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Abstract

The accuracy of polygenic risk scores (PRSs) to predict complex diseases increases with the
training sample size. PRSs are generally derived based on summary statistics from large meta-
analyses of multiple genome-wide association studies (GWAS). However, it is now common for
researchers to have access to large individual-level data as well, such as the UK biobank data. To
the best of our knowledge, it has not yet been explored how to best combine both types of data
(summary statistics and individual-level data) to optimize polygenic prediction. The most widely
used approach to combine data is the meta-analysis of GWAS summary statistics (Meta-GWAS),
but we show that it does not always provide the most accurate PRS. Through simulations and
using twelve real case-control and quantitative traits from both iPSYCH and UK Biobank along
with external GWAS summary statistics, we compare Meta-GWAS with two alternative data-
combining approaches, stacked clumping and thresholding (SCT) and Meta-PRS. We find that,
when large individual-level data is available, the linear combination of PRSs (Meta-PRS) is both
a simple alternative to Meta-GWAS and often more accurate.
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1. Introduction

Polygenic risk scores (PRSs) are a powerful approach to summarize the individual genetic
liability to develop a specific disease. They are particularly useful for complex traits and
diseases, such as psychiatric disorders!, as these are often highly polygenic?. This is because
PRSs aggregate the small risk contributions from thousands of variants into a single score,
summarizing their overall risk contribution®. Broadly, the existing polygenic prediction methods
differ in the type of data they use for training, i.e. individual-level genotypes/dosages or GWAS
summary statistics. Today, GWAS summary statistics are widely available for a broad range of
diseases and traits in public databases, e.g.the GWAS catalog contains more than 1,400
summary statistics*. For psychiatric disorders, the Psychiatric Genomics Consortium (PGC)
provides GWAS summary statistics based on ever larger sample sizes, as a result of meta-
analyzing the individual efforts of many research groups worldwide. Furthermore, many GWAS
summary statistics-based PRS methods are broadly used: Clumping and Thresholding (C+T)>”7,
LDpred® or more recent methods®'3, and have proven successful to identify individuals with
significant increased risk of complex diseases such as coronary artery disease'*.

Interestingly, many of these external GWAS summary statistics-based PRS methods
approximate the results of the internal individual-level data approaches, making some
assumptions in the process (e.g. LDpred-inf® and sBLUP'S approximate the genomic BLUP'®,
assuming that linkage disequilibrium (LD) patterns in the external data from which the GWAS
summary statistics were derived can be captured using an LD reference). Furthermore,
phenotype definition, genetic architecture and/or technical artifacts may affect the prediction
accuracy of the derived PRSs!7!8. Using methods that fit prediction effect sizes jointly on internal
individual-level data for training PRSs makes some of these assumptions unnecessary, which can
lead to improved prediction accuracy®!” e.g. Privé et al. found that prediction of height using
penalized linear regression provides more accurate PRSs compared to C+T (LD clumping an p-
value thresholding) when trained on individual-level data?. Indeed, there exist a number of
powerful alternatives for deriving PRSs using individual-level data??. Until recently, most
individual-level datasets have been small, especially in comparison to sample sizes achieved in
GWAS meta-analyses, but cheaper genotyping has led to the generation of large genetic datasets
(e.g. iPSYCH for psychiatric disorders*® and UK Biobank for a multitude of complex traits?’).
Therefore researchers often have access to large individual-level genetic data as well as large
published GWAS summary statistics. However, most PRS methods train on either of these data
types separately but not directly on both (although many methods do require individual-level
data for hyper-parameter optimization). SCT is the only exception that we are aware of, as it
does train directly on both types of data’. By combining and leveraging data, we aim to increase
the training sample size of PRSs and, ultimately, their prediction accuracy.

