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Abstract: Determination of molecular features that mediate clinically aggressive
phenotypes in prostate cancer (PrCa) remains a major biological and clinical challenge.
Here, we developed a biologically informed deep learning model (P-NET) to stratify PrCa
patients by treatment resistance state and evaluate molecular drivers of treatment
resistance for therapeutic targeting through complete model interpretability. Using a
molecular cohort of 1,238 prostate cancers, we demonstrated that P-NET can predict
cancer state using molecular data that is superior to other modeling approaches.
Moreover, the biological interpretability within P-NET revealed established and novel
molecularly altered candidates, such as MDM4 and FGFR1, that were implicated in
predicting advanced disease and validated in vitro. Broadly, biologically informed fully
interpretable neural networks enable preclinical discovery and clinical prediction in
prostate cancer and may have general applicability across cancer types.



Main Text:

With the advancement of molecular profiling technologies, the ability to observe millions
of genomic, transcriptional, and additional features from cancer patients and their tumors
has grown significantly over the past decade. Specifically in prostate cancer, the
availability of rich molecular profiling data linked to clinical annotation has enabled
discovery of many individual genes, pathways, and complexes that promote lethal
castration resistant prostate cancer (CRPC), which has led to both biological
investigations and clinical evaluations of these individual features for predictive utility (1—
9). However, the relationships between these molecular features, and their combined
predictive and biological contributions to disease progression, drug resistance, and lethal
outcomes, remains largely uncharacterized.

When developing a predictive model, one may choose from a large range of approaches,
although each comes with tradeoffs of accuracy and interpretability. In translational
cancer genomics, interpretability of predictive models is critical, as properties that
contribute to the predictive capabilities of the model may not only inform patient care, but
also provide insights into the underlying biological processes to prompt functional
investigation and therapeutic targeting. Linear models such as logistic regression tend to
have high interpretability with less accurate predictive performance, whereas deep
learning models often have less interpretability but higher predictive performance (10,
11). Using a typical fully connected dense deep learning approach for building predictive
models may also result in overfitting unless the network is well regularized, and such
models have a tendency to be computationally expensive and less interpretable (12).

Efforts to search for slimmer architecture and sparse networks given a full model
demonstrated that sparse models can decrease storage requirements and improve
computational performance (73—15). However, finding such a sparse model may be
challenging, since the typical training-pruning-retraining cycle is usually computationally
expensive, and recent studies indicate that building a sparse model de novo may be
easier (16). Additionally, efforts to enhance the interpretability of deep learning models
and the need to explain model decisions led to the development of multiple attribution
methods, including LIME (17), DeepLIFT (10), DeepExplain (18), and SHAP (19), that
can be used to enhance the deep learning explainability and understand how the model
is processing information and making decisions.

Taken together, the advances in sparse model development and attribution methods have
informed the development of deep learning models to solve biological problems using
customized neural network architectures that are inspired by biological systems. For
example, Ma et al, developed a visible neural network system, DCell, to model the effect
of gene interaction on cell growth in yeast (20). A Pathway-Associated Sparse Deep
Neural Network (PASNet) PASNet used a flattened version of pathways to predict patient
prognosis in Glioblastoma multiforme (21). However, whether biologically informed neural
networks can accelerate both biological discovery with translational potential, and
simultaneously enable clinical predictive modeling, is largely unknown. Here, we
hypothesized that a biologically informed deep learning model built upon advances in
sparse deep learning architectures, encoding of biological information, and incorporation



of explainability algorithms would achieve superior predictive performance compared to
established models and reveal novel patterns of treatment resistance in prostate cancer
with translational implications.

Results:

We developed a deep learning predictive model that incorporates prior biologically
established hierarchical knowledge in a neural network language to predict cancer state
in prostate cancer patients based on their genomic profiles. A set of 3,007 curated
biological pathways were used to build a pathway-aware multi-layered hierarchical
network (P-NET) (Methods). In P-NET, the patient molecular profile is fed into the model
and distributed over a layer of nodes representing a set of genes of interest using
weighted links (Figure 1a). Later layers of the network encode a set of pathways with
increasing levels of abstraction, whereby lower layers represent fine pathways while later
layers represent more complex biological pathways and biological processes. The
connections between different layers are constrained to follow known child-parent
relationships among encoded features, genes, and pathways, and as a result the network
is fully interpretable.

