

Sequential recognition of discrete export signals in flagellar subunits during bacterial Type III secretion

Authors

Owain J. Bryant^a , Paraminder Dhillon^a, Colin Hughes^a, Gillian M. Fraser^{a,*}

Affiliations

^aDepartment of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom

Corresponding author

*Gillian M. Fraser

Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom

Phone: +44 1223 330245

Email: gmf25@cam.ac.uk

Keywords

Type III secretion system; protein export; bacterial flagella biogenesis

^bOwain Bryant current address: Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU

^cParaminder Dhillon current address: The FEBS Journal Editorial Office, 59 St Andrew's House, Cambridge, CB2 3BZ, United Kingdom

1 **Abstract**

2 The flagellar T3SS delivers proteins from the bacterial cytosol to nascent cell surface
3 flagella. Early subunits of the flagellar rod and hook are unchaperoned and contain
4 their own export signals. One export signal, the gate recognition motif (GRM) docks
5 subunits at the export gate, which must then open for unfolded subunits to enter the
6 flagellar channel. Here, we identify a second signal at the extreme N-terminus of
7 flagellar rod/hook subunits and determine that key to the signal is its hydrophobicity.
8 We show that the two export signals are recognised sequentially, with the N-terminal
9 signal being recognised only after subunits have docked at the export gate. The
10 position of the N-terminal signal relative to the GRM is important, as a FlgD deletion
11 variant (FlgDshort), in which the distance between the N-terminal signal and the
12 GRM was shortened, stalled at the export machinery and was not exported. The
13 attenuation of motility caused by FlgDshort was suppressed by mutations that
14 destabilised the closed conformation of the FlhAB-FliPQR flagellar export gate,
15 suggesting that the hydrophobic N-terminal signal might trigger gate opening.

16

17 **Introduction**

18 Type III Secretion Systems (T3SS) are multi-component molecular machines that
19 deliver protein cargo from the bacterial cytosol either to their site of assembly in cell
20 surface flagella or virulence factor injectosomes, or directly to their site of action in
21 eukaryotic target cells or the extracellular environment [1-5]. The flagellar T3SS
22 (fT3SS) directs the export of thousands of structural subunits required for the
23 assembly and operation of flagella, rotary nanomotors for cell motility that extend
24 from the bacterial cell surface [1],[6]. Newly synthesised subunits of the flagellar rod,

25 hook and filament are targeted to the fT3SS, where they are unfolded and
26 translocated across the cell membrane, powered by the proton motive force and ATP
27 hydrolysis, into an external export channel that spans the length of the nascent
28 flagellum [7],[8]. During flagellum biogenesis, when the rod/hook structure reaches
29 its mature length, the fT3SS switches export specificity from recognition of 'early'
30 rod/hook subunits to 'late' subunits for filament assembly [9],[10]. This means that
31 early and late flagellar subunits must be differentiated by the fT3SS machinery to
32 ensure that they are exported at the correct stage of flagellum biogenesis. This is
33 achieved, in part, by targeting subunits to the export machinery at the right time
34 using a combination of export signals in the subunit mRNA and/or polypeptide. T3SS
35 substrates contain N-terminal signals for targeting to the export machinery, however
36 these signals do not share a common peptide sequence [11-15]. In addition, some
37 substrates are piloted to the T3SS machinery by specific chaperones [16-21].

38

39 The core export components of the fT3SS are evolutionarily related to those of the
40 virulence injectosome, with which they share considerable structural and amino acid
41 sequence similarity [22-25]. The flagellar export machinery comprises an ATPase
42 complex (FliHIJ) located in the cytoplasm, peripheral to the membrane. Immediately
43 above the ATPase is a nonameric ring formed by the cytoplasmic domain of FliA
44 (FliAc), which functions as a subunit docking platform [20][21][26]. A recent cryo-
45 ET map indicates that the FliA family have a sea-horse-like structure, in which FliAc
46 forms the 'body' and the FliA N-terminal region (FliAN) forms the 'head', which is
47 fixed in the plane of the membrane [27]. FliAN wraps around the base of a complex
48 formed by FliPQR and the N-terminal sub-domain of FliB (FliBN), and together

49 these form the FlihAB-FlihPQR export gate that connects the cytoplasm to the central
50 channel in the nascent flagellum, which is contiguous with the extracellular
51 environment [22],[28]. FlihBN is connected *via* a linker (FlihBCN) to the cytoplasmic
52 domain of FlihB (FlihBC), which is thought to sit between the FlihAN and FlihAC rings,
53 where it functions as a docking site for early flagellar subunits [22][14][28].

54

55 The ‘early’ flagellar subunits that assemble to form the rod and hook substructures
56 are not chaperoned: instead, the signals for targeting and export are found within the
57 early subunits themselves. We have shown that one of these signals is a small
58 hydrophobic sequence termed the gate recognition motif (GRM), which is essential
59 for early subunit export [14]. This motif binds a surface exposed hydrophobic pocket
60 on FlihBC [14]. Once subunits reach the export machinery, they must be unfolded
61 before they can pass through the narrow channel formed by FlihPQR-FlihBN into the
62 central channel of the nascent flagellum, through which the subunits transit until they
63 reach the tip and fold into the structure [22],[6]. Structural studies suggest that
64 FlihPQR-FlihBN adopts an energetically favourable closed conformation, possibly to
65 maintain the membrane permeability barrier [22][25][29],[30]. This suggests that
66 there must be a mechanism to trigger opening of the export gate when subunits dock
67 at cytoplasmic face of the flagellar export machinery.

68

69 Here we sought to identify new export signals within flagellar rod/hook subunits,
70 using the hook-cap subunit FlgD as a model export substrate. We show that the
71 extreme N-terminus of rod/hook subunits contains a hydrophobic export signal and
72 investigate its functional relationship to the subunit gate recognition motif (GRM).

73 **Results**

74 ***Identification of a hydrophobic export signal at the N-terminus of FlgD***

75 The N-terminal region of flagellar rod and hook subunits is required for their export
76 [12],[14]. Using the flagellar hook-cap protein FlgD as a model rod/hook subunit, we
77 sought to identify specific export signals within the N-terminus. A screen of ten FlgD
78 variants containing internal five-residue scanning deletions in the first 50 residues
79 (though FlgD Δ 2-5 is a four-residue deletion, retaining the initial methionine) identified
80 just two variants defective for export into culture supernatant (**Fig. 1A**). Loss of
81 residues 2-5 caused a significant reduction in export, as did deletion of residues 36-
82 40, though to a lesser extent (**Fig. 1A**; [14]). We have shown that FlgD residues 36-
83 40 are the gate recognition motif (GRM) required for transient subunit docking at the
84 FlhB_C component of the export gate [14]. The results suggest that the extreme N-
85 terminus might also be important for interaction with the export machinery.

86

87 To gain insight into the putative new signal, we screened for intragenic suppressor
88 mutations that could restore export of the FlgD Δ 2-5 variant. A *Salmonella* *flgD* null
89 strain expressing *flgD* Δ 2-5 *in trans* was inoculated into soft-tryptone agar and
90 incubated until ‘spurs’ of motile cell populations appeared. Sequencing of *flgD* Δ 2-5
91 alleles from these motile populations identified ten different intragenic gain-of-
92 function mutations. These could be separated into two classes (**Fig. 1B**).

93

94 The first class of motile revertants carried *flgD* Δ 2-5 alleles with missense mutations
95 that introduced small non-polar residues at the extreme N-terminus of FlgD Δ 2-5 (**Fig.**
96 **1B**). Deletion of residues 2-5 (2SIAV⁵) had removed all small non-polar amino acids

97 from the first ten residue region of FlgD, effectively creating a new N-terminus
98 containing a combination of polar, charged or large non-polar residues (**Fig. S1**).
99 Analysis of other flagellar rod and hook subunit primary sequences revealed that in
100 every case their native N-terminal regions contain small non-polar residues
101 positioned upstream of the gate recognition motif (GRM residues 36-40; **Fig. S1**),
102 indicating that hydrophobicity may be key to the function of the N-terminal export
103 signal. Export assays performed with two representative motile revertant strains
104 carrying *flgDΔ2-5* variants with gain-of-function point mutations, those encoding
105 FlgDΔ2-5-N₈I and FlgDΔ2-5-T₁₁I, revealed that export of these subunits had
106 recovered to ~50% of the level observed for wild type FlgD (**Fig. 1C; Fig. S2; Fig.**
107 **S3**).

108

109 The second class of motile revertants carried *flgDΔ2-5* alleles that had acquired
110 duplications or insertions introducing at least six additional residues between the
111 FlgDΔ2-5 N-terminus and the gate recognition motif (GRM; **Fig. 1B**). It seemed
112 possible that these insertions/duplications might have restored subunit export either
113 by insertion of amino acids that could function as a 'new' hydrophobic export signal,
114 or by restoring the position of an existing small hydrophobic residue or sequence
115 relative to the GRM.

116

117 To assess these possibilities, we tested whether export of FlgDΔ2-5 could be
118 recovered by inserting either polar (¹⁹STSTST²⁰) or small non-polar (¹⁹AGAGAG²⁰)
119 residues in the FlgDΔ2-5 N-terminal region at a position equivalent to one of the
120 suppressing duplications (¹⁹GSGSMT²⁰; **Fig. 1B and D; Fig. S3**). We reasoned that

121 if suppression by the additional sequence had been caused by repositioning an
122 existing small hydrophobic amino acid relative to the GRM, then any insertional
123 sequence (polar or non-polar) would restore export, while if suppression had resulted
124 from insertion of a ‘new’ export signal, then either the polar STSTST or non-polar
125 AGAGAG, but not both, could be expected to restore export.

126

127 We found that both the engineered FlgD variants (FlgD Δ 2-5-¹⁹AGAGAG²⁰ and
128 FlgD Δ 2-5-¹⁹STSTST²⁰) were exported from a *Salmonella flgD* null strain as
129 effectively as the gain-of-function mutant FlgD Δ 2-5-¹⁹GSGSMT²⁰ isolated from the
130 suppressor screen (**Fig. 1D**). This suggests that the insertions had repositioned a
131 sequence in the FlgD Δ 2-5 N-terminus relative to the GRM to overcome the loss of
132 small hydrophobic residues.

133

134 ***The position of the hydrophobic export signal relative to the gate recognition
135 motif is critical for rod and hook subunit export***

136 The discovery of intragenic suppressors of the FlgD Δ 2-5 export defect indicated that
137 FlgD export requires a hydrophobic signal towards the subunit N-terminus and that
138 the position of this hydrophobic signal relative to the previously described GRM is
139 important. Sequence analysis of the gain-of-function FlgD Δ 2-5 insertion variants
140 revealed that the insertions were all located between the GRM and valine₁₅ (V₁₅; **Fig.**
141 **1B**). We reasoned that the insertions repositioned valine₁₅ relative to the GRM, such
142 that it could perform the function of the N-terminal hydrophobic signal lost in FlgD Δ 2-
143 5. To test this view, we replaced V₁₅ with alanine in the gain-of-function variant
144 FlgD Δ 2-5-¹⁹(GSGSMT)²⁰ and assayed its export in the *Salmonella flgD* null (**Fig. 2A**;

145 **Fig. S4**). Unlike the *flgD* null strain producing either the parental FlgDΔ2-5-
146 ¹⁹(GSGSMT)²⁰ or wild type FlgD, the *flgD* null carrying variant FlgDΔ2-5-
147 ¹⁹(GSGSMT)²⁰-V₁₅A was non-motile, reflecting the variant's failure to export (**Fig.**
148 **2A**). This suggests that the V₁₅ residue had indeed compensated for the missing N-
149 terminal hydrophobic signal.

