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Abstract: Determination of molecular features that mediate clinically aggressive 
phenotypes in prostate cancer (PrCa) remains a major biological and clinical challenge. 
Here, we developed a biologically informed deep learning model (P-NET) to stratify PrCa 
patients by treatment resistance state and evaluate molecular drivers of treatment 
resistance for therapeutic targeting through complete model interpretability. Using a 
molecular cohort of 1,238 prostate cancers, we demonstrated that P-NET can predict 
cancer state using molecular data that is superior to other modeling approaches. 
Moreover, the biological interpretability within P-NET revealed established and novel 
molecularly altered candidates, such as MDM4 and FGFR1, that were implicated in 
predicting advanced disease and validated in vitro. Broadly, biologically informed fully 
interpretable neural networks enable preclinical discovery and clinical prediction in 
prostate cancer and may have general applicability across cancer types. 
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Main Text:  
With the advancement of molecular profiling technologies, the ability to observe millions 
of genomic, transcriptional, and additional features from cancer patients and their tumors 
has grown significantly over the past decade. Specifically in prostate cancer, the 
availability of rich molecular profiling data linked to clinical annotation has enabled 
discovery of many individual genes, pathways, and complexes that promote lethal 
castration resistant prostate cancer (CRPC), which has led to both biological 
investigations and clinical evaluations of these individual features for predictive utility (13
9). However, the relationships between these molecular features, and their combined 
predictive and biological contributions to disease progression, drug resistance, and lethal 
outcomes, remains largely uncharacterized.  
 
When developing a predictive model, one may choose from a large range of approaches, 
although each comes with tradeoffs of accuracy and interpretability. In translational 
cancer genomics, interpretability of predictive models is critical, as properties that 
contribute to the predictive capabilities of the model may not only inform patient care, but 
also provide insights into the underlying biological processes to prompt functional 
investigation and therapeutic targeting. Linear models such as logistic regression tend to 
have high interpretability with less accurate predictive performance, whereas deep 
learning models often have less interpretability but higher predictive performance (10, 
11). Using a typical fully connected dense deep learning approach for building predictive 
models may also result in overfitting unless the network is well regularized, and such 
models have a tendency to be computationally expensive and less interpretable (12).  
 
Efforts to search for slimmer architecture and sparse networks given a full model 
demonstrated that sparse models can decrease storage requirements and improve 
computational performance (13315). However, finding such a sparse model may be 
challenging, since the typical training-pruning-retraining cycle is usually computationally 
expensive, and recent studies indicate that building a sparse model de novo may be 
easier (16). Additionally, efforts to enhance the interpretability of deep learning models 
and the need to explain model decisions led to the development of multiple attribution 
methods, including LIME (17), DeepLIFT (10), DeepExplain (18), and SHAP (19), that 
can be used to enhance the deep learning explainability and understand how the model 
is processing information and making decisions.  
 
Taken together, the advances in sparse model development and attribution methods have 
informed the development of deep learning models to solve biological problems using 
customized neural network architectures that are inspired by biological systems. For 
example, Ma et al, developed a visible neural network system, DCell, to model the effect 
of gene interaction on cell growth in yeast (20). A Pathway-Associated Sparse Deep 
Neural Network (PASNet) PASNet used a flattened version of pathways to predict patient 
prognosis in Glioblastoma multiforme (21). However, whether biologically informed neural 
networks can accelerate both biological discovery with translational potential, and 
simultaneously enable clinical predictive modeling, is largely unknown. Here, we 
hypothesized that a biologically informed deep learning model built upon advances in 
sparse deep learning architectures, encoding of biological information, and incorporation 
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of explainability algorithms would achieve superior predictive performance compared to 
established models and reveal novel patterns of treatment resistance in prostate cancer 
with translational implications. 
  
Results: 
We developed a deep learning predictive model that incorporates prior biologically 
established hierarchical knowledge in a neural network language to predict cancer state 
in prostate cancer patients based on their genomic profiles. A set of 3,007 curated 
biological pathways were used to build a pathway-aware multi-layered hierarchical 
network (P-NET) (Methods). In P-NET, the patient molecular profile is fed into the model 
and distributed over a layer of nodes representing a set of genes of interest using 
weighted links (Figure 1a). Later layers of the network encode a set of pathways with 
increasing levels of abstraction, whereby lower layers represent fine pathways while later 
layers represent more complex biological pathways and biological processes. The 
connections between different layers are constrained to follow known child-parent 
relationships among encoded features, genes, and pathways, and as a result the network 
is fully interpretable.  
 
We trained and tested P-NET with a set of 1,013 prostate cancers (CRPC = 333, primary 
= 680), divided into 80% training, 10% validation, and 10% testing, to predict disease 
state (primary or metastatic disease). The trained P-NET outperformed typical machine 
learning models, including Support Vector Machine, Logistic Regression, and Decision 
Trees (AUC=0.93, AUPRC= 0.88, Accuracy 0.83) (Methods, Figure 1b, c, area under 
ROC curves are shown in Figure S3, 5-fold cross validation results are shown in Figure 
S4). Furthermore, we evaluated whether the sparse model had characteristics distinct 
from a dense fully connected deep learning model. We trained a dense model with the 
same number of parameters as in the P-NET model on training sets with a logarithmically 
increasing number of samples from 100 to 811 (80% of the total number of samples). The 
mean performance (determined by AUC) of the P-NET model was higher than the dense 
model over all the sample sizes, and this difference was statistically significant in smaller 
sample sizes (<=500) (e.g. mean AUC of 5-fold cross validation was significantly higher 
for P-NET compared to a dense network trained on 155 samples, p-value = 0.003) (Figure 
2a, more metrics are shown in Figure S5).  
 
We next performed external validation of the predictive aspects of the model using two 
additional PrCa validation cohorts, one primary (22) and one metastatic (23) (total n=225, 
links are included in Data S1). The trained P-NET model correctly classified 73% of the 
primary tumors and 76% of the castration resistant metastatic tumors, indicating that the 
model can generalize to unseen samples with an adequate predictive performance 
(Figure 2b). We hypothesized that patients with primary tumors samples incorrectly 
classified by P-NET as castration resistant metastatic tumors may in fact have worse 
clinical outcomes. Patients with high P-NET scores misclassified as resistant disease 
were significantly more likely to have biochemical recurrence than patients with low P-
NET scores (p = 8*10-5; log-rank) indicating that for patients with primary prostate cancer, 
the P-NET score may be used to predict potential biochemical recurrence (Figure 2c).  
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To understand the interactions between different features, genes, pathways, and 
biological processes that contributed to the predictive performance, and to study the paths 
of impact from the input to the outcome, we visualized the whole structure of P-NET with 
the fully interpretable layers after training (Figure 3a and S6). Among aggregate molecular 
alterations, copy number variation (CNV) was more informative compared to mutations, 
consistent with prior reports (24). In addition, P-NET selected a hierarchy of pathways 
(out of 3,007 pathways on which P-NET was trained) as relevant to classification, 
including post-translational modification (PTM) (including Ubiquitination and 
SUMoylation) and transcriptional regulation by RUNX2 and TP53. Ubiquitination and 
SUMoylation pathways contribute to the regulation of multiple tumor suppressors and 
oncogenes, and dysregulation of these pathways has been linked to prostate cancer 
initiation and progression in preclinical models (25). RUNX2 is an osteogenic transcription 
factor that regulates cell proliferation and is associated with metastatic disease in prostate 
cancer patients (26).  
 
