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Abstract

Background: Anhedonia, or diminished pleasure, is a prominent symptom in mood and
psychotic disorders. Anticipatory pleasure is particularly impaired in these conditions, which
may be reflected in blunted activity in the fronto-striatal circuitry during evaluation of future
rewards. This study examined the neural correlates of anhedonia during decision-making across
mood and psychotic disorders.

Methods: Analyses included 81 adults with major depression (N=17), bipolar disorder (in
depressed state, N=21), schizophrenia (N=23), or no history of psychopathology (N=20).
Participants performed a delay discounting paradigm while functional imaging data were
acquired at 3T. We examined the relationship between anhedonia and activity in two a priori
regions of interest critical for valuation, the ventromedial prefrontal cortex (vmPFC) and ventral
striatum. Anhedonia was measured using a semi-structured clinical interview; cognition,
depression, and symptoms of psychosis were also evaluated.

Results: Discounting behavior did not differ as function of primary diagnosis or level of
anhedonia (F(3,77) = 0.28, p = 0.84; r = 0.03, p = 0.78). Value-related activity in the vmPFC
was blunted in association with anhedonia ( = -0.27; 95% CI, -0.48 to -0.06; p = 0.01). This
relationship remained significant while controlling for primary diagnosis, behavioral
performance, cognitive functioning, smoking, depression severity, and both positive and negative
symptoms of schizophrenia.

Conclusions: Hypofunction in the vmPFC during decision-making about future rewards is
specifically linked to anhedonia, rather than a general feature of psychopathology. These
findings help elucidate the pathophysiological underpinnings of anhedonia across mood and

psychotic disorders and inform the development of novel treatment approaches.
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Introduction

Anhedonia, or diminished pleasure, is a prominent feature of many neuropsychiatric
disorders. It is classified in the Diagnostic Statistical Manual (DSM) as one of the two core
symptoms of a major depressive episode, which is a diagnostic requirement for major depressive
disorder (MDD) and bipolar disorder (BD). Anhedonia is also a common negative symptom of
schizophrenia (SCZ), suggesting a link between two seemingly distinct categories of psychiatric
disorders (1). In both mood and psychotic disorders, anhedonia is difficult to treat and has been
associated with suicidal ideation (2,3), cognitive dysfunction (4,5), and poor clinical prognosis
(6). Although several theoretical papers have proposed examining the pathophysiology of
anhedonia across mood and psychotic disorders (7-11), only recently have neuroimaging studies
investigated anhedonia from a transdiagnostic perspective (12—17).

Across disorders, anhedonia has been linked to deficits in the brain’s reward system,
including the ventromedial prefrontal cortex (vmPFC) and ventral striatum (VS). Studies to date
have examined anhedonia in relation to altered responses to either positive stimuli (18-20) or
conditioned cues for positive outcomes (21-25). However, accumulating evidence suggests that
anhedonia in these disorders is more prominent with respect to prospective anticipation rather
than consumption (26). That is, anhedonia involves not only how individuals experience rewards
or respond to reward cues, but specifically impacts how they evaluate potential rewards and
decide which ones to pursue. This aligns with the distinction in decision neuroscience between
experienced value, a signal at the time a reward or conditioned cue is experienced, and decision
value, a signal at the time of choice (27). In the same way that anhedonia has been linked to
reduced neural signals of experienced value (18-25), it might also be associated — and perhaps

even more strongly — with dampened neural signals of decision value. However, the
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relationship between anhedonia and neural signals related to decision value has only been
sparsely explored (16,28-30).

