bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.404228; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

. A comparison of blood and brain-

. derived ageing and inflammation-

. related DNA methylation signatures

. and their association with microglial
burdens

7 Anna J. Stevensonl’z, Daniel L. McCartneyl, Gemma L. Shirebys, Robert F. HiIIaryl, Declan King2'4,
8 Makis Tzioras>*, Nicola Wrobel®, Sarah McCaffertyS, Lee Murphys, Barry W. McColl**, Paul
9 Redmond® Adele M. Taylors, Sarah E. Harris®’, Tom C. Russ®®?, Eilis ] Hannon®, Andrew M.
10 Mclntoshg, Jonathan Mills, Colin Smithlo, lan J. Deary6’7, Simon R. Cox6'7, Riccardo E. Marioni™® *, Tara

11 L. Spires-Jonesz"‘*

12 ! Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine,
13 University of Edinburgh, Edinburgh, EH4 2XU, UK

14  *Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK

15 3 University of Exeter Medical School, University of Exeter, Exeter, EX2 4TE, UK

16  “UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK

17 > Edinburgh Clinical Research Facility, Western General Hospital, Edinburgh, EH4 2XU, UK

18 ® Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK

19  ’Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK

20  ®Alzheimer Scotland Dementia Research Centre, 7 George Square, University of Edinburgh,

21  Edinburgh, EH8 9JZ, UK

22 ?Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
23 19 Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France
24 Crescent, Edinburgh EH16 4SB, UK

25
26  *Corresponding author
27
28
29
30
31
32

33


https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.404228; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

34

35 Abstract
36

37  Inflammation and ageing-related DNA methylation patterns in the blood have been linked to a

38  variety of morbidities, including cognitive decline and neurodegenerative disease. However, it is

39 unclear how these blood-based patterns relate to patterns within the brain, and how each

40  associates with central cellular profiles. In this study, we profiled DNA methylation in both the blood
41  andin five post-mortem brain regions (BA17, BA20/21, BA24, BA46 and hippocampus) in 14

42  individuals from the Lothian Birth Cohort 1936. Microglial burdens were additionally quantified in
43  the same brain regions. DNA methylation signatures of five epigenetic ageing biomarkers

44  (‘epigenetic clocks’), and two inflammatory biomarkers (DNA methylation proxies for C-reactive

45 protein and interleukin-6) were compared across tissues and regions. Divergent correlations

46  between the inflammation and ageing signatures in the blood and brain were identified, depending
47  onregion assessed. Four out of the five assessed epigenetic age acceleration measures were found
48  tobe highest in the hippocampus (B range=0.83-1.14, p<0.02). The inflammation-related DNA

49  methylation signatures showed no clear variation across brain regions. Reactive microglial burdens
50  were found to be highest in the hippocampus (B=1.32, p=5x10"); however, the only association

51  identified between the blood- and brain-based methylation signatures and microglia was a

52  significant positive association with acceleration of one epigenetic clock (termed DNAm PhenoAge)
53  averaged over all five brain regions (f=0.40, p=0.002). This work highlights a potential vulnerability
54  of the hippocampus to epigenetic ageing and provides preliminary evidence of a relationship

55  between DNA methylation signatures in the brain and differences in microglial burdens.
56
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66 1. Introduction
67

68  Ageingis characterised by a progressive deterioration of physiological integrity and is a key risk

69  factor for a multitude of diseases. A pervasive feature of ageing is a persistent, or chronic, systemic
70  inflammation (1). This process is characterised by a subtle elevation of inflammatory mediators in
71  the periphery, in the absence of evident precipitants or disease states. Chronic inflammation has
72 beenidentified as a common feature in the preponderance of neurodegenerative diseases and is
73  increasingly recognised as a potential mediator of cognitive impairment in older age (2). There is,
74  however, still a paucity of understanding of the biological mechanisms involved in chronic

75  inflammation and how peripheral and central inflammatory mechanisms relate.

76  Recently, the link between inflammation and the epigenetic mechanism of DNA methylation (DNAm)
77 has begun to be addressed (3, 4). DNAm is typically characterised by the addition of a methyl group
78  toacytosine, in the context of a cytosine-guanine (CpG) dinucleotide. It has been implicated in the
79  regulation of gene expression and can itself be influenced by both genetic and environmental factors
80 (5, 6). Genome-wide DNAm patterns in the blood have been leveraged to index lifestyle traits, such
81  assmoking (7, 8), and have been used to investigate diverse physical and mental health-related

82  phenotypes, including cognitive functioning (9). In addition to this, by exploiting the manifest

83  alterations in DNAm patterns with ageing, several DNAm-based markers of age have been

84 developed, which attempt to provide surrogate measures of biological ageing (10-13). These

85  ‘epigenetic clocks’ have been used to provide a measure of biological age acceleration, or

86  deceleration, by establishing the difference between an individual’s chronological and epigenetic

87  age. Positive age acceleration quantified in the blood has been associated with an increased risk of
88  mortality and a variety of age-related morbidities, including with a lower cognitive ability (14-16). In
89  addition to this, recently, we found that blood-based DNAm proxies for two inflammatory mediators
90  —C-reactive protein (CRP) and interleukin-6 (IL-6) — were inversely associated with cognitive ability in

91  older adults with larger effect sizes compared to the biomarkers themselves (17, 18).

