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ABSTRACT 
The relative importance of ecological factors and species interactions for phytophagous 
insect species distributions has long been a controversial issue. Using field abundances of 
eight sympatric Tephritid fruit flies on 21 host plants, we inferred flies’ realized niches 
using joint species distribution modelling and network inference, on the community as a 
whole and separately on three groups of host plants. These inferences were then 
confronted to flies’ fundamental niches estimated through laboratory-measured 
fitnesses on host plants. Species abundances were mainly determined by host plants 
followed by climatic factors, with a minor role for competition between species sharing 
host plants. The relative importance of these factors mildly changed when we focused on 
particular host plant groups. Despite overlapping fundamental niches, specialists and 
generalists had almost distinct realized niches, with possible competitive exclusion of 
generalists by specialists on Cucurbitaceae, and different assembly rules: specialists were 
mainly influenced by their adaptation to host plants while generalist abundances varied 
regardless of their fundamental host use. 
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Introduction 

The search for fundamental processes underlying species distributions is among the oldest challenges in 
ecology (Diamond 1975, Gotelli and Graves 1996). Understanding assembly processes could also be crucial for 
coping with global changes and habitat loss currently affecting both abiotic conditions and species distributions 
(Adler and HilleRisLambers 2008). Species distributions can be determined by several factors such as 
environmental filtering, interspecific interactions, regional species pool and dispersal (Müller et al. 2011, 
D’Amen et al. 2018, Nakadai et al. 2018, Jabot et al. 2020). Despite decades of research, estimating the relative 
importance of these processes on species distributions has proven particularly complex (Pollock et al. 2014, 
Zurell et al. 2018). Most of these processes imprint species distributions in a scale-dependent manner 
(Meynard et al. 2013). For instance, abiotic factors are generally thought to determine large-scale species 
ranges, whereas interspecific interactions would influence species distributions at smaller spatial scales 
(Heikkinen et al. 2007, Thuiller et al. 2015, but see Gotelli et al 2010 and Araújo and Rozenfeld 2014). 

Phytophagous insects are among the most diverse and abundant groups of terrestrial animals and a major 
component of ecosystems due to their tight interaction with primary producers, and their sometimes 
important economic impacts and invasive potential (Roy et al. 2015). Knowledge of the main determinants of 
insect occurrence on particular plant species and their potential to colonize and persist in a given area is 
however still limited. In particular, the importance of interspecific competition in structuring phytophagous 
insect communities has been a controversial issue (Kaplan and Denno 2007). Many experimental studies 
conclude that interspecific competition plays a primary role (Denno et al. 1995, Kaplan & Denno 2007), but the 
consistent absence of negative co-occurrence patterns in natural phytophagous insect communities suggests 
otherwise (Tack et al. 2009, Brazeau & Schamp 2019). This apparent discrepancy could result from the 
regulation of phytophagous insect populations below competitive levels through shared predators or parasites 
(Hairston et al. 1960). Phytophagous insects would also rarely overexploit their hosts, leaving sufficient plant 
material for competition with other species to be mild (Kaplan & Denno 2007). Ecological differences between 
species could lower the intensity of competition (Stewart et al. 2015). Lastly, some phytophagous arthropods 
could benefit from previous attack of the host plant by other species (Godinho et al. 2016). The importance of 
competition relative to ecological conditions in shaping phytophagous insect distributions thus remains an 
open question and demands appropriate testing (Augustyn et al. 2016, Nakadai et al. 2018). 

Whether biotic interactions affect species distributions should be uncovered from proper analysis of 
patterns of co-occurrence. Species interactions are expected to affect species occurrence, e.g., competition 
should cause checkerboard patterns of occurrence. However, species occurrences also result from common or 
diverging species dependence on confounding environmental factors. Species that share the same abiotic 
niche will frequently co-occur without necessarily interacting (Wisz et al. 2013, Blanchet et al. 2020). 
Conversely, negative co-occurrence patterns may simply result from diverging ecological requirements. As a 
consequence, estimating the effect of species interactions on species distributions first requires properly 
characterizing species abundance’s responses to environmental variables (Pollock et al. 2014), which is the 
object of species distribution modeling (SDM) approaches (Elith & Leathwick 2009). A particular class of SDM 
approaches, joint species distribution models (JSDM) attempts to infer the relationships between species 
abundances and environmental variables, explicitly accounting for the interdependence of species 
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distributions using multivariate regression methods (Pollock et al. 2014). In addition to estimates of the effect 
of habitat filtering on species distributions, these approaches provide residual covariances between species 
abundances, i.e., covariances not explained by environmental factors. Residual covariances result from species 
interactions and a diversity of other factors, as e.g., missing covariates, so that there is no simple relationship 
between species interactions and residual covariances (Zurell et al. 2018).  

To further track species interactions, a growing body of literature pleads for using independent knowledge 
of species traits in species distribution modelling (Lavorel et al. 1997, Kraft et al. 2008, Poisot et al. 2015), 
which is still seldom done. Explicitly comparing estimates of fundamental niche, i.e., measures of fitness in 
controlled conditions and in absence of species interactions, to estimates of realized niche, i.e., inferred species 
abundances’ responses to environmental factors, could shed new light on the gap between fundamental and 
realized niches and the importance of species interactions in shaping species distributions. 

In the case of phytophagous insects, an obvious feature of the environment to account for is host plant 
identity. Host plants can be treated as any environmental cofactor, and their effects on species abundances 
can be inferred directly from adequate abundance data (Ferrier and Guisan 2006). Host plants impose a specific 
challenge because modelling a phytophagous community as a whole relies on the assumption that the 
interdependence of species abundance does not depend on host plants. But as intraguild interactions mostly 
occur in/on plant organs, they may be modulated by plant species identity, with possible consequences for 
species occurrence patterns (Ulrich et al. 2017). Analyzing competition patterns on different host plants could 
therefore allow detecting the role of host plants in shaping species co-occurrences.  

Here we aimed at disentangling the roles of host plant species, abiotic factors, and interspecific interactions 
on the distributions of eight fruit fly species (Tephritidae) occurring in sympatry on a diversity of host plants 
and in highly variable abiotic conditions. The study system, which comprises four generalist species, three 
specialists of Cucurbitaceae, and one specialist of Solanaceae, presents key advantages to tackle community 
assembly questions. First, these eight species occupy a small island in South-western Indian Ocean (Réunion, 
2512 km2) where they are considered the main actors in the guild of fruit-eating phytophagous arthropods 
(Quilici and Jeuffrault, 2001). Second, the local environment is characterized by important variability in 
elevation (from 0 to 3000m), climatic conditions, land use, and plant distributions (Duyck et al. 2006a). 
Observational and experimental studies have suggested that climatic factors could influence local Tephritid 
distributions (Duyck et al. 2004). Climatic factors were even found more influential than host plant diversity in 
allowing coexistence in an analysis of the distributions of the four generalist species on four host plants (Duyck 
et al. 2008). Lastly, competition between the eight species has repeatedly been advocated to shape this 
community. First, host-use strategies largely overlap, opening possibilities of competition (Quilici & Jeuffrault 
2001, Duyck et al. 2008). Second, the arrival of one generalist species on the island has constrained the host 
ranges of some resident species, without complete exclusion (Charlery de la Masselière et al. 2017a). Third, 
larval competition experiments in a subset of plant species and abiotic conditions have evidenced hierarchical 
competition interactions among the generalist species (Duyck et al. 2006b).  

