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Abstract 

The accuracy of polygenic risk scores (PRSs) to predict complex diseases increases with the 

training sample size. PRSs are generally derived based on summary statistics from large meta-

analyses of multiple genome-wide association studies (GWAS). However, it is now common for 

researchers to have access to large individual-level data as well, such as the UK biobank data. To 

the best of our knowledge, it has not yet been explored how to best combine both types of data 

(summary statistics and individual-level data) to optimize polygenic prediction. The most widely 

used approach to combine data is the meta-analysis of GWAS summary statistics (Meta-GWAS), 

but we show that it does not always provide the most accurate PRS. Through simulations and 

using twelve real case-control and quantitative traits from both iPSYCH and UK Biobank along 

with external GWAS summary statistics, we compare Meta-GWAS with two alternative data-

combining approaches, stacked clumping and thresholding (SCT) and Meta-PRS. We find that, 

when large individual-level data is available, the linear combination of PRSs (Meta-PRS) is both 

a simple alternative to Meta-GWAS and often more accurate. 
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1. Introduction 

Polygenic risk scores (PRSs) are a powerful approach to summarize the individual genetic 

liability to develop a specific disease. They are particularly useful for complex traits and 

diseases, such as psychiatric disorders1, as these are often highly polygenic2. This is because 

PRSs aggregate the small risk contributions from thousands of variants into a single score, 

summarizing their overall risk contribution3. Broadly, the existing polygenic prediction methods 

differ in the type of data they use for training, i.e. individual-level genotypes/dosages or GWAS 

summary statistics. Today, GWAS summary statistics are widely available for a broad range of 

diseases and traits in public databases, e.g. the GWAS catalog contains more than 1,400 

summary statistics4. For psychiatric disorders, the Psychiatric Genomics Consortium (PGC) 

provides GWAS summary statistics based on ever larger sample sizes, as a result of meta-

analyzing the individual efforts of many research groups worldwide. Furthermore, many GWAS 

summary statistics-based PRS methods are broadly used: Clumping and Thresholding (C+T)5–7, 

LDpred8 or more recent methods9–13, and have proven successful to identify individuals with 

significant increased risk of complex diseases such as coronary artery disease14. 

Interestingly, many of these external GWAS summary statistics-based PRS methods 

approximate the results of the internal individual-level data approaches, making some 

assumptions in the process (e.g. LDpred-inf8 and sBLUP15 approximate the genomic BLUP16, 

assuming that linkage disequilibrium (LD) patterns in the external data from which the GWAS 

summary statistics were derived can be captured using an LD reference). Furthermore, 

phenotype definition, genetic architecture and/or technical artifacts may affect the prediction 

accuracy of the derived PRSs17,18. Using methods that fit prediction effect sizes jointly on internal 

individual-level data for training PRSs makes some of these assumptions unnecessary, which can 

lead to improved prediction accuracy8,19 e.g. Privé et al. found that prediction of height using 

penalized linear regression provides more accurate PRSs compared to C+T (LD clumping an p-

value thresholding) when trained on individual-level data20. Indeed, there exist a number of 

powerful alternatives for deriving PRSs using individual-level data20–25. Until recently, most 

individual-level datasets have been small, especially in comparison to sample sizes achieved in 

GWAS meta-analyses, but cheaper genotyping has led to the generation of large genetic datasets 

(e.g. iPSYCH for psychiatric disorders26 and UK Biobank for a multitude of complex traits27). 

Therefore researchers often have access to large individual-level genetic data as well as large 

published GWAS summary statistics. However, most PRS methods train on either of these data 

types separately but not directly on both (although many methods do require individual-level 

data for hyper-parameter optimization). SCT is the only exception that we are aware of, as it 

does train directly on both types of data7. By combining and leveraging data, we aim to increase 

the training sample size of PRSs and, ultimately, their prediction accuracy. 

In the current paper, we explore and compare different approaches of combining internal 

individual-level data and external GWAS summary statistics for polygenic prediction. Currently, 
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the most widespread approach is combining the data at the level of GWAS summary statistics by 

meta-analyzing the marginal effect estimates of different studies, prior to training the PRS 

(Meta-GWAS). We believe this approach is reasonable when the individual-level data is small, 

but may discards its potential for training when larger sample sizes are available. Alternatively, 

SCT7 generates a range of C+T PRSs from the external GWAS summary statistics over a grid of 

hyper-parameters (e.g. LD clumping parameters and p-value thresholds) and then stacks these 

PRSs by fitting a penalized regression model using individual-level data. This results in a more 

accurate PRS compared to C+T provided sufficient training data sample size. Based on weighted 

average PRSs28,29, we propose a model with two independently generated PRS (Meta-PRS): an 

internal PRS, derived from the individual-level data; and an external PRS, derived from the 

GWAS summary statistics; and train the weights using linear regression on a validation dataset. 