92  While these findings suggest that an accelerated biological age, and raised DNAm inflammation

93  patterns associate with poorer cognitive functioning, it is important to note that these studies

94  analysed blood tissue. While the blood represents a practical, accessible source by which to

95 investigate such outcomes, DNAm is known to confer both cell-type and tissue-specific patterns (19).
96 For analyses of brain-based traits such as cognitive ability, brain samples offer the optimal disease-
97 relevant tissue; however, given the obvious limitations of access to such tissue, much of the research
98  assessing the association between differential DNAm and disorders of the central nervous system

99  has been conducted in peripheral whole blood (20, 21). While this approach can provide informative
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100  peripheral markers of central aberration or disease, it is important to investigate the relevant target
101  tissue to characterise both how peripheral and central patterns equate, and how each relates to
102  cellular differences within the brain. Microglia are the primary tissue-resident immune cells of the
103  central nervous system and have critical roles in homeostasis and neuroinflammation. Aged

104 microglia have been shown to be more responsive to pro-inflammatory stimuli compared to naive
105 microglia, and evidence suggests the cells are particularly sensitive to both acute and chronic

106  systemic inflammation detected via peripheral-central signalling pathways (22, 23). Microglia have
107  additionally been implicated in age-related neurological dysfunction; however, as yet, it is unclear
108 how inflammation and age-related DNAm patterns in both the periphery and the brain itself relate

109  to microglial burdens.

110  In this study, we utilise data from 14 participants of the Lothian Birth Cohort 1936. These individuals
111  have blood-based DNAm data available at up to 4 time-points between the ages of 70-79 years and
112  additionally donated post-mortem brain tissue to the study. In the brain, we profiled DNAm and

113 quantified microglial burdens in five regions (primary visual cortex [BA17], inferior temporal gyrus
114  [BA20/21], anterior cingulate cortex [BA24], dorsolateral prefrontal cortex [BA46], and

115  hippocampus). DNAm CRP and IL-6 profiles, along with five different DNAm age acceleration

116  measures, were characterised in the blood and in each brain region to investigate the relationship
117  between peripheral and central age- and inflammation-related methylation patterns and how these
118  relate to inflammatory processes in the brain. Given the small sample size of this study, the results
119  presented here represent preliminary patterns; however, this data, and the methodology employed,

120  provides a framework upon which future, larger scale, work can be based.

121

122 2. Methods
123

124 2.1 The Lothian Birth Cohort 1936
125

126  The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal study of ageing. Full details on the study
127  protocol and data collection have been described previously (24, 25). Briefly, the cohort comprises
128 1,091 individuals born in 1936 most of whom completed a study of general intelligence —the

129  Scottish Mental Survey —in 1947 when they were aged around 11 years. Participants who were
130  living in Edinburgh and the surrounding area were re-contacted around 60 years later with 1,091
131 individuals consenting to join the LBC1936 study. At Wave 1 of the study participants were around

132  70vyears old (mean age: 69.6(1t20.8 years) and they have since completed up to four additional


https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.404228; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

133  assessments, triennially. At each assessment, participants have been widely phenotyped with

134 detailed physical, cognitive, epigenetic, health and lifestyle data collected. A tissue bank for post-
135  mortem brain tissue donation was established at Wave 3 of LBC1936 in collaboration with the

136  Medical Research Council-funded University of Edinburgh Brain Banks. To date, ~15% of the original
137  LBC1936 sample have given consent for post-mortem tissue collection. At the time of this study,

138  samples from 14 individuals were available.

139 2.2 Ethics
140

141  Ethical permission for LBC1936 was obtained from the Multi-Centre Research Ethics Committee for
142  Scotland (MREC/01/0/56), the Lothian Research Ethics Committee (Wave 1: LREC/2003/2/29) and
143  the Scotland A Research Ethics Committee (Waves 2, 3 and 4: 07/MREQ0/58).

144  Use of human tissue for post-mortem studies was reviewed and approved by the Edinburgh Brain
145 Bank ethics committee and the medical research ethics committee (the Academic and Clinical

146  Central Office for Research and Development, a joint office of the University of Edinburgh and NHS
147  Lothian, approval number 15-HV-016). The Edinburgh Brain Bank is a Medical Research Council
148  funded facility with research ethics committee (REC) approval (16/ES/0084).

149

150 2.3 DNA methylation preparation
151

152 2.3.1 Blood
153

154  DNAm from whole blood was quantified at 485,512 CpG sites using the lllumina Human Methylation
155 450k BeadChips at the Edinburgh Clinical Research Facility. Full details of the quality control steps
156 have been described previously (26, 27). Briefly, raw intensity data were background-corrected and
157  normalised using internal controls. Samples with inadequate bisulphite conversion, hybridisation,
158  staining signal or nucleotide extension were removed upon manual inspection. Further, probes with
159 a low detection rate (p>0.01 in >5% of samples), samples with a low call rate (<450,000 probes

160  detected at p<0.01), samples exhibiting a poor match between genotype and SNP control probes,
161  and samples with a mismatch between methylation-predicted, and recorded, sex were additionally
162  excluded. This left a total of 450,276 autosomal probes. In analyses comparing blood and brain

163 DNAm signatures, the last blood measurement before death was used and models were adjusted for
164  theinterval between the blood draw and death (see Supplementary Table 1; mean interval: 2.5

165  vyears, SD: 1.5).
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166 2.3.2 Brain
167

168  Brains were removed at post-mortem and cut into coronal slices. Regions of interest dissected, as
169  detailed previously (28). Tissue samples from cortical regions BA17, BA20-21, BA24, BA46 and

170  hippocampus, were collected and snap frozen. From these sections ~25mg of tissue was processed
171  for DNA extraction. DNA extraction was performed using a DNeasy kit (Qiagen) and DNAm was
172 profiled using lllumina MethylationEPIC BeadChips at the Edinburgh Clinical Research Facility.