Delay discounting is a decision-making task that robustly elicits neural correlates of
decision value throughout the valuation system — including the vmPFC, VS, and posterior
cingulate cortex (PCC) (31,32). In these tasks, individuals choose between a smaller proximal
reward and a larger reward in the future (33). People tend to devalue, or discount, future rewards
compared to more proximal ones. This tendency is captured by the discounting rate, k, which
varies widely across individuals, with larger values indicating greater discounting (i.e.,
“impatient” or “temporally myopic”). Because delay discounting tasks specifically engage the
ability to construct the value of future rewards (i.e., no rewards are actually delivered during the
task), greater anhedonia may be associated with reduced neural representation of decision values
for future rewards. Moreover, the regions where activity is correlated with decision value during
these tasks (such as the vmPFC, VS, and PCC) (31,32) have also been found to exhibit
abnormalities in mood and psychotic disorders (34—-36). To date, neuroimaging investigations of
delay discounting in these conditions have been largely limited to case-control comparisons that
focus on a single disorder (37,38). Therefore, it remains an open question whether anhedonia
across disorders is associated with dysregulation of decision value signals during prospective
decision-making. Moving beyond case-control comparisons to a dimensional framework could
reveal a common circuit-level mechanism for anhedonia across disorders.

The present study aimed to examine neural responses to decision values during delay
discounting across MDD, BD, and SCZ, with the goal of further elucidating transdiagnostic
abnormalities associated with anhedonia. We hypothesized that anhedonia would be associated

with dampened decision value signals in the vmPFC and VS across all three clinical groups.
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Methods and Materials
Participants

Ninety-one participants who met clinical eligibility were recruited from a larger study
(35,39). Primary diagnosis of MDD, BD, or SCZ was ascertained using the Structured Clinical
Interview for DSM-IV Axis I Disorders (SCID-1V) (40), and all participants in the MDD and BD
group were in a depressive episode at the time of the scan to minimize any variance due to manic
symptoms. For BD, both type I and II were included in the study, with three participants meeting
the diagnostic criteria for type II. Healthy control participants were excluded if they met criteria
for any Axis I psychiatric disorder. Given the association between substance use and delay
discounting, participants with a history of pathological gambling, substance abuse or dependence
in the past six months (with the exception of nicotine), or a positive urine drug screen on the day
of the study were excluded. Given the evidence of elevated discount rates in cigarette smokers,
coupled with higher prevalence of smoking in SCZ, all groups were matched on smoking status
(41,42). Of the 91 adults who met clinical eligibility, 4 were excluded from the analyses due to
excessive head motion during the scan, and 6 due to idiosyncratic responses on the task (See
Quality control analysis). Therefore, our final sample consisted of 81 participants. All study
procedures were approved by the University of Pennsylvania’s Institutional Review Board, and
all participants provided written informed consent.
Clinical and cognitive measures

The Clinical Assessment Interview for Negative Symptoms - Beta (CAINS) was used as
the primary measure of anhedonia (43). The CAINS assesses distinct domains of social,
recreational, and vocational pleasure with a primary focus on subjective anhedonia, and therefore

is less susceptible to environmental or external constraints than other existing scales (35,44).
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Given the two-factor structure of the CAINS (motivation and pleasure, expression), we
calculated an aggregate motivation and pleasure (CAINS MAP) score by taking the mean of all
relevant items. Of the 81 participants included in the analysis, 77 were also administered the
Calgary Depression Scale for Schizophrenia (CDSS) (45), the Scale for the Assessment of
Positive Symptoms (SAPS) (46), and the Scale for the Assessment of Negative Symptoms
(SANS) (47). For all clinical measures, higher scores indicate increasing levels of severity.
Additionally, given prior reports associating DD and executive functioning (48—50), cognition
was assessed using a subset of tasks from the Penn Computerized Neurocognitive Battery (CNB)
(51) (see Computerized Neurocognitive Battery in the Supplement). An aggregate cognitive
functioning score was calculated by taking the mean of standardized accuracy scores (z-scores)
on individual tasks.
Delay discounting task

Delay discounting was assessed with an intertemporal choice task (Figure 1A) (32). The
task consisted of 200 choices (4 runs of 50 trials) between two options: $20 now and $X in Y
days, in which X ranged from $20.50 to $50 and Y ranged from 1 to 178 days. Some versions of
this task vary the amount of both immediate and delayed options (42), but keeping the immediate
reward constant allows us to attribute variability in brain activity to changes in decision value of
the delayed reward (31,32). For each trial, participants had 4 s to make a response by pressing
the right or left button, and the locations of now and delayed options were pseudorandomized
across trials. Trials in which the participant did not make a choice in 4 s were coded as missing.
Each trial was followed by a jittered inter-trial interval (ITI) that ranged from 2 to 20 s.
Participants were informed that one of the trials would be randomly selected and realized at the

end of the experiment; payment was provided on a debit card, available immediately or delayed
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according to the participant’s choice on the randomly selected trial. EPrime (https://pstnet.com)