Here we confronted a long-term field dataset describing abundances of the eight fly species on 21 host 
plants with laboratory measures of fundamental host use obtained for seven of the fly species on the same 
plants. We first modelled joint species distributions using Poisson-LogNormal (PLN) modelling (Chiquet et al. 
2019) and conducted model selection among various combinations of host plant species and ecological 
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PEER COMMUNITY IN ECOLOGY 4

covariates (representing temperature, rainfall, elevation, land use and date). Residual correlations estimated 
under the selected model were further dissected to identify significant traces of unexplained co-occurences. 
Second, we assessed whether knowledge on fundamental host use was sufficient to explain field species 
abundances by accounting for host plant species either directly or through estimates of female preference and 
larval performance in laboratory conditions. Finally, we tested for a potential dependence of community 
structuring factors on host plants by replicating the analyses on three subsets of plants: Cucurbitaceae, 
Solanaceae and the other plants.  

Methods 

Species abundance table 

Field campaigns were conducted over a period of 18 years (1991-2009) to identify potential host plants for 
Tephritidae on the whole Réunion island including orchards, gardens, and natural areas. These surveys were 
assembled in a previous study (Charlery de la Masselière et al. 2017a), and used here as species abundance 
table. Each observation corresponds to the number of individual flies of the eight species recorded from a set 
of fruits sampled in one location at a specific date. For each sample, the collected fruits were counted and 
weighted, before being stored until adult fly emergence. To avoid keeping samples that could have suffered 
from a transportation or storage issue, only samples with at least one individual fly were kept. Among these, 
we further selected samples with GPS coordinates, and belonging to one of the 21 host plants characterized in 
the laboratory (see below). Of the 12872 initial samples, we therefore kept 4918 samples, and a total of 97351 
individual flies. Samples covered 104 field sessions all year round over the study period (Tables S1 and S2) and 
originated from 380 sites well distributed over the whole island (Figure 1A). Additional details on sample 
collection can be found in Appendix S1. 

 

Ecological covariables 

The GPS coordinates of each sample were used to retrieve ecological and climatic characteristics from GIS 
information available on the CIRAD Agricultural Web Atlas for Research (AWARE, https://aware.cirad.fr). Each 
sample was associated with a month and a year, a land use category, an elevation, three pluviometry 
descriptors (minimal rainfall in the 20% most humid years, minimal rainfall in the 20% driest years, median 
annual rainfall between 1986 and 2016), and three temperature variables (minimal, mean, maximal annual 
temperature between 1987 and 2017) (Figure 1A, Appendix S1). To account for correlations between some of 
the variables, a FAMD (factorial analysis of mixed data) was conducted on all 10 variables using FactoMineR 
(Lê et al. 2008). Ten uncorrelated dimensions were obtained and subsequently used as ecological covariates 
in the following analyses (Figure S2 for details on the FAMD). 
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Species traits 

For all species but Dacus ciliatus, fundamental host use, i.e., fly fitness on host plants in optimal abiotic 
conditions and in absence of antagonists, was characterized using four traits describing larval performances 
and female preferences for 21 plant species. Female preferences were the numbers of eggs laid by females 
during 24h on each of the 21 fruit species in the ‘no-choice’ experiment of Charlery de la Masselière et al. 
(2017b). Larval performances (survival probability until maturity s, development time T, and pupal weight w) 
were obtained from Hafsi et al. (2016) for 17 plant species, and in the current study for Coffea arabica, Solanum 
mauritianum, Syzygium jambos, and S. samarangense, using the same methods. The three larval performance 
traits were combined into a single performance trait using the formula:  

𝑃𝑒𝑟𝑓 = 𝑠 × 𝑤 𝑇⁄ . 
Both preference and performance traits were log-transformed before being included as covariates in 

statistical models.  

Figure 1: Characteristics of the species abundance dataset. A) Sampling sites in Réunion.  Dot colors refer to the family of 
the sampled plant (Solanaceae n=259, Cucurbitaceae n=2347, other families n=2285 samples).  Elevation, represented by 
grey isoclines, ranges from 0 along the coast, to >3000 m, in the center of the island, and strongly correlates with annual 
temperature. Pluviometry (here median rainfall over 1986-2016) is represented by green isohyets. The island is separated 
into two contrasted rainfall regimes: very humid all year round in the east, and drier, especially during winter, in the west. 
B) Fly species abundances on the 21 studied plant species. 
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Statistical analysis 

Datasets 

To account for the possibility that determinants of species distributions depend on host plant identity, we 
replicated all analyses on the full 21-plants dataset, and on the following three sub-datasets: (i) Cucurbitaceae 
only (3 fly species x 6 plant species, 2347 samples), (ii) Solanaceae only (3 fly species x 3 plant species, 259 
samples), (iii) other plant families (4 fly species x 12 plant species, 2285 samples). 

 
Statistical modelling 

Joint variations in fly species abundances were modelled using Poisson-LogNormal (PLN) models with the 
PLN() function in the PLNmodels R package (Chiquet et al. 2018, 2019). A PLN model is a multivariate mixed 
generalized linear model, where each species count is assumed to arise from a Poisson distribution with a 
parameter resulting from fixed effects of covariates and a random lognormal effect. Random effects associated 
to all species observed in a sample are jointly sampled from a multivariate lognormal distribution. The residual 
variance-covariance of the multivariate distribution reveals species abundance covariations still unexplained 
after controlling for confounding environmental covariates and differences in sampling efforts. Samples 
differed in fruit number and weight, inducing uncontrolled variation in sampling effort among samples 
potentially leading to spurious associations between fly species abundances. Consequently, the (log-
transformed) total fruit weight of each sample was added as an offset to every tested model (fruit number was 
also tested as an offset yielding identical conclusions, results not shown). Model diagnostics were conducted 
using the R package DHARMa (Hartig 2020). Covariations between species abundances unexplained by 
covariates were further investigated using the PLNnetwork() function, which adjusts the considered model 
under a sparsity constraint on the inverse of the variance-covariance matrix, i.e., constraining the number of 
edges in the resulting estimated network. The stability of the resulting species associations was estimated as 
their selection frequency in bootstrap subsamples of the StARS model selection procedure (range 0-1; Liu et 
al. 2010; Appendix S3). 