173  Samples were processed randomly. Quality control steps were performed as follows: the

174  wateRmelon pfilter() function (29) was used to remove samples in which >1% of probes had a

175  detection p-value of >0.05, probes with a beadcount of <3 in >5% of samples, and probes in which
176  >1% of samples had a detection p-value of >0.05. Probes mapping to polymorphic targets, cross-
177  hybridising probes and probes on the X and Y chromosomes were additionally removed. The

178  performance of 15 normalisation functions was assessed, following the protocol described by Pidsley
179  etal. (29). The top-ranking method was danet which equalises background from type 1 and type 2
180  probes, performs quantile normalisation of methylated and un-methylated intensities

181  simultaneously, and then calculates normalised methylation B-values. The normalised dataset

182  comprised 69 samples (14 individuals, 5 regions, 1 missing hippocampal sample) and 807,163

183 probes.

184 2.4 Derivation of DNA methylation signatures
185

186  2.4.1 Epigenetic age acceleration
187

188 Methylation-based epigenetic age acceleration estimates were obtained from the online Horvath

189  DNAm age calculator (https://dnamage.genetics.ucla.edu/)(11). Normalised DNAm data was

190  uploaded to the calculator using the ‘Advanced Analysis’ option. This output provides four different
191 age acceleration measures: intrinsic epigenetic age acceleration (IEAA) (11); extrinsic epigenetic age
192  acceleration (EEAA) (12); DNAm PhenoAge acceleration (AgeAccelpheno)(10); and DNAmM GrimAge
193 acceleration (AgeAccelgim)(13). IEAA is defined as the residuals resulting from the regression of

194  estimated epigenetic age based on the Horvath epigenetic clock on chronological age, fitting

195  estimated proportions of immune cells. IEAA is designed to capture cell-intrinsic epigenetic ageing,
196 independent of age-related changesin blood cellular composition. EEAA is estimated firstly by

197  calculating a weighted average of Hannum'’s methylation age with three cell types — naive cytotoxic
198 T cells, exhausted cytotoxic T cells and plasmablasts. EEAA is defined as the residuals resulting from

199  the univariate regression of this weighted estimate on chronological age and correlates with age-
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200  related changes in the blood cellular composition. Though these measures are most appropriate for
201 use in the blood as they account for blood cell proportions, the correlation between these and the
202  unadjusted measures are both >0.97, suggesting they are very similar. Rather than aiming to predict
203  chronological age, DNAm PhenoAge was designed to capture an individual’s ‘phenotypic age’ —a

204 composite set of clinical measures associated with mortality. Regressing DNAm PhenoAge onto

205 chronological age provides the acceleration measure: AgeAccelpheno. Similarly, DNAmM GrimAge was
206  designed to predict mortality based on a linear combination of age, sex, and DNAm-based surrogates
207  for smoking and seven plasma proteins. AgeAccelgim provides the measure of epigenetic age

208 acceleration from this clock. In addition to the epigenetic age acceleration measures, the online

209  calculator provides an estimate of the proportion of neurons in each sample, derived using the cell

210  epigenotype specific (CETS) algorithm (30).

211  Recently, a novel epigenetic clock (DNAmMClockeorical) Was developed to optimally capture brain-

212 specific epigenetic ageing (31). This clock was trained on 9 human cortex methylation datasets of
213  tissue from individuals unaffected by Alzheimer’s disease (total n=1,397, age range=1-104 years).
214 The model selected 347 DNAm sites and the clock was then tested in an external cohort,

215  outperforming other epigenetic clocks for age prediction within the brain. The sum of DNAm levels
216  at these sites weighted by their regression coefficients provided the cortical DNAmClockcortical age
217  estimate. The residuals resulting from regressing DNAmClockeorica age on chronological age provided

218  the age acceleration measure for this epigenetic clock (AgeAccelcortical)-

219  2.4.2 Inflammation signatures
220

221 DNAm scores for the acute-phase inflammatory mediator C-reactive protein (CRP) and the pro-

222 inflammatory cytokine interleukin-6 (IL-6) were derived as described previously (17, 18, 32). The
223 DNAm CRP score was obtained using data from a large epigenome-wide association study (EWAS) of
224 CRP (3). This EWAS identified 7 CpG sites with strong evidence of a functional association with

225  circulating CRP. One of these CpGs (cg06126421) was not available on the EPIC array, therefore the
226 sum of DNAm levels at the remaining 6 CpG sites weighted by their regression coefficients from the
227  EWAS provided the DNAm CRP score (32) (Supplementary Table 2). The IL-6 score was derived from
228 an elastic net penalised regression model using the Wave 1 LBC1936 blood methylation and Olink®
229  IL-6 data (Olink® inflammation panel, Olink® Bioscience, Uppsala, Sweden) (17). This approach

230 identified 12 CpG sites that optimally predicted circulating IL-6. In the current study, the elastic net
231 regression was re-run omitting individuals providing post-mortem brain samples (n=863). This model

232  returned a set of 13 CpG sites (inclusive of the 12 CpGs from the original model). The DNAm IL-6
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233 score in both blood and brain were thus derived from the sum of DNAm levels at these 13 CpG sites

234  weighted by their regression coefficients (Supplementary Table 3).