2.0 was used for task presentation.
Parameter estimation
Individual discount curves were fitted using a hyperbolic function (52-56), which

assumes that the decision value (DV) of the delayed reward is:

A .
DV = T (Equation 1)

where A is the amount of the reward, D is the delay to receiving the reward, and & is the subject-
specific free parameter for their discount rate. Participants' individual choice data was fit with the
following logistic function using maximum likelihood estimation with function minimization

routines in MATLAB:

1
P =
delayed 1+e-°PVdelayed—DVimmediate)

(Equation 2)

Pimmediate = 1 — Paelayea (Equation 3)
where G is the scaling parameter in the logistic function. Because & was not normally distributed
(Shapiro-Wilk’s W= 0.69, p <.001), individual k£ was transformed using logio.

Quality control analysis

Runs that were missing more than 10% of the trials (5 out of 50 trials per run) were
excluded from the analyses, in addition to those with excessive head motion for fMRI data
processing (see Image processing). Four participants were excluded because there were fewer
than two runs of usable data, due to excessive head motion or missing trials. Additionally, Tjur’s
coefficient of discrimination (Tjur’s D) was used to assess the logistic model fit, and participants
with Tjur’s D < 0.20 were excluded. One participant was excluded due to low Tjur’s D. Lastly,
participants who chose a single option (either the immediate or delayed reward) more than 99%

of the task were excluded. Four participants were excluded because they only chose the
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immediate reward, and one participant was excluded because they only chose the delayed option
across all trials. Therefore, our imaging and behavioral quality control analyses excluded 4 and 6
participants, respectively. For the subjects included for analyses (N=81), the percentage of
choosing $20 now ranged from 2.5% to 98.5% (M = 58.99, SD = 26.66).
fMRI acquisition

All images were acquired using a Siemens Tim Trio 3T and a 32-channel head coil. For
functional images, 3 mm interleaved axial slices were acquired with echo-planar T2* weighting
(repetition time [TR] = 3000 ms, echo time [TE] = 30 ms, flip angle = 90°, field of view [FOV]
=192 x 192 mm, matrix = 64 x 64, slice thickness = 3 mm). Slice orientation was -30° from the
anterior commissure-posterior commissure (ACPC) plane to minimize signal drop out in the
orbitofrontal cortex. Each run consisted of 168 images, and the first 6 volumes (18 s) of each
scan were discarded to compensate for the T1 saturation effects. High-resolution T1-weighted
MPRAGE anatomical images were acquired for spatial registration to a standard coordinate
system (slice thickness = 1 mm, TR = 1810 ms, TE = 3.51 ms, inversion time [TI] = 1100 ms,
flip angle = 9°, FOV = 1192 x 256 mm, matrix = 256 x 192, 160 slices). Additionally, a BO field
map was acquired for application of distortion correction procedures, using a double-echo
gradient recall echo (GRE) sequence (TR = 1000 ms, TE1 2.69 ms, TE2 5.27 ms, flip angle =
60°, FOV = 240 mm, slice thickness = 4 mm).

Image processing
Image processing and statistical analyses were performed using FSL 5.0.9

(http://www.fmrib.ox.ac.uk/fsl). All volumes were corrected for differences in slice acquisition

using Fourier-space time-series phase-shifting and corrected for small head movements using

MCFLIRT (57). Runs with mean relative displacement (MRD) greater than 0.30 mm were
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excluded. Data were smoothed using a Gaussian kernel of FWHM 6.0 mm and filtered in the
temporal domain using a nonlinear high-pass filter (Gaussian-weighted least-squares straight line
fitting with sigma = 50.0 s). To account for anatomical differences across subjects and to allow
for statistical inference at the group level, functional images were registered to the anatomical
image and spatially normalized to standard MNI space (MNI152, T1 2mm) using linear
registration with FMRIB's Linear Image Registration Tool (FLIRT) and further refined using
FNIRT nonlinear registration (57-59).
fMRI analysis