150

151 By screening for intragenic suppressors of the motility defect associated with
152 FlgDΔ2-5-¹⁹(GSGSMT)²⁰-V₁₅A, four gain-of-function missense mutations were
153 identified, M₇I, D₉A, T₁₁I and G₁₄V. All of these had introduced small hydrophobic
154 residues, all positioned at least 27 residues upstream of the GRM. These FlgDΔ2-5-
155 ¹⁹(GSGSMT)²⁰-V₁₅A gain-of-function variants restored motility to the *Salmonella flgD*
156 null strain and were exported at levels similar to wildtype FlgD and FlgDΔ2-5-
157 ¹⁹(GSGSMT)²⁰ (**Fig. 2A**). These data confirm the importance of small non-polar
158 residues positioned upstream of the GRM.

159

160 Our results so far had indicated that the position of the FlgD N-terminal hydrophobic
161 export signal relative to the GRM was critical and suggested that, for export to occur
162 efficiently, at least 26 residues must separate the hydrophobic signal and the GRM
163 (**Fig 1C**). In the primary sequences of all *Salmonella* flagellar rod/hook subunits the
164 GRM is positioned \geq 30 amino acids downstream of the subunit N-terminus (**Fig S1**),
165 suggesting that separation of the two signals by a minimum number of residues
166 might be a common feature among early flagellar subunits. To test this, a suite of
167 engineered *flgD* alleles was constructed that encoded FlgD variants in which
168 wildtype residues 9-32 were replaced with between one and four repeats of the six

169 amino acid sequence Gly-Ser-Thr-Asn-Ala-Ser (GSTNAS). Swimming motility and
170 export assays revealed that the minimum number of inserted GSTNAS repeats that
171 could support efficient FlgD export was three, equivalent to separation of the
172 hydrophobic N-terminal signal and the GRM by 24 residues (**Fig. 2B; Fig. S5**).
173 Below this threshold, FlgD export and swimming motility were strongly attenuated
174 (**Fig. 2B**). A further set of recombinant *flgD* alleles was constructed, which encoded
175 FlgDΔ9-32 variants carrying two GSTNAS repeats (hereafter termed FlgD_{short})
176 directly followed by between one and five additional residues (**Fig. 2C; Fig. S5**).
177 Motility and FlgD export increased incrementally with the addition of each amino acid
178 (**Fig. 2C**). The data indicate that a low level of FlgD export is supported when the
179 hydrophobic N-terminal signal (2SIAV₅) and the GRM (36FLTLL₄₀) are separated by
180 19 residues, with export efficiency and swimming motility increasing as separation of
181 the export signals approaches the optimal 30 residues.

182
183 To further establish the requirement for a minimum number of residues between the
184 hydrophobic N-terminal signal and the GRM, we screened for intragenic suppressor
185 mutations that could restore swimming motility in a *flgD* null strain producing
186 FlgD_{short}. Sequencing of *flgD*_{short} alleles from motile revertant strains identified 12
187 gain-of-function mutations that introduced additional residues between the
188 hydrophobic N-terminal signal and the GRM (**Fig. S6**). Swimming motility and FlgD
189 export was assessed for three *flgD* null strains expressing representative *flgD*_{short}
190 gain-of-function variants and all showed increased FlgD subunit export and
191 swimming motility compared to the *flgD* null expressing *flgD*_{short} (**Fig. 2D; Fig. S6**).

192 The data confirm that the position of the hydrophobic N-terminal signal relative to the
193 GRM is critical for efficient FlgD subunit export.

194

195 To establish that this is a general requirement for the export of other rod and hook
196 subunits, engineered alleles of *flgE* (hook) and *flgG* (rod) were constructed that
197 encoded variants in which FlgE residues 9-32 or FlgG residues 11-35 were either
198 deleted (FlgE_{short} and FlgG_{short}) or replaced with four repeats of the sequence
199 GSTNAS (**Fig. 3; Fig. S7**). As had been observed for FlgD_{short}, export of the
200 FlgE_{short} and FlgG_{short} variants was severely attenuated compared to wild type FlgE
201 and FlgG (**Fig. 3**). Furthermore, insertion of four GSTNAS repeats into FlgE_{short} and
202 FlgG_{short} recovered subunit export to wild type levels, indicating that the minimum
203 separation of the hydrophobic N-terminal signal and the GRM is a feature throughout
204 rod and hook subunits (**Fig. 3**).

205

206 ***Sequential engagement of the subunit GRM and hydrophobic N-terminal
207 export signal by the flagellar export machinery***

208 Having identified a new hydrophobic N-terminal export signal and established that its
209 position relative to the GRM was critical, we next wanted to determine the order in
210 which the signals were recognised/engaged by the export machinery. The signals
211 might be recognised simultaneously, with both being required for initial entry of
212 rod/hook subunits into the export pathway. Alternatively, they might be recognised
213 sequentially. If this were the case, then a subunit variant that possessed the ‘first’
214 signal but was deleted for the ‘second’ signal might enter the export pathway but fail
215 to progress, becoming stalled at a specific step to block the pathway and prevent

216 export of wild type subunits. To test if FlgDΔ2-5 or FlgDΔGRM stalled in the export
217 pathway, recombinant expression vectors encoding these variants or wild type FlgD
218 were introduced into a *Salmonella ΔrecA* strain that is wild type for flagellar export
219 (**Fig. 4**). We could then assess whether the variant FlgD constructs could interfere *in*
220 *trans* with the wild type flagellar export. We saw that FlgDΔ2-5 inhibited motility and
221 export of the FliK and FlgK flagellar subunits, whereas FlgDΔGRM did not (**Fig. 4B**
222 **and C**). The data indicate that FlgDΔ2-5 enters the flagellar export pathway and
223 stalls at a critical point, blocking export. In contrast, FlgDΔGRM does not stall or
224 block export.

225
226 To determine whether FlgDΔ2-5 stalls at a point before or after subunit docking at
227 the FlhB_c component of the flagellar export gate *via* the GRM, a recombinant vector
228 encoding a FlgD variant in which both export signals were deleted (FlgDΔ2-5ΔGRM)
229 was constructed. If loss of the hydrophobic N-terminal signal had caused subunits to
230 stall after docking at FlhB_c, then additional deletion of the subunit GRM would relieve
231 this block. Motility and subunit export assays revealed that the *Salmonella ΔrecA*
232 strain producing FlgDΔ2-5ΔGRM displayed swimming motility and levels of FliK and
233 FlgK subunit export similar to cells producing FlgDΔGRM (**Fig. 4B and C**). The data
234 suggest that FlgDΔ2-5 stalls after docking at the FlhB_c export gate, preventing
235 docking of other early subunits.

236
237 It seemed possible that subunit docking *via* the GRM to the FlhB_c export gate might
238 position the hydrophobic N-terminal signal in close proximity to its recognition site on
239 the export machinery. If this were the case, ‘short’ subunit variants containing

240 deletions that decreased the number of residues between the hydrophobic N-
241 terminal signal and the GRM might also stall at FlhB_C, and this stalling might be
242 relieved by additional deletion of the GRM. To test this, recombinant expression
243 vectors encoding ‘short’ subunit variants (FlgE_{short} or FlgD_{short}), ‘short’ subunit
244 variants additionally deleted for the GRM (FlgE_{short}ΔGRM or FlgD_{short}ΔGRM) or wild
245 type FlgE or FlgD were introduced into a *Salmonella* ΔrecA strain (**Fig 5**). Compared
246 to the wild type subunits expressed *in trans*, the ‘short’ subunits inhibited swimming
247 motility and the export of other flagellar subunits (FliD, FliK, FlgK), whereas
248 FlgE_{short}ΔGRM and FlgD_{short}ΔGRM did not (**Fig 5**). Taken together with the data
249 presented in Figure 4, the results indicate that the subunit GRM and the hydrophobic
250 N-terminal signal are recognised sequentially, with subunits first docking at FlhB_C *via*
251 the GRM, which positions the hydrophobic N-terminal signal for subsequent
252 interactions with the export machinery (**Fig 4D**).

253

254 **Mutations that promote opening of the export gate partially compensate for**

255 **incorrect positioning of the subunit N-terminal export signal**

256 The accruing data indicated that subunit docking at FlhB_C might correctly position the
257 hydrophobic N-terminal signal for recognition by the export machinery. To model the
258 position of FlhB_C relative to other components of the export machinery, we placed
259 the structures of FlhB_C and the FliPQR-FlhB_N export gate into the tomographic
260 reconstruction of the *Salmonella* SPI-1 type III secretion system (**Fig 6B**; [31]). The
261 model indicated that FliPQR-FlhB_N and the subunit docking site on FlhB_C are
262 separated by a minimum distance of ~78 Å, and that FlhB_C is positioned no more
263 than ~22-45 Å from FlhA (Fig 6A; [27]). Taking FlgD as a model early flagellar

264 subunit, the distance between the FlgD N-terminal hydrophobic signal and the GRM
265 was found to be in the range of ~45 Å (α -helix) to ~105 Å (unfolded contour length),
266 depending on the predicted structure adopted by the subunit N-terminus (Fig 6A).
267 Based on these estimates, it seemed feasible that the hydrophobic N-terminal signal
268 of a subunit docked at FlhB_C could contact either FlhA or the FliPQR-FlhB_N complex,
269 and that this interaction might trigger opening of the export gate [27],[30],[22]. If this
270 were true, mutations that promote the open conformation of the export gate might
271 compensate for the incorrect positioning of the hydrophobic N-terminal export signal
272 in 'short' rod/hook subunits. One such export gate mutation, FliP-M₂₁₀A, has been
273 shown to increase ion conductance across the bacterial inner membrane, indicating
274 that this gate variant fails to close efficiently [29].

275

276 To test whether the FliP-M₂₁₀A variant gate could promote export of 'short' subunits,
277 in which the distance between the hydrophobic N-terminal signal and the GRM was
278 reduced, a recombinant expression vector encoding FlgD_{short} was introduced into
279 *Salmonella flgD* null strains in which the *fliP* gene had been replaced with
280 recombinant genes encoding either a functional FliP variant with an internal HA-tag
281 (designated wild type gate) or the equivalent HA-tagged FliP-M₂₁₀A variant
282 (designated M₂₁₀A gate; **Fig. 6C; Fig. S8**). The swimming motility of these strains
283 was found to be consistently stronger in the strain producing the M₂₁₀A gate
284 compared to the strain with the wild type gate, with the motility halo of the *fliP*-
285 M₂₁₀A- Δ *flgD* strain expressing FlgD_{short} having a 50% greater diameter than that of
286 the wild type *fliP*- Δ *flgD* strain expressing FlgD_{short} (**Fig. 6D**). This increase in motility
287 indicated that the defect caused by incorrect positioning of the hydrophobic N-

288 terminal signal relative to the GRM in FlgD_{short} could indeed be partially
289 compensated by promoting the gate open conformation.

290

291 **Discussion**

292 T3SS substrates contain N-terminal export signals, though these signals have not
293 been fully defined and how they promote subunit export remains unclear. Here, we
294 characterised a new hydrophobic N-terminal export signal in early flagellar rod/hook
295 subunits and showed that the position of this signal relative to the known subunit
296 gate recognition motif (GRM) is key to export.