In the current paper, we explore and compare different approaches of combining internal
individual-level data and external GWAS summary statistics for polygenic prediction. Currently,


https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401141; this version posted November 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the most widespread approach is combining the data at the level of GWAS summary statistics by
meta-analyzing the marginal effect estimates of different studies, prior to training the PRS
(Meta-GWAS). We believe this approach is reasonable when the individual-level data is small,
but may discards its potential for training when larger sample sizes are available. Alternatively,
SCT’ generates a range of C+T PRSs from the external GWAS summary statistics over a grid of
hyper-parameters (e.g. LD clumping parameters and p-value thresholds) and then stacks these
PRSs by fitting a penalized regression model using individual-level data. This results in a more
accurate PRS compared to C+T provided sufficient training data sample size. Based on weighted
average PRSs*%, we propose a model with two independently generated PRS (Meta-PRS): an
internal PRS, derived from the individual-level data; and an external PRS, derived from the
GWAS summary statistics; and train the weights using linear regression on a validation dataset.
We derive the PRSs with methods that work well for highly polygenic traits — namely we use
BOLT-LMM?¥ for deriving the internal PRS and LDpred® for the external PRS. We compare the
prediction accuracy of the three approaches presented above (Meta-GWAS, SCT and Meta-PRS)
through simulations and application to real data of psychiatric disorders and other complex
diseases and traits, using individual-level data from two large cohorts (IPSYCH and UK
Biobank) as well as large GWAS summary statistics that excluded these cohorts. Finally, we
provide guidelines for optimizing accuracies of PRS in different scenarios, i.e. different degrees
of polygenicity and sample size ratios between GWAS summary statistics and individual-level
data.

2. Methods

2.1. Approaches for combining internal and external data

We investigated the difference in prediction performance of PRSs that are trained using both
external GWAS summary statistics and internal individual-level genetic data, but combined
through three different approaches (Table 1). In the first approach (Meta-GWAS), the internal
individual-level data was used to derive GWAS summary statistics that were subsequently meta-
analyzed with the external GWAS summary statistics and finally used for deriving PRSs. For the
second approach (SCT) we used the external summary statistics to derive a large number of C+T
scores, and the individual-level data to fit a penalized regression to linearly combine these C+T
scores. In the third approach (Meta-PRS), the individual-level data and GWAS summary
statistics were used for deriving two independent PRSs. We obtained a weighted average of the
two PRSs by fitting a linear regression model.
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Table 1: Overview of the compared data-combining approaches and data utilization.
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M: number of SNPs, Z: SNP effect size, x: SNP effect allele count, N: effective sample size Nerr =
4/(1/N.q + 1/N,,), int: internal data, ext: external data, k: number of PRSs in grid, w: regression
weights.

In the three approaches, the individual-level data was split in training, validation and test
subsets following a 5-fold cross-validation scheme (4-0.5-0.5; 80% training, 10% validation,
10% testing). The selection criteria for all method parameters was the parameter maximizing
prediction accuracy in terms of prediction R? in the validation data. Consequently, we obtained 5
estimates of PRS prediction performance for each method in the test subset and reported the
mean. The standard error of the mean prediction accuracy was estimated through 10K bootstrap
replicates of this mean.

2.2. Computing PRSs
2.2.1. Meta-GWAS

We obtained GWAS summary statistics for the individual-level data using linear regression
implemented in the function big_univLinReg, from the R package bigstatsr®'. We used sex, age,
genotyping batch and the first 20 principal components (PCs) of the dataset as covariates in the
GWAS. We performed a sample size-based meta-analysis with the external GWAS summary
statistics using the software METAL3. We computed PRSs using LDpred v1.0.10® (note that this
version already implements some of the improvements made in LDpred2?®), using the
infinitesimal model and 7 priors assuming a proportion of causal variants (p = 1, 0.3, 0.1, 0.03,
0.01,0.003,0.001). We used a LD radius of 500 variants to compute the LD reference panel. We
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then selected the LDpred PRS with p maximizing the prediction R? in the validation set. We also
computed PRSs with LD-clumping and p-value thresholding (C+T), selecting the score from a
set of C+T PRSs that maximized the prediction R? in the validation set. The C+T PRSs were
generated from a grid of parameters: LD pairwise correlation 12 values (0.01,0.05,0.1,0.2,0.5,
0.8,0.95), base window sizes (50, 100, 200, 500) and 50 p-value thresholds (depending on max.
and min. p-value in summary statistics, on a log-log scale)’. For LD clumping, the SNP p-values
were used as a selection variable i.e. for a pair of correlated SNPs, the SNP with the lowest p-
value was kept. A total of 1,400 C+T PRSs were derived for each chromosome.