Using FSL FMRI Expert Analysis Tool Version 6.0, we fit a general linear model (GLM)
that estimated (1) averaged activity for all decisions versus rest (trial regressor) and (2) activity
that was correlated across trials with the decision value of the delayed option (DV regressor,
calculated using Equation 1 above with the subject-specific k). The first two trials of each run
were deleted prior to analysis. All other events were modeled with a fixed duration of 4 s
following the stimulus presentation, and convolved with a canonical double-gamma HRF.
Temporal derivatives of these two regressors, as well as the six motion parameters, were
included as covariates of no interest. Missed trials, in which the participant failed to make a
response in 4 s, were modeled separately.

Subsequently, all eligible runs from each participant were combined using a fixed effect
model. Group-level analyses were performed using FMRIB Local Analysis of Mixed Effects
module (60). For region-of-interest (ROI) analyses, we used the vmPFC and VS clusters reported
in a meta-analysis examining the neural correlates of decision value (See Figure 6A in Bartra et
al. (2013) (61)). To test for any differences in activations across groups, an F-test was performed.

To test for the main effect of anhedonia across the whole brain, individual MAP scores were
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demeaned and included in the GLM as an explanatory variable. Thresholded Z statistic images
were prepared by using a threshold of Z> 3.1 and a corrected extent threshold of p < 0.05,
familywise error-corrected using Gaussian Random Fields Theory (62). In all multisubject
statistics, outliers were de-weighted using mixture modeling (63).

Statistical analyses

Parameter estimation and quality control analyses were performed in MATLAB R2016b
(Mathworks). All imaging analyses were performed in FSL 5.0.9. All statistical analyses were
performed in R 3.5.2 (CRAN). All pairwise t-tests were corrected for multiple comparisons using
Holm’s method (64). For confound analysis, DV-related activity in the ROI was regressed on
each covariate separately to identify significant covariates. Multiple linear regressions were

performed to statistically control for diagnosis and other covariates.

Results
Participants

Demographic and clinical characteristics are available in Table 1. All three clinical
groups scored higher on the CAINS MAP than healthy participants (mpp>nc = 5.16, tBp>HC =
6.34, tscz-nc = 3.80, all p’s < 0.01), but did not differ from one another (F(2,58) =2.68, p =
0.08). Depressive and negative symptoms were also higher in all three clinical groups (all p’s <
0.05), while positive symptoms were higher only in SCZ (¢ = 4.87, all p <0.01). SCZ also had
significantly worse overall cognition than healthy participants (z = 3.35, p = 0.007). Across the
entire sample, anhedonia was significantly correlated with cognitive functioning (» = -0.34),
smoking (» = 0.27), depressive symptoms (r = 0.54), and negative symptoms (» = 0.51) (all p’s <

0.05, Supplemental Table S1).
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Behavioral results

Individual discount rates (raw k values) ranged from 0.0006 (most patient) to 0.27 (least
patient), with a geometric mean of 0.017. The log(k) did not differ significantly across groups
(F(3,77) = 0.28, p = 0.84) (Figure 1B) or by smoking status (¢ = 0.81, p = 0.42), and was not
correlated with anhedonia (» = 0.034, p = 0.78) (Figure 1C). We assessed two measures of model
fit, Tjur’s D (range = 0.22-0.94, mean [SD] = 0.64 [0.17]) and the percentage of choices
predicted (range = 53.6%-98.7%, mean [SD] = 88.5 [7.75]); neither significantly differed across
groups (Tjur’s D: F(3,77) = 2.38, p = 0.08; % correct prediction: F(3,77) =2.09, p = 0.11).
Anhedonia and the value signals