297

298 Loss of the hydrophobic N-terminal signal in the hook cap subunit FlgD had a
299 stronger negative effect on subunit export than deletion of the GRM that enables
300 subunit docking at FlhB_C, suggesting that the hydrophobic N-terminal signal may be
301 required to trigger an essential export step. A suppressor screen showed that the
302 export defect caused by deleting the hydrophobic N-terminal signal could be
303 overcome by mutations that either reintroduced small non-polar amino acids
304 positioned 3-7 residues from the subunit N-terminus (e.g. M₇I), or introduced
305 additional residues between V₁₅ and the GRM. In such 'gain of function' strains
306 containing insertions, changing V₁₅ to alanine abolished subunit export, which was
307 rescued by re-introduction of small non-polar residues close to the N-terminus.
308 These data point to an essential export function for small non-polar residues close to
309 the N-terminus of rod/hook subunits.

310

311 It was fortuitous that we chose FlgD as the model for early flagellar subunit. All early
312 subunits contain small hydrophobic residues close to the N-terminus, but FlgD is
313 unique in that only four (I₃, A₄, V₅ and V₁₅) of its first 25 residues are small and non-
314 polar (**Fig. S1**). Indeed, there are only three other small hydrophobic residues
315 between the FlgD N-terminus and the GRM (**Fig. 1**). While deletion of residues 2-5 in
316 FlgD removes the critical hydrophobic N-terminal signal, similar deletions in the N-
317 terminal regions of other rod/hook subunits reposition existing small non-polar
318 residues close to the N-terminus (**Fig. S1**). This is perhaps why previous deletion
319 studies in early flagellar subunits have failed to identify the hydrophobic N-terminal
320 signal [14],[37],[38].

321

322 The finding that subunits lacking the hydrophobic N-terminal export signal, but not
323 the GRM, stalled during export suggested that these two signals were recognised by
324 the flagellar export machinery in a specific order. Mutant variants of other flagellar
325 export substrates or export components have been observed to block the export
326 pathway. For example, a FlgN chaperone variant lacking the C-terminal 20 residues
327 stalls at the FliI ATPase [39], while a GST-tagged FliJ binds FlhA but is unable to
328 associate correctly with FliI so blocking wild type FliJ interaction with FlhA [40].

329 These attenuations can be reversed by further mutations that disrupt the stalling
330 interactions. This was also observed for FlgDΔ2-5. Loss of the hydrophobic N-
331 terminal signal resulted in a dominant-negative effect on motility and flagellar export,
332 but this was abolished by subsequent deletion of the GRM. This indicates that
333 FlgDΔ2-5 stalls in the export pathway at FlhB_c, blocking the binding site for early
334 flagellar subunits. These data are consistent with sequential recognition of the two

335 export signals: the GRM first docking subunits at FlhB_C, and positioning the
336 hydrophobic N-terminal signal to trigger the next export step.
337
338 The position of the subunit hydrophobic N-terminal export signal relative to the GRM
339 appears critical for export. Engineering of *flgD* to encode variants in which the region
340 between the N-terminus and the GRM was replaced with polypeptide sequences of
341 varying lengths showed that these signals must be separated by a minimum of 19
342 residues for detectable export, with substantial export requiring separation by 30
343 residues (**Fig. 3**). When subunits dock at FlhB_C, which is likely situated within or just
344 below the plane of the inner membrane, the hydrophobic N-terminal signal is
345 positioned close to the FlhAB-FliPQR export gate (**Fig. 6B**). Subunits in which the
346 GRM and N-terminal signal are brought closer together stall at FlhB_C, suggesting
347 that the hydrophobic N-terminal signal is unable to contact its recognition site on the
348 export machinery (**Figs. 5, 6A and 6B**). In all flagellar rod/hook subunits, the GRM is
349 positioned at least 30 residues from the N-terminus (**Fig. S1**). The physical distance
350 between the two signals will depend on the structure adopted by the subunit N-
351 terminus (**Fig. 6A**). The N-terminal region of flagellar subunits is often unstructured
352 in solution [11-15],[32], and such disorder may be an intrinsic feature of flagellar
353 export signals [11-15],[33],[34], as is typical in other bacterial N-terminal export
354 signals such as those in substrates of the Sec and Tat systems [35],[36].
355 Unstructured signals may facilitate multiple interactions with different binding
356 partners during export, and in the case of export systems that transport unfolded
357 proteins they may aid initial entry of substrates into narrow export channels [35].
358

359 As yet, nothing is known about the structure of the subunit N-terminal domain upon
360 interaction with the flagellar export machinery. Signal peptides in TAT pathway
361 substrates switch between disordered and α -helical conformations depending on the
362 hydrophobicity of the environment [41]. It therefore seems likely that local
363 environments along the flagellar export pathway will influence the conformation of
364 subunit export signals [42],[22]. In flagellar subunits, if the region between the
365 hydrophobic N-terminal signal and the GRM is unstructured and extended, this
366 would correspond to a polypeptide contour length of approximately 72-105 Å (where
367 the length of one amino acid is ~3.6 Å). If the same region were to fold as an α -helix,
368 its length would be approximately 30-36 Å (where one amino acid rises every ~1.5
369 Å). Without further structural information on subunit interactions with the flagellar
370 export machinery and the precise position of FlhB_c within the machinery, it is difficult
371 to determine precisely where the hydrophobic N-terminal signal contacts the
372 machinery.

373

374 We speculate that one function of the subunit hydrophobic N-terminal signal might
375 be to trigger opening of the FlhAB-FliPQR export gate, which rests in an
376 energetically favourable closed conformation to maintain the permeability barrier
377 across the bacterial inner membrane [29],[22],[30],[27]. The atomic resolution
378 structure of FliPQR showed that it contains three gating regions [22]. FliR provides a
379 loop (the R-plug) that sits within the core of the structure. Below this, five copies of
380 FliP each provides three methionine residues that together form a methionine-rich
381 ring under which ionic interactions between FliQ residues hold the base of the
382 structure shut (Q-latch).

383 A recent structure of a substrate trapped within the vT3SS revealed conformational
384 changes within the export gate [43]. These changes include a rearrangement of the
385 M-gate methione residues and folding up of the FliR plug to allow substrate passage.
386 If the function of the subunit hydrophobic N-terminal signal was to trigger opening of
387 this gate, we hypothesised that mutations which destabilised the gate's closed
388 conformation would suppress the motility defect associated with FlgD_{short}, in which
389 the distance between the N-terminal signal and the GRM is reduced. Introduction of
390 the FliP-M₂₁₀A mutation, which partially destabilises the gate's closed state, did
391 indeed partly suppress the FlgD_{short} motility defect. We did not find export gate
392 variants that completely destabilised gate closure, but it may be that such mutations
393 disrupt the membrane permeability barrier [29]. This could also explain why in
394 screens for suppressors of FlgDΔ2-5 or FlgD_{short} we did not isolate mutations in
395 genes encoding export gate components (data not shown).

396

397 The surface-exposed hydrophobic GRM-binding pocket on FlhB_C is well conserved
398 across the T3SS SctU family, to which FlhB belongs [14],[44],[45]. Furthermore, the
399 GRM is conserved in all four injectosome early subunits (SctI, SctF, SctP, OrgC) and
400 is located at least 30 residues away from small hydrophobic residues near the
401 subunit N-terminus. It therefore seems plausible that the 'dual signal' mechanism we
402 propose for early flagellar export operates in all T3SS pathways.

403

404 Based on the genetic and biochemical work presented here, we propose a model of
405 sequential recognition of export signals at the T3SS export machinery. Early
406 substrates engage with the GRM-binding pocket on FlhB_C, positioning the subunit N-

407 terminal hydrophobic signal to contact its recognition site. Given that FlhB_C is
408 positioned directly below the FliPQR-FlhB_N gate, the N-terminal hydrophobic signal
409 of substrates docked at FlhB_C would be suitably positioned to trigger export gate
410 opening. Based on the location of FlhB_C and the relative position between export
411 signals, the N-terminal hydrophobic signal could trigger gate opening by indirect
412 interactions with FlhA/FlhB or *via* direct interactions with the FliPQR-FlhB_N export
413 gate components.

414

415 In many other pathways, the presence of a substrate triggers opening or assembly of
416 the export channel. The outer membrane chitin transporter in *Vibrio* adopts a closed
417 conformation in which the N-terminus of a neighbouring subunit acts as a pore plug
418 [46]. Chitin binding to the transporter ejects the plug, opening the transport channel
419 and allowing chitin transport [45]. In the Sec pathway, interactions of SecA,
420 ribosomes or pre-proteins with SecYEG can induce conformational changes that
421 promote channel opening [47-49],[35]. In the TAT system, which transports folded
422 substrates across the cytoplasmic membrane, substrate binding to the TatBC
423 complex triggers association with, and subsequent polymerisation of, TatA, which is
424 required for substrate translocation [50],[36]. All of these mechanisms serve both to
425 conserve energy and prevent disruption of the membrane permeability barrier. Our
426 data suggest that in a comparable way the signal of non-polar residues within the N-
427 termini of early rod/hook subunits trigger export gate opening.

428 **Methods**

429 **Bacterial strains, plasmids and growth conditions**

430 *Salmonella* strains and plasmids used in this study are listed in **Supplementary**

431 **Table 1.** The $\Delta flgD::K_m^R$ strain in which the *flgD* gene was replaced by a kanamycin

432 resistance cassette was constructed using the λ Red recombinase system [58].

433 Strains containing chromosomally encoded FliP variants were constructed by aph-I-

434 *Scel* Kanamycin resistance cassette replacement using pWRG730 [59].

435 Recombinant proteins were expressed in *Salmonella* from the isopropyl β -D-

436 thiogalactoside-inducible (IPTG) inducible plasmid pTrc99a [60]. Bacteria were

437 cultured at 30–37 °C in Luria-Bertani (LB) broth containing ampicillin (100 μ g/ml).

438

439 **Flagellar subunit export assay**

440 *Salmonella* strains were cultured at 37 °C in LB broth containing ampicillin and IPTG

441 to mid-log phase (OD_{600nm} 0.6-0.8). Cells were centrifuged (6000*g*, 3 min) and

442 resuspended in fresh media and grown for a further 60 min at 37 °C. The cells were

443 pelleted by centrifugation (16,000*g*, 5 min) and the supernatant passed through a 0.2

444 μ m nitrocellulose filter. Proteins were precipitated with 10% trichloroacetic acid

445 (TCA) and 1% Triton-X100 on ice for 1 hour, pelleted by centrifugation (16,000*g*, 10

446 min), washed with ice-cold acetone and resuspended in SDS-PAGE loading buffer

447 (volumes calibrated according to cell densities). Fractions were analysed by

448 immunoblotting.

449

450

451

452 **Motility assays**

453 For swimming motility, cultures were grown in LB broth to A600nm 1. Two microliters
454 of culture were inoculated into soft tryptone agar (0.3% agar, 10 g/L tryptone, 5g/L
455 NaCl) containing ampicillin (100 µg/ml). Plates were incubated at 37 °C for between
456 4 and 6 hours unless otherwise stated.

457

458 **Isolation of motile strains carrying suppressor mutations**

459 Cells of the *Salmonella flgD* null strain transformed with plasmids expressing FlgD
460 variants (FlgDΔ2-5, FlgDΔ2-5-¹⁹GSGSMT²⁰-V15A or FlgD_{short}) were cultured at 37
461 °C in LB broth containing ampicillin (100 µg/ml) to mid-log phase and inoculated into
462 soft tryptone agar (0.3% agar, 10 g/L tryptone, 5g/L NaCl) containing ampicillin (100
463 µg/ml). Plates were incubated at 30 °C until motile 'spurs' appeared. Cells from the
464 spurs were streaked to single colony and cultured to isolate the *flgD* encoding
465 plasmid. Plasmids were transformed into the *Salmonella flgD* null strain to assess
466 whether the plasmids were responsible for the motile suppressor phenotypes.