22.2.SCT

We computed C+T PRSs using the external GWAS summary statistics and the same grid of
parameters as in section 2.2.1. The final PRS was computed using the function
snp_grid_stacking from the R package bigsnpr’, which performs penalized logistic regression,
with the 1400 x 22 C+T scores as predictors and phenotypes as outcomes in the training set.

2.2.3. Meta-PRS

To obtain the Meta-PRS, we first computed two independent PRSs: PRS;,,; and PRS,,;. For
PRS;,:, we obtained per-SNP prediction betas with BOLT-LMM? (using the flag —predBetas)
and computed the PRS as PRS; = Y'Y, Bj - x;j, where M are the number of SNPs in the model,
p;. For each sample and trait, we ran BOLT-LMM v2.3 4 using sex, age, genotyping batch and
the first 20 PCs of the dataset as covariates. Depending on the polygenicity of the trait, BOLT-
LMM computes a mixture-of-Gaussians prior on SNP effect sizes or the single-Gaussian BOLT-
LMM-inf model, equivalent to best linear unbiased prediction (BLUP). The PRS,,; was
computed with LDpred or C+T, as described in section 2.2.1. Finally, we defined the Meta-PRS
with weights w;,; and w,,; as the linear combination of the two PRSs with these weights, as
MetaPRS = wy + Wit PRSint + Weyt PRSey (Im function in R). To avoid overfitting, we
trained the weights in a linear regression model in the validation data set (Im function in R). For
the linear combination, we also used as weights the square root of the respective PRS training
data sample size. In these cases, PRS were standardized prior to being combined. The latter use
of weights is highlighted in the text, otherwise the weights in the Meta-PRS came from the linear
regression model.

2.3. Data and quality control

2.3.1.iPSYCH data

We used genotype and phenotype data from the iPSYCH2012 case-cohort sample®®. The
1iPSYCH2012 sample is nested within the entire Danish population born between 1981 and 2005,
including 1,472,762 persons. Cases were identified as persons with schizophrenia (SCZ), autism
(ASD), attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD) and
anorexia nerviosa (AN); we identified controls as persons from the randomly selected cohort that
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were not diagnosed with any of the previous disorders. The genetics dataset consists of 78,050
individuals and 10,217,873 SNPs imputed following the RICOLPILI pipeline**. We computed
KING-relatedness robust coefficient*> and excluded at random one of the individuals in the pairs
> 3rd degree relatedness, resulting in 5,673 individuals excluded. We performed principal
component analysis (PCA) following Privé, et al. 20203¢ and obtained 30 PCs. We also identified
70,584 genetically homogeneous individuals based on these 30 PCs. We define homogeneous
individuals as < 4.8 log(dist) units from the centre of the 30 PCs, calculated using the function
dist_ogk from R package bigutilsr*. This resulted in a subset of 65,361 unrelated individuals of
homogeneous ancestry. After removing SNPs with minor allele frequency (MAF) < 0.01 and
Hardy—Weinberg p-value (y? (df = 1) test statistic pHWE) < 107°, we restricted to the HapMap3
variants  (https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html). The final
dataset was composed of 65,361 individuals and 1,184,138 SNPs.

2.3.2. UK Biobank data

We used genotype and phenotype data from the full release of the UK Biobank?’, consisting of
488,377 individuals with genetic information. Specifically, we imported dosage data from BGEN
files using the function snp_readBGEN from the R package bigsnpr®'. We identified individuals
with either self-reported or ICD-10 diagnosis for breast cancer (BC), coronary artery disease
(CAD), type 2 diabetes (T2D) and major depressive disorder (MDD), setting the undiagnosed
individuals as controls and restricting to women for breast cancer. We also identified individuals
with standing height and body mass index (BMI) measurements to use as quantitative traits. We
restricted the analysis to unrelated (as described in section 2.3.1) and “white British” genetic
ancestry individuals. We removed SNPs with MAF < 0.01 and restricted to HapMap3 variants.
The final dataset was composed of 337,475 individuals and 1,194,574 SNPs.