To evaluate the relative importance of specific genes contributing to the model prediction, 
we inspected the genes layer and utilized the DeepLIFT attribution method to obtain the 
average ranking of genes (Methods) (10). Highly ranked genes included AR, PTEN, RB1, 
and TP53, which are known PrCa drivers previously associated with metastatic disease 
(2, 5, 7, 27). In addition, alterations in less expected genes, such as MDM4, FGFR1, 
NOTCH1, and PDGFA, strongly contributed to predictive performance (Figure 3b). To 
understand the behavior of trained P-NET, we checked the activation of each node in the 
network and asked whether this activation changed with the change of the input sample 
class (Primary vs. Metastatic) (Methods). We observed that the difference in the node 
activation was higher in higher layers and more concentrated in highly ranked nodes in 
each layer (Figure S7). For example, the activation distribution of the nodes of layer 3 
was different when P-NET was given a primary sample compared to a resistant sample 
(Figure 3c). Thus, the interpretable architecture of P-NET can be interrogated to 
understand how the input information is transformed through layers and nodes, enabling 
further understanding of the state and importance of the involved biological entities.  
 
Through evaluation of multiple layers in the P-NET trained model, we observed 
convergence in TP53-associated biology contributing to CRPC. Tracing the relevance of 
TP53-related pathways to the gene levels, we detected that in addition to TP53 and 
MDM2, each established in prostate cancer disease progression (27331), alterations in 
MDM4 strongly contributed to this network convergence. MDM4 can inhibit wild-type 
TP53 expression by binding to and masking the transcriptional activation domain, though 
its role in prostate cancer treatment resistance is incompletely characterized (32).  
 
We further studied the MDM4 profile both in clinical samples and functional models. 
MDM4 focal amplification was more prevalent in resistant samples compared to primary 
samples (X2Yates correction = 40.8251, p-value <0.00001) (Figure 4a). Copy number 
and mutation distributions of other top genes are shown in Figure S8. In a genome-wide 
gain-of-function preclinical screen using 17,255 open reading frames ORFs in LNCaP 
cells, MDM4 overexpression was significantly associated with resistance 
to  enzalutamide, a second-generation antiandrogen medication which is used in CRPC 
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patient populations (33) (Figure 4c). We thus utilized CRISPR-Cas9 to target MDM4 in 
LNCaP prostate cancer cell lines. In comparison to a negative control, proliferation of 
LNCaP cells was reduced by 60% (p-value <0.0001) (Figure 4d) in response to MDM4 
depletion using two distinct sgRNAs (Figure 4e). This indicated that selective therapeutic 
targeting of MDM4 may be viable in TP53-wildtype advanced prostate cancer patients. 
We then sought to study the effect of inhibiting MDM4 in prostate cell lines with mutant 
and wild-type TP53. Prostate cells with wild-type TP53 were more sensitive to the MDM4 
inhibitor RO-5963 compared to mutant TP53 cell lines (2¿M of RO-5963 reduced the 
viability of LNCaP cells by nearly 50%; Figure 4f). Overall, convergence of TP53 pathway 
dysregulation across multiple layers of the trained P-NET model identified specific 
vulnerabilities involving MDM4, which can be therapeutically targeted with MDM4-
selective inhibition in a genomically stratified prostate cancer patient population. 
 
Discussion:  
Broadly, P-NET leveraged a biologically informed, rather than arbitrarily 
overparameterized, architecture for prediction. As a result, P-NET dramatically reduced 
the number of parameters for learning, which led to enhanced interpretability. The sparse 
architecture in P-NET has better predictive performance when compared to other 
machine learning models, including dense networks, and may be applicable to other 
similar tasks. Application of P-NET to a molecular cohort of prostate cancer patients 
demonstrated (i) model performance that may enable prediction of clinically aggressive 
disease in primary prostate cancer patient populations, and (ii) convergent biological 
processes that contribute to a metastatic prostate cancer clinical phenotype that harbor 
novel therapeutic strategies in molecularly stratified populations.  
 
Furthermore, P-NET provided a natural way for integrating multiple molecular features 
(e.g. mutations and copy number variations) weighted differently to reflect their 
importance in predicting the final outcome, which previously required different 
significance approaches for each feature to enable cancer gene discovery (34, 35). Even 
more, P-NET provided a framework for encoding hierarchical prior knowledge using 
neural network languages, and turning these hierarchies into a computational model that 
can be used both for prediction and biological discovery. Specifically, P-NET accurately 
predicted advanced prostate disease based on the patient's genomic profile and had the 
ability to predict potential BCR before happening.  P-NET visualization enabled a 
multilevel view of the involved biological pathways and processes, which may guide 
researchers to develop hypotheses regarding the underlying biological processes 
involved in cancer progression and translate these discoveries into therapeutic 
opportunities. Specifically, P-NET rediscovered known genes such as AR, PTEN, TP53, 
and RB1. Moreover, P-NET nominated MDM4 as a novel therapeutic target, which was 
experimentally validated and may inform further genomically directed therapeutic options 
for this patient population. 
 
While P-NET provides a framework for outcome prediction and hypothesis generation, 
this model still requires tuning and training before being used in any given context. As 
with all deep learning models, the final trained model heavily depends on the 
hyperparameters used to train the model. In addition, P-NET encodes biological pathways 
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inside the network in a hardcoded way, which makes the model depend on the quality of 
the annotations used to build the model. Thus, the portability of this approach across 
different histological and clinical contexts requires further evaluation.  
 
In conclusion, P-NET, a biologically informed deep neural network, accurately classified 
castration resistant metastatic versus primary prostate cancers. Visualizing the trained 
model generated novel hypotheses for mechanisms of metastasis in prostate cancer, and 
provided insights with direct potential for clinical translation in molecularly stratified 
prostate cancer patient populations. Biologically guided neural networks represent a 
novel approach to integrating cancer biology with machine-learning by building 
mechanistic predictive models, providing a platform for biological discovery that may be 
broadly applicable across cancer prediction and discovery tasks 
  



 

7 

 

References: 

1.     G. Gundem, P. Van Loo, B. Kremeyer, L. B. Alexandrov, J. M. C. Tubio, E. 
Papaemmanuil, D. S. Brewer, H. M. L. Kallio, G. Högnäs, M. Annala, K. Kivinummi, 
V. Goody, C. Latimer, S. O9Meara, K. J. Dawson, W. Isaacs, M. R. Emmert-Buck, 
M. Nykter, C. Foster, Z. Kote-Jarai, D. Easton, H. C. Whitaker, ICGC Prostate 
Group, D. E. Neal, C. S. Cooper, R. A. Eeles, T. Visakorpi, P. J. Campbell, U. 
McDermott, D. C. Wedge, G. S. Bova, The evolutionary history of lethal metastatic 
prostate cancer. Nature. 520, 3533357 (2015). 