467 Plasmids were sequenced to identify the suppressor mutations.

468

469 **Quantification and statistical analysis**

470 Experiments were performed at least three times. Immunoblots were quantified using
471 Image Studio Lite. The unpaired two-tailed Student's *t*-test was used to determine *p*-
472 values and significance was determined as **p* < 0.05. Data are represented as mean
473 ± standard error of the mean (SEM), unless otherwise specified and reported as
474 biological replicates.

475

476 **Author contributions**

477 **Owain J. Bryant**: Conceptualization, Data curation, Investigation, Formal analysis,

478 Methodology, Visualisation, Writing – original draft, Writing – review & editing.

479 **Paraminder Dhillon**: Conceptualization, Data curation, Investigation, Formal

480 analysis, Methodology, Visualisation, Writing – review & editing. **Colin Hughes**:

481 Conceptualization, Data curation, Formal analysis, Funding acquisition,

482 Investigation, Methodology, Project administration, Resources, Supervision,

483 Visualisation, Writing – review & editing. **Gillian M. Fraser**: Conceptualization, Data

484 curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project

485 administration, Resources, Supervision, Visualisation, Writing – original draft, Writing

486 – review & editing.

487

488 **Competing interests**

489 The authors declare no competing interests.

490

491 **Acknowledgements**

492 This work was funded by grants from the Biotechnology and Biological Sciences

493 Research Council (BB/M007197/1) to G.M.F, the Wellcome Trust (082895/Z/07/Z) to

494 C.H. and G.M.F., a Biotechnology and Biological Sciences Research Council

495 studentship to P.D., and a University of Cambridge John Lucas Walker studentship

496 to O.J.B.

497

498 **Materials & Correspondence**

499 Materials are available from the corresponding author upon request.

500 **References**

501 [1] L. D. B. Evans, C. Hughes, and G. M. Fraser, “Building a flagellum in biological
502 outer space.,” *Microb. cell (Graz, Austria)*, 2014.

503 [2] W. Deng *et al.*, “Assembly, structure, function and regulation of type III
504 secretion systems,” *Nature Reviews Microbiology*. 2017.

505 [3] D. Büttner and S. Y. He, “Type III protein secretion in plant pathogenic
506 bacteria,” *Plant Physiol.*, 2009.

507 [4] M. E. Konkel *et al.*, “Secretion of virulence proteins from *Campylobacter jejuni*
508 is dependent on a functional flagellar export apparatus,” *J. Bacteriol.*, 2004.

509 [5] M. Dongre *et al.*, “Flagella-mediated secretion of a novel *Vibrio cholerae*
510 cytotoxin affecting both vertebrate and invertebrate hosts,” *Commun. Biol.*,
511 2018.

512 [6] L. D. B. Evans, C. Hughes, and G. M. Fraser, “Building a flagellum outside the
513 bacterial cell,” *Trends in Microbiology*. 2014.

514 [7] T. Minamino and K. Namba, “Distinct roles of the Flil ATPase and proton
515 motive force in bacterial flagellar protein export,” *Nature*, vol. 451, no. 7177,
516 pp. 485–488, 2008.

517 [8] K. Paul, M. Erhardt, T. Hirano, D. F. Blair, and K. T. Hughes, “Energy source of
518 flagellar type III secretion,” *Nature*, 2008.

519 [9] A. W. Williams, S. Yamaguchi, F. Togashi, S. I. Aizawa, I. Kawagishi, and R.
520 M. Macnab, “Mutations in fliK and flhB affecting flagellar hook and filament
521 assembly in *Salmonella typhimurium*,” *J. Bacteriol.*, 1996.

522 [10] G. M. Fraser, T. Hirano, H. U. Ferris, L. L. Devgan, M. Kihara, and R. M.
523 Macnab, “Substrate specificity of type III flagellar protein export in *Salmonella*

524 is controlled by subdomain interactions in FlhB.,” *Mol. Microbiol.*, 2003.

525 [11] G. Kuwajima, I. Kawagishi, M. Homma, J. Asaka, E. Kondo, and R. M.
526 Macnab, “Export of an N-terminal fragment of *Escherichia coli* flagellin by a
527 flagellum-specific pathway.,” *Proc. Natl. Acad. Sci.*, 2006.

528 [12] T. Minamino and R. M. Macnab, “Components of the *Salmonella* flagellar
529 export apparatus and classification of export substrates,” *J. Bacteriol.*, 1999.

530 [13] M. G. Kornacker and A. Newton, “Information essential for cell-cycle-
531 dependent secretion of the 591-residue *Caulobacter* hook protein is confined
532 to a 21-amino-acid sequence near the N-terminus,” *Mol. Microbiol.*, 1994.

533 [14] L. D. B. Evans, S. Poulter, E. M. Terentjev, C. Hughes, and G. M. Fraser, “A
534 chain mechanism for flagellum growth,” *Nature*, vol. 504, no. 7479, pp. 287–
535 290, 2013.

536 [15] B. M. Végh, P. Gál, J. Dobó, P. Závodszky, and F. Vonderviszt, “Localization
537 of the flagellum-specific secretion signal in *Salmonella* flagellin,” *Biochem.
538 Biophys. Res. Commun.*, 2006.

539 [16] P. Wattiau, B. Bernier, P. Deslée, T. Michiels, and G. R. Cornelis, “Individual
540 chaperones required for Yop secretion by *Yersinia*,” *Proc. Natl. Acad. Sci. U.
541 S. A.*, 1994.

542 [17] G. M. Fraser, J. C. Q. Bennett, and C. Hughes, “Substrate-specific binding of
543 hook-associated proteins by FlgN and FliT, putative chaperones for flagellum
544 assembly,” *Mol. Microbiol.*, vol. 32, no. 3, pp. 569–580, 1999.

545 [18] J. Thomas, G. P. Stafford, and C. Hughes, “Docking of cytosolic chaperone-
546 substrate complexes at the membrane ATPase during flagellar type III protein
547 export.,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 101, no. 11, pp. 3945–3950, 2004.

548 [19] Y. Akeda and J. E. Galán, “Chaperone release and unfolding of substrates in
549 type III secretion,” *Nature*, 2005.

550 [20] G. Bange, N. Kümmerer, C. Engel, G. Bozkurt, K. Wild, and I. Sinning, “FlhA
551 provides the adaptor for coordinated delivery of late flagella building blocks to
552 the type III secretion system.,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 107, no. 25,
553 pp. 11295–11300, 2010.

554 [21] M. Kinoshita, N. Hara, K. Imada, K. Namba, and T. Minamino, “Interactions of
555 bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-
556 ordinating assembly of the flagellar filament,” *Mol. Microbiol.*, vol. 90, no. 6, pp.
557 1249–1261, 2013.

558 [22] L. Kuhlen *et al.*, “Structure of the core of the type iii secretion system export
559 apparatus,” *Nat. Struct. Mol. Biol.*, 2018.

560 [23] P. Abrusci *et al.*, “Architecture of the major component of the type III secretion
561 system export apparatus,” *Nat. Struct. Mol. Biol.*, vol. 20, no. 1, pp. 99–104,
562 2012.

563 [24] K. Eichelberg, C. C. Ginocchio, and J. E. Galan, “Molecular and functional
564 characterization of the *Salmonella typhimurium* invasion genes *invB* and *invC*:
565 Homology of InvC to the F0F1 ATPase family of proteins,” *J. Bacteriol.*, 1994.

566 [25] S. Johnson, L. Kuhlen, J. C. Deme, P. Abrusci, and S. M. Lea, “The Structure
567 of an Injectisome Export Gate Demonstrates Conservation of Architecture in
568 the Core Export Gate between Flagellar and Virulence Type III Secretion
569 Systems,” *MBio*, 2019.

570 [26] Q. Xing, K. Shi, A. Portalou, P. Rossi, A. Economou, and C. G. Kalodimos,
571 “Structures of chaperone-substrate complexes docked onto the export gate in

572 a type III secretion system," *Nat. Commun.*, 2018.

573 [27] C. Butan, M. Lara-Tejero, W. Li, J. Liu, and J. E. Galán, "High-resolution view
574 of the type III secretion export apparatus in situ reveals membrane remodeling
575 and a secretion pathway., " *Proc. Natl. Acad. Sci. U. S. A.*, 2019.

576 [28] S. Mizuno, H. Amida, N. Kobayashi, S. I. Aizawa, and S. I. Tate, "The NMR
577 structure of FliK, the trigger for the switch of substrate specificity in the flagellar
578 type III secretion apparatus," *J. Mol. Biol.*, 2011.

579 [29] E. Ward, T. T. Renault, E. A. Kim, M. Erhardt, K. T. Hughes, and D. F. Blair,
580 "Type-III secretion pore formed by flagellar protein FliP," *Mol. Microbiol.*, 2018.

581 [30] L. Kuhlen *et al.*, "The substrate specificity switch FlhB assembles onto the
582 export gate to regulate type three secretion," *Nat. Commun.*, 2020.

583 [31] V. A. Meshcheryakov, A. Kitao, H. Matsunami, and F. A. Samatey, "Inhibition
584 of a type III secretion system by the deletion of a short loop in one of its
585 membrane proteins," *Acta Crystallogr. Sect. D Biol. Crystallogr.*, 2013.

586 [32] F. Vonderviszt, R. Ishima, K. Akasaka, and S. I. Aizawa, "Terminal disorder: A
587 common structural feature of the axial proteins of bacterial flagellum?," *J. Mol.*
588 *Biol.*, 1992.

589 [33] C. Weber-Sparenberg *et al.*, "Characterization of the type III export signal of
590 the flagellar hook scaffolding protein FlgD of *Escherichia coli*," *Arch. Microbiol.*,
591 2006.

592 [34] S. I. Aizawa, F. Vonderviszt, R. Ishima, and K. Akasaka, "Termini of
593 *Salmonella* flagellin are disordered and become organized upon
594 polymerization into flagellar filament," *J. Mol. Biol.*, 1990.

595 [35] A. Tsirigotaki, J. De Geyter, N. Šoštarić, A. Economou, and S. Karamanou,

596 "Protein export through the bacterial Sec pathway," *Nature Reviews*
597 *Microbiology*. 2017.

598 [36] T. Palmer and B. C. Berks, "The twin-arginine translocation (Tat) protein export
599 pathway," *Nature Reviews Microbiology*. 2012.

600 [37] T. Hirano, S. Shibata, K. Ohnishi, T. Tani, and S. I. Aizawa, "N-terminal signal
601 region of FliK is dispensable for length control of the flagellar hook," *Mol.*
602 *Microbiol.*, 2005.

603 [38] T. Minamino, B. González-Pedrajo, K. Yamaguchi, S. I. Aizawa, and R. M.
604 Macnab, "FliK, the protein responsible for flagellar hook length control in
605 *Salmonella*, is exported during hook assembly," *Mol. Microbiol.*, 1999.

606 [39] J. Thomas, G. P. Stafford, and C. Hughes, "Docking of cytosolic chaperone-
607 substrate complexes at the membrane ATPase during flagellar type III protein
608 export," *Proc. Natl. Acad. Sci.*, 2004.

609 [40] T. Ibuki, Y. Uchida, Y. Hironaka, K. Namba, K. Imada, and T. Minamino,
610 "Interaction between FliJ and FlhA, components of the bacterial flagellar type iii
611 export apparatus," *J. Bacteriol.*, 2013.