2.3.3. Simulations

We simulated case-control phenotypes using 1,194,574 HapMap3 SNPs and the subset of
337,475 unrelated European-ancestry individuals from the UK Biobank. The phenotypes were
simulated with two different numbers of causal variants: M_,,s; = 10k and 100k, representing
polygenic traits. Each causal variant was assigned an effect size drawn from N (0, h? /M qy5a1)
where the heritability h? = 0.5. The case-control status was assigned under a genetic liability
model, with a simulated prevalence of 0.2. Each simulation scenario was repeated 5 times.

From the sample of individuals, 90% were used as the training set, 5% as the validation
set and 5% as the test set. To represent scenarios with different sample sizes of the individual-
level data and GWAS summary statistics, the training set was further split randomly according to
the following partitions: 10%-90%, 25%-75%, 50%-50%, 75%-25% and 90%-10%. One part
was used to derive summary statistics and act as the external summary data, while the other part
was used as individual-level data. The labels 9:1, 3:1, 1:1, 1:3, 1:9 used in the results reflect the
sample size ratio of individual-level data (left) and GWAS summary statistics (right).
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2.4. Prediction accuracy

The prediction accuracy of the PRSs was assessed in terms of squared correlation (R?) and area

under the curve (AUC)¥. The R? was calculated for a model including the PRS and covariates
(sex, age, genotyping batch and first 20 PCs) as explanatory variables and a model including

only the covariates (without a PRS) as explanatory variables. The PRS prediction R? was finally
R -R?

W for the quantitative traits and transformed to the liability scale
“H(PRS,cov)

for the case-control data’®. Additionally, the AUC was reported for the case-control data.

reported as R? =

2.5. Code availability

The analysis pipeline was generated using gwf (https://docs.gwf.app/) and R scripts. All code
used in this project is available at
https://drive.google.com/drive/folders/1u6U55e8MERt3zzbQ30QbiNJDSILqGtUx ?usp=sharing.

3. Results

3.1. Performance on simulated data

We evaluated the prediction accuracy of the PRSs using simulated data to explore the
relationship between the combining approaches and the training sample size. Using the UK
Biobank genetic data, we simulated traits with 10,000 (10k) and 100,000 (100k) causal SNPs,
aiming at representing the polygenicity range of complex traits, and different sizes of training
sample (10%, 25%, 50%, 75% and 90% of N ~ 300,000 individuals) of individual-level data
(internal) and GWAS summary statistics (external). First, we compared the prediction accuracy
of PRSs trained only on internal data (using BOLT-LMM) or external data (using C+T or
LDpred) in terms of mean prediction R? (Fig. 1A) and AUC (Supplementary Fig. 1). For all
simulated scenarios, the BOLT-LMM outperformed other methods, with a larger relative
improvement in the simulations with 10k causal SNPs. The comparison between the GWAS
summary statistics-based methods resulted in C+T being generally preferred in the simulations
with 10k and LDpred in the ones with 100k causal SNPs. These results highlight the benefits of
using the individual-level data for training PRSs over the derived GWAS summary statistics.

We also compared the prediction accuracy of PRSs using different data-combining
approaches (SCT, Meta-GWAS and Meta-PRS) in the simulated traits (Fig. 1B, Supplementary
Fig. 2). The external and internal datasets were matched to create combinations with different
ratios of each data type (9:1, 3:1, 1:1, 1:3, 1:9; e.g. 3:1 indicates a scenario where the external
data was 75% and the internal data was 25% of the total N ~ 300k individuals in the training set).
For Meta-PRS, we observed a positive relation between the size of the internal data and the mean
prediction R2. The opposite was observed for SCT, where larger external datasets provided
larger mean predictions. The ratio of data showed no effect for Meta-GWAS, with constant
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prediction R? along the simulated ratios (Fig. 1B). These results indicated that it was possible to
optimize PRS prediction accuracy by selecting a data-combining approach depending on the
sample size ratio between the available internal and external data. While the classical Meta-
GWAS was a valid strategy in ratios of 1:1, scenarios with a more skewed ratio benefit from
approaches like Meta-PRS and SCT, which use the individual-level data for training.