235

236 2.5 Immunohistochemistry, thresholding and burden quantification
237

238  Fixed tissue sections (4um) from cortical regions BA17, BA20-21, BA24, BA46 and hippocampus were
239 processed for immunohistochemistry. Staining was carried out as described previously (33). Briefly,
240  microglial lysosomes were stained using CD68 (mouse anti-human monoclonal primary antibody,
241  Dako M0876, 1:100, citric acid in pressure cooker pre-treatment). Immunohistochemistry was

242  performed using standard protocols, enhanced with the Novolink Polymer detection system and
243  visualised using 3,3’-diaminobenzidine (DAB) with 0.05% hydrogen peroxide as chromogen. Tissue

244  was counterstained with haematoxylin for 30 seconds to visualise cell nuclei.

245 Stains were visualised using a ZEISS Imager.Z2 stereology microscope using MBF Biosciences Stereo
246  Investigator software. All 6 layers of cortical grey matter were included in analysis. Cortical grey

247 matter was outlined at 1.5X objective magnification and tile scans were acquired at 5X for

248  quantification. Glia were quantified using in-built software that captures immuno-positive objects
249  using an automated thresholding algorithm based on colour and size. Objects smaller than 10um®
250  were not considered true staining and were thus excluded in the burden analysis. The threshold and
251 exposure remained consistent throughout all analysis. Neurolucida Explorer was used to quantify
252  thetotal area of the region of interest and that of the outlined objects. A percentage burden was

253  then calculated by dividing the stained area by the total tissue area.

254 2.6 Statistical analyses
255

256  Spearman correlations were calculated between the inflammation, and epigenetic age acceleration,
257  measures in the blood and each brain region using the last available blood-based measure prior to
258  death. Linear mixed effects models were used to investigate the regional heterogeneity in the

259  epigenetic age acceleration variables and the DNAm inflammation scores in the brain. BA17 was set
260  asthe reference as this region is typically not affected until the latter stages of neurodegenerative
261  diseases that impact cognitive functioning, such as Alzheimer’s disease. Models were adjusted for
262  age at death, post-mortem interval, sex, and proportion of neurons, with participant ID fitted as a
263 random effect on the intercept. Linear mixed effects models were additionally used to assess the
264  association between the DNAm signatures in both the blood and the brain and CD68" microglial

265  burdens. Here, an interaction term between the brain region and DNAm score was included to test if
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266  any effects were region dependent. The same covariates and random effect as above were included.
267 Models assessing blood-based signatures were additionally adjusted for the interval between their
268  measurement and death. In each regression analysis, continuous variables were scaled to have a
269  mean of zero and unit variance. We considered a statistical significance threshold of p<0.05. We

270  additionally discuss how results change at a more conservative Bonferroni-corrected level of

271  significance (p<0.05/41 = 0.001).

272 3. Results
273

274 3.1 Cohort demographics
275

276  Post-mortem details for each individual included in the study are presented in Supplementary Table
277 1. Summary statistics for each of the variables included in analyses is presented in Table 1. Age at
278  death ranged from 77.6 to 82.9 years (mean=80.3, SD=1.56). Five of the 14 (36%) individuals were
279  female.

280 3.2 DNAm inflammation signatures
281

282  The Spearman correlation between the last blood DNAm CRP score and the mean brain DNAm CRP
283  score was 0.06. This blood-brain correlation varied by region, ranging from -0.52 in BA17 to 0.46 in
284  BA46 (Supplementary Figure 1).

285  Aboxplot of the DNAm CRP score in the five brain regions is presented in Figure 1. No significant
286  differences were identified in the analysis by region (Supplementary Table 4), indicating none of the

287  assessed regions had a significantly different DNAm CRP score compared to BA17.

288 The correlation between the last blood DNAm IL-6 score and the mean brain DNAm IL-6 score was

289  0.04, ranging from -0.12 in the hippocampus to 0.27 in BA46 (Supplementary Figure 2).

290  Aboxplot of the DNAm IL-6 score in the five brain regions is presented in Figure 1. In the analysis by
291  region, the DNAm IL-6 score was found to be significantly lower in BA24 (B=-0.86, SE=0.35, p=0.017),
292  BA46 (p=-0.82, SE=0.30, p=0.009) and the hippocampus (f=-1.002, SE=0.32, p=0.003) compared to
293  BA17 (Supplementary Table 4).

294 3.3 DNAmM age acceleration
295

296  The correlations between the last blood DNAm age acceleration and the mean age acceleration in

297 the brain were -0.04 for IEAA, 0.48 for EEAA, 0.39 for AgeAccelarim, and 0.30 AgeAccelpheno.
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298  Correlation plots between the last blood DNAm age acceleration measure and the DNAm age

299 acceleration in the brain split by region are presented in Supplementary Figures 3-6. The coefficients
300 for AgeAccelgim, AgeAccelpheno and EEAA were all positive, ranging from 0.09 between AgeAccelpheno
301 in the blood and in BA46, to 0.78 between the last blood EEAA and EEAA in BA17. IEAA showed a
302  negative correlation between the last blood measurement and the measure in BA20/21 (r=-0.27),
303  BA24 (r=-0.14) and BA46 (r=-0.25) but a positive correlation in the hippocampus (r=0.30) and BA17
304 (r=0.49). For EEAA, some of the positive correlations appear largely driven by an individual with a
305  high last blood measure (38.2) which corresponded with high measures in each of the brain regions
306 (Supplementary Figure 4). This individual additionally had consistently high last blood measures in

307  each of the other epigenetic age acceleration measures assessed (range: 6.6-25.4).