2.  D. Robinson, E. M. Van Allen, Y.-M. Wu, N. Schultz, R. J. Lonigro, J.-M. Mosquera, 
B. Montgomery, M.-E. Taplin, C. C. Pritchard, G. Attard, H. Beltran, W. Abida, R. K. 
Bradley, J. Vinson, X. Cao, P. Vats, L. P. Kunju, M. Hussain, F. Y. Feng, S. A. 
Tomlins, K. A. Cooney, D. C. Smith, C. Brennan, J. Siddiqui, R. Mehra, Y. Chen, D. 
E. Rathkopf, M. J. Morris, S. B. Solomon, J. C. Durack, V. E. Reuter, A. Gopalan, J. 
Gao, M. Loda, R. T. Lis, M. Bowden, S. P. Balk, G. Gaviola, C. Sougnez, M. Gupta, 
E. Y. Yu, E. A. Mostaghel, H. H. Cheng, H. Mulcahy, L. D. True, S. R. Plymate, H. 
Dvinge, R. Ferraldeschi, P. Flohr, S. Miranda, Z. Zafeiriou, N. Tunariu, J. Mateo, R. 
Perez-Lopez, F. Demichelis, B. D. Robinson, A. Sboner, M. Schiffman, D. M. 
Nanus, S. T. Tagawa, A. Sigaras, K. W. Eng, O. Elemento, A. Sboner, E. I. Heath, 
H. I. Scher, K. J. Pienta, P. Kantoff, J. S. de Bono, M. A. Rubin, P. S. Nelson, L. A. 
Garraway, C. L. Sawyers, A. M. Chinnaiyan, Integrative Clinical Genomics of 
Advanced Prostate Cancer. Cell. 162, 454 (2015). 

3.  R. Aggarwal, J. Huang, J. J. Alumkal, L. Zhang, F. Y. Feng, G. V. Thomas, A. S. 
Weinstein, V. Friedl, C. Zhang, O. N. Witte, P. Lloyd, M. Gleave, C. P. Evans, J. 
Youngren, T. M. Beer, M. Rettig, C. K. Wong, L. True, A. Foye, D. Playdle, C. J. 
Ryan, P. Lara, K. N. Chi, V. Uzunangelov, A. Sokolov, Y. Newton, H. Beltran, F. 
Demichelis, M. A. Rubin, J. M. Stuart, E. J. Small, Clinical and Genomic 
Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate 
Cancer: A Multi-institutional Prospective Study. J. Clin. Oncol. 36, 249232503 
(2018). 

4.  J. Armenia, S. A. M. Wankowicz, D. Liu, J. Gao, R. Kundra, E. Reznik, W. K. 
Chatila, D. Chakravarty, G. C. Han, I. Coleman, B. Montgomery, C. Pritchard, C. 
Morrissey, C. E. Barbieri, H. Beltran, A. Sboner, Z. Zafeiriou, S. Miranda, C. M. 
Bielski, A. V. Penson, C. Tolonen, F. W. Huang, D. Robinson, Y. M. Wu, R. 
Lonigro, L. A. Garraway, F. Demichelis, P. W. Kantoff, M.-E. Taplin, W. Abida, B. S. 
Taylor, H. I. Scher, P. S. Nelson, J. S. de Bono, M. A. Rubin, C. L. Sawyers, A. M. 
Chinnaiyan, PCF/SU2C International Prostate Cancer Dream Team, N. Schultz, E. 
M. Van Allen, PCF/SU2C International Prostate Cancer Dream Team, The long tail 
of oncogenic drivers in prostate cancer. Nat. Genet. 50, 6453651 (2018). 

5.  D. A. Quigley, H. X. Dang, S. G. Zhao, P. Lloyd, R. Aggarwal, J. J. Alumkal, A. 
Foye, V. Kothari, M. D. Perry, A. M. Bailey, D. Playdle, T. J. Barnard, L. Zhang, J. 
Zhang, J. F. Youngren, M. P. Cieslik, A. Parolia, T. M. Beer, G. Thomas, K. N. Chi, 
M. Gleave, N. A. Lack, A. Zoubeidi, R. E. Reiter, M. B. Rettig, O. Witte, C. J. Ryan, 



 

8 

 

L. Fong, W. Kim, T. Friedlander, J. Chou, H. Li, R. Das, H. Li, R. Moussavi-Baygi, 
H. Goodarzi, L. A. Gilbert, P. N. Lara Jr, C. P. Evans, T. C. Goldstein, J. M. Stuart, 
S. A. Tomlins, D. E. Spratt, R. K. Cheetham, D. T. Cheng, K. Farh, J. S. Gehring, J. 
Hakenberg, A. Liao, P. G. Febbo, J. Shon, B. Sickler, S. Batzoglou, K. E. Knudsen, 
H. H. He, J. Huang, A. W. Wyatt, S. M. Dehm, A. Ashworth, A. M. Chinnaiyan, C. A. 
Maher, E. J. Small, F. Y. Feng, Genomic Hallmarks and Structural Variation in 
Metastatic Prostate Cancer. Cell. 175, 889 (2018). 

6.  D. N. Rodrigues, P. Rescigno, D. Liu, W. Yuan, S. Carreira, M. B. Lambros, G. 
Seed, J. Mateo, R. Riisnaes, S. Mullane, C. Margolis, D. Miao, S. Miranda, D. 
Dolling, M. Clarke, C. Bertan, M. Crespo, G. Boysen, A. Ferreira, A. Sharp, I. 
Figueiredo, D. Keliher, S. Aldubayan, K. P. Burke, S. Sumanasuriya, M. S. Fontes, 
D. Bianchini, Z. Zafeiriou, L. S. T. Mendes, K. Mouw, M. T. Schweizer, C. C. 
Pritchard, S. Salipante, M.-E. Taplin, H. Beltran, M. A. Rubin, M. Cieslik, D. 
Robinson, E. Heath, N. Schultz, J. Armenia, W. Abida, H. Scher, C. Lord, A. 
D9Andrea, C. L. Sawyers, A. M. Chinnaiyan, A. Alimonti, P. S. Nelson, C. G. Drake, 
E. M. Van Allen, J. S. de Bono, Immunogenomic analyses associate immunological 
alterations with mismatch repair defects in prostate cancer. J. Clin. Invest. 128, 
5185 (2018). 