Aiming to simplify the construction of the Meta-PRS, we attempted to use the square root
of the effective sample size (\/Wff) to weight the internal and external PRSs. This simplified
version of Meta-PRS is faster and does not need of a validation dataset. In the previously-
described simulated scenarios, we compared the mean prediction R? of PRSs weighted by \/Wff
and PRSs weighted by linear regression effect sizes (using a validation dataset). We only

observed a small increase in mean prediction R? in the scenarios with large individual-level data
(ratios 1:3 and 1:9), with the other remaining the same (Supplementary Fig. 3).


https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401141; this version posted November 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
10k 100k
+
0.3 h
o m || L U method
[e) 02 | ||
3 [ cer
E 0.1 NIRRT |:| LDpred
e - [[D [ ] BOLT-LMM
10 25 5 10

0 75 90 25 50 75 90

Sample size (as % of N ~ 300k)

B
10k 100k
+

0.3 + + . .
o P Combining
b +oogh o approach
s 02
B B scT
B 0 [ | Meta-GwAs
e = [ ] Meta-PRS

0.0 B BT BT ELT R E

91 31 11 1.3 19 91 31 11 13 19

Ratio external:internal data sample size

Fig. 1 Prediction accuracy of the PRSs in the simulation study. Each panel displays the mean
and 95% CI of the PRS prediction R? (y-axis) for each data combining approach. The traits were
simulated from a liability threshold model with 10,000 (10k) and 100,000 (100k) causal SNPs
and heritability h? of 0.5, and case-control status was inferred from a disease prevalence of 0.2.
Mean and 95% CI of prediction R? were obtained from 10k non-parametric bootstrap samples of
5 independent replicates. A) Effect of training sample size in the PRSs prediction accuracy. The
x-axis indicates the percentage of individuals from the total training set (N = 303,728) used as
individual-level data for BOLT-LMM or GWAS summary statistics for C+T and LDpred. B)
Effect of the ratio between internal and external data in the combining approaches. The x-axis
indicates the relative amount of external vs. internal data, e.g. 3:1 indicates a scenario where the
external data was 25% and the internal data was 75% of the total sample. Fig. 1 is a simplified
version of Supplementary Fig. 2, selecting a single method per combining approach between
C+T and LDpred, where the method maximizing mean prediction R? was selected.
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3.2. Performance on real data

We investigated the prediction accuracy of the data-combining approaches (Meta-PRS, SCT and
Meta-GWAS) in real complex traits using internal individual-level data from large genotype
cohorts (iPSYCH?® and the UK Biobank?’) and external GWAS summary statistics without
samples from these two cohorts. The set of traits selected included the six major psychiatric
disorders (ASD, ADHD, MDD, BD, SCZ and AN), three other complex diseases (BC, T2D and
CAD) and two continuous complex traits (height and BMI) (Table 2). The set of SNPs used for
each trait was the intersection between the SNPs in the individual-level data, GWAS summary
statistics and the 1,440,616 HapMap3 SNPs.

Table 2: Summary of real datasets. Sample sizes (cases / controls for binary traits) of the
individual-level datasets for the 12 complex traits, along with the sample sizes of the
corresponding GWAS summary statistics. The GWAS summary statistics selected did not include
samples overlapping with the individual-level datasets used here. The table reflects sizes of
European ancestry, unrelated samples (see Methods) and the ratios are based on effective
sample sizes.

Individual- | Individual- GWAS

Traits level level sample Ratio Overlapping
. . SNPs
dataset sample size size
Attention deficit hyperactivity 17,072/ 4225/ .
disorder (ADHD)* 25,982 11,012 34l 1,105,731
Autism spectrum disorder 14,682 / 5,305/ )
(ASD)# 26,033 5305 3.5:1 1,177,564
. 3,181/ 11,940/
41 > > .
Anorexia Nervosa (AN) ‘ 26282 33.731 1:3.1 1,134,823
PSYCH 7017 | 21,1697
. . 42 s > .
Schizophrenia (SCZ) 26277 28.117 1:49 1,183,697
. . 1,429/ 20,040/
43 ’ ) .
Bipolar Disorder (BD) 26311 30.874 1:9 1,183,744
Major depressive disorder 22,469/ 229897/ | ..
(MDD)#* 25,882 544204 L1347 1,094,603
Height® 336,750 253,288 1.3:1 1,000,417
Body mass index (BMI)* 336,381 339,224 1:1 1,003,044
. 18,857/ 26,676/
47 4 > .
Type 2 diabetes (T2D) UK 318,618 132532 1:1.2 1,100,399
Major depressive disorder Biobank 28,626/ 45,396 / _
(MDD)* 308849 | 97250 | 12| 1091232