Consistent with previous reports (31,32), decision value was correlated with activity in
widespread regions, including the vmPFC, VS, and PCC, across all participants (Supplemental
Figure S1). For ROI analyses, we defined the vmPFC and VS based on a meta-analysis of neural
correlates of decision value during decision-making (Figure 2A, B) (61). An F-test revealed no
significant group differences in DV-related activity in the vmPFC (F(3,77) = 1.84, p =0.15) or
VS (F(3,77) = 1.92, p = 0.13) (Figure 2C, D). However, the DV-related activity in the vimPFC
was inversely correlated with anhedonia, such that individuals with increasing levels of
anhedonia exhibited weaker value signals in the vmPFC (r =-0.27, p = 0.01) (Figure 2E).
Conversely, the relationship between anhedonia and DV-related activity was not significant in
the VS (r =-0.10, p = 0.36) (Figure 2F).
Specificity of anhedonia

To ascertain the specificity of the effect of anhedonia on value-related activity in the
vmPFC, we performed a series of sensitivity analyses to consider the following covariates:

primary diagnosis (MDD, BD, and SCZ), performance on the cognitive battery (CNB), smoking,
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severity of depression (CDSS), positive and negative symptoms (SAPS, SANS), and behavioral
performance (log(k) and Tjur’s D). Of these covariates, the diagnosis of SCZ, negative
symptoms, and cognition were each individually associated with DV-related activity in the
vmPFC (B (SE), p for SCZ =-0.29 (0.14), 0.04; SANS =-0.22 (0.11), 0.04; CNB = 0.27 (0.10),
0.02). However, in multiple linear regressions that included diagnoses alone (Table 2, Model 2)
or all potential confounds (Model 3), anhedonia remained a significant predictor of DV-related
activity and the inclusion of these covariates did not reduce the size of its standardized
coefficient. Excluding participants on any one class of medication also did not significantly
change the effect of anhedonia (Supplemental Table S2).

Exploratory whole-brain analyses

Beyond our a priori ROIs, we conducted an exploratory analysis for the correlation
between anhedonia and DV-related signal across the whole brain. We found that higher
anhedonia scores were significantly associated with greater value signals in the left PCC (Z >

3.1, p <0.05, FWE corrected) (Figure 3).

Discussion

The present study examined value-related brain activity during decision-making across
mood and psychotic disorders, as a function of anhedonia. Our analyses revealed that value-
related activity in the vimPFC was reduced with anhedonia, such that individuals with more
severe anhedonia exhibited a blunted response to increasing values of the future reward in a
prospective decision-making task. Moreover, anhedonia predicted decision value signals in the
vmPFC above and beyond the effects of primary diagnosis, cognitive functioning, nicotine use,

severity of depression, and positive and negative symptoms. These results demonstrate the
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specificity of the effects of anhedonia on vimPFC function in the context of evaluating future
rewards. These results further suggest that the vmPFC may be an important therapeutic target for
anhedonia and amotivation.

Prior studies investigating reward-related dysfunction in mood and psychotic disorders
have often used general symptom severity (e.g., depressive or negative symptoms) or blunted
neural activity as a proxy of anhedonia. Here we demonstrate specific links between anhedonia,
as assessed by a validated clinical interview, and value-related neural activity in the context of
decision-making. The present study is a novel addition to the existing literature that has primarily
focused on responses to reward consumption (18-20) or reward-related cues (21-25). As
evidence accumulates that anhedonia may manifest as impaired decision-making (26), it is
important to understand not only the aspects of reward experience, but also how prospective
reward is evaluated and translated into goal-directed action.

Prior studies relating anhedonia to neural responses to rewards or reward cues reported
striatal hypoactivity, and often did not find a significant effect in the vmPFC (21-25). In
contrast, we found that anhedonia was inversely correlated with value-related activity in the
vmPFC, while in the VS this inverse relationship was a non-significant trend. This discrepancy
may be partly due to the focus on experienced versus decision value signals. Meta-analyses
report stronger experienced value-related activity in the VS, and stronger decision value-related
activity in the vmPFC, though both kinds of signals are present in both regions (61,65).
Additionally, VS activity can partly be driven by feedback and prediction errors (66), and no
reward was delivered during our task.

Beyond these a priori regions of interest, individuals with anhedonia recruited the PCC to

a greater extent in encoding the decision value of future rewards. Though exploratory, this
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finding is broadly consistent with a prior study that found greater PCC activation in individuals
with SCZ during the DD task (37). One speculation is that this increased signal of decision value
in the PCC might reflect compensation for weaker decision value signals in the vmPFC in
anhedonic individuals. Regardless of the interpretation, this result provides further evidence that
the representation of decision values is altered in anhedonia.