We trained and tested P-NET with a set of 1,013 prostate cancers (CRPC = 333, primary
= 680), divided into 80% training, 10% validation, and 10% testing, to predict disease
state (primary or metastatic disease). The trained P-NET outperformed typical machine
learning models, including Support Vector Machine, Logistic Regression, and Decision
Trees (AUC=0.93, AUPRC= 0.88, Accuracy 0.83) (Methods, Figure 1b, c, area under
ROC curves are shown in Figure S3, 5-fold cross validation results are shown in Figure
S4). Furthermore, we evaluated whether the sparse model had characteristics distinct
from a dense fully connected deep learning model. We trained a dense model with the
same number of parameters as in the P-NET model on training sets with a logarithmically
increasing number of samples from 100 to 811 (80% of the total number of samples). The
mean performance (determined by AUC) of the P-NET model was higher than the dense
model over all the sample sizes, and this difference was statistically significant in smaller
sample sizes (<=500) (e.g. mean AUC of 5-fold cross validation was significantly higher
for P-NET compared to a dense network trained on 155 samples, p-value = 0.003) (Figure
2a, more metrics are shown in Figure S5).

We next performed external validation of the predictive aspects of the model using two
additional PrCa validation cohorts, one primary (22) and one metastatic (23) (total n=225,
links are included in Data S1). The trained P-NET model correctly classified 73% of the
primary tumors and 76% of the castration resistant metastatic tumors, indicating that the
model can generalize to unseen samples with an adequate predictive performance
(Figure 2b). We hypothesized that patients with primary tumors samples incorrectly
classified by P-NET as castration resistant metastatic tumors may in fact have worse
clinical outcomes. Patients with high P-NET scores misclassified as resistant disease
were significantly more likely to have biochemical recurrence than patients with low P-
NET scores (p = 8*10-5; log-rank) indicating that for patients with primary prostate cancer,
the P-NET score may be used to predict potential biochemical recurrence (Figure 2c).



To understand the interactions between different features, genes, pathways, and
biological processes that contributed to the predictive performance, and to study the paths
of impact from the input to the outcome, we visualized the whole structure of P-NET with
the fully interpretable layers after training (Figure 3a and S6). Among aggregate molecular
alterations, copy number variation (CNV) was more informative compared to mutations,
consistent with prior reports (24). In addition, P-NET selected a hierarchy of pathways
(out of 3,007 pathways on which P-NET was trained) as relevant to classification,
including post-translational modification (PTM) (including Ubiquitination and
SUMoylation) and transcriptional regulation by RUNX2 and TP53. Ubiquitination and
SUMoylation pathways contribute to the regulation of multiple tumor suppressors and
oncogenes, and dysregulation of these pathways has been linked to prostate cancer
initiation and progression in preclinical models (25). RUNXZ2 is an osteogenic transcription
factor that regulates cell proliferation and is associated with metastatic disease in prostate
cancer patients (26).

To evaluate the relative importance of specific genes contributing to the model prediction,
we inspected the genes layer and utilized the DeepLIFT attribution method to obtain the
average ranking of genes (Methods) (710). Highly ranked genes included AR, PTEN, RB1,
and TP53, which are known PrCa drivers previously associated with metastatic disease
(2.5, 7, 27). In addition, alterations in less expected genes, such as MDM4, FGFR1,
NOTCH1, and PDGFA, strongly contributed to predictive performance (Figure 3b). To
understand the behavior of trained P-NET, we checked the activation of each node in the
network and asked whether this activation changed with the change of the input sample
class (Primary vs. Metastatic) (Methods). We observed that the difference in the node
activation was higher in higher layers and more concentrated in highly ranked nodes in
each layer (Figure S7). For example, the activation distribution of the nodes of layer 3
was different when P-NET was given a primary sample compared to a resistant sample
(Figure 3c). Thus, the interpretable architecture of P-NET can be interrogated to
understand how the input information is transformed through layers and nodes, enabling
further understanding of the state and importance of the involved biological entities.