308  Boxplots of the five different epigenetic age acceleration measures in each of the five brain regions
309 are presented in Figure 2. The hippocampus displayed the highest DNAm age acceleration compared
310 to BA17 for each of the assessed measures except for AgeAccelg,i,, which was highest in BA24

311 (Supplementary Table 5; AgeAccelconical: =0.901, SE=0.19, p=2.6x10"; AgeAccelpheno: p=1.14,

312 SE=0.27, p=1x10" IEAA: B=0.83, SE= 0.34, p=0.02; EEAA: =0.99, SE=0.24, p=1x10"*). The result for
313  EEAAremained similar when the individual with consistently high measures across all regions was

314  removed (B=1.22, SE=0.30, p=1.4x10"%).

315 3.4 Microglial burdens
316

317 A boxplot of the CD68" microglial burdens in each of the five brain regions and a representative
318 imaging of the staining is presented in Figure 3. The microglial burden was found to be significantly
319  higher in the hippocampus compared to BA17 (B=1.32, SE=0.4, p=5x10"*), with the plot suggesting

320 large variance in this region compared to the others.

321  The associations between both the DNAm age acceleration variables and the DNAm inflammation
322  signatures with microglial burdens are presented in Supplementary Table 6. Here, a higher mean
323  AgeAccelpheno in the brain associated with an increased microglial burden (B=0.40, SE=0.14, p=0.002).
324  No other significant associations were identified (all p=0.1) and there were no significant

325 interactions found between any of the methylation scores and brain region.

326 4. Discussion
327

328 In this study, we took advantage of blood and post-mortem brain tissue available in 14 individuals in
329  LBC1936 to investigate the relationship between peripheral and central inflammation- and age-

330 related DNAm signatures and how they relate to neuroinflammatory processes. Due to the small

10
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331  sample size the results of this work are preliminary; however some potentially interesting patterns
332  wereidentified. We found heterogeneous correlations between both the age acceleration, and

333  inflammation-related, methylation signatures in the blood and the brain depending on the region
334  assessed. Of the inflammatory signatures, the DNAm CRP score did not show significant variation
335  across the brain regions, while the DNAm IL-6 score was found to be slightly lower in BA24, BA46
336 and hippocampus than in BA17. Other than for AgeAccelsim, epigenetic age acceleration was found
337  to bessignificantly higher in the hippocampus than in BA17. Reactive microglial burdens, identified
338  through CD68 immunostaining, were additionally found to be higher in the hippocampus, consistent
339  with previous findings in a smaller sample of the LBC1936 cohort (33). However, the only association
340 identified between the DNAm signatures (age acceleration or inflammation proxies) and microglial

341 load was a positive association with the mean brain-based DNAm AgeAccelpheno-

342  Itisrecognised that DNAm patterns at individual CpG sites in the blood and the brain are often

343  disparate (34). We found that DNAm scores for CRP and IL-6 comprising multiple CpG sites displayed
344 heterogeneous, region-specific correlations when comparing the blood- and brain-derived

345  signatures. This suggests that blood DNAm patterns may proxy methylation in some areas of the
346  brain better than others. Additionally, it cautions against the use of a single sample of post-mortem
347  brain tissue as representative of the brain in aggregate, as it appears there is additional

348  heterogeneity in methylation patterns even within the same tissue source. The DNAm age

349  acceleration measures additionally displayed discrepant blood-brain correlations dependant on

350 region. However, all the assessed measures showed positive blood-brain correlations in each region,
351  toagreater or lesser degree, excepting IEAA. IEAA is based on the Horvath clock which is regarded
352  asapan-tissue model (11), whereas the other three peripheral measures were derived solely on
353  blood DNAm data. Estimates from the Horvath clock have previously been found to be consistent
354  across tissue types, making it surprising that IEAA showed the most inconsistent blood-brain

355  correlation. A recent study has, however, suggested that the age prediction ability of the Horvath
356  clock begins to deteriorate in older age (>60 years), possibly due to saturation of methylation levels
357  at some loci (35). This may have impacted our results given both blood and brain tissue were

358  gathered from 70 years onwards. The blood-brain correlations identified here suggest significant
359  heterogeneity between the tissues, contingent on region; however, it should be noted that the

360 mean interval between methylation assessed in the blood and in the brain was 2.5 years which

361  reflects a period where methylation alterations are possible (36).

362  In the regional analyses of DNAm signatures in the brain, no real differences emerged in the
363 assessment of the DNAmM CRP score. On the other hand the DNAm IL-6 score seemed to be lower in

364  BA24, BA46 and the hippocampus compared to BA17, possibly suggesting a disparity in the DNAm
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365 inflammation signatures across the brain. CRP itself does not typically cross the blood-brain barrier
366  (BBB) although its pro-inflammatory effects may lead to an increased paracellular permeability of
367  the BBB (37). Additionally, when using post-mortem blood tissue there is a possibility of blood

368  contamination due to the lack of perfusion at post-mortem. Conversely, IL-6 can cross the BBB

369  through the brain’s cirumventricular organs and is additionally expressed in the brain itself.