 
Model selection design 

The importance of plant species identity, ecological covariates and species interactions to explain species 
abundances was approached by model selection using the extended BIC criteria (Chen & Chen 2008). First we 
focused on species response to environmental variables and compared models (listed in Table 1) including 
either no covariate (Model 1-0), plant species identity as a cofactor (Model 1-1), ecological variables (all 10 
FAMD dimensions described above, Model 1-3) or both plant species and ecological variables (Model 1-5). 
Second, we evaluated the importance of residual species abundance covariations. PLNmodels enables fitting 
models where the residual variance-covariance matrix is constrained to be diagonal. Such models assume no 
possible interaction between fly species. We therefore compared all models with their diagonal counterpart 
(Models 1-2, 1-4 and 1-6). Third we estimated how well knowledge of the fundamental niche, here laboratory-
measured preferences and performances, explained field abundances. In its present form, PLNmodels does 
not allow accounting for species traits (covariates describe samples but not species within samples). To cope 
with this limitation, we considered that assuming that species distribute according to their fundamental niche 
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implies that species interactions are negligible, and species distribute independently from one another. Using 
this assumption, we fitted models separately for each fly species, obtained their likelihoods and numbers of 
parameters, and computed the BIC of the seven-species dataset as: 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿), 
where k and L are the sums of the numbers of parameters and likelihoods over the seven single-species 
datasets and n the number of samples. Following this principle, we built models where the host plant cofactor 
was replaced by either preference (Model 2-7 without ecological covariates and 2-8 with ecological covariates), 
or performance (Models 2-9 and 2-10), or both preference and performance (Models 2-11 and 2-12). In 
addition, all previous models were reevaluated on the datasets excluding the species lacking fundamental host 
use estimates (D. ciliatus; Models 2-0 to 2-6). 

Results 

The variance-covariance structure of the complete dataset (8 fly x 21 plant species) was first inferred by 
fitting a PLN model without any covariate (Model 1-0). The obtained residual variance-covariance matrix 
(Figure 2A) revealed a sharp distinction between three groups of flies: (i) the four generalists (Bactrocera 
zonata, Ceratitis capitata, C. catoirii, and C. quilicii), (ii) the three specialists of Cucurbitaceae (D. ciliatus, D. 
demmerezi and Zeugodacus cucurbitae), and the specialist of Solanaceae (Neoceratitis cyanescens). While N. 
cyanescens abundances showed very low covariances with other species, the two other groups showed 
positive within-group covariances and negative among-group covariances. This variance-covariance structure 
suggested strong separation of the realized niches of the three groups, likely mediated by host plants. 

 

Figure 2: Residual variance-covariance 
matrices obtained after PLN model fitting on 
species abundances. A) Without any covariate 
(Model 1-0). B) With ecological covariates 
(Model 1-3). C) With plant species as a 
cofactor (Model 1-1). D) With both plant 
species and ecological covariates (Model 1-5).
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Considering model selection between models without species traits, i.e., models including combinations of 
plant species and ecological covariates (Table 1), model ranking was equivalent on the eight-species (Models 
1-0 to 1-6) and seven-species (Models 2-0 to 2-6) datasets, except that diagonal models tended to be slightly 
better than their full-matrix counterparts on the latter. This result was further shown robust to sample 
bootstrapping (Appendix S3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Models Covariates Residual matrix K L BIC ΔBIC 

A) Model set 1 (21 plants x 8 flies) 

Model 1-5 Plant + Eco Full 284 -27664.3 57742.8 0.0 

Model 1-6 Plant + Eco Diagonal 256 -27997.8 58171.7 428.9 

Model 1-2 Plant Diagonal 176 -28608.9 58713.9 971.1 

Model 1-1 Plant Full 204 -28784.0 59302.1 1559.2 

Model 1-3 Eco Full 124 -35888.8 72831.6 15088.8 

Model 1-4 Eco Diagonal 96 -36598.4 74012.9 16270.1 

Model 1-0 None Full 44 -37228.1 74830.3 17087.4 

B) Model set 2 (21 plants x 7 flies) 

Model 2-6 Plant + Eco Diagonal 224 -20753.9 43374.1 0.0 

Model 2-5 Plant + Eco Full 245 -20723.1 43487.5 113.4 

Model 2-2 Plant Diagonal 154 -21563.1 44409.4 1035.3 

Model 2-1 Plant Full 175 -21504.7 44467.5 1093.4 

Model 2-12 Preference + Performance + Eco Diagonal 98 -23924.4 48665.3 5291.2 

Model 2-10 Performance + Eco Diagonal 91 -24387.4 49533.0 6158.9 

Model 2-11 Preference + Performance Diagonal 28 -25689.9 51613.0 8238.9 

Model 2-8 Preference + Eco Diagonal 91 -25516.9 51792.1 8418.0 

Model 2-9 Performance Diagonal 21 -26443.3 53061.6 9687.5 

Model 2-4 Eco Diagonal 84 -27082.1 54864.0 11489.9 

Model 2-7 Preference Diagonal 21 -27628.9 55432.8 12058.7 

Model 2-3 Eco Full 105 -27321.5 55517.8 12143.7 

Model 2-0 None Full 35 -31060.1 62411.8 19037.7 

Table 1: Model selection on the 21-plant dataset (n = 4,918). Models are ranked by increasing BIC (from best to worst). k
is the number of parameters. L is the log-likelihood. ΔBIC is the BIC difference between any focal model and the best one. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2020.12.07.414326doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414326
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

PEER COMMUNITY IN ECOLOGY 9

For both datasets, the selected model included both ecological variables and host plant species as 
covariates (Models 1-5 and 2-6), which strongly improved the BIC (ΔBIC = 17087.4 and 18935.7 respectively) as 
compared to the basic (no covariate) models 1-0 and 2-0. Models with host plant species ranked close to the 
selected model with a moderately inflated BIC relative to the selected model (Model 1-2: ΔBIC = 971.1, Model 
2-2: ΔBIC = 933.2) and an important reduction in residual covariances relative to the basic model (compare 
Figures 2A and 2C). In comparison, including ecological variables alone deteriorated model fit with a greatly 
increased BIC (Model 1-3: ΔBIC = 15088.8, Model 2-4: ΔBIC = 11387.9) and a mild reduction of residual 
covariances (compare Figures 2A and 2B).  