Through evaluation of multiple layers in the P-NET trained model, we observed
convergence in TP53-associated biology contributing to CRPC. Tracing the relevance of
TP53-related pathways to the gene levels, we detected that in addition to TP53 and
MDM?2, each established in prostate cancer disease progression (27-317), alterations in
MDMA4 strongly contributed to this network convergence. MDM4 can inhibit wild-type
TP53 expression by binding to and masking the transcriptional activation domain, though
its role in prostate cancer treatment resistance is incompletely characterized (32).

We further studied the MDM4 profile both in clinical samples and functional models.
MDM4 focal amplification was more prevalent in resistant samples compared to primary
samples (X2Yates correction = 40.8251, p-value <0.00001) (Figure 4a). Copy number
and mutation distributions of other top genes are shown in Figure S8. In a genome-wide
gain-of-function preclinical screen using 17,255 open reading frames ORFs in LNCaP
cells, MDM4 overexpression was significantly associated with resistance
to enzalutamide, a second-generation antiandrogen medication which is used in CRPC



patient populations (33) (Figure 4c). We thus utilized CRISPR-Cas9 to target MDM4 in
LNCaP prostate cancer cell lines. In comparison to a negative control, proliferation of
LNCaP cells was reduced by 60% (p-value <0.0001) (Figure 4d) in response to MDM4
depletion using two distinct sgRNAs (Figure 4e). This indicated that selective therapeutic
targeting of MDM4 may be viable in TP53-wildtype advanced prostate cancer patients.
We then sought to study the effect of inhibiting MDM4 in prostate cell lines with mutant
and wild-type TP53. Prostate cells with wild-type TP53 were more sensitive to the MDM4
inhibitor RO-5963 compared to mutant TP53 cell lines (2uM of RO-5963 reduced the
viability of LNCaP cells by nearly 50%; Figure 4f). Overall, convergence of TP53 pathway
dysregulation across multiple layers of the trained P-NET model identified specific
vulnerabilities involving MDM4, which can be therapeutically targeted with MDM4-
selective inhibition in a genomically stratified prostate cancer patient population.

Discussion:

Broadly, P-NET Ileveraged a biologically informed, rather than arbitrarily
overparameterized, architecture for prediction. As a result, P-NET dramatically reduced
the number of parameters for learning, which led to enhanced interpretability. The sparse
architecture in P-NET has better predictive performance when compared to other
machine learning models, including dense networks, and may be applicable to other
similar tasks. Application of P-NET to a molecular cohort of prostate cancer patients
demonstrated (i) model performance that may enable prediction of clinically aggressive
disease in primary prostate cancer patient populations, and (ii) convergent biological
processes that contribute to a metastatic prostate cancer clinical phenotype that harbor
novel therapeutic strategies in molecularly stratified populations.

Furthermore, P-NET provided a natural way for integrating multiple molecular features
(e.g. mutations and copy number variations) weighted differently to reflect their
importance in predicting the final outcome, which previously required different
significance approaches for each feature to enable cancer gene discovery (34, 35). Even
more, P-NET provided a framework for encoding hierarchical prior knowledge using
neural network languages, and turning these hierarchies into a computational model that
can be used both for prediction and biological discovery. Specifically, P-NET accurately
predicted advanced prostate disease based on the patient's genomic profile and had the
ability to predict potential BCR before happening. P-NET visualization enabled a
multilevel view of the involved biological pathways and processes, which may guide
researchers to develop hypotheses regarding the underlying biological processes
involved in cancer progression and translate these discoveries into therapeutic
opportunities. Specifically, P-NET rediscovered known genes such as AR, PTEN, TP53,
and RB1. Moreover, P-NET nominated MDM4 as a novel therapeutic target, which was
experimentally validated and may inform further genomically directed therapeutic options
for this patient population.

While P-NET provides a framework for outcome prediction and hypothesis generation,
this model still requires tuning and training before being used in any given context. As
with all deep learning models, the final trained model heavily depends on the
hyperparameters used to train the model. In addition, P-NET encodes biological pathways



inside the network in a hardcoded way, which makes the model depend on the quality of
the annotations used to build the model. Thus, the portability of this approach across
different histological and clinical contexts requires further evaluation.