7.  W. Abida, J. Cyrta, G. Heller, D. Prandi, J. Armenia, I. Coleman, M. Cieslik, M. 
Benelli, D. Robinson, E. M. Van Allen, A. Sboner, T. Fedrizzi, J. M. Mosquera, B. D. 
Robinson, N. De Sarkar, L. P. Kunju, S. Tomlins, Y. M. Wu, D. Nava Rodrigues, M. 
Loda, A. Gopalan, V. E. Reuter, C. C. Pritchard, J. Mateo, D. Bianchini, S. Miranda, 
S. Carreira, P. Rescigno, J. Filipenko, J. Vinson, R. B. Montgomery, H. Beltran, E. 
I. Heath, H. I. Scher, P. W. Kantoff, M.-E. Taplin, N. Schultz, J. S. deBono, F. 
Demichelis, P. S. Nelson, M. A. Rubin, A. M. Chinnaiyan, C. L. Sawyers, Genomic 
correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. 
U. S. A. 116, 11428311436 (2019). 

8.  W. S. Chen, R. Aggarwal, L. Zhang, S. G. Zhao, G. V. Thomas, T. M. Beer, D. A. 
Quigley, A. Foye, D. Playdle, J. Huang, P. Lloyd, E. Lu, D. Sun, X. Guan, M. Rettig, 
M. Gleave, C. P. Evans, J. Youngren, L. True, P. Lara, V. Kothari, Z. Xia, K. N. Chi, 
R. E. Reiter, C. A. Maher, F. Y. Feng, E. J. Small, J. J. Alumkal, West Coast 
Prostate Cancer Dream Team, Genomic Drivers of Poor Prognosis and 
Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. Eur. 
Urol. 76, 5623571 (2019). 

9.  S. G. Zhao, W. S. Chen, H. Li, A. Foye, M. Zhang, M. Sjöström, R. Aggarwal, D. 
Playdle, A. Liao, J. J. Alumkal, R. Das, J. Chou, J. T. Hua, T. J. Barnard, A. M. 
Bailey, E. D. Chow, M. D. Perry, H. X. Dang, R. Yang, R. Moussavi-Baygi, L. 
Zhang, M. Alshalalfa, S. Laura Chang, K. E. Houlahan, Y.-J. Shiah, T. M. Beer, G. 
Thomas, K. N. Chi, M. Gleave, A. Zoubeidi, R. E. Reiter, M. B. Rettig, O. Witte, M. 
Yvonne Kim, L. Fong, D. E. Spratt, T. M. Morgan, R. Bose, F. W. Huang, H. Li, L. 
Chesner, T. Shenoy, H. Goodarzi, I. A. Asangani, S. Sandhu, J. M. Lang, N. P. 
Mahajan, P. N. Lara, C. P. Evans, P. Febbo, S. Batzoglou, K. E. Knudsen, H. H. 
He, J. Huang, W. Zwart, J. F. Costello, J. Luo, S. A. Tomlins, A. W. Wyatt, S. M. 



 

9 

 

Dehm, A. Ashworth, L. A. Gilbert, P. C. Boutros, K. Farh, A. M. Chinnaiyan, C. A. 
Maher, E. J. Small, D. A. Quigley, F. Y. Feng, The DNA methylation landscape of 
advanced prostate cancer. Nat. Genet. 52, 7783789 (2020). 

10.  A. Shrikumar, P. Greenside, A. Kundaje, Learning Important Features Through 
Propagating Activation Differences. arXiv [cs.CV] (2017), (available at 
http://arxiv.org/abs/1704.02685). 

11.  W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Definitions, methods, 
and applications in interpretable machine learning. Proc. Natl. Acad. Sci. U. S. A. 
116, 22071322080 (2019). 

12.  Q. Xu, M. Zhang, Z. Gu, G. Pan, Overfitting remedy by sparsifying regularization on 
fully-connected layers of CNNs. Neurocomputing. 328, 69374 (2019). 

13.  S. Han, J. Pool, J. Tran, W. Dally, in Advances in Neural Information Processing 
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, Eds. 
(Curran Associates, Inc., 2015), pp. 113531143. 

14.  H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning Filters for Efficient 
ConvNets. arXiv [cs.CV] (2016), (available at http://arxiv.org/abs/1608.08710). 

15.  J. Frankle, M. Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable 
Neural Networks. arXiv [cs.LG] (2018), (available at 
http://arxiv.org/abs/1803.03635). 

16.  T. Dettmers, L. Zettlemoyer, Sparse Networks from Scratch: Faster Training 
without Losing Performance. arXiv [cs.LG] (2019), (available at 
http://arxiv.org/abs/1907.04840). 

17.  M. T. Ribeiro, S. Singh, C. Guestrin, in Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (ACM, 2016), 
pp. 113531144. 

18.  M. Ancona, E. Ceolini, C. Öztireli, M. Gross, Towards better understanding of 
gradient-based attribution methods for Deep Neural Networks. arXiv [cs.LG] (2017), 
(available at http://arxiv.org/abs/1711.06104). 

19.  S. M. Lundberg, S.-I. Lee, in Advances in Neural Information Processing Systems 
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. 
Garnett, Eds. (Curran Associates, Inc., 2017), pp. 476534774. 

20.  J. Ma, M. K. Yu, S. Fong, K. Ono, E. Sage, B. Demchak, R. Sharan, T. Ideker, 
Using deep learning to model the hierarchical structure and function of a cell. Nat. 
Methods (2018), doi:10.1038/nmeth.4627. 

21.  J. Hao, Y. Kim, T.-K. Kim, M. Kang, PASNet: pathway-associated sparse deep 
neural network for prognosis prediction from high-throughput data. BMC 



 

10 

 

Bioinformatics. 19, 510 (2018). 

22.  M. Fraser, V. Y. Sabelnykova, T. N. Yamaguchi, L. E. Heisler, J. Livingstone, V. 
Huang, Y.-J. Shiah, F. Yousif, X. Lin, A. P. Masella, N. S. Fox, M. Xie, S. D. 
Prokopec, A. Berlin, E. Lalonde, M. Ahmed, D. Trudel, X. Luo, T. A. Beck, A. Meng, 
J. Zhang, A. D9Costa, R. E. Denroche, H. Kong, S. M. G. Espiritu, M. L. K. Chua, A. 
Wong, T. Chong, M. Sam, J. Johns, L. Timms, N. B. Buchner, M. Orain, V. Picard, 
H. Hovington, A. Murison, K. Kron, N. J. Harding, C. P9ng, K. E. Houlahan, K. C. 
Chu, B. Lo, F. Nguyen, C. H. Li, R. X. Sun, R. de Borja, C. I. Cooper, J. F. Hopkins, 
S. K. Govind, C. Fung, D. Waggott, J. Green, S. Haider, M. A. Chan-Seng-Yue, E. 
Jung, Z. Wang, A. Bergeron, A. Dal Pra, L. Lacombe, C. C. Collins, C. Sahinalp, M. 
Lupien, N. E. Fleshner, H. H. He, Y. Fradet, B. Tetu, T. van der Kwast, J. D. 
McPherson, R. G. Bristow, P. C. Boutros, Genomic hallmarks of localized, non-
indolent prostate cancer. Nature. 541, 3593364 (2017). 

