correlation to quantify the similarity of a region’s structural340

and functional connectivity pattern to the rest of the brain as it is a measure that is straightforward and easily interpreted and,341

importantly, accommodates the non-Gaussianity of the entries in the SC. In addition, we wanted to compare the results found342
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here in young adults to previous work using a similar approach in adolescents wherein Spearman-rank correlation was used to343

quantify SC-FC alignment24. To assess the association of between and within-network coupling to whole-brain coupling, we344

separately calculated, for each region, its between and within-network SC-FC coupling as follows. Within-network SC-FC345

coupling for each region was the Spearman correlation of the structural and functional connections between that region and346

other regions in the same network; between-network SC-FC coupling was the same calculation but between that region and347

regions outside of it’s assigned network. To compare these two network-specific measures to whole brain SC-FC coupling, we348

calculated Pearson correlation between the measures; p-values were calculated using a permutation test with 10000 resamples.349

We also performed several ancillary analyses to verify the robustness of our SC-FC coupling results to choices in data350

processing, atlas definition and method of calculating SC-FC coupling. To validate the main findings with the functionally-351

defined CC400 atlas, we also used an anatomically-derived 191 region atlas from FreeSurfer, with 148 cortical regions from352

Destrieux + 16 subcortical regions from FreeSurfer’s aseg volume and 27 cerebellar regions from SUIT. We also included353

two additional versions of FC: one without global signal regression and one calculated using partial correlation, or precision.354

It is known that there are biases that exist in tractography algorithms, specifically in the effect of distance between regions.355

Therefore, we also calculated SC-FC coupling using partial Spearman-rank with distance between region-pair centroids as a356

covariate. Finally, it is known that tractography algorithms underestimate cross-hemisphere connections; therefore we also357

calculated SC-FC coupling within a single hemisphere for comparison to the whole-brain SC-FC coupling measure.358

Interpretation of statistical measures359

We constructed violin plots in each figure to demonstrate the distribution of the various measures across nine different networks.360

The median of each distribution is represented with a dashed line and the quartiles are represented using dotted lines; the shape361

of the violin is representative of the underlying data. Pairwise comparisons were done within the networks and the heatmaps in362

each figure show the unpaired t-statistic comparing the network level values. Significance of the t-statistic was quantified using363

a permutation test with 10000 random re-samples. This was done to avoid bias introduced via the number of atlas regions in364

each network. All p-values (for t-tests or correlations) reported are two-sided.365

Reliability of SC-FC coupling, SC node strength and FC node strength was assessed by calculating Pearson correlation

between the three measures extracted from the test and retest visits (N = 41) and between the measures extracted from the

original sample (N = 420) the out-of-sample population (N = 346). Bland-Altman plots were also used to quantify the reliability

of SC node strength, FC node strength and SC-FC coupling, which gave us level of agreement (LoA) for each of the measures.

The mean difference, also called the bias, is calculated by

d̄ =
1

n

n

∑
i=1

di

and the LoA between the test-retest and out-of-sample replication studies are defined by a 95% prediction interval of a particular

value of the difference which are computed as

d̄ ±1.96Sd

where Sd =
√

1
n−1 ∑

n
i=1(di − d̄)2.366

Quantifying relationships between SC-FC coupling, age, sex and cognition367

There are several different covariates that we hypothesized may have significant relationships with SC-FC coupling, namely,

age, sex, years of education, total cognition score, intracranial volume (ICV) and in-scanner head motion. The Total Cognition

score, measured using the tests in the NIH toolbox, is the average of the crystallized score (including Picture Vocabulary and

Reading Recognition measures) and fluid score (including Dimensional Change Card Sort, Flanker Inhibitory Control and

Attention, Picture Sequence Memory, List Sorting, and Pattern Comparison measures). To calculate in-scanner head motion for

each subject, we averaged the frame-wise displacement over each volume in the fMRI time series, and then took the average

across the four fMRI scans. Finally, using a generalized linear model (GLM) approach, we assessed regional associations

between SC-FC coupling and in-scanner motion, demographics and cognitive scores, plus four interaction terms (age*cognitive

score, sex*cognitive score, years education*cognitive score and ICV*motion). The four interaction terms we included in the

GLM were those pairs of variables that we hypothesized may have non-negligible interactions.