In conclusion, P-NET, a biologically informed deep neural network, accurately classified
castration resistant metastatic versus primary prostate cancers. Visualizing the trained
model generated novel hypotheses for mechanisms of metastasis in prostate cancer, and
provided insights with direct potential for clinical translation in molecularly stratified
prostate cancer patient populations. Biologically guided neural networks represent a
novel approach to integrating cancer biology with machine-learning by building
mechanistic predictive models, providing a platform for biological discovery that may be
broadly applicable across cancer prediction and discovery tasks
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Fig. 1. Interpretable biologically informed deep learning model for molecular discovery in
metastatic prostate cancer. a) P-NET; neural network architecture that encodes different
biological entities into a neural network language with customized connections between
consecutive layers (i.e. features from patient profile, genes, pathways, biological
processes, and outcome). The trained P-NET provides a relative ranking of nodes in each
layer which can be used to generate biological hypotheses regarding the relevance of
different biological entities to the outcome of interest. Candidate genes are
experimentally and clinically validated to understand the function and the mechanism of
action of these genes. b) The Precision-Recall curve of multiple predictive models
including Random forest, Support Vector Machine, Decision Trees, and adaptive
Boosting as trained and tested on a cohort of prostate cancer patients. P-NET achieves
better area under precision recall curve (AUPRC). c) The confusion matrix of P-NET
showing the correct classification percentage of samples in the testing set. The model is
biased toward predicting more primary samples given that the training set is biased
toward having more primary samples (70% primary and 30% metastatic).
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performance (measured as the average AUC over 5 cross validation splits) with smaller
numbers of samples compared to a dense fully connected network. The ratio of
performance increase is polynomially increasing with the decrease of the number of
training samples as shown with the dashed red line. The difference in performance
between the two models is statistically significant in all sample sizes less than or equal to
500. Sample sizes marked by (*) indicate statistically significant differences while those
marked by (n.s.) are not. b) External validation of P-NET using two independent cohorts
(22, 23). The P-NET model achieves 73% and 75.79% true prediction rate (TR)
respectively showing that the P-NET can generalize to classify unseen samples. c) Wrong
predictions of P-NET were inspected for clinical insights. Patients with high P-NET scores
(wrongly classified by P-NET to be resistant samples) have more tendency to have
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data are included in Data S4).
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Fig. 3. Inspecting and interpreting P-NET. a) Visualization of inner layers of P-NET shows
the estimated relative importance of different nodes in each layer. Nodes on the far left
represent feature types (mutation and copy number amplification and deletion). The
second layer nodes represent genes and layers representing higher level biological
entities shown in layers to the right. The final layer represents the model outcome. Nodes
with darker color are shown to be more important while nodes with transparent color
represent the residual importance of non-shown nodes in each layer. The contribution of
datatype to the importance of each gene is depicted using the Sankey diagram. The
importance of AR gene is driven mainly by gene amplification, the importance of TP53 is
driven by mutation, and the importance of PTEN gene is driven by deletion. b) Top genes
are ranked based on the average importance of each gene. The distribution of sample-
level importance calculated for the testing set is shown in the Swarm diagram. In general,
metastatic samples tend to have more influence on the importance of different genes. c)
Inspecting the activation output of each node shows how the outcome of different nodes
changes with changing the class of input samples (primary-blue vs. metastatic-orange).
The activation distribution of top nodes in layer 3 shows that the “Transcription Regulation
by TP53” pathways is ranked second among pathways in the same layer. Metastatic
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samples tend to have negative activation of this pathway.
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Fig. 4. Functional validation. a) Distribution of MDM4 alterations across 1,013 PrCa
samples showing more prevalence of MDM4 amplification in resistant samples compared
to primary samples. b) Joint distribution of TP53 mutations and MDM4 amplifications
across 1,013 PrCa samples. c) Analysis of enzalutamide resistant genes in LNCaP cells
based on a genome-scale screen including 17,255 ORFs. The relative enzalutamide
resistance of each ORF (x-axis) is plotted as a Z-score (y-axis) (raw data are included in
Data S2). A positive Z-score indicates that the gene promotes resistance. MDM4 and
other hits are highlighted on the graph, with MDM4 scoring as the strongest hit. D)
Relative viability of LNCaP cells after transduction of CRISPR-Cas9 and sgRNAs
targeting MDM4 (2 guides, red) or control GFP (black). Data represents the mean + SD
of seven replicates (raw data are included in Data S3). €) Immunoblot confirming MDM4
gene deletion in LNCaP cells. HSP90 is a loading control. f) Sensitivity of LNCaP, PC3,
and DU145 cells to RO-5963. Relative viability is shown at each indicated dosage of RO-
5963. Data represents the mean + SD of six replicates (raw data are included in Data S3)
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Methods