370  However, the DNAm signatures of CRP and IL-6 were both created in blood and have not yet been
371  validated in brain tissue. Work to assess other blood-calibrated predictors within in brain tissue is
372 currently ongoing. It seems likely that brain tissue may exhibit different alterations in methylation in
373 response to inflammation that were not captured by the two DNAm inflammatory marker proxies
374  utilised here. In contrast to the inflammatory results, a higher DNAm age acceleration in the

375  hippocampus was found for each of the assessed measures apart from AgeAccelgim. This was true
376  both for the cortex-specific clock as well as for the measures developed in the blood (AgeAccelpheno
377  and EEAA) or in multiple tissues (IEAA). This consistency implies that the hippocampus may

378  represent a region more susceptible to biological ageing than other areas of the neocortex. Age-
379  related decline in hippocampal volume is well established (38) and it is one of the earliest, and most
380  profoundly, affected regions in Alzheimer’s disease, suffering insidious synapse loss and neuronal
381  cell death culminating in a substantial atrophy as the disease progresses (39). While none of the
382  individuals included in this study had a diagnosis of Alzheimer’s disease prior to their death, the

383 hippocampus can suffer substantial deterioration before clinical dementia becomes evident. The

384  accelerated epigenetic ageing noted here is perhaps capturing the vulnerability of this region.

385 Equivalent to this finding, we identified a higher percentage burden of CD68" microglia in the

386  hippocampus compared to BA17. CD68 is a marker of phagocytic activity and is typically used to

387  classify reactive microglia. Microglia are important in the maintenance of integrity and function

388  within the central nervous system; however, aged microglia have been shown to be more responsive
389  to pro-inflammatory stimuli compared to the naive cell-type. This altered phenotype can lead to

390  exaggerated neuro-inflammation in response to peripheral or central immune challenges which can
391  precipitate neuro-toxicity, and thus, degeneration (40, 41). The only association identified between
392  the DNAm signatures and microglial load was a positive association with the mean brain

393 AgeAccelpneno; however we did not find any significant interaction between the DNAm signatures and
394  region. The DNAm PhenoAge clock was trained on a set of nine haematological and biochemical

395  measures that were found to optimally predict an individual’s ‘phenotypic age’ including four

396  immune cell profiles (lymphocyte percent, mean cell volume, red cell distribution width and white
397  blood cell count) alongside CRP and albumin (10). Despite being developed on blood DNAm data, the

398 predominantly inflammatory and immune composition of this clock may mean that AgeAccelppeno is

12
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399  better able to capture process associated with inflammation even outwith the blood. In this regard,
400 it may have outperformed the DNAmM CRP and IL-6 score due to the inclusion of a composite set of
401  phenotypes, which may more accurately index systemic inflammation compared to a single

402  inflammatory surrogate.

403  This study provides a rarely-available assessment of data from blood, alongside post-mortem brain
404  tissue methylation profiles and histology from the same individuals. Alongside this, profiling DNAm
405 in multiple regions of the brain allowed us to investigate the heterogeneity of methylation patterns
406  within the same tissue type. This study is limited by the small number of individuals for which data
407  was available, leading to a lack of statistical power and the potential for both type 1 and type 2

408  errors. We considered p<0.05 as the threshold for statistical significance in the analyses. However,
409  the following associations fail to pass a strict Bonferroni-corrected threshold (p<0.001): the

410  differences of the DNAm IL-6 score across the brain regions, the IEAA measure being highest in the
411 hippocampus compared to BA17, and the association of DNAm AgeAccelphen, With the CD68+

412 microglia burden. This, again, highlights that the results presented here should be taken as

413  preliminary patterns until analyses can be repeated in larger sample sizes. In regards to the

414  microglial burdening, we used only one antibody (CD68) which limited definitive identification of
415  labelled cells as parenchymal microglia. CD68 stains the lysosomes of ostensibly reactive microglia;
416  however, the antibody can additionally stain infiltrating macrophages. Capturing both the microglia
417  and macrophage burden still provides a relevant read-out of the cellular inflammatory status;

418  however, further characterisation of the microglial phenotype, including generating a reactive:total
419  ratio would be desirable to glean a better understanding of their specific relationship to DNAm

420  signatures. Further to this, the burden metric used to quantify microglia could reflect differences in
421  sizes of the cells as well as in total numbers. An additional aspect to bear in mind when utilising post-
422  mortem tissue in methylation studies is the stability of global DNAm following death and the

423  biological implications of this (42, 43). We attempted to account for the potential impact of this by
424  adjusting analyses for post-mortem intervals; however as post-mortem changes in DNAm are not yet
425  well characterised it cannot be ruled out that this confounded results. Finally, post-mortem studies
426  will always be retrospective in nature, rendering it impossible to discern causal or consequential

427 events.

428  In summary, using a well-characterised cohort of 14 individuals, we identified divergent correlations
429  between the blood and brain in DNAm inflammation-related and age acceleration measures

430  depending on region assessed. The hippocampus was found to display the highest DNAm age

431 acceleration in four out of five assessed measures, potentially reflecting its inherent susceptibility to

432  biological ageing and pathological processes compared to other cortical regions. The hippocampus
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433  additionally showed the highest burden of reactive microglia. Whilst an accelerated DNAm

434  PhenoAge associated with an elevated microglial load across the brain, no region-specific

435  associations were identified. Our results provide some initial indications of the blood-brain

436  relationships in DNAm patterns and how these relate to central processes; however further work is
437 needed to verify these results in larger sample sizes and to investigate how these patterns associate

438  with cognitive function and neurodegenerative disease.

439

as0 5. Acknowledgements
441

442  The authors thank all LBC1936 study participants and research team members who have

443  contributed, and continue to contribute, to ongoing studies. LBC1936 is supported by Age UK

444 (Disconnected Mind program) and the Medical Research Council (MR/M01311/1). Blood

445  methylation typing was supported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot
446 Fund award), Age UK, The Wellcome Trust Institutional Strategic Support Fund, The University of
447  Edinburgh, and The University of Queensland. This work was in part conducted in the Centre for
448  Cognitive Ageing and Cognitive Epidemiology, which is supported by the Medical Research Council
449 and Biotechnology and Biological Sciences Research Council (MR/K026992/1) and which supports
450 D.