yk = β0 +
10

∑
i=1

βixi

where yk is the SC-FC coupling of length n (number of subjects) for region k = 1,2, ...392, β0 is the intercept and βi are the368

coefficients for each covariate xi, also a vector of length n. SC-FC coupling values were Fisher r-to-z transformed for improving369
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normality. All p values for the regression coefficients were FDR corrected for multiple corrections and analyzed for significance370

at a level of α = 0.05.371

Quantifying the heritability of SC-FC coupling372

LME models were developed to disentangle inter- versus intra-subject variation65. This LME approach was recently adapted

for and applied to HCP data to quantify heritability of functional connectome fingerprints with respect to the inter-subject

component, while removing the effect of transient changes across observations of a single subject26. This approach allows

examination of the association between the genetic relationship and phenotypic similarity, while accounting for shared

environment of siblings. Specifically, we write the following:

yi j = xi jβ + γi + εi j

where i = 1,2, ...,n and j = 1,2, ...mi. mi is the total number of repeated measures for subject i. The variable yi j is the phenotype

measurement for subject i for measurement j, xi j contains all the q covariates while the vector β , also of length q, contains the

unknown fixed population-level effects. The scalar γi donates the subject-specific deviation from the population mean and εi j

describes denotes the intra-subject measurement error (transient component) of yi j and is assumed to be independent of the

random effects and independent between repeated measurements. Stacking all subjects and all repeated observations into a

single vector, we have

y = xTβ +Tγ + ε,

where y is the phenotype vector of length ntotal = ∑
n
i=1 mi, x is the covariate matrix of dimension q×ntotal , T is a block diagonal

matrix of dimension ntotal ×nsub j, γ is a vector of length nsub j and ε is a vector of length ntotal . We consider γ to be the sum of

three different effects: additive genetic effect g ∼ N(0,σ2
AK), shared (common) environmental effect c ∼ N(0,σ2

CΛ) and unique

(subject-specific) environmental effect e ∼ N(0,σ2
EIntotal

). Here, σ2
A, σ2

C and σ2
E are the additive genetic variance, common

environmental variance and unique environmental variance, respectively. The matrix K is the m×m genetic similarity matrix

derived from the pedigree information where Ki j is 1 for monozygotic twins, 1/2 for dizygotic twins and full siblings and 0

for unrelated individuals. The matrix Λ is an nsub j ×nsub j matrix indicating shared environment, that is, if the two subjects i

and j have the same parents then Λi j is set to 1, otherwise it is set to 0. Finally, the matrix Intotal
is the identity matrix of size

nsub j ×nsub j. Intra-subject variation is assumed to follow a Gaussian distribution, ε ∼ N(0,σ2
MIntotal

). Thus, the covariance

matrix of y is

cov[y] = σ2
ATKTT +σ2

CTΛTT +σ2
ETTT +σ2

MIntotal
.

Finally, we can define the non-transient heritability of a given trait as the proportion of stable, non-transient inter-subject

variation that can be explained by genetic variation in the population as

h2 =
σ2

A

σ2
A +σ2

C +σ2
E

Unbiased estimates of the variance components σ2
A, σ2

C, σ2
E and σ2

M were obtained using the restricted maximum likelihood373

(ReML) algorithm66. We estimated the nontransient heritability of regional SC-FC coupling (4 measurements per subject), SC374

node strength as calculated via the sum of rows, excluding the diagonal (1 measurement per subject) and FC node strength as375

calculated via the sum of absolute value of rows, excluding the diagonal (4 measurements per subject). SC-FC coupling, FC376

node degree and SC node degree were standardized before calculating heritability. Age, sex and handedness were taken as377

fixed-effect covariates in each of the heritability models. Finally, because there may be differences in genetic similarity patterns378

across race/ethnicity, we re-calculated heritability of the various measures using a homogeneous sub-set of white, non-Hispanic379

individuals (N = 645).380

Data availability381

HCP data are publicly available at www.humanconnectome.org. Certain HCP data are restricted to protect subject privacy,382

such as genetic, medical, and neuropsychiatric information. Source data are provided with this paper.383

Code availability384

Python code to reproduce the main results of this paper is publicly available at https://github.com/zijin-gu/385

scfc-coupling. Preprocessing code is available upon request.386
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