We derive the PRSs with methods that work well for highly polygenic traits — namely we use 

BOLT-LMM30 for deriving the internal PRS and LDpred8 for the external PRS. We compare the 

prediction accuracy of the three approaches presented above (Meta-GWAS, SCT and Meta-PRS) 

through simulations and application to real data of psychiatric disorders and other complex 

diseases and traits, using individual-level data from two large cohorts (iPSYCH and UK 

Biobank) as well as large GWAS summary statistics that excluded these cohorts. Finally, we 

provide guidelines for optimizing accuracies of PRS in different scenarios, i.e. different degrees 

of polygenicity and sample size ratios between GWAS summary statistics and individual-level 

data. 

2. Methods 

2.1. Approaches for combining internal and external data 

We investigated the difference in prediction performance of PRSs that are trained using both 

external GWAS summary statistics and internal individual-level genetic data, but combined 

through three different approaches (Table 1). In the first approach (Meta-GWAS), the internal 

individual-level data was used to derive GWAS summary statistics that were subsequently meta-

analyzed with the external GWAS summary statistics and finally used for deriving PRSs. For the 

second approach (SCT) we used the external summary statistics to derive a large number of C+T 

scores, and the individual-level data to fit a penalized regression to linearly combine these C+T 

scores. In the third approach (Meta-PRS), the individual-level data and GWAS summary 

statistics were used for deriving two independent PRSs. We obtained a weighted average of the 

two PRSs by fitting a linear regression model. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Table 1: Overview of the compared data-combining approaches and data utilization. 
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M: number of SNPs, Z: SNP effect size, x: SNP effect allele count, N: effective sample size �!"" =

4/(1/�#$ + 1/�#%), int: internal data, ext: external data, k: number of PRSs in grid, w: regression 

weights. 

In the three approaches, the individual-level data was split in training, validation and test 

subsets following a 5-fold cross-validation scheme (4-0.5-0.5; 80% training, 10% validation, 

10% testing). The selection criteria for all method parameters was the parameter maximizing 

prediction accuracy in terms of prediction �! in the validation data. Consequently, we obtained 5 

estimates of PRS prediction performance for each method in the test subset and reported the 

mean. The standard error of the mean prediction accuracy was estimated through 10K bootstrap 

replicates of this mean. 

2.2. Computing PRSs 

2.2.1. Meta-GWAS 

We obtained GWAS summary statistics for the individual-level data using linear regression 

implemented in the function big_univLinReg, from the R package bigstatsr31. We used sex, age, 

genotyping batch and the first 20 principal components (PCs) of the dataset as covariates in the 

GWAS. We performed a sample size-based meta-analysis with the external GWAS summary 

statistics using the software METAL32. We computed PRSs using LDpred v1.0.108 (note that this 

version already implements some of the improvements made in LDpred233), using the 

infinitesimal model and 7 priors assuming a proportion of causal variants (p = 1, 0.3, 0.1, 0.03, 

0.01, 0.003, 0.001). We used a LD radius of 500 variants to compute the LD reference panel. We 
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then selected the LDpred PRS with p maximizing the prediction �! in the validation set. We also 

computed PRSs with LD-clumping and p-value thresholding (C+T), selecting the score from a 

set of C+T PRSs that maximized the prediction �! in the validation set. The C+T PRSs were 

generated from a grid of parameters: LD pairwise correlation �! values (0.01, 0.05, 0.1, 0.2, 0.5, 

0.8, 0.95), base window sizes (50, 100, 200, 500) and 50 p-value thresholds (depending on max. 

and min. p-value in summary statistics, on a log-log scale)7. For LD clumping, the SNP p-values 

were used as a selection variable i.e. for a pair of correlated SNPs, the SNP with the lowest p-

value was kept. A total of 1,400 C+T PRSs were derived for each chromosome. 

2.2.2. SCT 

We computed C+T PRSs using the external GWAS summary statistics and the same grid of 

parameters as in section 2.2.1. The final PRS was computed using the function 

snp_grid_stacking from the R package bigsnpr7, which performs penalized logistic regression, 

with the 1400 x 22 C+T scores as predictors and phenotypes as outcomes in the training set. 