11,529/ 60,801/

: 49
Coronary artery disease (CAD) 325.946 123504

1:3.7 | 1,093,989

10
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12,024 / 122,977/

50
Breast cancer (BC) 169,207 105,974

1:5.1 1,098,351

No single combining approach provided the largest mean prediction R? for all traits (Fig.
2) or AUC (Supplementary Fig. 4) for all traits. In the cases where the sample size of individual-
level data was larger than the summary statistics (int > ext), Meta-PRS increased mean
prediction R? over SCT and Meta-GWAS for height, while both Meta-GWAS and Meta-PRS
had similar results for ASD and ADHD, with large and overlapping CIs. In the cases with equal
data training sample sizes (1:1), Meta-PRS increased prediction accuracy over Meta-GWAS and
SCT for BMI and T2D, while the results for Meta-GWAS and Meta-PRS were similar for MDD
UKB. Finally, in the cases where the sample size of the GWAS summary statistics was larger
than the individual-level data (ext > int) the results were also diverse. For AN, CAD, SCZ, BD
and MDD iPSYCH there was no major difference between Meta-GWAS and Meta-PRS.
However, for BC, the data-combining approach with the largest mean prediction R? was SCT.

Generally, the Meta-GWAS showed a larger mean prediction R? than Meta-PRS for the
psychiatric disorders, though with large and overlapping Cls. This was independent of the
sample size ratio of internal vs. external data. For most outcomes validated in the UK Biobank
data, the most accurate approach was Meta-PRS, where the largest improvement was for height,
BMI and T2D. For these outcomes the internal effective sample size was larger than for most of
the other outcomes. BC was the only trait where SCT led to the most predictive PRS, even
though the ratio internal:external was similar to other traits like CAD.

The PRS method-specific results showed a preference of LDpred over C+T in 6/12 traits,
both in PRS trained on external or meta-analyzed summary statistics (Supplementary Fig. 5),
while for the rest of the traits both methods had similar results. We also compared the Meta-PRS

constructed with linear regression weights to the one weighed by effective sample sizes (\/Nesr)
of training data (Supplementary Fig. 6). As in the simulations, we only observed an increase in
mean prediction R? in the traits with large individual-level data (height and BMI). In the rest of

the traits, there was no preference for a specific weight type. The use of \/N,fr as weights is

therefore recommended for these traits, as it does not require a validation set.
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Fig. 2 Prediction accuracy of the combining approaches in 12 complex traits from iPSYCH
and UK Biobank. Each panel displays the mean and 95% CI of the PRS prediction R? (y-axis)
for each data combining approach, of PRS trained on individual-level data (int), GWAS
summary statistics (ext) or both (ext+int) (x-axis). The prediction R? was transformed to the
liability-scale using a population prevalence of 0.01 (ASD), 0.05 (ADHD), 0.15 (MDD UK
Biobank), 0.05 (T2D), 0.01 (AN), 0.03 (CAD), 0.01 (SCZ), 0.07 (BC), 0.01 (BD) and 0.08
(MDD iPSYCH). The methods noted as int and ext were fitted using BOLT-LMM with
individual-level data and LDpred or C+T with GWAS summary statistics, respectively. For
simplification, only the ext PRS with larger mean prediction R? is shown, the full results are
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available in the Supplementary Fig.5. Mean and 95% CI of the prediction R? were obtained from
10k non-parametric bootstrap samples of the 5 cross-validation subsets.

4. Discussion

With genetic data now available to researchers as both large individual-level datasets and GWAS
summary statistics, we want to understand how to best combine these two types of data to
optimize polygenic prediction. With this aim, we have evaluated the predictive performance of
PRSs generated with different data-combining approaches: Meta-GWAS, SCT and Meta-PRS.
We find that the simple approach of combining two different PRSs (Meta-PRS), trained on
individual-level data and GWAS summary statistics separately, may yield more accurate PRSs
than Meta-GWAS, particularly in the cases with sufficiently large individual-level datasets. We
observe this in simulated data, where Meta-PRS consistently increases the mean prediction R?
over the widely used Meta-GWAS approach, and in the real complex traits with a large
individual-level dataset e.g. height, BMI, and T2D. Another advantage of Meta-PRS is that it
allows to combine multiple pre-calculated PRSs, irrespective of prediction method. When
validation data is not available, we show that one can use the square root of the training sample
sizes as weights. The same approach could also be used to combine multiple PRSs (e.g. in the
PGS Catalog®'), being standardized and averaged together with their corresponding training
sample sizes. As an alternative approach, the scores in Meta-PRS could be weighted using MT-
BLUP>2.