612 [41] M. San Miguel, R. Marrington, P. M. Rodger, A. Rodger, and C. Robinson, "An
613 *Escherichia coli* twin-arginine signal peptide switches between helical and
614 unstructured conformations depending on the hydrophobicity of the
615 environment," *Eur. J. Biochem.*, 2003.

616 [42] M. Erhardt *et al.*, "Mechanism of type-III protein secretion: Regulation of FlhA
617 conformation by a functionally critical charged-residue cluster," *Mol. Microbiol.*,
618 vol. 104, no. 2, pp. 234–249, 2017.

619 [43] S. Miletic, D. Fahrenkamp, N. Goessweiner-Mohr, J. Wald, M. Pantel, O.

620 Vesper, V. Kotov, and T. Marlovits. "Substrate-engaged type III secretion
621 system structures reveal gating mechanism for unfolded protein translocation"
622 bioRxiv., doi: <https://doi.org/10.1101/2020.12.17.423328>

623 [44] R. Zarivach *et al.*, "Structural analysis of the essential self-cleaving type III
624 secretion proteins EscU and SpaS," *Nature*, 2008.

625 [45] G. T. Lountos, B. P. Austin, S. Nallamsetty, and D. S. Waugh, "Atomic
626 resolution structure of the cytoplasmic domain of *Yersinia pestis* YscU, a
627 regulatory switch involved in type III secretion," *Protein Sci.*, 2009.

628 [46] A. Aunkham *et al.*, "Structural basis for chitin acquisition by marine *Vibrio*
629 species," *Nat. Commun.*, 2018.

630 [47] Y. Ge, A. Draycheva, T. Bornemann, M. V. Rodnina, and W. Wintermeyer,
631 "Lateral opening of the bacterial translocon on ribosome binding and signal
632 peptide insertion," *Nat. Commun.*, 2014.

633 [48] J. Zimmer, Y. Nam, and T. A. Rapoport, "Structure of a complex of the ATPase
634 SecA and the protein-translocation channel," *Nature*, 2008.

635 [49] R. M. Voorhees, I. S. Fernández, S. H. W. Scheres, and R. S. Hegde,
636 "Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution,"
637 *Cell*, 2014.

638 [50] H. Mori and K. Cline, "A twin arginine signal peptide and the pH gradient
639 trigger reversible assembly of the thylakoid ΔpH/Tat translocase," *J. Cell Biol.*,
640 2002.

641 [51] L. D. B. Evans, P. M. Bergen, O. J. Bryant, and G. M. Fraser, "Interactions of
642 flagellar structural subunits with the membrane export machinery," in *Methods*
643 *in Molecular Biology*, 2017.

644 [53] F. H. Login and H. Wolf-Watz, “YscU/FlhB of *Yersinia pseudotuberculosis*
645 harbors a C-terminal type III secretion signal,” *J. Biol. Chem.*, 2015.

646 [54] S. Frost, O. Ho, F. H. Login, C. F. Weise, H. Wolf-Watz, and M. Wolf-Watz,
647 “Autoproteolysis and Intramolecular Dissociation of *Yersinia* YscU Precedes
648 Secretion of Its C-Terminal Polypeptide YscUCC,” *PLoS One*, 2012.

649 [55] T. Minamino, Y. V. Morimoto, N. Hara, and K. Namba, “An energy transduction
650 mechanism used in bacterial flagellar type III protein export,” *Nat. Commun.*,
651 2011.

652 [56] M. Baba *et al.*, “Rotation of artificial rotor axles in rotary molecular motors,”
653 *Proc. Natl. Acad. Sci.*, 2016.

654 [57] N. Hara, K. Namba, and T. Minamino, “Genetic characterization of conserved
655 charged residues in the bacterial flagellar type III export protein FlhA,” *PLoS
656 One*, vol. 6, no. 7, 2011.

657 [58] K. A. Datsenko and B. L. Wanner, “One-step inactivation of chromosomal
658 genes in *Escherichia coli* K-12 using PCR products,” *Proc. Natl. Acad. Sci. U.
659 S. A.*, 2000.

660 [59] S. Hoffmann, C. Schmidt, S. Walter, J. K. Bender, and R. G. Gerlach,
661 “Scarless deletion of up to seven methylaccepting chemotaxis genes with an
662 optimized method highlights key function of CheM in *Salmonella*
663 *Typhimurium*,” *PLoS One*, 2017.

664 [60] E. Amann, B. Ochs, and K. J. Abel, “Tightly regulated tac promoter vectors
665 useful for the expression of unfused and fused proteins in *Escherichia coli*,”
666 *Gene*, 1988.

667 [61] B. Hu, M. Lara-Tejero, Q. Kong, J. E. Galán, and J. Liu, “In Situ Molecular

668 Architecture of the *Salmonella* Type III Secretion Machine," *Cell*, 2017.

669 [62] T. Minamino and R. M. Macnab, "Domain structure of *Salmonella* FlhB, a
670 flagellar export component responsible for substrate specificity switching," *J.*
671 *Bacteriol.*, 2000.

672 [63] J. Kyte and R. F Doolittle, "A simple method for displaying the hydropathic
673 character of a protein". *J. Mol. Biol.*, 1982.

674

675

676

677 **Figure legends**

678 **Figure 1. Screening for export-defective FlgD variants**

679 **a.** Whole cell (cell) and supernatant (sec) proteins from late exponential phase
680 cultures of a *Salmonella flgD* null strain expressing wild type FlgD (FlgD) or its
681 variants ($\Delta 2-5$, $\Delta 6-10$, $\Delta 11-15$, $\Delta 16-20$, $\Delta 21-25$, $\Delta 26-30$, $\Delta 31-35$, $\Delta 36-40$, $\Delta 41-45$ or
682 $\Delta 46-50$) were separated by SDS (15%)-PAGE and analysed by immunoblotting with
683 anti-FlgD polyclonal antisera.

684 **b.** A schematic displaying the intragenic suppressor mutations within amino acids 1-
685 40 of FlgD isolated from the FlgD $\Delta 2-5$ variant. Small non-polar residues are
686 highlighted in orange. All suppressor mutations were located between the gate-
687 recognition motif (GRM, blue) and the extreme N-terminus, and can be separated
688 into two classes: insertions or duplications that introduced additional sequence
689 between valine-15 and the gate-recognition motif, or missense mutations that re-
690 introduce small non-polar residues at the N-terminus.

691 **c.** Whole cell (cell) and supernatant (sec) proteins from late exponential-phase
692 cultures of *Salmonella flgD* null strains expressing suppressor mutants isolated from
693 the FlgD $\Delta 2-5$ variant (FlgD $\Delta 2-5$ -N₈I or FlgD $\Delta 2-5$ -T₁₁I), FlgD $\Delta 2-5$ variant (-) or wild
694 type FlgD (FlgD) were separated by SDS (15%)-PAGE and analysed by
695 immunoblotting with anti-FlgD polyclonal antisera.

696 **d.** Whole cell (cell) and supernatant (sec) proteins from late exponential phase
697 cultures of *Salmonella flgD* null strains expressing wild type FlgD (FlgD), FlgD $\Delta 2-5$
698 ($\Delta 2-5$) or variants of FlgD $\Delta 2-5$ containing between residues 19 and 20 a six-
699 residue insertion of either small non-polar (AGAGAG) residues (3x(AG)), polar

700 (STSTST) residues (3x(ST)), or the sequence from an isolated insertion suppressor
701 mutant (GSGSMT), were separated by SDS (15%)-PAGE and analysed by
702 immunoblotting with anti-FlgD polyclonal antisera.

703

704 **Figure 2. Export of FlgD variants in which the position of the N-terminal**
705 **hydrophobic export signal is varied relative to the gate recognition motif**
706 **(GRM)**

707 Whole cell (cell) and supernatant (sec) proteins from late exponential-phase cultures
708 of a *Salmonella flgD* null strain expressing suppressor mutants isolated from the
709 FlgDΔ2-5-¹⁹(GSGSMT)²⁰-V₁₅A variant (V₁₅A-M₇I, V₁₅A-D₉A, V₁₅A-T₁₁I, V₁₅A-G₁₄V),
710 their parent FlgD variant FlgDΔ2-5-¹⁹(GSGSMT)²⁰-V₁₅A (labelled as V₁₅A), FlgDΔ2-
711 5-¹⁹(GSGSMT)²⁰ (labelled as -) or wild type FlgD (FlgD) were separated by SDS
712 (15%)-PAGE and analysed by immunoblotting with anti-FlgD polyclonal antisera.
713 Swimming motility (bottom panel; 0.25% soft tryptone agar) of the same strains was
714 assayed at 37°C for 4-6 hours.

715 **b.** Whole cell (cell) and supernatant (sec) proteins from late exponential-phase
716 cultures of a *Salmonella flgD* null strain expressing wild type FlgD (FlgD), FlgDΔ9-32
717 or its variants in which residues 9-32 were replaced by between one and four six-
718 residue repeats of Gly-Ser-Thr-Asn-Ala-Ser (Δ9-32 4xRpt, Δ9-32 3xRpt, Δ9-32
719 2xRpt or Δ9-32 1xRpt) were separated by SDS (15%)-PAGE and analysed by
720 immunoblotting with anti-FlgD polyclonal antisera. Swimming motility (bottom panel;
721 0.25% soft tryptone agar) of the same strains was assayed at 37°C for 4-6 hours.

722 **c.** Whole cell (cell) and supernatant (sec) proteins from late exponential-phase
723 cultures of a *Salmonella flgD* null strain expressing wild type FlgD (FlgD), a FlgD
724 variant in which residues 9-32 were replaced by two repeats of a six-residue
725 sequence Gly-Ser-Thr-Asn-Ala-Ser (labelled as 2xRpt) or its variants containing
726 between one and five additional residues inserted directly after the two repeats
727 (2xRpt+1, 2xRpt+2, 2xRpt+3, 2xRpt+4 or 2xRpt+5) were separated by SDS (15%)-
728 PAGE and analysed by immunoblotting with anti-FlgD polyclonal antisera. Swimming
729 motility (bottom panel; 0.25% soft tryptone agar) of the same strains was assayed at
730 37°C for 4-6 hours.

731 **d.** Whole cell (cell) and supernatant (sec) proteins from late exponential-phase
732 cultures of a *Salmonella flgD* null strain expressing wild type FlgD (FlgD), a FlgD
733 variant in which residues 9-32 were replaced by two repeats of a six-residue
734 sequence Gly-Ser-Thr-Asn-Ala-Ser (FlgD_{short}) or suppressor mutants isolated from
735 this strain (rev1, rev2 or rev3) were separated by SDS (15%)-PAGE and analysed by
736 immunoblotting with anti-FlgD polyclonal antisera. Swimming motility (bottom panel;
737 0.25% soft tryptone agar) of the same strains were was assayed at 37°C for 4-6
738 hours.

739 **e.** N-terminal sequences of wild type FlgD, a FlgD variant in which residues 9-32 are
740 replaced by two repeats of a six-residue sequence Gly-Ser-Thr-Asn-Ala-Ser (yellow;
741 FlgD_{short}) and its suppressor mutant revertants (rev 1-3) aligned at the gate
742 recognition motif (GRM, blue). Suppressor mutants contained insertions (underlined)
743 that introduced additional residues between the N-terminal hydrophobic signal
744 (orange) and the gate recognition motif (blue).