 

 
 

 
  
 
 

Figure 3: Comparison of fly species’ fundamental and realized host use. A) Fundamental host use as measured in the 
laboratory (left panel – fitness is the logarithm of the product preference and performance) and realized host use as 
inferred from regression coefficients relative to host plants in the fullest model (right panel – response is obtained from 
Model 2-5 on the seven-species dataset). B)  Relationship between inferred responses to host plants and laboratory-
measured fitness for specialists in orange and generalists in green on hosts detected as such in the field. Lines represent 
linear regressions with slope 95% confidence intervals as shadowed areas. 
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The selected model showed a good fit, with a tendency to overestimate low abundance values (Figure S3). 
As expected, model diagnostics revealed an excess of zeros and some over dispersion (Appendix S3) which PLN 
modeling is robust to (Chiquet et al. 2019). No temporal or spatial autocorrelation was detected in model 
residuals. The coefficients relative to host plant species, which represent the response of species abundances 
to host plants, had a strongly bimodal distribution (Figure 3A, right panel). For each fly, some plant species had 
very low coefficients (<-80), meaning a negligible effect of the corresponding host plant on fly abundances 
(approx. exp(-80) ≈ 1E-35) and we considered them as non-host plants. The other plants had much stronger 
coefficients (>-14) and were interpreted as host plants. Overall, this inferred realized host range was narrower 
than the laboratory-measured fundamental host range (Figure 3A, left panel), particularly for generalists. Only 
10 fly-plant associations (out of 147) showed the reverse pattern (zero laboratory-measured fitness and yet 
strong inferred response to plant), suggesting marginal difficulties with measuring fitness in laboratory 
conditions. Among plants inferred as hosts from species abundance patterns (i.e., high coefficient values), 
coefficients correlated positively with fly laboratory-measured fitness for specialists but not for generalists 
(Figure 3B). 

 
 

 

 
 
 

Figure 4: Species abundance responses to ecological variables. A) Correlation circle on the first and second axes of the 
FAMD (factorial analysis of mixed data) on ecological variables (Dim1 and Dim2, respectively). The first axis contrasts 
warm low-altitude sites and colder high-altitude sites.  The second axis is a gradient of rainfall and maximal temperature 
(see Supplementary figure S3 for details on axes contributions). B) Regression slopes relative to Dim1 and Dim2, inferred 
under the fullest model on the 21 plant x 8 fly species dataset (Model 1-5). Error bars represent approximate confidence 
intervals (1.96 x standard errors). For the first axis (Dim1), negative slopes (e.g., B. zonata and C. capitata) can be 
interpreted as a positive effect of temperatures and a negative effect of elevation on species abundances. For the second 
axis (FAMD 2), positive slopes (e.g., C. catoirii) can be interpreted as a positive effect of rainfall on species abundances. 
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The coefficients relative to the first two axes of the FAMD on ecological covariates could be interpreted as 
responses of fly abundances to rainfall, temperature, and elevation (Figure 4). Rainfall had a low effect on the 
abundances of B. zonata, C. capitata, C. quilicii, and D. demmerezi. Ceratitis catoirii, N. cyanenscens, and Z. 
cucurbitae showed a propensity towards warm high-rainfall areas, while D. ciliatus seemed to prefer colder 
drier climates. Ceratitis quilicii and C. catoirii were not much affected by temperature. Bactrocera zonata, C. 
capitata, D. ciliatus, and Z. cucurbitae should thrive in low-elevation warm climates. Dacus demmerezi and to 
a lesser extent N. cyanescens seemed to prefer colder higher-elevation climates. 

The selected model had full residual variance-covariance matrix on the eight-species dataset and diagonal 
residual variance-covariance matrix on the seven-species dataset. On the eight-species dataset its diagonal 
version ranked second with ΔBIC = 428.9. Congruently, the residual variance-covariance matrix inferred under 
the selected model (Figure 2D) had very low covariance values for all pairs of fly species, all covariances being 
negative. This suggested possible, though weak, antagonist interactions. The largest residual correlations were 
observed between the three specialists D. demmerezi, D. ciliatus and Z. cucurbitae (residual correlations 
ranging from -0.031 to -0.112) and between the generalists B. zonata, C. quilicii and C. capitata (residual 
correlations from -0.025 to -0.090). Network inference, applied to the selected model, converged to one 
significant interaction between D. ciliatus and Z. cucurbitae, with a stability of 0.99 (i.e., detected in 99 out of 
100 network inferences on bootstrapped data). Overall these results suggested that at the scale of the whole 
community competitive interactions between fly species only weakly affected their joint distributions and that 
fly species abundances were mainly explained by environmental covariates. 

Considering models accounting for species fundamental niche (Table 1B), the best model with species traits 
included female preference, larval performance and ecological variables (Model 2-12, ΔBIC = 5189.2). It ranked 
intermediate between the model with ecological variables alone and the best model. Such good performance 
of models with species traits suggests that the fundamental host range of fly species is an important 
determinant of fly species joint distributions. Whether in combination with ecological covariates or not, models 
with larval performance were slightly better than models with female preference. 

Cucurbitaceae 

Focusing on Cucurbitaceae and the three fly species they hosted, D. ciliatus, D. demmerezi and Z. cucurbitae, 
the selected model was again the one including both host plant species and ecological covariates (Model 1-5, 
Table S5A). Its BIC was lower than the one of the basic model (Model 1-0, ΔBIC = 1208.0). It assumed a full 
residual variance-covariance matrix and performed better than its diagonal version (ΔBIC = 190.6). Network 
inference yielded two significant negative interactions between D. ciliatus and Z. cucurbitae (stability = 1.0) 
and between D. demmerezi and Z. cucurbitae (stability = 0.56). For all other models, versions with full residual 
matrix performed better than their diagonal counterparts. Besides, models including plant species alone or 
ecological covariates alone performed equivalently (ΔBIC = 515.3 vs. ΔBIC = 653.2). This is congruent with the 
idea that plant species affect fly distributions more similarly within the Cucurbitaceae family than at the scale 
of the 21-plant dataset, so that the influence of plant identity is less important for species distributions among 
Cucurbitaceae than on a wider set of plants.  

For D. demmerezi and Z. cucurbitae, for which traits were available, models with species traits alone had 
poor performance, and displayed higher BIC than the basic model (Table S5B). However, the model with both 
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species traits and ecological covariates ranked third just after the diagonal version of the selected model 
(Model 2-10, ΔBIC = 124.9). 

Solanaceae 

For Solanaceae and their associated fly species, N. cyanescens, C. capitata, and C. quilicii, the selected model 
included host plant species, ecological covariates and a diagonal residual variance-covariance matrix (Model 
1-6, Table S6). It improved the BIC of the basic model by 201.8. It performed better than its full residual matrix 
version (ΔBIC = 15.8) and congruently, applying network inference to the latter yielded no significant interaction 
between fly species. On this dataset, all models with a diagonal matrix performed better than their full residual 
matrix counterpart, further confirming the absence of detected interactions. Models with ecological covariates 
alone performed poorly (Model 1-3 ΔBIC = 176.4 and Model 1-4 ΔBIC = 162.0, respectively). Models with species 
traits were almost as good as their equivalent with host plant as a cofactor. For instance, the model with 
species traits and ecological covariates (Model 2-10) ranked second with ΔBIC = 9.5. Female preference and 
larval performance performed equally well (ΔBIC = 44.6 and ΔBIC = 38.5 respectively) and almost as good as both 
traits together (ΔBIC = 33.4), suggesting important correlation between the traits. 