451  AJS and RFH are Translational Neuroscience PhD students funded by Wellcome (203771/2/16/Z to
452  AJS; 108890/Z/15/Z to RFH). REM and DLMcC are supported by an Alzheimer’s Research UK major
453  project grant (ARUK-PG2017B-10). TSJ is supported by the European Research Council (ERC) under
454 the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
455  681181) and the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by
456  the UK Medical Research Council, Alzheimer’s Society, and Alzheimer’s Research UK. PMV is

457  supported by the Australian National Health and Medical Research Council (1113400) and the

458  Australian Research Council (FL180100072). SRC is supported by the Medical Research Council

459  (MR/R024065/1) and the US National Institutes of Health (RO1AG054628).

460
461
462
463

464

14


https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.404228; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a65 References
466 1. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging.
467  An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences.
468  2000;908:244-54.

469 2. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases.
470  Immunology. 2010;129(2):154-69.
471 3. Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, et al. DNA

472  methylation signatures of chronic low-grade inflammation are associated with complex diseases.
473 Genome biology. 2016;17(1):255.

474 4. Gonzalez-Jaramillo V, Portilla-Fernandez E, Glisic M, Voortman T, Ghanbari M, Bramer W, et
475  al. Epigenetics and Inflammatory Markers: A Systematic Review of the Current Evidence.

476 International Journal of Inflammation. 2019;2019:6273680.

477 5. Beck S, Rakyan VK. The methylome: approaches for global DNA methylation profiling. Trends
478  in Genetics. 2008;24(5):231-7.

479 6. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates

480 intrinsic and environmental signals. Nature genetics. 2003;33 Suppl:245-54.

481 7. McCartney DL, Stevenson AJ, Hillary RF, Walker RM, Bermingham ML, Morris SW, et al.

482 Epigenetic signatures of starting and stopping smoking. EBioMedicine. 2018;37:214-20.

483 8. Liu C, Marioni RE, Hedman AK, Pfeiffer L, Tsai PC, Reynolds LM, et al. A DNA methylation

484  biomarker of alcohol consumption. Molecular Psychiatry. 2018;23(2):422-33.

485 9. Marioni RE, McRae AF, Bressler J, Colicino E, Hannon E, Li S, et al. Meta-analysis of

486 epigenome-wide association studies of cognitive abilities. Molecular Psychiatry. 2018;23(11):2133-
487 44.

488 10. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker
489  of aging for lifespan and healthspan. Aging. 2018;10(4):573-91.

490 11 Horvath S. DNA methylation age of human tissues and cell types. Genome biology.

491  2013;14(10):R115.

492 12. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation
493  profiles reveal quantitative views of human aging rates. Molecular cell. 2013;49(2):359-67.

494  13. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly
495  predicts lifespan and healthspan. Aging. 2019;11(2):303-27.

496 14. Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, et al. The epigenetic
497  clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. International
498  journal of epidemiology. 2015;44(4):1388-96.

499 15. Beydoun MA, Shaked D, Tajuddin SM, Weiss J, Evans MK, Zonderman AB. Accelerated

500 epigenetic age and cognitive decline among urban-dwelling adults. Neurology. 2020;94(6):e613.

501 16. Hillary RF, Stevenson AJ, Cox SR, McCartney DL, Harris SE, Seeboth A, et al. An epigenetic
502  predictor of death captures multi-modal measures of brain health. Molecular Psychiatry. 2019.

503 17. Stevenson AJ, Gadd DA, Hillary RF, McCartney DL, Campbell A, Walker RM, et al. Creating
504  and validating a DNA methylation-based proxy for Interleukin-6. medRxiv.

505  2020:2020.07.20.20156935.

506 18. Stevenson AJ, McCartney DL, Hillary RF, Campbell A, Morris SW, Bermingham ML, et al.

507  Characterisation of an inflammation-related epigenetic score and its association with cognitive

508  ability. Clinical Epigenetics. 2020;12(1):113.

509 19. Mendizabal |, Yi SV. Whole-genome bisulfite sequencing maps from multiple human tissues
510 reveal novel CpG islands associated with tissue-specific regulation. Hum Mol Genet. 2016;25(1):69-
511 82.

512 20. Chuang Y-H, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B. Parkinson's disease is

513  associated with DNA methylation levels in human blood and saliva. Genome medicine. 2017;9(1):76-
514

15


https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.404228; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

515 21. Di Francesco A, Arosio B, Falconi A, Micioni Di Bonaventura MV, Karimi M, Mari D, et al.

516  Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells.

517 Brain, Behavior, and Immunity. 2015;45:139-44.

518 22. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and Systemic

519  Endotoxin Challenges Exacerbate the Local Inflammatory Response and Increase Neuronal Death
520  during Chronic Neurodegeneration. The Journal of Neuroscience. 2005;25(40):9275.

521 23. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and
522  resistant to regulation. Neuropathol Appl Neurobiol. 2013;39(1):19-34.

523 24. Deary lJ, Gow AJ, Taylor MD, Corley J, Brett C, Wilson V, et al. The Lothian Birth Cohort 1936:
524  astudy to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC geriatrics.
525 2007;7:28.

526  25. Taylor AM, Pattie A, Deary |J. Cohort Profile Update: The Lothian Birth Cohorts of 1921 and
527  1936. International journal of epidemiology. 2018;47(4):1042-r.