We introduce P-NET, an artificial neural network with biologically informed, parsimonious
architecture that accurately predicts metastasis in PrCa patients based on their genomic
profiles. P-NET is a feedforward neural network with constraints on the nodes and edges.
In P-NET, each node encodes some biological entity (e.g. genes and pathways) and each
edge represents a known relationship between the corresponding entities. The
constraints on the nodes allow for better understanding of the state of different biological
components. The constraints on the edges allow us to use a large number of nodes
without increasing the number of edges, which leads to a smaller number of parameters
compared to fully connected networks with the same number of nodes, and hence
potentially less computations. The architecture was built using the Reactome pathway
data sets (36). The whole Reactome dataset was downloaded and processed to form a
layered network of five layers of pathways, one layer of genes, and one layer for features.
This sparse model had slightly over 71,000 weights with the number of nodes per layer
distributed as shown in Fig S1.B. A dense network with the same number of nodes would
have more than 270 million weights with the first layer containing more than 94% of the
weights. A hybrid model which contains a sparse layer followed by dense layers still
contains over 14 million weights. The number of dense weights is calculated as w; =
n; * (n;_; + 1) where w; is the number of weights per layer [ and n; is the number of
nodes of the same layer.

The meaning of the nodes, layers, and connection of P-NET is encoded through a
carefully engineered architecture and a set of restrictions on the connections of the
network. The input layer is meant to represent features that can be measured and fed
into the network. The second layer represents a set of genes of interest. The higher layers
represent a hierarchy of pathways and biological processes that are manually curated.
The first layer of P-NET is connected to the next layer via a set of one-to-one connections
where each node in the next layer is connected to exactly three nodes of the input layer
representing mutations, copy number amplification, and copy number deletions. This
scheme results in a much smaller number of weights in the first layer compared to a fully
connected network and the special pattern of the connection matrix results in more
efficient training. The second layer is restricted to have connections reflecting the gene-
pathway relationships as curated by the Reactome pathway dataset. The connections are
encoded by a mask matrix M that is multiplied by the weights matrix W to zero-out all the
connections that don't exist in the Reactome pathway dataset. For the next layers, a
similar scheme is devised to control the connection between consecutive layers to reflect
the real parent-child relationships that exist in the Reactome dataset. The output of each
layer is calculated as y = f[(M x W) x + b] where f is the activation function, M is the
mask matrix, W is the weights matrix, x is the input matrix, and b is the bias vector (see
Fig. S1.A). The activation of each node is kept into the range of [-1,1] by applying the tanh
function f =tanh = (e?** —1)/(e** +1) to the weighted inputs of the node. The
activation of the outcome layers is calculated by the sigmoid functiono = 1/(1+e™).
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To allow each layer to be useful by itself, we added a predictive layer after each hidden
layer. P-NET has a smaller number of nodes per layer in the later layers compared to the
first layers Fig. S1.B. Since it is more challenging to fit the data using a smaller number
of weights in the later layers, we used a higher loss weight for later layer outcomes during
the optimization process. The final prediction of the network was calculated by taking the
average of all the layer outcomes, Fig S1.C. The learning rate was initialized to be 0.001
and actively reduced after every 50 epochs to allow for smooth convergence. Since we
have an unbalanced dataset, we weighted the classes differently to reduce the network
bias toward one class based on the bias in the training set. The model was trained using
Adam optimizer (37) to reduce the binary cross-entropy loss functions H =

—% Xy log(p(y:)) + (1 —y;).log (1 —p(y:)), where y; is the label for sample i, p(y;)
is the probability that sample i has a metastatic cancer as calculated using the sigmoid
function ¢, and N is the total number of samples. We checked different gradient based
attribution methods to rank the features in all the layers, and we chose to use the
DeepLIFT scheme as implemented in the DeepExplain library (10).