23.  D. R. Robinson, Y.-M. Wu, R. J. Lonigro, P. Vats, E. Cobain, J. Everett, X. Cao, E. 
Rabban, C. Kumar-Sinha, V. Raymond, S. Schuetze, A. Alva, J. Siddiqui, R. 
Chugh, F. Worden, M. M. Zalupski, J. Innis, R. J. Mody, S. A. Tomlins, D. Lucas, L. 
H. Baker, N. Ramnath, A. F. Schott, D. F. Hayes, J. Vijai, K. Offit, E. M. Stoffel, J. 
S. Roberts, D. C. Smith, L. P. Kunju, M. Talpaz, M. Cie[lik, A. M. Chinnaiyan, 
Integrative clinical genomics of metastatic cancer. Nature. 548, 2973303 (2017). 

24.  H. Hieronymus, N. Schultz, A. Gopalan, B. S. Carver, M. T. Chang, Y. Xiao, A. 
Heguy, K. Huberman, M. Bernstein, M. Assel, R. Murali, A. Vickers, P. T. Scardino, 
C. Sander, V. Reuter, B. S. Taylor, C. L. Sawyers, Copy number alteration burden 
predicts prostate cancer relapse. Proc. Natl. Acad. Sci. U. S. A. 111, 11139311144 
(2014). 

25.  Z. Chen, W. Lu, Roles of ubiquitination and SUMOylation on prostate cancer: 
mechanisms and clinical implications. Int. J. Mol. Sci. 16, 456034580 (2015). 

26.  C. Ge, G. Zhao, Y. Li, H. Li, X. Zhao, G. Pannone, P. Bufo, A. Santoro, F. 
Sanguedolce, S. Tortorella, M. Mattoni, S. Papagerakis, E. T. Keller, R. T. 
Franceschi, Role of Runx2 phosphorylation in prostate cancer and association with 
metastatic disease. Oncogene. 35, 3663376 (2016). 

27.  A. J. Levine, p53: 800 million years of evolution and 40 years of discovery. Nat. 
Rev. Cancer. 20, 4713480 (2020). 

28.  N. M. Navone, P. Troncoso, L. L. Pisters, T. L. Goodrow, J. L. Palmer, W. W. 
Nichols, A. C. von Eschenbach, C. J. Conti, p53 protein accumulation and gene 
mutation in the progression of human prostate carcinoma. J. Natl. Cancer Inst. 85, 
165731669 (1993). 

29.  K. R. Leite, M. F. Franco, M. Srougi, L. J. Nesrallah, A. Nesrallah, R. G. 
Bevilacqua, E. Darini, C. M. Carvalho, M. I. Meirelles, I. Santana, L. H. Camara-
Lopes, Abnormal expression of MDM2 in prostate carcinoma. Mod. Pathol. 14, 
4283436 (2001). 



 

11 

 

30.  T. Schlomm, L. Iwers, P. Kirstein, B. Jessen, J. Köllermann, S. Minner, A. Passow-
Drolet, M. Mirlacher, K. Milde-Langosch, M. Graefen, A. Haese, T. Steuber, R. 
Simon, H. Huland, G. Sauter, A. Erbersdobler, Clinical significance of p53 
alterations in surgically treated prostate cancers. Mod. Pathol. 21, 137131378 
(2008). 

31.  F. Y. Feng, Y. Zhang, V. Kothari, J. R. Evans, W. C. Jackson, W. Chen, S. B. 
Johnson, C. Luczak, S. Wang, D. A. Hamstra, MDM2 Inhibition Sensitizes Prostate 
Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner. 
Neoplasia. 18, 2133222 (2016). 

32.  D. Pei, Y. Zhang, J. Zheng, Regulation of p53: a collaboration between Mdm2 and 
Mdmx. Oncotarget. 3, 2283235 (2012). 

33.  J. H. Hwang, J.-H. Seo, M. L. Beshiri, S. Wankowicz, D. Liu, A. Cheung, J. Li, X. 
Qiu, A. L. Hong, G. Botta, L. Golumb, C. Richter, J. So, G. J. Sandoval, A. O. 
Giacomelli, S. H. Ly, C. Han, C. Dai, H. Pakula, A. Sheahan, F. Piccioni, O. 
Gjoerup, M. Loda, A. G. Sowalsky, L. Ellis, H. Long, D. E. Root, K. Kelly, E. M. Van 
Allen, M. L. Freedman, A. D. Choudhury, W. C. Hahn, CREB5 Promotes 
Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in 
Prostate Cancer. Cell Rep. 29, 235532370.e6 (2019). 

34.  C. H. Mermel, S. E. Schumacher, B. Hill, M. L. Meyerson, R. Beroukhim, G. Getz, 
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal 
somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011). 

35.  M. S. Lawrence, P. Stojanov, C. H. Mermel, J. T. Robinson, L. A. Garraway, T. R. 
Golub, M. Meyerson, S. B. Gabriel, E. S. Lander, G. Getz, Discovery and saturation 
analysis of cancer genes across 21 tumour types. Nature. 505, 4953501 (2014). 

36.  A. Fabregat, S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, R. 
Haw, B. Jassal, F. Korninger, B. May, M. Milacic, C. D. Roca, K. Rothfels, C. 
Sevilla, V. Shamovsky, S. Shorser, T. Varusai, G. Viteri, J. Weiser, G. Wu, L. Stein, 
H. Hermjakob, P. D9Eustachio, The Reactome Pathway Knowledgebase. Nucleic 
Acids Res. 46, D6493D655 (2018). 

37.  D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. arXiv [cs.LG] 
(2014), (available at http://arxiv.org/abs/1412.6980). 

38.  E. G. Bluemn, I. M. Coleman, J. M. Lucas, R. T. Coleman, S. Hernandez-Lopez, R. 
Tharakan, D. Bianchi-Frias, R. F. Dumpit, A. Kaipainen, A. N. Corella, Y. C. Yang, 
M. D. Nyquist, E. Mostaghel, A. C. Hsieh, X. Zhang, E. Corey, L. G. Brown, H. M. 
Nguyen, K. Pienta, M. Ittmann, M. Schweizer, L. D. True, D. Wise, P. S. Rennie, R. 
L. Vessella, C. Morrissey, P. S. Nelson, Androgen Receptor Pathway-Independent 
Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell. 32, 4743489.e6 
(2017). 