745

746 **Figure 3. Effect of the relative position of the N-terminus and GRM on the**
747 **export of rod and hook subunits**

748 **a.** Schematic representation of a wild type subunit (subunit_{wild type}), a subunit
749 containing a deletion of sequence between the N-terminus and GRM (subunit_{short})
750 and a subunit in which the deleted sequence was replaced by four repeats of a six-
751 residue sequence Gly-Ser-Thr-Asn-Ala-Ser (yellow, subunit_{short+4Rpt}).

752 **b.** Whole cell (cell) and supernatant (sec) proteins from late exponential-phase
753 cultures of a *Salmonella flgE* null strain expressing wild type FlgG (FlgG_{wild type}), a
754 FlgG variant in which residues 11-35 were deleted (FlgG_{short}) or a FlgG variant in
755 which residues 11-35 were replaced by four repeats of a six-residue sequence Gly-
756 Ser-Thr-Asn-Ala-Ser (FlgG_{short+4Rpt}). All FlgG variants were engineered to contain
757 an internal 3xFLAG tag for immunodetection. Proteins were separated by SDS
758 (15%)-PAGE and analysed by immunoblotting with anti-FLAG monoclonal antisera.
759 Swimming motility (bottom panel; 0.25% soft tryptone agar) of the same strains was
760 assayed at 37°C for 4-6 hours.

761 **c.** Whole cell (cell) and supernatant (sec) proteins from late exponential-phase
762 cultures of a *Salmonella flgD* null strain expressing wild type FlgE (FlgE_{wild type}), a
763 FlgE variant in which residues 9-32 were deleted (FlgE_{short}) or a FlgE variant in which
764 residues 9-32 were replaced by four repeats of a six-residue sequence Gly-Ser-Thr-
765 Asn-Ala-Ser (FlgE_{short+4Rpt}). All FlgE variants were engineered to contain an
766 internal 3xFLAG tag for immunodetection. Proteins were separated by SDS (15%)-

767 PAGE and analysed by immunoblotting with anti-FLAG monoclonal antisera.
768 Swimming motility (bottom panel; 0.25% soft tryptone agar) of the same strains was
769 assayed at 37°C for 4-6 hours.

770 **Figure 4. Effect on subunit export of overexpression of FlgDΔ2-5 and variants.**

771 **a.** Schematic representation of a FlgD subunit containing a N-terminal hydrophobic
772 signal (orange, 2-5) and a gate-recognition motif (blue, GRM).

773 **b.** Swimming motility of a *Salmonella ΔrecA* strain expressing wild type FlgD (FlgD),
774 its variants (DΔ2-5ΔGRM, DΔ2-5 or DΔGRM) or empty pTrc99a vector (-). Motility
775 was assessed in 0.25% soft-tryptone agar containing 100 µg/ml ampicillin and
776 100µM IPTG and incubated for 4-6 hours at 37°C.

777
778 **c.** Whole cell (cell) and secreted proteins (secreted) from late-exponential-phase
779 cultures were separated by SDS (15%)-PAGE and analysed by immunoblotting with
780 anti-FliK, anti-FlgK, anti-FlgL, anti-FlhA or anti-FlgN polyclonal antisera. Apparent
781 molecular weights are in kilodaltons (kDa).

782 **d.** A model depicting a FlgDΔ2-5 subunit (left) docked *via* its gate recognition motif
783 (GRM, blue) at the subunit binding pocket on FlhBc (PDB: 3B0Z[31], red), preventing
784 wild type subunits (right) from docking at FlhBc.

785

786

787 **Figure 5. Effect on subunit export of overexpressed FlgE_{short}, FlgD_{short} and**
788 **variants**

789 **a.** Swimming motility of a *Salmonella ΔrecA* strain expressing wild type FlgE (FlgE
790 wild type), a FlgE variant in which residues 9-32 were deleted (FlgE_{short}), a FlgE
791 variant in which residues 9-32 and residues 39-43 (corresponding to the gate-
792 recognition motif) were deleted (FlgE_{short}ΔGRM), a FlgE variant in which residues
793 39-43 were deleted (FlgEΔGRM) or empty pTrc99a vector (-). All FlgG variants were
794 engineered to contain an internal 3xFLAG tag for immunodetection. Motility was
795 assessed in 0.25% soft-tryptone agar containing 100 µg/ml ampicillin and 100 µM
796 IPTG and incubated for 4-6 hours at 37°C (top panel). Whole cell (cell) and secreted
797 proteins (secreted) from late-exponential-phase cultures were separated by SDS
798 (15%)-PAGE and analysed by immunoblotting with anti-FLAG monoclonal antisera
799 or anti-FlgD, anti-FliD, anti-FlgK, anti-FliK, anti-FlhA or anti-FlgN polyclonal antisera
800 (bottom). Apparent molecular weights are in kilodaltons (kDa).

801 **b.** Swimming motility of a *Salmonella ΔrecA* strain expressing wild type FlgD (FlgD
802 wild type), a FlgD variant in which residues 9-32 were replaced with two repeats of
803 the six amino acid sequence Gly-Ser-Thr-Asn-Ala-Ser (FlgD_{short}), a FlgD variant in
804 which residues 9-32 were replaced with two repeats of the six amino acid sequence
805 Gly-Ser-Thr-Asn-Ala-Ser and residues 36-40 were deleted (FlgD_{short}ΔGRM), a FlgD
806 variant in which residues 36-40 were deleted (FlgDΔGRM) or empty pTrc99a vector
807 (-). Motility was assessed in 0.25% soft-tryptone agar containing 100 µg/ml ampicillin
808 and 100 µM IPTG and incubated for 4-6 hours at 37°C (top panel). Whole cell (cell)
809 and secreted proteins (secreted) from late-exponential-phase cultures were

810 separated by SDS (15%)-PAGE and analysed by immunoblotting with anti-FlgD,
811 anti-FliD, anti-FlgK, anti-FliK, anti-FlhA or anti-FlgN polyclonal antisera (bottom).
812 Apparent molecular weights are in kilodaltons (kDa).

813 **Figure 6. Suppression of the FlgD_{short} motility defect by mutations in FliP**

814 **a.** A model depicting subunits docked *via* their gate-recognition motif (GRM, blue) at
815 the subunit binding pocket on FlhB_C (PDB: 3B0Z [31], red) with N-termini of early
816 flagellar subunits adopting either an α -helical conformation separating the N-terminal
817 hydrophobic signal (2-5, orange) and gate-recognition motif (GRM, blue) by \sim 40-60
818 Ångstrom (where each amino acid is on average separated by \sim 1.5Å, left) or an
819 unfolded conformation where the polypeptide contour length separating the N-
820 terminal hydrophobic signal (2-5) and gate-recognition motif (GRM) is \sim 90-150
821 Ångstrom (where each amino acid is on average separated by \sim 3.5Å, middle left).
822 Values corresponding to the distance separating the N-terminal hydrophobic signal
823 (2-5, orange) and gate-recognition motif (GRM, blue) of a FlgD subunit variant in
824 which residues 9-32 are replaced with two repeats of the six amino acid sequence
825 Gly-Ser-Thr-Asn-Ala-Ser (FlgD_{short}) indicate that the N-terminal hydrophobic signal
826 (2-5, orange) and gate-recognition motif (GRM, blue) are separated by \sim 29
827 Ångstrom (α -helical conformation, middle right) or \sim 67 Ångstrom (unfolded
828 polypeptide contour length, right).

829 **b.** Placement of the crystal structure of FlhB_C (PDB:3B0Z [31]; red) and the cryo-EM
830 structure of FliPQR-FlhB (PDB:6S3L[30]) in a tomographic reconstruction of the
831 *Salmonella* SPI-1 injectisome (EMD-8544 [60]; grey). The minimum distance
832 between the subunit gate recognition motif binding site on FlhB_C (grey) to FlhB_N

833 (defined as *Salmonella* FlhB residue 211 [62]; ~78Å) was estimated by combining:
834 the value corresponding to the distance between the subunit binding pocket on
835 FlhB_c [14] (grey) and the N-terminal visible residue (D₂₂₉) in the FlhB_c structure
836 (PDB:3BOZ [31]; ~52Å) with the value corresponding to the minimum distance
837 between FlhB residues 211 and 228 (based on a linear α -helical conformation;
838 ~26Å).

839
840 **c.** Swimming motility of recombinant *Salmonella flgD* null strains producing a
841 chromosomally-encoded FliP-M₂₁₀A variant (M₂₁₀A gate, left) or wild type FliP (wild
842 type gate, right). Wild type FliP and FliP-M₂₁₀A were engineered to contain an
843 internal HA tag positioned between residue 21 and 22 to allow immunodetection of
844 FliP. Both strains produced either a pTrc99a plasmid-encoded FlgD subunit variant
845 in which residues 9-32 were replaced with two repeats of the six amino acid
846 sequence Gly-Ser-Thr-Asn-Ala-Ser (FlgD_{short}; top panel) or a pTrc99a plasmid-
847 encoded wild type FlgD subunit (FlgD_{wild type}; bottom panel). Motility was assessed in
848 0.25% soft-tryptone agar containing 100 µg/ml ampicillin and 50 µM IPTG and
849 incubated for 16 hours (top panel) or 4-6 hours at 37°C (bottom panel).

850 **d.** The mean motility halo diameter of a recombinant *Salmonella flgD* null strain
851 producing chromosomally-encoded FliP-M₂₁₀A (M₂₁₀A gate, left) and expressing the
852 FlgD short variant (left hand bar) was plotted as a percentage of the mean motility
853 halo diameter of the wild type FliP gate strain (wild type) producing FlgD_{short} (right
854 hand bar). Error bars show the standard error of the mean calculated from four
855 biological replicates. * indicates a p-value < 0.05.

856 **Supplementary Figure Legends**

857 **Figure S1.**

858 **a.** N-terminal sequences of all *Salmonella* flagellar rod and hook subunits aligned at
859 their gate recognition motif (GRM, blue). Small non-polar residues upstream of the
860 gate recognition motif are highlighted (yellow).

861

862 **b.** Hydrophobicity plots for the N-terminal 60 residues of each *Salmonella* flagellar
863 rod and hook subunit were generated by ExPASy tools using the Kyte and Doolittle
864 method [62]. The x axis of the plot indicates the amino acid position, starting from the
865 N terminus. The y axis of the plot indicates the hydrophobicity of the amino acid
866 sequence, where higher values represent higher hydrophobicity. Amino acid
867 sequence corresponding to the gate-recognition motif of each subunit is highlighted
868 in blue.

869

870 **Figure S2**

871 **a.** Swimming motility of a *Salmonella* Δ recA strain expressing suppressor mutants
872 isolated from the FlgD Δ 2-5 variant (FlgD Δ 2-5 N₈I or FlgD Δ 2-5 T₁₁I), the parent
873 FlgD Δ 2-5 variant (D Δ 2-5) or wild type FlgD (FlgD). Motility was assessed in 0.25%
874 soft-tryptone agar containing 100 μ g/ml ampicillin and 50 μ M IPTG and incubated 4-
875 6 hours at 37°C.

876

877 **b.** Swimming motility of a *Salmonella* Δ recA strain expressing wild type FlgD (FlgD),
878 FlgD Δ 2-5 (D Δ 2-5) or its variants containing a six-residue insertion between residues
879 19 and 20 of either small non-polar (AGAGAG) residues (D Δ 2-5 3x(AG)), polar

880 (STSTST) residues (D Δ 2-5 3x(ST)), or the sequence from an isolated insertion
881 suppressor mutant (GSGSMT) (D Δ 2-5 GSGSMT). Motility was assessed in 0.25%
882 soft-tryptone agar containing 100 μ g/ml ampicillin and 50 μ M IPTG and incubated 4-
883 6 hours at 37°C.