Other plant families 

The last dataset considers all families other than Cucurbitaceae or Solanaceae with B. zonata, C. capitata, 
C. catoirii, and C. quilicii (Table S7). The selected model included host plant species and ecological covariates 
(Model 1-5, ΔBIC = 2639.7 with the basic model 1-0). It assumed a full residual variance-covariance matrix and 
performed slightly better than its diagonal version (ΔBIC = 55.8). All models with a full residual matrix performed 
better than their diagonal counterpart. Network inference yielded one significant interaction between B. 
zonata and C. quilicii (stability = 1.0). 

The model with only ecological covariates performed well (Model 1-3, ΔBIC = 967.3), and almost as good as 
the model with host plant alone (Model 1-1, ΔBIC = 684.1), suggesting redundancy between ecological 
information and plant identity. Models that included species traits without ecological covariates performed 
badly (ΔBIC > 2220), and the model with species traits and ecological covariates (Model 2-10, ΔBIC = 814.3) 
performed only slightly better than the model with ecological covariates only (Model 1-3, ΔBIC = 967.3). Of the 
two traits, only female preference really improved model fit (Model 2-8 ΔBIC = 888.9 vs. Model 2-12 ΔBIC = 
1050.0). 

Discussion 

The determinants underlying the structure of a community of eight Tephritid fly species were deciphered. 
Modelling joint species abundances without accounting for any covariate (only intercepts and an offset) 
confirmed a major role of host use strategy on fly species abundances. Species abundances co-varied positively 
among generalists and among specialists and negatively between species of each of these groups. Common 
responses to environmental factors may cause positive residual correlations in species abundances, while 
divergent responses will imply negative correlations, potentially leading to incorrect interpretations of species 
interactions (Ovaskainen et al. 2016, Dormann et al. 2018). Accounting for environmental covariates strongly 
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improved model fit and made all residual covariances almost completely vanish, particularly among groups, 
suggesting that no important environmental factor structuring the community has been missed. Obtaining 
long-term abundance data on all a priori relevant species of a given community is rarely possible. Here over 
the study period, one other fruit fly species (Carpomya vesuviana) was mentioned locally. It was considered 
very rare and only present on Indian jujube (Ziziphus mauritiana) in dry low-elevation areas (Quilici & Jeuffrault 
2001, Franck et al. 2017). It was not detected in the 204 jujube samples of the full dataset. In addition, not all 
108 plant species considered as potential fruit fly hosts were included. To evaluate the effect of omitted plants, 
we conducted the analysis on all plants with at least 10 samples with emerging flies (6434 samples, 36 plant 
species including the 21 studied in the laboratory) and obtained strikingly similar results (model ranking and 
estimates of regression coefficients, Appendix S3), comforting the idea that most relevant factors have been 
accounted for.  

Detection of competitive interactions 

Some residual covariances remained non-negligible after accounting for fly species’ response to host plants 
between some generalists and between some specialists of Cucurbitaceae. They were all negative, suggesting 
a possible minor role of antagonistic interactions within specialists and within generalists. Only one of these 
residual covariations resisted the network inference process on the whole dataset (D. ciliatus - Z. cucurbitae, 
the two most abundant specialists of Cucurbitaceae). Two more significant covariations were detected when 
focusing on Cucurbitaceae (Z. cucurbitae - D. demmerezi) and on other plant families (B. zonata - C. quilicii) 
suggesting possible dependence of species interactions on host plants. On Cucurbitaceae, although 
qualitatively congruent with other independent empirical measures of host range (Vayssieres et al. 2008) and 
climatic niche (Vayssières & Carel 1999), host plant species and abiotic factors only moderately improved 
model fit. All three specialist flies found on Cucurbitaceae are able to thrive on any plant of this family (Charlery 
de la Masselière et al. 2017b) and competitive interactions between these fly species are highly plausible 
(Vayssieres et al. 2008). On other plant families, both host plants and abiotic factors clearly improved model 
fit, congruently with former interpretations of the system (Duyck et al. 2006a, Duyck et al. 2008). Responses 
of generalist species to abiotic factors were strikingly congruent with former independent laboratory 
experiments (Duyck & Quilici 2002, Duyck et al. 2004, Duyck et al. 2006a). There was redundancy between 
host plants and abiotic factors. Many of these plants are exploited but not planted (e.g., Myrtaceae). Their 
distributions are therefore more dependent on ecological factors than those of Solanaceae and Cucurbitaceae, 
which are mainly cultivated throughout the year in Réunion. On Solanaceae, no residual covariation was 
detected. Plant identity was the main determinant of species abundances, congruently with the idea that 
Solanaceae impose adaptive challenges on their fruit consumers through a variety of toxic compounds 
(Brévault et al. 2008), rendering host adaptation the main factor driving species abundances. 

A current competition ghost 

Among-group covariation between specialists and generalists were mainly attributable to fly species’ 
adaptation to host use with a minor contribution of abiotic factors. Previous studies have highlighted 
differences in host adaptation between these fly species (Hafsi et al. 2016). Contrary to the specialists, which 
are mainly able to use their preferred hosts, the four generalists can thrive in numerous plant species, and 
have weak female preferences (Charlery de la Masselière et al. 2017b). Accordingly, specialists were seldom 
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found in plants other than Cucurbitcaeae or Solanaceae. However, these results do not explain why generalists 
were so rarely found on Cucurbitaceae and Solanaceae. Competitive exclusion with specialists would be a 
natural hypothesis to explain this absence (Nakadai et al. 2018). Here, no competition among groups was 
detected. It is possible, however, that competition has already operated and that competitive exclusion has 
been so strong that generalists cannot be found on Cucurbitaceae. In PLN modelling, such absence could be 
interpreted as negative response of generalist abundances to Cucurbitaceae and be encapsulated in plant 
cofactor slopes rather than in residual covariances. It is precisely when competition is intense enough to cause 
niche partitioning that it can no longer be detected. This result evokes a well-known paradox in ecology termed 
‘‘the ghost of competition past’’ (Connell 1980) according to which the observed differentiation in niches is 
the result of past interspecific competition.  

To escape the paradox, knowledge about the fundamental niches of species through eco-evolutionary 
approaches could help settle whether species interactions are an important driver of species assemblages 
(Augustyn et al. 2016, Dormann et al. 2018). Laboratory measurements of larval performance and female 
preference on host plants were used in replacement of plant identity. Congruently with the community being 
essentially driven by host use, preference and performance clearly improved model fit. Interestingly, 
performance was more informative than preference, which was expected from previous knowledge that 
generalists’ preferences are uncorrelated to their performances (Charlery de la Masselière et al. 2017b). If 
competition truly shapes species abundances, and has not been detected, it is to be found in the difference 
between models with plant identity as a cofactor and models with species traits instead. Here we found a 
difference suggesting that competitive exclusion is at work. In terms of importance, from model rankings, host 
use patterns were the most important factor shaping species abundances, followed by abiotic factors and 
possibly a dose of competition.  