39.  G. C. Han, J. Hwang, S. A. M. Wankowicz, Z. Zhang, D. Liu, C. Cibulskis, G. C. 



 

12 

 

Gaviola, V. Ghazikhanian, R. R. McKay, G. J. Bubley, S. L. Carter, S. P. Balk, W. 
C. Hahn, M.-E. Taplin, E. M. Van Allen, Genomic Resistance Patterns to Second-
Generation Androgen Blockade in Paired Tumor Biopsies of Metastatic Castration-
Resistant Prostate Cancer. JCO Precis Oncol. 1 (2017), doi:10.1200/PO.17.00140. 

40.   B. Graves, T. Thompson, M. Xia, C. Janson, C. Lukacs, D. Deo, P. Di Lello, D. Fry, 
C. Garvie, K.-S. Huang, L. Gao, C. Tovar, A. Lovey, J. Wanner, L. T. Vassilev, 
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX 
dimerization. Proc. Natl. Acad. Sci. U. S. A. 109, 11788311793 (2012). 

41.  T. P. Howard, T. E. Arnoff, M. R. Song, A. O. Giacomelli, X. Wang, A. L. Hong, N. 
V. Dharia, S. Wang, F. Vazquez, M.-T. Pham, A. M. Morgan, F. Wachter, G. H. 
Bird, G. Kugener, E. M. Oberlick, M. G. Rees, H. L. Tiv, J. H. Hwang, K. H. Walsh, 
A. Cook, J. M. Krill-Burger, A. Tsherniak, P. C. Gokhale, P. J. Park, K. Stegmaier, 
L. D. Walensky, W. C. Hahn, C. W. M. Roberts, MDM2 and MDM4 Are Therapeutic 
Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Res. 79, 240432414 (2019). 

 

Funding: Fund for Innovation in Cancer Informatics (H.A.E., E.M.V.), Mark Foundation 
Emerging Leader Award (E.M.V.), PCF-Movember Challenge Award (H.A.E., E.M.V.), 
NIH U01 CA233100 (E.M.V.), and U01 CA176058 (W.C.H.)  

Author contributions: Conceptualization, H.A.E. and E.M.V.; Methodology, H.A.E. and 
E.M.V.; Software, H.A.E.; Formal analysis, H.A.E., D.L., S.H.A., K.S., J.P., and E.M.V.; 
Investigation, J.H., C.R., T.E.A, H.A.E., W.C.H., and E.M.V.; Writing 3 Original Draft, 
H.A.E., J.H., C.R., T.E.A, and E.M.V.; Writing 3 Review & Editing, H.A.E., J.H., D.L., 
S.H.A., K.S., C.R., T.E.A, J.P., W.C.H., and E.M.V.; Visualization, H.A.E. , J.H., C.R., 
T.E.A, and E.M.V.; Supervision:  W.C.H. and E.M.V.; Funding Acquisition, H.A.E., 
W.C.H., and E.M.V. 

Competing interests: W.C.H. is a consultant for Thermo Fisher, Solasta Ventures, 
iTeos, Frontier Medicines, Tyra Biosciences, MPM Capital, KSQ Therapeutics, and 
Parexel and is a founder of KSQ Therapeutics. E.M.V. is a consultant/advisor for Tango 
Therapeutics, Genome Medical, Invitae, Enara Bio, Janssen, Manifold Bio, and Monte 
Rosa Therapeutics. E.M.V. receives research support from Novartis and BMS. 

Data and materials availability: All data is available in the main text or the 
supplementary materials.  

 
  



 

13 

 

 

 

Fig. 1. Interpretable biologically informed deep learning model for molecular discovery in 
metastatic prostate cancer. a) P-NET; neural network architecture that encodes different 
biological entities into a neural network language with customized connections between 
consecutive layers (i.e. features from patient profile, genes, pathways, biological 
processes, and outcome). The trained P-NET provides a relative ranking of nodes in each 
layer which can be used to generate biological hypotheses regarding the relevance of 
different biological entities to the outcome of interest.  Candidate genes are 
experimentally and clinically validated to understand the function and the mechanism of 
action of these genes. b) The Precision-Recall curve of multiple predictive models 
including Random forest, Support Vector Machine, Decision Trees, and adaptive 
Boosting as trained and tested on a cohort of prostate cancer patients. P-NET achieves 
better area under precision recall curve (AUPRC). c) The confusion matrix of P-NET 
showing the correct classification percentage of samples in the testing set. The model is 
biased toward predicting more primary samples given that the training set is biased 
toward having more primary samples (70% primary and 30% metastatic). 
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Fig. 2. Prediction performance and interpretation of P-NET. a) Prediction performance of 
P-NET when compared to a fully connected network with the same number of parameters 
trained using an increasing number of training samples. P-NET achieves better 
performance (measured as the average AUC over 5 cross validation splits) with smaller 
numbers of samples compared to a dense fully connected network. The ratio of 
performance increase is polynomially increasing with the decrease of the number of 
training samples as shown with the dashed red line. The difference in performance 
between the two models is statistically significant in all sample sizes less than or equal to 
500. Sample sizes marked by (*) indicate statistically significant differences while those 
marked by (n.s.) are not. b) External validation of P-NET using two independent cohorts 
(22, 23). The P-NET model achieves 73% and 75.79% true prediction rate (TR) 
respectively showing that the P-NET can generalize to classify unseen samples. c) Wrong 
predictions of P-NET were inspected for clinical insights. Patients with high P-NET scores 
(wrongly classified by P-NET to be resistant samples) have more tendency to have 
biochemical recurrence (BCR) compared to patients with lower P-NET scores who tend 
to have progression free survival (PFS). This shows that the P-NET model may be useful 
in stratifying patients in the clinic and predicting potential BCR before it happens (raw 
data are included in Data S4). 
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Fig. 3. Inspecting and interpreting P-NET. a) Visualization of inner layers of P-NET shows 
the estimated relative importance of different nodes in each layer. Nodes on the far left 
represent feature types (mutation and copy number amplification and deletion). The 
second layer nodes represent genes and layers representing higher level biological 
entities shown in layers to the right. The final layer represents the model outcome. Nodes 
with darker color are shown to be more important while nodes with transparent color 
represent the residual importance of non-shown nodes in each layer. The contribution of 
datatype to the importance of each gene is depicted using the Sankey diagram. The 
importance of AR gene is driven mainly by gene amplification, the importance of TP53 is 
driven by mutation, and the importance of PTEN gene is driven by deletion. b) Top genes 
are ranked based on the average importance of each gene. The distribution of sample-
level importance calculated for the testing set is shown in the Swarm diagram. In general, 
metastatic samples tend to have more influence on the importance of different genes. c) 
Inspecting the activation output of each node shows how the outcome of different nodes 
changes with changing the class of input samples (primary-blue vs. metastatic-orange). 
The activation distribution of top nodes in layer 3 shows that the <Transcription Regulation 
by TP53= pathways is ranked second among pathways in the same layer. Metastatic 
samples tend to push the activation of this pathway toward positive values while primary 
samples tend to have negative activation of this pathway. 
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Fig. 4. Functional validation. a) Distribution of MDM4 alterations across 1,013 PrCa 
samples showing more prevalence of MDM4 amplification in resistant samples compared 
to primary samples. b) Joint distribution of TP53 mutations and MDM4 amplifications 
across 1,013 PrCa samples. c) Analysis of enzalutamide resistant genes in LNCaP cells 
based on a genome-scale screen including 17,255 ORFs. The relative enzalutamide 
resistance of each ORF (x-axis) is plotted as a Z-score (y-axis) (raw data are included in 
Data S2). A positive Z-score indicates that the gene promotes resistance. MDM4 and 
other hits are highlighted on the graph, with MDM4 scoring as the strongest hit. D) 
Relative viability of LNCaP cells after transduction of CRISPR-Cas9 and sgRNAs 
targeting MDM4 (2 guides, red) or control GFP (black). Data represents the mean + SD 
of seven replicates (raw data are included in Data S3). e) Immunoblot confirming MDM4 
gene deletion in LNCaP cells. HSP90 is a loading control. f) Sensitivity of LNCaP, PC3, 
and DU145 cells to RO-5963. Relative viability is shown at each indicated dosage of RO-
5963. Data represents the mean + SD of six replicates (raw data are included in Data S3) 
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Methods 