884

885 **Figure S3**

886 **a.** Whole cell (cell) and supernatant (secreted) proteins from late exponential-phase
887 cultures of *Salmonella flgD* null strains expressing: suppressor mutants isolated from
888 the FlgD Δ 2-5 variant (FlgD Δ 2-5 N₈I or FlgD Δ 2-5 T₁₁I), FlgD Δ 2-5 variant (-) or wild
889 type FlgD (FlgD) were separated by SDS (15%)-PAGE and analysed by
890 immunoblotting with anti-FlhA or FlgN polyclonal antisera. Apparent molecular
891 weights are in kilodaltons (kDa).

892

893 **b.** Whole cell (cell) and supernatant (secreted) proteins from late exponential-phase
894 cultures of *Salmonella flgD* null strains expressing wild type FlgD (FlgD), FlgD Δ 2-5
895 (D Δ 2-5) or its variants containing a six-residue insertion between residues 19 and 20
896 of either small non-polar (AGAGAG) residues (D Δ 2-5 3x(AG)), polar (STSTST)
897 residues (D Δ 2-5 3x(ST)), or the sequence from an isolated insertion suppressor
898 mutant (GSGSMT) (D Δ 2-5 GSGSMT) were separated by SDS (15%)-PAGE and
899 analysed by immunoblotting with anti-FlgD polyclonal antisera. Apparent molecular
900 weights are in kilodaltons (kDa).

901

902

903

904 **Figure S4**

905 **a.** Whole cell (cell) and supernatant (secreted) proteins from late exponential-phase
906 cultures of a *Salmonella flgD* null strain expressing suppressor mutants isolated from
907 a FlgD Δ 2-5-¹⁹(GSGSMT)²⁰-V₁₅A variant (V₁₅A-M₇I, V₁₅A-D₉A, V₁₅A-T₁₁I, V₁₅A-
908 G₁₄V), their parent FlgD variant FlgD Δ 2-5-¹⁹(GSGSMT)²⁰-V₁₅A (V₁₅A), FlgD Δ 2-5-
909 19(GSGSMT)²⁰ (-) or wild type FlgD (FlgD) were separated by SDS (15%)-PAGE
910 and analysed by immunoblotting with anti-FlhA and FlgN polyclonal antisera.
911 Apparent molecular weights are in kilodaltons (kDa).

912

913 **Figure S5**

914 **a.** Whole cell (cell) and supernatant (secreted) proteins from late exponential-phase
915 cultures of a *Salmonella flgD* null strain expressing wild type FlgD (FlgD), FlgD Δ 9-32
916 or its variants in which residues 9-32 were replaced by between one and four six-
917 residue repeats of Gly-Ser-Thr-Asn-Ala-Ser (GSTNAS): (Δ9-32 4xRpt, Δ9-32 3xRpt,
918 Δ9-32 2xRpt, Δ9-32 1xRpt) were separated by SDS (15%)-PAGE and analysed by
919 immunoblotting with anti-FlhA and anti-FlgN polyclonal antisera. Apparent molecular
920 weights are in kilodaltons (kDa).

921

922 **b.** Whole cell (cell) and supernatant (secreted) proteins from late exponential-phase
923 cultures of a *Salmonella flgD* null strain expressing wild type FlgD (FlgD), a FlgD
924 variant in which residues 9-32 were replaced by two repeats of a six-residue
925 sequence Gly-Ser-Thr-Asn-Ala-Ser (2xRpt) or its variants containing between one
926 and five additional residues inserted directly after the two repeats (2xRpt+ 1, 2xRpt+
927 2, 2xRpt+ 3, 2xRpt+ 4 or 2xRpt+ 5) were separated by SDS (15%)-PAGE and

928 analysed by immunoblotting with anti-FlgD polyclonal antisera. Apparent molecular
929 weights are in kilodaltons (kDa).

930

931 **Figure S6**

932 **a.** Whole cell (cell) and supernatant (secreted) proteins from late exponential-phase
933 cultures of a *Salmonella flgD* null strain expressing wild type FlgD (FlgD), a FlgD
934 variant in which residues 9-32 were replaced by two repeats of a six-residue
935 sequence Gly-Ser-Thr-Asn-Ala-Ser (FlgD_{short}) or suppressor mutants isolated from
936 this strain (rev1, rev2 or rev3) were separated by SDS (15%)-PAGE and analysed by
937 immunoblotting with anti-FlhA and anti-FlgN polyclonal antisera. Apparent molecular
938 weights are in kilodaltons (kDa).

939

940 **b.** N-terminal sequences of wild type FlgD (wild type), a FlgD variant in which residues
941 9-32 are replaced by two repeats of a six-residue sequence Gly-Ser-Thr-Asn-Ala-Ser
942 (yellow; FlgD_{short}) and its suppressor mutants (rev 1-7) aligned to their gate-
943 recognition motif (GRM, blue). Suppressor mutants contained insertions (underlined)
944 that introduced additional residues between the N-terminal hydrophobic signal
945 (orange) and the gate-recognition motif (blue).

946

947 **Figure S7**

948 **a.** Whole cell (cell) and supernatant (sec) proteins from late exponential-phase
949 cultures of a *Salmonella flgE* null strain expressing wild type FlgG (FlgG_{wild type}), a
950 FlgG variant in which residues 11-35 were deleted (FlgG_{short}) or a FlgG variant in
951 which residues 11-35 were replaced by four repeats of a six-residue sequence Gly-

952 Ser-Thr-Asn-Ala-Ser (FlgG_{short+4Rpt}). All FlgG variants were engineered to contain
953 an internal 3xFLAG tag for immunodetection. Proteins were separated by SDS
954 (15%)-PAGE and analysed by immunoblotting with anti-FlhA or anti-FlgN polyclonal
955 antisera. Apparent molecular weights are in kilodaltons (kDa).

956

957 **b.** Whole cell (cell) and supernatant (secreted) proteins from late exponential-phase
958 cultures of a *Salmonella flgD* null strain expressing wild type FlgE (FlgE_{wild type}), a
959 FlgE variant in which residues 9-32 were deleted (FlgE_{short}) or a FlgE variant in which
960 residues 9-32 were replaced by four repeats of a six-residue sequence Gly-Ser-Thr-
961 Asn-Ala-Ser (FlgE_{short+4Rpt}). All FlgE variants were engineered to contain an
962 internal 3xFLAG tag for immunodetection. Proteins were separated by SDS (15%)-
963 PAGE and analysed by immunoblotting with anti-FLAG monoclonal antisera.

964 Swimming motility (bottom panel; 0.25% soft tryptone agar) of the same strains were
965 carried out at 37°C for 4-6 hours. Apparent molecular weights are in kilodaltons
966 (kDa).

967

968 **Figure S8**

969 **a.** Whole cell (cell) proteins from late exponential-phase cultures of recombinant
970 *Salmonella flgD* null strains producing a chromosomally-encoded FliP-M₂₁₀A variant
971 (M₂₁₀A gate, left) or wild type FliP (wild type gate, right). Wild type FliP and FliP-
972 M₂₁₀A were engineered to contain an internal HA tag positioned between residue 21
973 and 22 to allow immunodetection of FliP [29] (bottom panel). Both strains produced
974 either a pTrc99a plasmid-encoded FlgD subunit variant in which residues 9-32 were
975 replaced with two repeats of the six amino acid sequence Gly-Ser-Thr-Asn-Ala-Ser

976 (FlgD_{short}; top panel) or a pTrc99a plasmid-encoded wild type FlgD subunit (FlgD_{wild}
977 type; middle panel). Proteins were separated by SDS (15%)-PAGE and analysed by
978 immunoblotting with anti-FlgD polyclonal antisera or anti-HA monoclonal antisera.

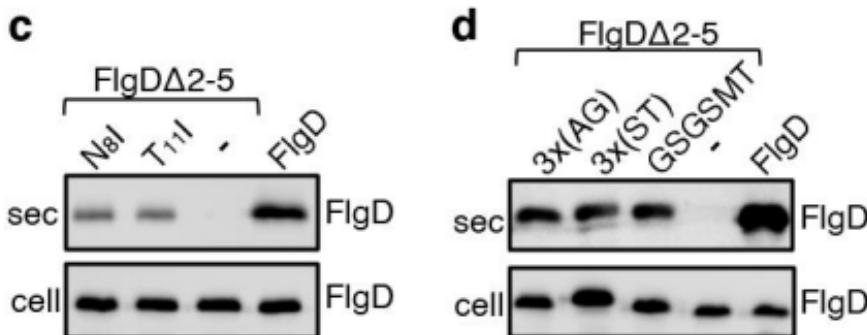
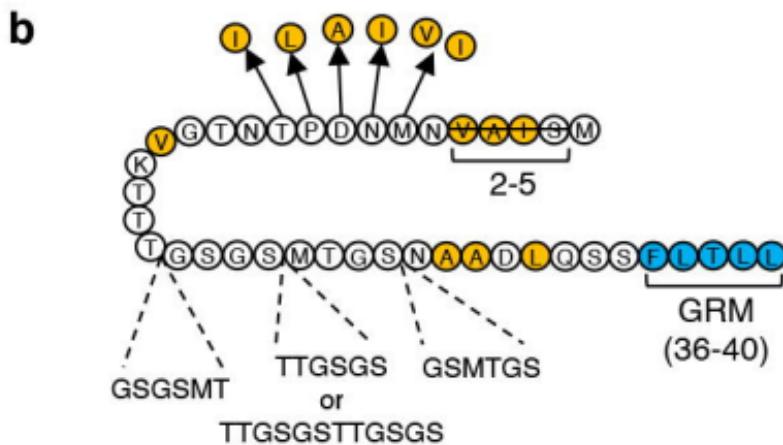
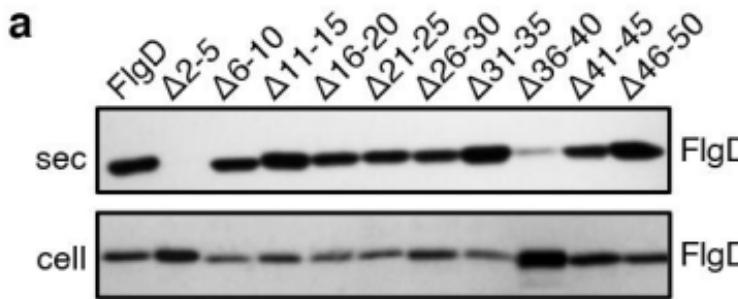