This predominance of host plants as a structuring factor of phytophagous insect communities has been 
much debated, but congruent studies exist. In analyses of insect communities along road verges, Schaffers et 
al. (2008) found that the composition of plant communities was a much better predictor of insect and spider 
assemblages than environmental variables. Similarly Nakadai et al. (2018) found that sharing of host species 
was predominant among butterflies of the Japanese archipelago, suggesting that interspecific resource 
competition may not effectively determine community assembly patterns at regional scales. In an earlier 
review on the importance of competition in insects, Denno et al. (1995) pointed that only weak to moderate 
effect of competition should certainly be expected in phytophagous insects such as Tephritids due to their high 
mobility and weak aggregation behaviors. Experimental manipulations of competitive interactions in the field 
could offer a promising way to test the validity of the present inferences. These experiments would also be 
useful to unveil the role of other biotic interactions (e.g., natural enemies), as forces capable of modulating 
interspecific competition between fruit flies. 

Generalists vs. specialists 

Overall specialists and generalists almost had very distinct realized host uses with different assembly rules. 
That specialists and generalists form separate interaction networks has already been highlighted, e.g., among 
soil microbial species (Barberan et al. 2012). It is well known that the predictability of assemblages differs 
between generalist and specialist phytophagous insects (Müller et al. 2011). This has led to the hypothesis that 
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specialists would assemble according to the species-sorting paradigm of metacommunity ecology (Leibold et 
al. 2004), whereby species occurrences are mainly driven by habitat heterogeneity and local adaptation. 
Generalists’ assembly rules, on the other hand, would rather follow a mass-effect paradigm (Shmida & Wilson 
1985), according to which sink populations, where the species is maladapted, can persist through a migration 
influx from source populations (Müller et al. 2011). Our results confirm this hypothesis. For specialists, a good 
agreement between the inferred host plant effects on species abundances and the laboratory measures of 
host adaptation suggested that specialists were mainly filtered by host plant characteristics. In contrast, 
generalists displayed no relationship between inferred and laboratory-measured host plant effects, suggesting 
that generalists were found on some hosts where their fitness is low and at low density on good hosts. Besides 
generalists use fruits whose availability is highly variable over time. Contrary to specialists, most of their hosts 
are not available all year long (Figure S4). This temporally variable habitat may trigger a dynamics of local 
extinction and recolonization, in which the roles of migration and stochasticity become more important than 
that of host adaptation and in which coexistence is possible despite fundamental niche overlap (Connell 1980, 
Chesson 2000). 
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Supplementary material 

Appendix S1: Additional materials & methods 

Details on species table 

Among the 12872 initial samples, only samples that fulfilled to following conditions were kept: (i) GPS 
coordinates could be retrieved (n=9715 in 41 plant species), (ii) at least one Tephritid fly emerged (n=6455 in 
41 plant species), (iii) from plant species which had been successfully sampled at least 10 times in the dataset 
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(n=6434 in 36 plants), and (iv) from plant species that were also characterized in the laboratory (n=4918 in 21 
plants). In the resulting dataset, 97351 individual flies were counted. Samples covered 104 field sessions all 
year round over the 1991-2009 period (Tables S1 and S2). The number of flies per sample varied from 1 to 
2244. Samples differed in terms of fruit number and weight. The number of flies varied from 1 to 188 per 
individual fruit and from 1.1E-3 to 15.8 flies per gram of fruit. 
 
Table S1: Number of samples (n) by year in the full 21-plant dataset 

Year 1991 1992 1993 1994 1995 1996 1997 1998 2001 2002 2003 2004 2005 2008 2009 
n 4 15 31 52 80 38 434 1143 83 523 634 19 205 191 1466 

 

Table S2: Number of samples (n) by month in the full 21-plant dataset 
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
n 447 818 708 458 328 182 594 252 222 238 242 429 

 
The number of samples per plant species (Table S3) varied from 12 (Averrhoa carambola) to 1105 (Cucurbita 
maxima). The most represented plant families were the Cucurbitaceae (six plant species and 2374 samples), 
the Myrtaceae (four plant species and 1102 samples) and the Combretaceae (one plant species with 853 
samples).  
 

Table S3: Number of samples (n) for each of the 21 plant species retained in the study 
Family Species Common English name n 

Anacardiaceae Mangifera indica Mango 36 

Annonaceae Annona reticulata Custard apple 27 

Combretaceae Terminalia catappa Indian almond 853 

Cucurbitaceae Citrullus lanatus Water melon 175 

 Cucumis melo Melon 30 

 Cucumis sativus Cucumber 440 

 Cucurbita maxima Pumpkin 1105 

 Cucurbita pepo Zucchini 504 

  Sechium edule Chayote 120 

Myrtaceae Psidium cattleyanum Strawberry guava 422 

 Psidium guajava Guava 398 

 Syzygium jambos Rose apple 255 

  Syzygium samarangense Java apple 27 

Oxalidaceae Averrhoa carambola Star fruit 12 

Rosaceae Eriobotrya japonica Loquat 61 

  Prunus persica Peach 99 

Rubiaceae Coffea arabica Coffee 81 

Rutaceae Citrus reticulata Mandarin 14 

Solanaceae Capsicum annuum Chilli 29 

 Solanum lycopersicum Tomato 68 

  Solanum mauritianum Bugweed 162 
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Plant species differed in terms of the patterns of occurrence of the eight fly species (Figure 2B). In particular, 
Cucurbitaceae were mostly used by the three species known as specialists of this plant family, D. ciliatus (14047 
flies in 1264 samples), D. demmerezi (6335 flies in 276 samples) and Z. cucurbitae (21830 flies in 1463 samples). 
Other fly species were detected in fewer than 10 Cucurbitaceae samples. Solanaceae mainly hosted the 
specialist species N. cyanescens (1205 flies in 225 samples). They were also, to a lesser extent, hosts of C. 
capitata (116 flies in 32 samples), and C. quilicii (131 flies in 22 samples). Other fly species were detected in 
less than 5 Solanaceae samples. The other plant species (12 plant species) were mainly used by the four 
generalist species, i.e., B. zonata (11517 flies in 728 samples), C. capitata (8735 flies in 537 samples), C. quilicii 
(33149 flies in 1583 samples), C. catoirii (291 flies in 65 samples). Other fly species were detected in less than 
5 samples. 
Co-occurrences between fly species were frequent. 1148 samples out of 4918 (23.3%) contained more than 
one species, and 759 out of 4335 samples with a single fruit (17%) contained more than one fly species. Co-
occurrences between fly species were therefore much structured by whether the considered plant species 
belonged to Cucurbitaceae, Solanaceae or other families (Table S4).  
 