We introduce P-NET, an artificial neural network with biologically informed, parsimonious 
architecture that accurately predicts metastasis in PrCa patients based on their genomic 
profiles. P-NET is a feedforward neural network with constraints on the nodes and edges. 
In P-NET, each node encodes some biological entity (e.g. genes and pathways) and each 
edge represents a known relationship between the corresponding entities. The 

constraints on the nodes allow for better understanding of the state of different biological 
components. The constraints on the edges allow us to use a large number of nodes 
without increasing the number of edges, which leads to a smaller number of parameters 
compared to fully connected networks with the same number of nodes, and hence 
potentially less computations. The architecture was built using the Reactome pathway 
data sets (36). The whole Reactome dataset was downloaded and processed to form a 
layered network of five layers of pathways, one layer of genes, and one layer for features. 
This sparse model had slightly over 71,000 weights with the number of nodes per layer 

distributed as shown in Fig S1.B. A dense network with the same number of nodes would 
have more than 270 million weights with the first layer containing more than 94% of the 
weights. A hybrid model which contains a sparse layer followed by dense layers still 

contains over 14 million weights. The number of dense weights is calculated as �" 	=

	�"	 7 (�"() 	+ 1)	where �" is the number of weights per layer � and �" is the number of 

nodes of the same layer.    
 
The meaning of the nodes, layers, and connection of P-NET is encoded through a 
carefully engineered architecture and a set of restrictions on the connections of the 
network. The input layer is meant to represent features that can be measured and fed 
into the network. The second layer represents a set of genes of interest. The higher layers 
represent a hierarchy of pathways and biological processes that are manually curated.  
The first layer of P-NET is connected to the next layer via a set of one-to-one connections 
where each node in the next layer is connected to exactly three nodes of the input layer 
representing mutations, copy number amplification, and copy number deletions. This 
scheme results in a much smaller number of weights in the first layer compared to a fully 
connected network and the special pattern of the connection matrix results in more 
efficient training. The second layer is restricted to have connections reflecting the gene-
pathway relationships as curated by the Reactome pathway dataset. The connections are 
encoded by a mask matrix M that is multiplied by the weights matrix W to zero-out all the 
connections that don't exist in the Reactome pathway dataset. For the next layers, a 
similar scheme is devised to control the connection between consecutive layers to reflect 
the real parent-child relationships that exist in the Reactome dataset. The output of each 
layer is calculated as � = �[(� 7�)	�	 + �] where f is the activation function, M is the 
mask matrix, W is the weights matrix, x is the input matrix, and b is the bias vector (see 
Fig. S1.A). The activation of each node is kept into the range of [-1,1] by applying the tanh 
function � = ���/ = 	 (�:; 	2 1)/	(�:; 	+ 1) to the weighted inputs of the node. The 
activation of the outcome layers is calculated by the sigmoid function �	 = 	1/(1 + �(;).  
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To allow each layer to be useful by itself, we added a predictive layer after each hidden 
layer. P-NET has a smaller number of nodes per layer in the later layers compared to the 
first layers Fig. S1.B. Since it is more challenging to fit the data using a smaller number 
of weights in the later layers, we used a higher loss weight for later layer outcomes during 
the optimization process. The final prediction of the network was calculated by taking the 

average of all the layer outcomes, Fig S1.C. The learning rate was initialized to be 0.001 
and actively reduced after every 50 epochs to allow for smooth convergence. Since we 
have an unbalanced dataset, we weighted the classes differently to reduce the network 
bias toward one class based on the bias in the training set. The model was trained using 

Adam optimizer (37) to reduce the binary cross-entropy loss functions  � =

	2
)

@
	�	�B	.���	(�(�B)) 	+ 	 (1 2 �B	). ���	(1 2 �(�B)), where �B is the label for sample i , �(�B) 

is the probability that sample i has a metastatic cancer as calculated using the sigmoid 

function �, and N is the total number of samples. We checked different gradient based 

attribution methods to rank the features in all the layers, and we chose to use the 
DeepLIFT scheme as implemented in the DeepExplain library (10).  
 
To check the utility of the developed model, we trained P-NET to predict cancer state 
(primary/metastatic) of prostate patients based on their genomic profiles. We used whole-
exome sequencing of 1,013 patients along with the corresponding somatic mutations and 
copy number alterations (4). The mutations were aggregated on the gene level, excluding 
Silent, Intron, 3'UTR, 5'UTR, RNA, and lincRNA mutations (Fig. S2). The copy number 
alterations for each gene was assigned based on the called segment level copy number 
emphasizing focal amplifications and deletions and excluding single copy amplification 
and deletions. The prediction performance was measured using the average area under 

the ROC curve (AUC), the area under precision-recall curve (AUPRC), and F1 score. The 
corresponding measures were reported for the testing split and also for the cross-
validation setup. The input data was divided into a testing set (10%) and a development 
set (90%). The development set was further divided into a validation set that has the same 
size as the testing set and the remaining samples are reserved for training. For the cross-
validation experiments, the development data set was divided into 5 folds stratified by the 
label classes to account for the bias in the dataset. The implementation of the proposed 
system along with the reproducible results are available on Github 
(https://github.com/marakeby/pnet_prostate_paper). 