In this study, neither diagnosis nor anhedonia was associated with discounting rate. Prior
behavioral studies have reported elevated discount rates in SCZ (49,67—70), although results are
mixed in mood disorders (68,70—75). Although not statistically significant in our sample, we
observed a trend in individuals with SCZ to discount more than others. The absence of
significant behavioral differences in our sample aids interpretation of the imaging findings, as the
observed functional differences are not secondary to behavioral differences on the task.
Specifically, differences in performance in clinical groups can confound the interpretation of
neural differences, a limitation that is often overcome by matching for behavioral performance
(37,76-78). Another potential behavioral confound is that the estimates of decision value (i.e.,
the discounting model fits) might be less accurate in anhedonic participants. However, we can
rule out this confound here, because anhedonia predicted vinPFC activity after controlling for
model fit.

Our study has several limitations. First, the MAP subscale of the CAINS constitutes a
single factor not suited for distinguishing anticipatory from consummatory anhedonia, and we
might expect vmPFC function to be more strongly related to the anticipatory aspects of
anhedonia. However, both domains of anhedonia are elevated in these disorders and the two
domains tend to be highly correlated on self-reports (79). Second, we did not evaluate whether

vmPFC hypofunction in anhedonia is a general feature of decision-making, or rather specific to
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delay discounting. Despite these limitations, these findings demonstrate that perturbed value
signals in this region during the evaluation of future rewards correlated with the severity of
anhedonia, over and above the effects of clinical diagnosis, cognitive functioning, or severity of
depression as well as positive and negative symptoms. Demonstrating such symptom-specific
alterations across diagnoses helps elucidate the pathophysiological underpinnings of anhedonia

and can inform future treatment development.
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Table legends

Table 1. Descriptive and group comparison statistics for sample characteristics.

Note: All values in X (Y) format are mean (standard deviation). HC = healthy control, MDD =
major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, CNB = average z-score
on the Penn Computerized Neurocognitive Battery, logio(k) = subject-specific parameter for
discount rate, Tjur’s D = Tjur’s coefficient of discrimination, % predicted = percentage of
correct model predictions of choice, CAINS MAP = motivation and pleasure, CDSS = Calgary
Depression Scale for Schizophrenia, SAPS = Scale for the Assessment of Positive Symptoms,

SANS = Scale for the Assessment of Negative Symptoms.

* p <.05 for univariate ANOVA across the four groups.
 Three participants met the diagnostic criteria for bipolar disorder type II.

b Data available on a subsample (n=77).

Table 2. Beta coefficients and standard errors from linear regression models (dependent variable
= beta coefficients for DV in the vimPFC).

Note: CAINS MAP = motivation and pleasure, MDD = major depressive disorder, BD = bipolar
disorder, SCZ = schizophrenia, CNB = average z-score on the Penn Computerized
Neurocognitive Battery, Smoke = 1 for smoker, 0 for non-smoker, CDSS = Calgary Depression
Scale for Schizophrenia, SAPS = Scale for the Assessment of Positive Symptoms, SANS = Scale
for the Assessment of Negative Symptoms, logio(k) = subject-specific parameter for discount

rate, Tjur’s D = Tjur’s coefficient of discrimination
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*p <.05.

Figure legends

Figure 1. (A) Delay discounting fMRI paradigm. Participants chose between two options: $20
now and a larger reward at various delays. The chosen option was underlined for the remaining
part of the trial duration to provide visual feedback of their choice. Each trial was followed by a
jittered inter-trial interval (ITI) that ranged from 2 to 20 s. (B) Discount rate, log(k), did not
differ significantly by primary diagnosis (£(3,77) = 0.28, p = 0.84). (C) Similarly, discount rate
was not correlated with anhedonia ( = 0.034, p = 0.78).

Note: log(k) = individual discount rate, HC = healthy control, MDD = major depressive disorder,
BD = bipolar disorder, SCZ = schizophrenia, CAINS MAP = Motivation and Pleasure subscale

score of the CAINS.