Table S4: Species co-occurences in the full 21-plant dataset (n = 4918 samples) 

  
Bactrocera 

zonata 
Ceratitis 
quilicii 

Ceratitis 
capitata 

Ceratitis 
catoirii 

Neoceratitis 
cyanescens 

Dacus 
ciliatus 

Dacus 
demmerezi 

Zeugodacus 
cucurbitae 

Bactrocera 
zonata 

728 198 120 1 0 0 0 0 

Ceratitis 
quilicii 

198 1605 309 57 12 1 0 1 

Ceratitis 
capitata 

120 309 570 31 15 1 0 2 

Ceratitis 
catoirii 1 57 31 66 1 1 0 1 

Neoceratitis 
cyanescens 

0 12 15 1 237 3 1 5 

Dacus 
ciliatus 

0 1 1 1 3 1266 107 454 

Dacus 
demmerezi 0 0 0 0 1 107 276 133 

Zeugodacus 
cucurbitae 

0 1 2 1 5 454 133 1467 

 
Ecological covariables 

Elevation (in meters) of each sample was obtained from the Digital Elevation Model Litto3D® co-produced by 
the French IGN (National Geographic Institute) and the SHOM (Marine Oceanographic Hydrographic Service). 
Pluviometry was obtained from layers produced by M. Mezino from 143 CIRAD and Meteo-France 
meteorological stations, containing isohyets of (i) the minimal rainfall observed in the 20% most humid years 
of the 1986-2016 period (ii) the minimal rainfall observed in the 20% driest years of the 1986-2016 period and 
(iii) the median annual rainfall over the 1986-2016 period. For each sample, the value of closest isohyet was 
retained for each of the three variables. Temperature was characterized by the (i) minimal, (ii) mean and (iii) 
maximal annual temperature over the 1987-2017 period as interpolated by M. Mezino from 73 CIRAD and 
Meteo-France meteorological stations raw data. Land use around each sample location was obtained from a 
12-categories layer produced by supervised classification of Pléiades 2018 images (Dupuy and Gaetano, 2019 
doi:10.18167/DVN1/WKAJZO, CIRAD Dataverse, V1).  
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Additional details on FAMD on ecological covariables 

Figure S1: Interpretation of the axes of the FAMD on ecological covariables. A) Percentage of variance 
explained by each of the 10 axes of the FAMD. The first and second FAMD axes explain 19.8 % of the variance. 
C-D) Contribution of individual ecological covariates to Axis 1, 2 and other axes, respectively. Axis 1 is mainly 
contributed by temperature and elevation. Axis 2 is mainly contributed by rainfall and maximal temperature. 
Other axes are contributed by qualitative variables (year, month and land use).  
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Appendix S2: Complementary results 

Model selection on the three sub-datasets 

Cucurbitaceae 

Table S5: Model selection on the Cucurbitaceae dataset (n = 2347). Models are ranked by increasing BIC (from 
best to worst). k is the number of parameters. L is the log-likelihood. ΔBIC is the BIC difference between any 
focal model and the best one. 
 

Model Covariates Residual matrix k L BIC ΔBIC 

A) Model set 1 (6 plants x 3 flies) 

Model 1-5 Plant + Eco Full 54 -14168.3 28756.3 0.0 

Model 1-6 Plant + Eco Diagonal 51 -14275.3 28947.0 190.6 

Model 1-1 Plant Full 24 -14542.5 29271.6 515.3 

Model 1-3 Eco Full 39 -14553.2 29409.5 653.2 

Model 1-2 Plant Diagonal 21 -14661.3 29485.7 729.4 

Model 1-4 Eco Diagonal 36 -14649.7 29579.2 822.8 

Model 1-0 None Full 9 -14947.2 29964.3 1208.0 

B) Model set 2 (6 plants x 2 flies) 

Model 2-5 Plant + Eco Full 35 -7311.6 14881.6 0.0 

Model 2-6 Plant + Eco Diagonal 34 -7361.7 14974.4 92.8 

Model 2-10 Preference + Performance + Eco Diagonal 28 -7399.9 15006.5 124.9 

Model 2-3 Eco Full 25 -7419.8 15024.2 142.6 

Model 2-8 Preference + Eco Diagonal 26 -7421.5 15035.1 153.5 

Model 2-12 Performance + Eco Diagonal 26 -7423.9 15039.8 158.2 

Model 2-4 Eco Diagonal 24 -7461.8 15100.9 219.3 

Model 2-1 Plant Full 15 -7570.5 15251.8 370.2 

Model 2-2 Plant Diagonal 14 -7654.1 15411.5 529.9 

Model 2-0 None Full 5 -7722.3 15481.6 600.0 

Model 2-7 Preference Diagonal 6 -7739.0 15522.4 640.8 

Model 2-9 Preference + Performance Diagonal 8 -7745.6 15550.4 668.7 

Model 2-11 Performance Diagonal 6 -7801.2 15646.7 765.1 
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Solanaceae 

Table S6: Model selection on the Solanaceae dataset (n = 259). Models are ranked by increasing BIC (from best 
to worst). k is the number of parameters. L is the log-likelihood. ΔBIC is the BIC difference between any focal 
model and the best one. 
 

Model Covariates Residual matrix k L BIC ΔBIC 

Model 1-6 Plant + Eco Diagonal 42 -824.2 1881.7 0.0 

Model 2-10 Preference + Performance + Eco Diagonal 42 -829.0 1891.2 9.5 

Model 1-5 Plant + Eco Full 45 -823.8 1897.5 15.8 

Model 2-12 Performance + Eco Diagonal 39 -842.6 1901.7 20.0 

Model 2-8 Preference + Eco Diagonal 39 -846.5 1909.5 27.8 

Model 1-2 Plant Diagonal 12 -922.3 1911.2 29.4 

Model 2-9 Preference + Performance Diagonal 12 -924.2 1915.1 33.4 

Model 2-11 Performance Diagonal 9 -935.1 1920.2 38.5 

Model 1-1 Plant Full 15 -921.1 1925.6 43.8 

Model 2-7 Preference Diagonal 9 -938.2 1926.3 44.6 

Model 1-4 Eco Diagonal 36 -921.9 2043.8 162.0 

Model 1-3 Eco Full 39 -920.8 2058.1 176.4 

Model 1-0 None Full 9 -1016.8 2083.5 201.8 

  
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2020.12.07.414326doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414326
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

PEER COMMUNITY IN ECOLOGY 25

Other plant families 

Table S7: Model selection on the dataset with other plant families. Models are ranked by increasing BIC (from 
best to worst). k is the number of parameters. L is the log-likelihood. ΔBIC is the BIC difference between any 
focal model and the best one. 
 