528 26. Shah S, McRae AF, Marioni RE, Harris SE, Gibson J, Henders AK, et al. Genetic and

529 environmental exposures constrain epigenetic drift over the human life course. Genome research.
530 2014;24(11):1725-33.

531  27. Zhang Q, Marioni RE, Robinson MR, Higham J, Sproul D, Wray NR, et al. Genotype effects
532  contribute to variation in longitudinal methylome patterns in older people. Genome medicine.

533 2018;10(1):75.

534 28. Samarasekera N, Al-Shahi Salman R, Huitinga |, Klioueva N, McLean CA, Kretzschmar H, et al.
535  Brain banking for neurological disorders. Lancet Neurol. 2013;12(11):1096-105.

536 29. Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to
537  preprocessing lllumina 450K methylation array data. BMC Genomics. 2013;14(1):293.

538  30. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of
539  brain cellular heterogeneity bias and its application to age, brain region and major depression.

540  Epigenetics. 2013;8(3):290-302.

541 31. Shireby GL, Davies JP, Francis PT, Burrage J, Walker EM, Neilson GWA, et al. Recalibrating the
542 epigenetic clock: implications for assessing biological age in the human cortex. Brain. 2020.

543 32. Barker ED, Cecil CAM, Walton E, Houtepen LC, O'Connor TG, Danese A, et al. Inflammation-
544  related epigenetic risk and child and adolescent mental health: A prospective study from pregnancy
545  to middle adolescence. Development and psychopathology. 2018;30(3):1145-56.

546  33. Tzioras M, Easter J, Harris S, McKenzie C-A, Smith C, Deary |, et al. Assessing amyloid-p, tau,
547  and glial features in Lothian Birth Cohort 1936 participants post-mortem. Matters.

548  2017;3(10):e201708000003.

549 34, Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic variation across blood,
550  cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric

551  phenotypes. Epigenetics. 2015;10(11):1024-32.

552  35. El Khoury LY, Gorrie-Stone T, Smart M, Hughes A, Bao Y, Andrayas A, et al. Systematic

553  underestimation of the epigenetic clock and age acceleration in older subjects. Genome biology.
554 2019;20(1):283.

555 36. Zaimi |, Pei D, Koestler DC, Marsit CJ, De Vivo |, Tworoger SS, et al. Variation in DNA

556  methylation of human blood over a 1-year period using the lllumina MethylationEPIC array.

557 Epigenetics. 2018;13(10-11):1056-71.

558 37. Elwood E, Lim Z, Naveed H, Galea I. The effect of systemic inflammation on human brain
559 barrier function. Brain Behav Immun. 2017;62:35-40.

560 38. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional
561  brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral
562  cortex (New York, NY : 1991). 2005;15(11):1676-89.

563  39. Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. European

564  neurology. 1993;33(6):403-8.

16


https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.404228; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

565  40. Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nature reviews

566  Neurology. 2014;10(4):217-24.

567  41. Luo X-G, Ding J-Q, Chen S-D. Microglia in the aging brain: relevance to neurodegeneration.
568  Molecular Neurodegeneration. 2010;5(1):12.

569  42. Pidsley R, Mill J. Epigenetic studies of psychosis: current findings, methodological

570  approaches, and implications for postmortem research. Biological psychiatry. 2011;69(2):146-56.
571  43. Sjoholm LK, Ransome Y, Ekstrom TJ, Karlsson O. Evaluation of Post-Mortem Effects on Global
572 Brain DNA Methylation and Hydroxymethylation. Basic & clinical pharmacology & toxicology.

573 2018;122(2):208-13.

574

17


https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.404228; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

575

576

577
578

579

580

581

582

583

584

585

586

Table 1. Summary of the variables assessed in the 14 Lothian Birth Cohort 1936 participants.

The brain variables refer to the mean across all five regions.

DNAmM=DNA methylation; CRP= C-reactive protein; IL-6=interleukin-6; IEAA=intrinsic epigenetic age

acceleration; EEAA= extrinsic epigenetic age acceleration; CD68=Cluster of Differentiation 68.

Variable Mean SD
Sex (% female) 35.71 -
Age at death (years) 80.33 1.56
Age at last blood draw 77.88 1.67
Brain

DNAm CRP score -0.014 6.1x10™
DNAm IL-6 score -0.66 011
AgeAccelcortical -0.52 6.12
AgeAccelgim -0.31 2.32
AgeAccelpheno 0.053 571
IEAA -0.049 3.97
EEAA -0.55 3.38
CD68 burden (%) 0.34 0.38
Blood

DNAm CRP score -0.014 1.2x10°®
DNAm IL-6 score -0.75 0.18
AgeAccelgrim 6.68 6.53
AgeAccelpheno 3.23 8.48
IEAA 1.23 5.62
EEAA 2.99 11.20
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587  Figure 1. The DNAm CRP and IL-6 score in each of the five regions of the brain.

588 BA=Brodmann area; HC=hippocampus; DNAm=DNA methylation; CRP=C-reactive protein; IL-
589 6=interleukin-6.
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Figure 2. DNAm age acceleration measures across the five brain regions. The dashed grey lines
represent where the mean difference is zero.

IEAA=intrinsic epigenetic age acceleration; EEAA=extrinsic epigenetic age acceleration;

BA=Brodmann area; HC=hippocampus.
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Figure 3. CD68" microglial burdens over the five brain regions and representative staining.

BA=Brodmann area; HC=hippocampus. Scale bar=150um.
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