To check the utility of the developed model, we trained P-NET to predict cancer state
(primary/metastatic) of prostate patients based on their genomic profiles. We used whole-
exome sequencing of 1,013 patients along with the corresponding somatic mutations and
copy number alterations (4). The mutations were aggregated on the gene level, excluding
Silent, Intron, 3'UTR, 5'UTR, RNA, and lincRNA mutations (Fig. S2). The copy number
alterations for each gene was assigned based on the called segment level copy number
emphasizing focal amplifications and deletions and excluding single copy amplification
and deletions. The prediction performance was measured using the average area under
the ROC curve (AUC), the area under precision-recall curve (AUPRC), and F1 score. The
corresponding measures were reported for the testing split and also for the cross-
validation setup. The input data was divided into a testing set (10%) and a development
set (90%). The development set was further divided into a validation set that has the same
size as the testing set and the remaining samples are reserved for training. For the cross-
validation experiments, the development data set was divided into 5 folds stratified by the
label classes to account for the bias in the dataset. The implementation of the proposed
system along with the reproducible results are available on Github
(https://github.com/marakeby/pnet_prostate paper).

Analysis of a genome-scale ORF screen

A genome-scale ORF screen was previously performed in LNCaP cells (33) . In brief,
cells were infected with a pooled ORF library, subject to puromycin selection to isolate
cells containing the respective ORFs, and then seeded in low androgen media (CSS) with
enzalutamide. The relative effect of each ORF on cell proliferation was determined after
25 days in culture and is represented as Z-scores. We postulated that amplified genes
identified by P-NET regulate oncogenic functions in metastatic castration resistant
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prostate cancer. To validate this hypothesis, we analyzed this previously published
genome-scale ORF screen performed in LNCaP cells which identified genes that, when
overexpressed, promoted resistance to the AR inhibitor, enzalutamide (Figure 4C) (33).
LNCaP cells are dependent on AR and treatment with enzalutamide attenuates cell
proliferation. Based on this analysis, MDM4 scored as a robust enzalutamide resistant
gene relative to other hits, including cell cycle regulators (CDK4, CDK®6) or those with
roles in FGF signaling (FGFR2, FGFR3, FGF6); these are two pathways implicated in
driving resistance to anti-androgen therapies in clinical prostate cancers (38, 39).

Sensitivity to RO-5963

LNCaP, DU145, and PC3 cells were seeded in 12-well plates at 100k, 20k, or 20Kk,
respectively. After 24 hours, cells were treated with increasing concentrations of RO-5963
between 80nM and 50uM. Media containing the inhibitor was refreshed after 3 days.
Relative cell viability was determined using a Vi-Cell after 6 days of treatment, and cell
counts were used to calculate ICso values.

MDM4 gene depletion experiments

Blasticidin-resistant Cas9 positive LNCaP cells were cultured in 150ug/mL blasticidin
(Thermo Fisher Scientific, NC9016621) for 72 hours to enrich cells with optimal Cas9
activity. 2 million cells were seeded in parallel 10cm plates and infected with lentiviruses
expressing puromycin-resistant sgRNAs targeting MDM4 or GFP control 24 hours later.
Cells were then subject to puromycin selection for 4 days, at which point one plate was
harvested for immunoblotting and the other was counted using a Vi-Cell and seeded for
a proliferation assay. 7 days later, cells were counted again with a Vi-Cell to assess
viability, representing a total of 12 days. The target sequence against GFP was
CACCGGCCACAAGTTCAGCGTGTCG (sgGFP). The target sequences against MDM4
were AGATGTTGAACACTGAGCAG (sgMDM4-1) and CTCTCCTGGACAAATCAATC
(sgMDM4-2).