Model Covariates Residual matrix k L BIC ΔBIC 

Model 1-5 Plant + Eco Full 98 -12218.5 25195.0 0.0 

Model 1-6 Plant + Eco Diagonal 92 -12269.6 25250.8 55.8 

Model 1-1 Plant Full 58 -12715.3 25879.1 684.1 

Model 1-2 Plant Diagonal 52 -12796.6 25995.3 800.3 

Model 2-10 Preference + Performance + Eco Diagonal 56 -12788.1 26009.3 814.3 

Model 2-8 Preference + Eco Diagonal 52 -12840.9 26083.9 888.9 

Model 1-3 Eco Full 54 -12872.4 26162.4 967.3 

Model 2-12 Performance + Eco Diagonal 52 -12921.4 26245.1 1050.0 

Model 1-4 Eco Diagonal 48 -12968.4 26308.1 1113.1 

Model 2-9 Preference + Performance Diagonal 16 -13650.6 27424.9 2229.8 

Model 2-7 Preference Diagonal 12 -13855.9 27804.7 2609.7 

Model 1-0 None Full 14 -13863.2 27834.7 2639.7 

Model 2-11 Performance Diagonal 12 -13905.2 27903.1 2708.1 
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Host plants availability 

Figure S2: Availability of host plants along the year for seven fly species from Charlery de la Masselière et al. 
(2017a, Supplementary material Figure S1). Only major host plants are reported. Specialist species tend to rely 
on hosts with year-long availability, while generalists also have host with short fructification periods in their 
diet. 
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Appendix S3: Stability and robustness of results 

Model diagnostics 

Model diagnostics were conducted using the R package DHARMa (Hartig, 2020; Figure S3 below).  

 

Even on the most complete model, an 
excess of zeros was detected likely in 
relation with fly species host ranges: 
for any given fly species not all 21 
studied plants are compatible hosts, 
therefore introducing many zeros in 
the complete 8-fly dataset. No 
particular tendency of residuals on 
predictors was identified (plant shown 
here, FAMD axes not shown).  

To further explore potential spatial or 
temporal trends in model residuals, 
we studied the variogram of residuals, 
i.e., how the estimated variance of the 
difference between two sites of this 
quantity changes as a function of 
spatial distance of distance in 
sampling date (equation below, Figure 
S4): 

 

Correlations between the variance of residuals and spatial distance, difference in sampling month or difference 
in year of sampling were weak (0.0433, -0.0049, and 0.0211, respectively). 

 

 

Plant species 

Figure S3 
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Figure S4: Variogram of the residuals of the fullest model on the full 21 plant x 8 fly species dataset (Model 1-
5) with respect to spatial distance, difference in the month of sampling or difference in year of sampling.  

 

Lastly, we explored the relationship between observed and fitted species abundances (log scale) in the best 
models on the full 21 plant x 8 fly species dataset (Figure S5, Model 1-5 on the left panel and model 1-6 on the 
right panel). Data were relatively well fitted except that both models tended to overestimate low abundance 
values. 

 

 

Model 1-5 Model 1-6 

Figure S5 
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BIC robustness in PLN models comparisons 

To estimate the magnitude of the 
uncertainty associated to model 
selection, we have proceeded to 
simulations by bootstrapping samples 50 
times and conducting model comparison 
on the bootstrapped datasets for all 
models of Table 1 (no covariate, plant, 
ecological factors, both with either full or 
diagonal residual matrix on the full 21 
plant x 8 fly species dataset). 
 
 
 
 
 
 

  
Stability of sparse structure in residual matrix 

The function PLNnetwork() allows digging into the residual variance-covariance matrix and infer which 
species pairs still have with significant unexplained covariation in abundance after accounting for covariates. 
In this approach, the residual matrix is formalized as a network, which nonzero edges point to species pairs 

with significantly unexplained covariations. The function builds a series of 40 models with varying penalties 
over the number of edges in the resulting network ( i.e., nonzero residual covariances), and allows comparing 
them using model selection criteria (Figure S7). The stability of network edges, can be evaluated using StARS 
(Liu et al. 2010), which performs resampling to evaluate the robustness of the network along the path of 
solutions. It allows selecting networks with varying stability criteria (Figures S8 and S9). 

 

Figure S8 Figure S7 

Figure S6 
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Figure S9: Various networks inferred. A. Network with the best BIC criterion. B. Network with a stability of 
0.95. C. Network with a stability of 0.75. Whatever the model selection criterion, significant residual 
associations are found between the generalists B. zonata and C. quilicii, and between the specialists Z. 
cucurbitae and D. ciliatius. 

 A B C 
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Inferred realized host use using 36 host plants 

The full initial dataset contained 12872 from 40 host plants. Keeping only samples with GPS 
coordinates, at least one individual fly and at least 10 samples per host plant led to a filtered 
dataset with 6434 samples and 36 host plants, including the 21 ones further studied in the 
laboratory. Conducting PLN modelling on the 36-plant datatset led to the following results.  
 
Figure S10: Residual variance-covariance matrices obtained after PLN model fitting on species 
abundances. A) Without any covariate (Model 1-0). B) With ecological covariates (Model 1-3). C) 

With plant species as a cofactor (Model 1-1). D) 
With both plant species and ecological covariates 
(Model 1-5). 
 
 
Table S8: Model selection on the extended dataset 
(n = 6434). Models are ranked by increasing BIC 
(from best to worst). k is the number of 
parameters. L is the log-likelihood. ΔBIC is the BIC 
difference between any focal model and the best 
one. 
 
 
 
 
 
 

 
Model  Covariates  Residual Matrix  k L BIC ΔBIC 
Model 1-6  Plant + Eco  Diagonal  376 -35018.92 73335.11 0.00 
Model 1-5  Plant + Eco  Full  404 -34955.09 73452.99 117.87 
Model 1-2  Plant  Diagonal  296 -35933.11 74461.95 1126.83 
Model 1-1  Plant  Full  324 -35869.94 74581.15 1246.04 
Model 1-4  Eco  Diagonal  96 -47094.34 95030.54 21695.42 
Model 1-3  Eco  Full  124 -48796.13 98679.67 25344.55 
Model 1-0  None  Full  44 -50013.67 100413.20 27078.08 
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 Figure S11: Realized host use as inferred from 
regression coefficients relative to host plants 
in the fullest model (Model 1-5 on the eight-
species dataset). The orange rectangle 
contains plant-fly associations studied in the 
main text (Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S12: Species abundance responses to ecological variables inferred through regression coefficients 
relative to Dim1 and Dim2, inferred under the fullest model on the 36 plant x 8 fly species dataset (Model 1-
5). Error bars represent approximate confidence intervals (1.96 x standard errors).  
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