In the case of BC, which has several large effects and relatively low polygenicity, the
SCT PRS prediction is the most accurate, presumably because it relies more on variant thinning.
For psychiatric disorders, we found that the Meta-GWAS generally yielded the most predictive
PRSs, despite these disorders being very polygenic and often having relatively large individual-
level data sample sizes. The results for the psychiatric disorders are contrary to what we expected
based on our simulations regarding the preferred data-combining approach, although we note
that the expected relative improvement of Meta-PRS over Meta-GWAS is small if polygenicity
is large. Nevertheless, we want to highlight that leveraging the two types of data (individual-
level data and GWAS summary statistics) always increased the prediction performance of PRSs
over not combining data, even in the cases where either of these were small.

Our simulations represent an idealized scenario where we assume that the genetic
architecture is invariant between cohorts/samples (i.e. genetic correlation is 1). Studies have
shown that psychiatric disorders can be quite heterogenous between cohorts'®, especially for the
iPSYCH data where Schork et al. 20195 estimated the genetic correlation for psychiatric
disorders between external and iPSYCH samples to be between 0.5-0.8. Given that we found that
Meta-GWAS provided more accurate predictions in the iPSYCH data, it may suggest that it is
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more robust to disease heterogeneity than Meta-PRS. However, if the genetic architecture is
similar between samples (high genetic correlation), we expect Meta-PRS to have the advantage
given even larger individual-level data sample sizes. Similar to disease heterogeneity, differences
in genetic ancestry between the training and testing data can also decrease the prediction
accuracy of PRSs'. In the case of ancestry heterogeneity, the linear combination of PRS trained
independently on different ancestries improves prediction for admixed individuals3*, but the
extent to which these sample heterogeneities affect each of the prediction accuracy in the
compared data-combining approaches should be further studied.

In Meta-PRS we combined the BOLT-LMM and LDpred (or C+T) predictions, and
therefore the results may not be fully generalizable to other methods e.g. a more accurate method
may lead to more accurate Meta-GWAS scores. Nevertheless, given that LDpred generally
performs well for polygenic traits in independent comparisons®-¢, we believe it acts as a good
proxy for other similar methods, such as lasso regression®, SBayesR!!, and PRS-CS'. In the case
of individual-level data and low polygenicity, L1-penalized regression may also provide more
accurate PRSs than BOLT-LMM?.