Figure 2. (A, B) The functional masks for the vimPFC (blue) and VS (red) as reported in a meta-
analysis by Bartra et al. (2013). No significant difference by primary diagnosis was found in the
(C) vimPFC or (D) VS. (E) DV-related activity in the vmPFC was inversely correlated with
anhedonia (CAINS MAP). (F) This correlation was not significant in the VS.

Note: DV = decision value of the delayed reward, HC = healthy control, MDD = major
depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, CAINS MAP = Motivation

and Pleasure subscale score of the CAINS.
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Figure 3. Exploratory whole-brain analysis of the correlation between DV-related activity and
anhedonia. Higher scores on the CAINS MAP are associated with greater DV-related activity in

the left PCC (Z > 3.1, p <0.05, FWE corrected).
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Table 1. Descriptive and group comparison statistics for sample characteristics

HC MDD BD? SCZ
N 20 17 21 23
Age in years 41.70 (10.56)  35.02 (12.62)  37.66 (11.56) 41.16 (10.01)
Sex: male 35.00% 47.06% 66.67% 39.13%
Race
White 55.00% 58.82% 66.67% 30.43%
African American 45.00% 29.41% 28.57% 60.86%
Asian 0% 5.88% 4.76% 4.35%
Mixed 0% 5.88% 0% 4.35%
Ethnicity
Non Hispanic 100% 94.11% 85.71% 95.65%
Hispanic 0% 5.88% 14.29% 4.35%
Years of education 15.00 (2.20) 14.82 (2.58) 15.48 (2.25) 13.70 (1.82)
Delay discounting task
logio(k) -1.81 (0.67) -1.81 (0.43) -1.79 (0.74)  -1.67 (0.44)
Tjur’s D 0.71 (0.18) 0.65 (0.18) 0.64 (0.17) 0.57 (0.14)
% predicted 90.98 (6.12) 85.53 (8.10) 89.78 (9.73)  87.49 (5.98)
Cognitive performance
CNB z-score* 0.38 (0.47) -0.04 (0.52) -0.04 (0.53)  -0.18 (0.62)
Clinical symptoms
Current nicotine use 25.00% 17.65% 28.57% 30.43%
CAINS MAP* 0.82 (0.40) 1.82 (0.71) 1.90 (0.67) 1.46 (0.67)
CDSS*® 0.32 (1.38) 11.71 (3.14) 11.05 (4.42)  2.95(2.70)
SAPS*P 0.11(0.47) 0.53 (1.33) 1.52 (2.34) 4.45 (4.15)
SANS*® 1.11 (2.32) 6.18 (2.27) 6.86 (2.50) 7.91 (4.31)
Medication
Typical antipsychotics* 0% 0% 0% 21.74%
Atypical antipsychotics* 0% 0% 42.86% 82.61%
Benzodiazepines 0% 17.65% 23.81% 21.74%
Lithium* 0% 5.88% 52.38% 0%
Mood stabilizing 0% 0% 33.33% 8.70%
anticonvulsants*
Other anticonvulsants 0% 5.88% 4.76% 4.35%
Antidepressants* 0% 58.82% 23.81% 47.83%
Stimulants 0% 11.76% 4.76% 8.70%
Anticholinergic 0% 5.88% 0% 8.70%
Other* 0% 41.18% 28.57% 13.04%
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Table 2. Beta coefficients and standard errors from linear regression models (dependent variable
= beta coefficients for DV in the vmPFC)

Model 1 Model 2 Model 3

CAINS MAP -0.27 (0.11)* -0.32 (0.13)* -0.33 (0.15)*
Primary diagnosis

MDD - 0.14 (0.15) -0.08 (0.26)

BD - 0.02 (0.16) -0.22 (0.25)

SCZ - -0.16 (0.14) -0.20 (0.20)
CNB - - 0.13 (0.13)
Smoke - - 0.14 (0.12)
Severity of illness

CDSS - - 0.32 (0.24)

SAPS - - 0.07 (0.15)