 
Analysis of a genome-scale ORF screen 
A genome-scale ORF screen was previously performed in LNCaP cells (33) . In brief, 
cells were infected with a pooled ORF library, subject to puromycin selection to isolate 
cells containing the respective ORFs, and then seeded in low androgen media (CSS) with 
enzalutamide. The relative effect of each ORF on cell proliferation was determined after 
25 days in culture and is represented as Z-scores. We postulated that amplified genes 
identified by P-NET regulate oncogenic functions in metastatic castration resistant 
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prostate cancer. To validate this hypothesis, we analyzed this previously published 
genome-scale ORF screen performed in LNCaP cells which identified genes that, when 
overexpressed, promoted resistance to the AR inhibitor, enzalutamide (Figure 4C) (33). 
LNCaP cells are dependent on AR and treatment with enzalutamide attenuates cell 
proliferation. Based on this analysis, MDM4 scored as a robust enzalutamide resistant 
gene relative to other hits, including cell cycle regulators (CDK4, CDK6) or those with 
roles in FGF signaling (FGFR2, FGFR3, FGF6); these are two pathways implicated in 
driving resistance to anti-androgen therapies in clinical prostate cancers (38, 39). 
 
Sensitivity to RO-5963 
LNCaP, DU145, and PC3 cells were seeded in 12-well plates at 100k, 20k, or 20k, 
respectively. After 24 hours, cells were treated with increasing concentrations of RO-5963 
between 80nM and 50¿M. Media containing the inhibitor was refreshed after 3 days. 
Relative cell viability was determined using a Vi-Cell after 6 days of treatment, and cell 
counts were used to calculate IC50 values. 
  
MDM4 gene depletion experiments 
Blasticidin-resistant Cas9 positive LNCaP cells were cultured in 150¿g/mL blasticidin 
(Thermo Fisher Scientific, NC9016621) for 72 hours to enrich cells with optimal Cas9 
activity. 2 million cells were seeded in parallel 10cm plates and infected with lentiviruses 
expressing puromycin-resistant sgRNAs targeting MDM4 or GFP control 24 hours later. 
Cells were then subject to puromycin selection for 4 days, at which point one plate was 
harvested for immunoblotting and the other was counted using a Vi-Cell and seeded for 
a proliferation assay. 7 days later, cells were counted again with a Vi-Cell to assess 
viability, representing a total of 12 days. The target sequence against GFP was 
CACCGGCCACAAGTTCAGCGTGTCG (sgGFP). The target sequences against MDM4 
were AGATGTTGAACACTGAGCAG (sgMDM4-1) and CTCTCCTGGACAAATCAATC 
(sgMDM4-2). 
  
Immunoblotting 
Cell pellets were lysed in RIPA buffer (MilliporeSigma, 20-188) containing 
Protease/Phosphatase Inhibitor Cocktail (Cell Signaling Technology, 5872S). Protein 
concentrations were calculated using a Pierce BCA Protein Assay Kit (Thermo Fisher 
Scientific, PI23225), and protein was then denatured in NuPAGE LDS sample buffer 
(Thermo Fisher Scientific, NP0007) with 5% ³-Mercaptoethanol. 13¿g of each protein 
sample was electrophoresed using NuPAGE 4-12% Bis-Tris Protein gels (Thermo Fisher 
Scientific) and run with NuPAGE MOPS SDS Running Buffer (Thermo Fisher Scientific, 
NP0001). Proteins were transferred to nitrocellulose membranes using an iBlot apparatus 
(Thermo Fisher Scientific). Membranes were blocked in Odyssey Blocking Buffer (LI-COR 
Biosciences, 927-70010) for one hour at room temperature, and membranes were then 
cut and incubated in primary antibodies diluted 1:1000 in Odyssey Blocking Buffer at 4°C 
overnight. The following morning, membranes were washed with Phosphate-Buffer 
Saline, 0.1% Tween (PBST) and incubated with fluorescent anti-rabbit secondary 
antibodies (Thermo Fisher Scientific, NC9401842) for one hour at room temperature. 
Membranes were again washed with PBST and then imaged using an Odyssey Imaging 
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System (LI-COR Biosciences). Primary antibodies used include MDM4 (Thermo Fisher 
Scientific, A300287A) and HSP90 (Cell Signaling Technology, 4874S). 
   
Chemical inhibition of MDM4 reduces prostate cancer cell viability 
Given the proposed role that MDM4 plays in driving enzalutamide resistance in prostate 
cancer cells, we sought to determine the response of prostate cancer cells to chemical 
inhibition of MDM4. We evaluated RO-5963, a small molecule MDM2/4 dual inhibitor with 
the greatest selectivity towards MDM4 in its class (40). This drug has previously 
demonstrated robust efficacy against MDM4 dependent cancer cell lines (41). We 
evaluated the effects of increasing concentrations of RO-5963 on prostate cancer cell 
proliferation.  
  
Gene depletion of MDM4 reduces prostate cancer cell viability 
To determine how prostate cancer cells would respond to precision tools that target 
MDM4 at the gene level, we utilized CRISPR-Cas9 and two sgRNAs targeting distinct 
sequences of MDM4 in LNCaP cells. In comparison to a negative control sgRNA (GFP), 
viability of LNCaP cells was reduced by about 60% (Figure 4D) in response to MDM4 
depletion (Figure 4F) after 12 days in culture. Altogether, we concluded that MDM4 
regulates enzalutamide resistance, and that targeting MDM4 through either chemical or 
genetic approaches significantly attenuated the viability of prostate cancer cell lines. Our 
observations indicate that antagonizing MDM4 in metastatic castration resistant prostate 
cancers that harbor wild-type p53 is an attractive precision strategy. 
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Fig. S1. A) The difference between dense and sparse layers. Sparse layers can be 
arbitrary sparse or patterned sparse. Arbitrary sparse layers are flexible to encode any 
connection scheme. Patterned sparse layers can make computations more efficient. B) 
The number of nodes in each layer of the developed P-NET showing a decreasing 
number of nodes for higher layers. C) A predictive node is connected to each hidden 
layer in P-NET, and the final prediction is calculated by taking the average of all the 
predictive elements in the network 
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Fig. S2. 

The distribution of mutation types in the P100 dataset. Silent, Intron, 3'UTR, 5'UTR, 
RNA, and lincRNA mutations are excluded from the modeling.  
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Fig. S3. The area under the ROC curve of different models when trained and tested on 
the P1000 dataset. P-NET outperforms other models leading to higher AUC.  
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Fig. S4. Cross-validation experiment using 5 folds over the development split of the 
data. P-NET outperforms other models on average using all the metrics (A: Accuracy, 
B: Area under curve, C: AUPRC, D: F1, and F: recall) except Precision (E).  
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Fig. S5. Comparing the performance of P-NET to a dense network with the number of 
parameters using different sizes of training sets (A: Recall, B: Precision, C: AUPRC, D: 



 

27 

 

F1, E: Accuracy). Sample sizes marked by (*) indicate statistically significant differences 
while those marked by (n.s.) are not. 
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Fig. S6. Relative ranking of nodes in each layer   
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Fig. S7. Activation of top ranked nodes in each layer showing better discrimination 
between sample classes (Primary- blue vs. Metastatic-orange) in higher layers 
compared lower layers and in top ranked nodes compared to lower ranked ones. 
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Fig. S8. The distribution of mutations and copy number variants of top ranked genes 
stratified by the class of the samples (Primary vs. Metastatic). 

  
 
 

 