In summary, we found that a simple additive model of two polygenic scores (Meta-PRS)
often outperformed the accuracy of approaches that first meta-analyzed SNP effects (Meta-
GWAS) in highly polygenic traits. Fundamentally, the improvement in Meta-PRS prediction
accuracy stems from the fact that methods that train a polygenic prediction model on individual-
level data have access to more training information than methods that only train on a summary of
this data and usually make fewer assumptions. However, Meta-GWAS has the advantage that
each effect estimate is updated separately, possibly making it more robust to small sample sizes
and changes in genetic architecture.
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Supplementary Fig. 1 Prediction accuracy of the data-combining approaches in the simulated
data in terms of AUC. Each panel displays the mean and 95% CI of the PRS AUC (y-axis) for
each data-combining approach. The traits were simulated from a liability threshold model with
10,000 (10k) and 100,000 (100k) causal SNPs and heritability h? of 0.5, and case-control status
was inferred from a disease prevalence of 0.2. Mean and 95% CI of AUC were obtained from
10k non-parametric bootstrap samples of 5 independent replicates. The black line represents the
AUCpqx (0.852) for these simulations®. The x-axis indicates the relative amount of external
vs. internal data, e.g. 3:1 indicates a scenario where the external data was 25% and the internal
data was 75% of the total sample (N = 303,728).
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Supplementary Fig. 2 Prediction accuracy of the data-combining approaches using different
GWAS summary statistics-based PRS methods in the simulated data. Each panel displays the
mean and 95% CI of the PRS R? (y-axis) for each data-combining approach and PRS method, of
PRSs trained on individual-level data (int), GWAS summary statistics (ext) or both (ext+int) (x-
axis). In the case of Meta-GWAS, C+T and LDpred were used on the meta-analyzed summary
statistics and in Meta-PRS, C+T and LDpred were used to compute the external PRS. The traits
were simulated from a liability threshold model with 10,000 (10k) and 100,000 (100k) causal
SNPs and heritability h? of 0.5, and case-control status was inferred from a disease prevalence
of 0.2. Mean and 95% CI of prediction R? were obtained from 10k non-parametric bootstrap
samples of 5 independent replicates.
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Supplementary Fig. 3 Prediction accuracy of Meta-PRS using different weight types in the
simulated data. Each panel displays the mean and 95% CI of the PRS prediction R? (y-axis) for
Meta-PRS in each simulated scenario using either C+T or LDpred to generate the external PRS.
The weights were obtained using linear regression (Im) or the square root of the training
effective sample size (neff). In the case of the linear regression, the weights are trained in an
independet validation dataset (see Table 1). The traits were simulated from a liability threshold
model with 10,000 (10k) and 100,000 (100k) causal SNPs and heritability h? of 0.5, and case-
control status was inferred from a disease prevalence of 0.2. Mean and 95% CI of prediction R?
were obtained from 10k non-parametric bootstrap samples of 5 independent replicates.
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Supplementary Fig. 4 Prediction accuracy of the data-combining approaches in 12 complex
traits from iPSYCH and UK Biobank. Each panel displays the mean and 95% CI of the PRS
AUC (y-axis) for each data-combining approach, of PRS trained on individual-level data (int),
GWAS summary statistics (ext) or both (ext+int) (x-axis). The methods noted as int and ext were
fitted using BOLT-LMM with individual-level data and LDpred or C+T with GWAS summary
statistics, respectively. For simplification, only the ext PRS with larger mean prediction R? is
shown. Mean and 95% CI of the AUC were obtained from 10k non-parametric bootstrap
samples of the 5 cross-validation subsets.
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Supplementary Fig. 5 Prediction accuracy of the data-combining approaches using different
GWAS summary statistics-based PRS method in 12 complex traits from iPSYCH and UK
Biobank. Each panel displays the mean and 95% CI of the PRS R? (y-axis) for each data-
combining approach and PRS method, of PRSs trained on individual-level data (int), GWAS
summary statistics (ext) or both (ext+int) (x-axis). In the case of Meta-GWAS, C+T and LDpred
were used on the meta-analyzed summary statistics and in Meta-PRS, C+T and LDpred were
used to compute the external PRS. The prediction R? was transformed to the liability-scale using
a population prevalence of 0.01 (ASD), 0.05 (ADHD), 0.15 (MDD UKB), 0.05 (T2D), 0.01 (AN),
0.03 (CAD), 0.01 (SCZ), 0.07 (BC), 0.01 (BD) and 0.08 (MDD iPSYCH). Mean and 95% CI of
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the AUC were obtained from 10k non-parametric bootstrap samples of the 5 cross-validation

subsets.
Effect of weight type in Meta-PRS
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Supplementary Fig. 6 Prediction accuracy of Meta-PRS using different weight types in 12
complex traits from iPSYCH and UK Biobank. Each panel displays the mean and 95% CI of
the PRS prediction R? (y-axis) for Meta-PRS in each simulated scenario using either C+T or
LDpred to generate the external PRS. The weights were obtained using linear regression (Im) or
the square root of the training effective sample size (neff). In the case of the linear regression,
the weights are trained in an independet validation dataset (see Table 1). The prediction R? was
transformed to the liability-scale using a population prevalence of 0.01 (ASD), 0.05 (ADHD),
0.15 (MDD UKB), 0.05 (T2D), 0.01 (AN), 0.03 (CAD), 0.01 (SCZ), 0.07 (BC), 0.01 (BD) and
0.08 (MDD iPSYCH). Mean and 95% CI of the AUC were obtained from 10k non-parametric
bootstrap samples of the 5 cross-validation subsets.
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