SANS - - -0.03 (0.16)
Task performance

Logio(k) - - -0.30 (0.12)*

Tjur’s D - - -0.08 (0.13)
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Supplementary Methods and Materials
Computerized Neurocognitive Battery

The following tasks from the Penn Computerized Neurocognitive Battery (CNB) were
administered (neurobehavioral function; domain) (1): Penn Face Memory (episodic memory;
face memory), Short Penn Continuous Performance Test (executive control; attention), Penn
Emotion Recognition Test (social cognition; emotion identification), Penn Word Memory
(episodic memory; verbal memory), Short Letter N-back (executive control; working memory),
Short Penn Line Orientation Test (complex cognition; spatial ability), Short Penn Conditional
Exclusion Task (executive control; mental flexibility), Short Penn Logical Reasoning Test

(complex cognition, language reasoning).
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Supplemental Table S1. Intercorrelation of confound variables.

1 2 3 4 5 6
1. CAINS MAP -
2.CNB -0.34%* -
3. Smoke 0.27* -0.20 -
4. CDSS 0.54%** -0.20 0.09 -
5. SAPS 0.14 -0.10 0.20 0.09 -
6. SANS 0.51%** -0.29* 0.25* 0.29* 0.40%** -

Note: CAINS MAP = motivation and pleasure, CNB = average z-score on the Penn
Computerized Neurocognitive Battery, Smoke = 1 for smoker, 0 for non-smoker, CDSS =
Calgary Depression Scale for Schizophrenia, SAPS = Scale for the Assessment of Positive
Symptoms, SANS = Scale for the Assessment of Negative Symptoms.

*p<0.05
** p<0.01
**% p <0.001
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Supplemental Table S2. Comparison of beta coefficients and standard errors for anhedonia
(CAINS MAP) from linear regression models in subsamples excluding participants on each class
of medications (dependent variable = beta coefficients for DV in the vmPFC).

Sample N 3 Model 1 3 Model 2 3 Model 3
Full sample 81 -0.27 (0.11)* -0.32 (0.13)* -0.33 (0.15)*
Subsample excluding
Typical antipsychotics 76 -0.30 (0.11)* -0.40 (0.13)** -0.39 (0.15)
Atypical antipsychotics 53 -0.24 (0.14) -0.32 (0.18) -0.50 (0.19)*
Benzodiazepines 68 -0.34 (0.12)* -0.35 (0.14)* -0.36 (0.16)*
Lithium 69 -0.32 (0.12)** -0.36 (0.14)* -0.36 (0.17)*
Mood stabilizing 72 -0.37 (0.11)** -0.44 (0.13)** -0.44 (0.15)**
anticonvulsants
Other anticonvulsants 78 -0.31 (0.11)** -0.36 (0.13)** -0.38 (0.14)*
Antidepressants 55 -0.34 (0.13)* -0.44 (0.16)** -0.54 (0.17)**
Stimulants 76 -0.27 (0.11)* -0.31 (0.14)* -0.36 (0.16)*
Anticholinergic 78 -0.30 (0.11)** -0.38 (0.13)** -0.37 (-0.14)*
Other 65 -0.38 (0.12)** -0.38 (0.14)** -0.36 (0.16)*

Note: Independent variables for each model were the following.

Model 1: CAINS MAP

Model 2: CAINS MAP + Primary diagnosis

Model 3: CAINS MAP + Primary diagnosis + CNB + Smoke + CDSS + SAPS + SANS +
Logio(k) + Tjur’s D

CAINS MAP = motivation and pleasure, CNB = average z-score on the Penn Computerized
Neurocognitive Battery, Smoke = 1 for smoker, 0 for non-smoker, CDSS = Calgary Depression
Scale for Schizophrenia, SAPS = Scale for the Assessment of Positive Symptoms, SANS = Scale
for the Assessment of Negative Symptoms, logio(k) = subject-specific parameter for discount
rate, Tjur’s D = Tjur’s coefficient of discrimination

*p <.05.
** p<.0l.
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Supplemental Figure S1. Positive effect of decision value. Across all participants, the decision
value of delayed rewards was correlated with activity in widespread regions, including vmPFC,
ventral striatum, and PCC (Z> 3.1, p = 0.05, FWE corrected).
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