Immunoblotting

Cell pellets were lysed in RIPA buffer (MilliporeSigma, 20-188) containing
Protease/Phosphatase Inhibitor Cocktail (Cell Signaling Technology, 5872S). Protein
concentrations were calculated using a Pierce BCA Protein Assay Kit (Thermo Fisher
Scientific, PI23225), and protein was then denatured in NUPAGE LDS sample buffer
(Thermo Fisher Scientific, NP0O007) with 5% B-Mercaptoethanol. 13ug of each protein
sample was electrophoresed using NuPAGE 4-12% Bis-Tris Protein gels (Thermo Fisher
Scientific) and run with NuPAGE MOPS SDS Running Buffer (Thermo Fisher Scientific,
NPO0001). Proteins were transferred to nitrocellulose membranes using an iBlot apparatus
(Thermo Fisher Scientific). Membranes were blocked in Odyssey Blocking Buffer (LI-COR
Biosciences, 927-70010) for one hour at room temperature, and membranes were then
cut and incubated in primary antibodies diluted 1:1000 in Odyssey Blocking Buffer at 4°C
overnight. The following morning, membranes were washed with Phosphate-Buffer
Saline, 0.1% Tween (PBST) and incubated with fluorescent anti-rabbit secondary
antibodies (Thermo Fisher Scientific, NC9401842) for one hour at room temperature.
Membranes were again washed with PBST and then imaged using an Odyssey Imaging
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System (LI-COR Biosciences). Primary antibodies used include MDM4 (Thermo Fisher
Scientific, A300287A) and HSP90 (Cell Signaling Technology, 4874S).

Chemical inhibition of MDM4 reduces prostate cancer cell viability

Given the proposed role that MDM4 plays in driving enzalutamide resistance in prostate
cancer cells, we sought to determine the response of prostate cancer cells to chemical
inhibition of MDM4. We evaluated RO-5963, a small molecule MDM2/4 dual inhibitor with
the greatest selectivity towards MDM4 in its class (40). This drug has previously
demonstrated robust efficacy against MDM4 dependent cancer cell lines (47). We
evaluated the effects of increasing concentrations of RO-5963 on prostate cancer cell
proliferation.

Gene depletion of MDM4 reduces prostate cancer cell viability

To determine how prostate cancer cells would respond to precision tools that target
MDMA4 at the gene level, we utilized CRISPR-Cas9 and two sgRNAs targeting distinct
sequences of MDM4 in LNCaP cells. In comparison to a negative control sgRNA (GFP),
viability of LNCaP cells was reduced by about 60% (Figure 4D) in response to MDM4
depletion (Figure 4F) after 12 days in culture. Altogether, we concluded that MDM4
regulates enzalutamide resistance, and that targeting MDM4 through either chemical or
genetic approaches significantly attenuated the viability of prostate cancer cell lines. Our
observations indicate that antagonizing MDM4 in metastatic castration resistant prostate
cancers that harbor wild-type p53 is an attractive precision strategy.
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A ©

Fig. S1. A) The difference between dense and sparse layers. Sparse layers can be
arbitrary sparse or patterned sparse. Arbitrary sparse layers are flexible to encode any
connection scheme. Patterned sparse layers can make computations more efficient. B)
The number of nodes in each layer of the developed P-NET showing a decreasing
number of nodes for higher layers. C) A predictive node is connected to each hidden
layer in P-NET, and the final prediction is calculated by taking the average of all the
predictive elements in the network
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The distribution of mutation types in the P100 dataset. Silent, Intron, 3'UTR, 5'UTR,

RNA, and lincRNA mutations are excluded from the modeling.
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Fig. S3. The area under the ROC curve of different models when trained and tested on
the P1000 dataset. P-NET outperforms other models leading to higher AUC.
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Fig. S4. Cross-validation experiment using 5 folds over the development split of the
data. P-NET outperforms other models on average using all the metrics (A: Accuracy,
B: Area under curve, C: AUPRC, D: F1, and F: recall) except Precision (E).
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F1, E: Accuracy). Sample sizes marked by (*) indicate statistically significant differences
while those marked by (n.s.) are not.
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Fig. S8. The distribution of mutations and copy number variants of top ranked genes
stratified by the class of the samples (Primary vs. Metastatic).
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