Figure 1

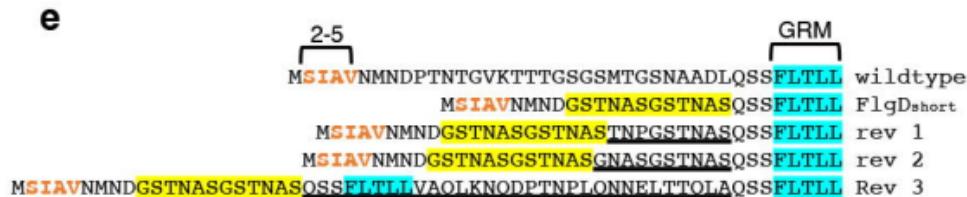
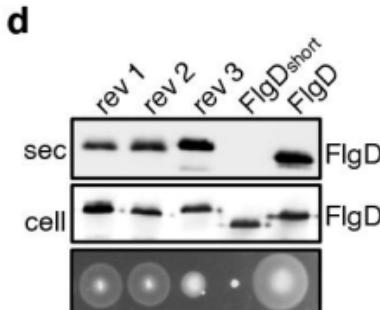
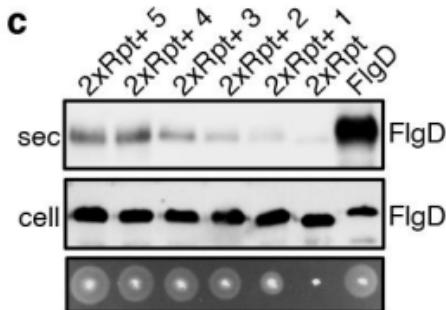
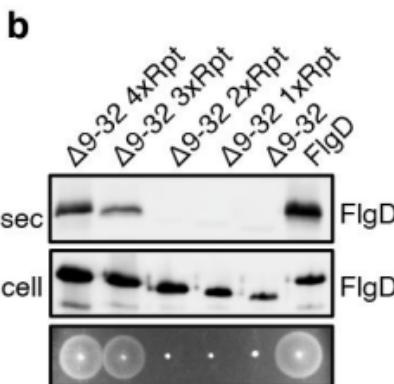
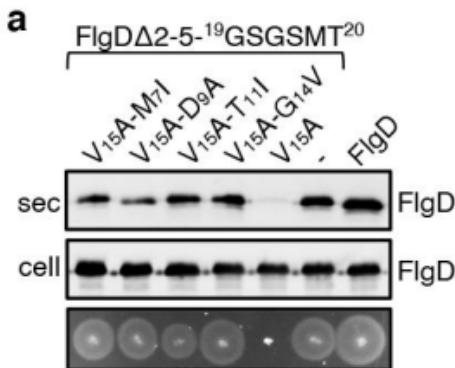






Figure 2

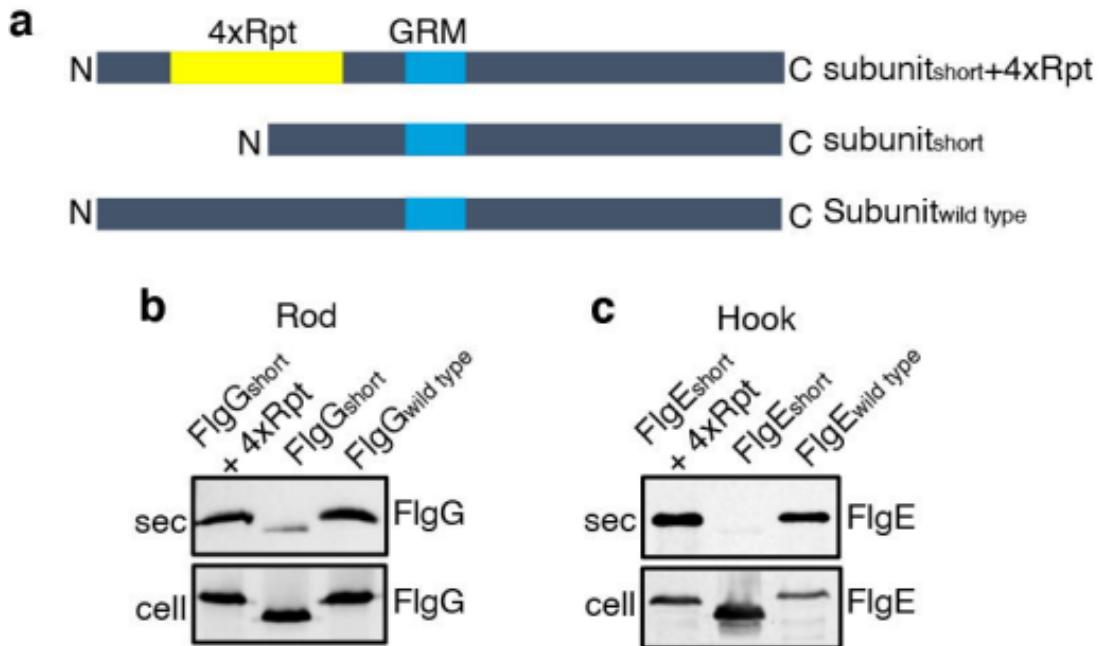


Figure 3

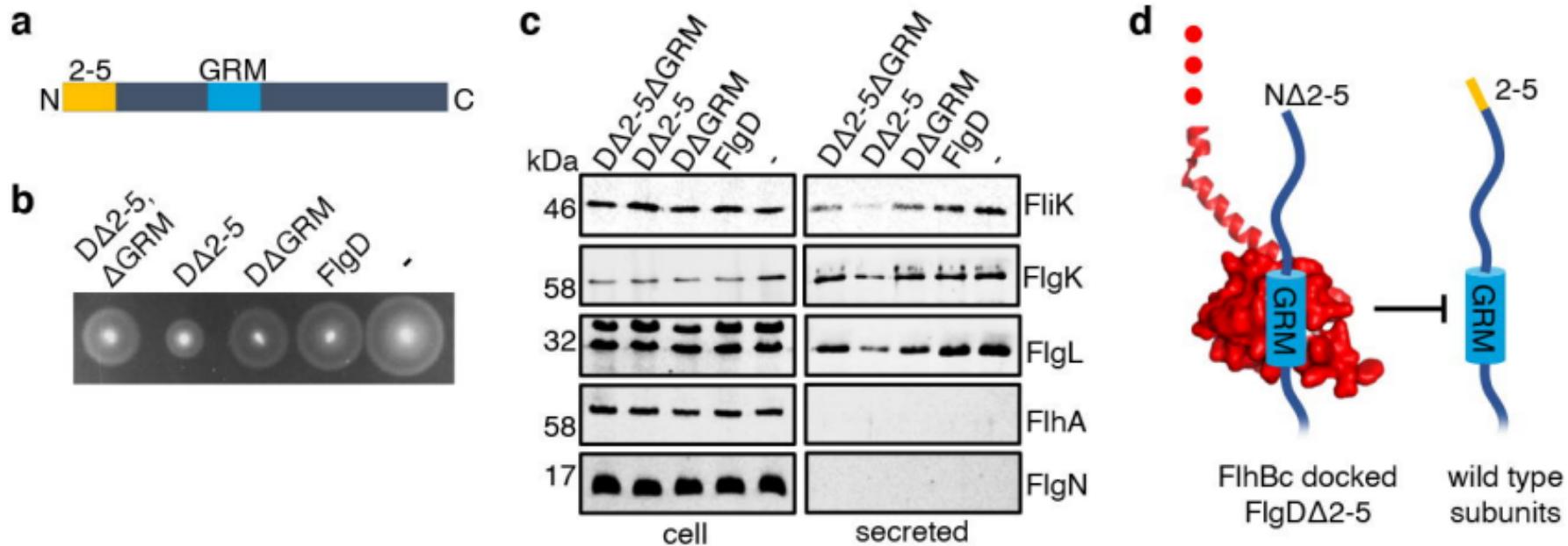
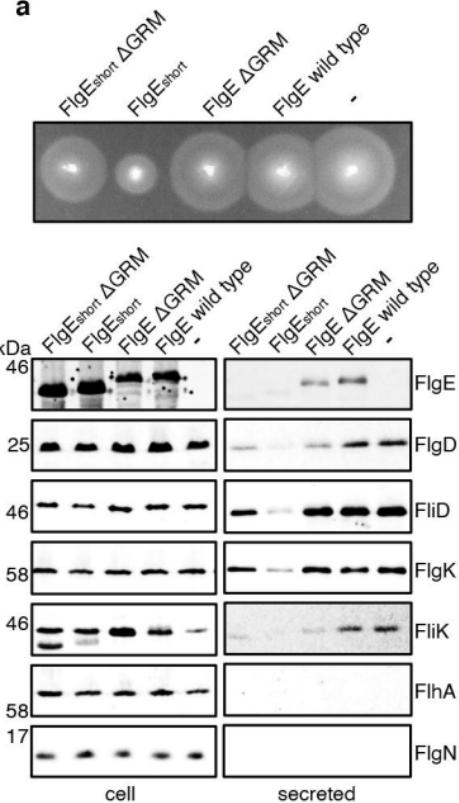
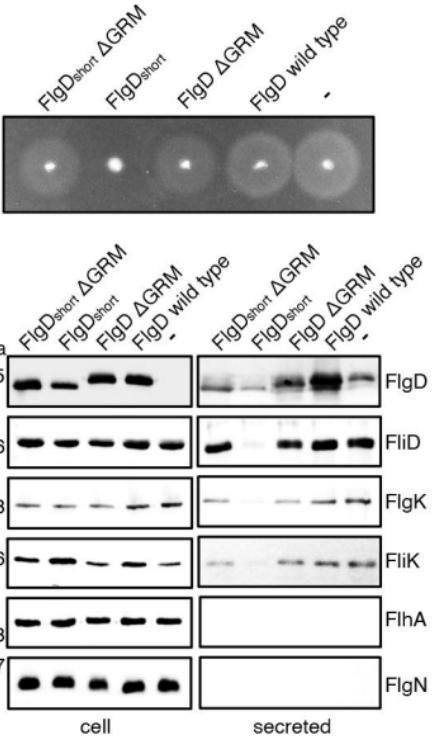




Figure 4

a**b****Figure 5**

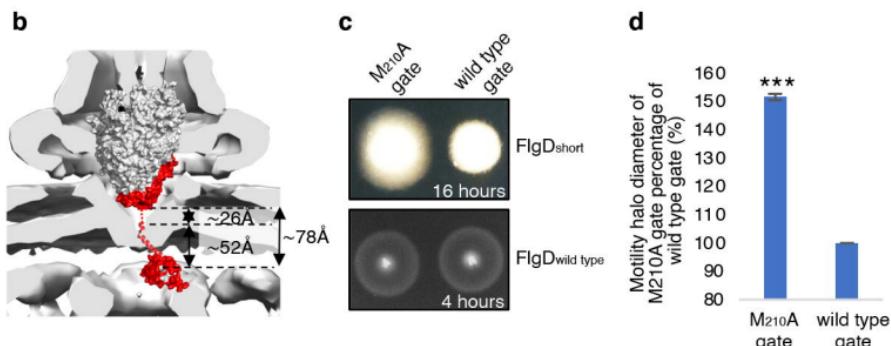
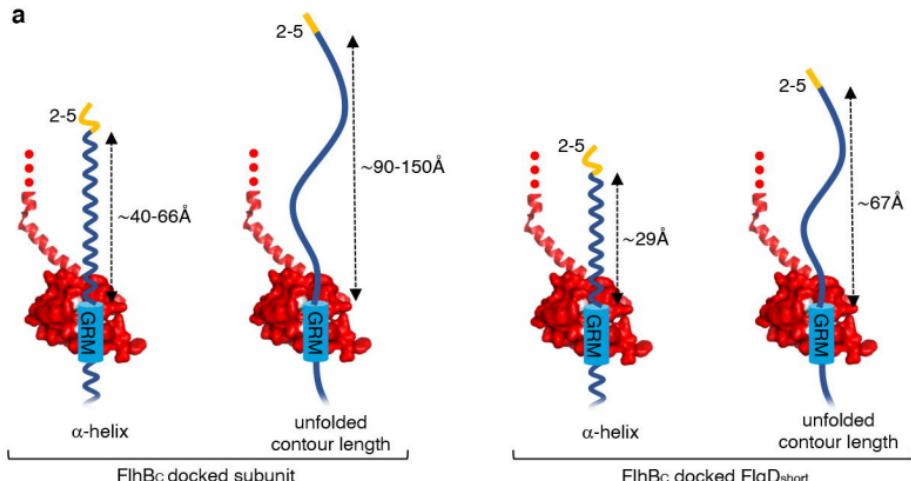



Figure 6