2.2.3. Meta-PRS 

To obtain the Meta-PRS, we first computed two independent PRSs: ���"#$ and ���%&$. For 

���"#$, we obtained per-SNP prediction betas with BOLT-LMM25 (using the flag –predBetas) 

and computed the PRS as ���" = 3 �'(
)* ç �",', where � are the number of SNPs in the model, 

�'. For each sample and trait, we ran BOLT-LMM v2.3.4 using sex, age, genotyping batch and 

the first 20 PCs of the dataset as covariates. Depending on the polygenicity of the trait, BOLT-

LMM computes a mixture-of-Gaussians prior on SNP effect sizes or the single-Gaussian BOLT-

LMM-inf model, equivalent to best linear unbiased prediction (BLUP). The ���%&$ was 

computed with LDpred or C+T, as described in section 2.2.1. Finally, we defined the Meta-PRS 

with weights �"#$ and �%&$ as the linear combination of the two PRSs with these weights, as 

������� = �, +�"#$���"#$ +�%&$���%&$ (lm function in R). To avoid overfitting, we 

trained the weights in a linear regression model in the validation data set (lm function in R). For 

the linear combination, we also used as weights the square root of the respective PRS training 

data sample size. In these cases, PRS were standardized prior to being combined. The latter use 

of weights is highlighted in the text, otherwise the weights in the Meta-PRS came from the linear 

regression model. 

2.3. Data and quality control 

2.3.1. iPSYCH data 

We used genotype and phenotype data from the iPSYCH2012 case-cohort sample26. The 

iPSYCH2012 sample is nested within the entire Danish population born between 1981 and 2005, 

including 1,472,762 persons. Cases were identified as persons with schizophrenia (SCZ), autism 

(ASD), attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD) and 

anorexia nerviosa (AN); we identified controls as persons from the randomly selected cohort that 
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were not diagnosed with any of the previous disorders. The genetics dataset consists of 78,050 

individuals and 10,217,873 SNPs imputed following the RICOLPILI pipeline34. We computed 

KING-relatedness robust coefficient35 and excluded at random one of the individuals in the pairs 

> 3rd degree relatedness, resulting in 5,673 individuals excluded. We performed principal 

component analysis (PCA) following Privé, et al. 202036 and obtained 30 PCs. We also identified 

70,584 genetically homogeneous individuals based on these 30 PCs. We define homogeneous 

individuals as < 4.8 log(dist) units from the centre of the 30 PCs, calculated using the function 

dist_ogk from R package bigutilsr36. This resulted in a subset of 65,361 unrelated individuals of 

homogeneous ancestry. After removing SNPs with minor allele frequency (MAF) < 0.01 and 

Hardy–Weinberg p-value (�! (df = 1) test statistic pHWE) < 10-., we restricted to the HapMap3 

variants (https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html). The final 

dataset was composed of 65,361 individuals and 1,184,138 SNPs. 

2.3.2. UK Biobank data 

We used genotype and phenotype data from the full release of the UK Biobank27, consisting of 

488,377 individuals with genetic information. Specifically, we imported dosage data from BGEN 

files using the function snp_readBGEN from the R package bigsnpr31. We identified individuals 

with either self-reported or ICD-10 diagnosis for breast cancer (BC), coronary artery disease 

(CAD), type 2 diabetes (T2D) and major depressive disorder (MDD), setting the undiagnosed 

individuals as controls and restricting to women for breast cancer. We also identified individuals 

with standing height and body mass index (BMI) measurements to use as quantitative traits. We 

restricted the analysis to unrelated (as described in section 2.3.1) and “white British” genetic 

ancestry individuals. We removed SNPs with MAF < 0.01 and restricted to HapMap3 variants. 

The final dataset was composed of 337,475 individuals and 1,194,574 SNPs. 

2.3.3. Simulations 

We simulated case-control phenotypes using 1,194,574 HapMap3 SNPs and the subset of 

337,475 unrelated European-ancestry individuals from the UK Biobank. The phenotypes were 

simulated with two different numbers of causal variants: �/01203 = 10k and 100k, representing 

polygenic traits. Each causal variant was assigned an effect size drawn from �(0, /!/�/01203), 
where the heritability /! = 0.5. The case-control status was assigned under a genetic liability 

model, with a simulated prevalence of 0.2. Each simulation scenario was repeated 5 times. 

From the sample of individuals, 90% were used as the training set, 5% as the validation 

set and 5% as the test set. To represent scenarios with different sample sizes of the individual-

level data and GWAS summary statistics, the training set was further split randomly according to 

the following partitions: 10%-90%, 25%-75%, 50%-50%, 75%-25% and 90%-10%. One part 

was used to derive summary statistics and act as the external summary data, while the other part 

was used as individual-level data. The labels 9:1, 3:1, 1:1, 1:3, 1:9 used in the results reflect the 

sample size ratio of individual-level data (left) and GWAS summary statistics (right). 
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2.4. Prediction accuracy 

The prediction accuracy of the PRSs was assessed in terms of squared correlation (�!) and area 

under the curve (AUC)37. The �! was calculated for a model including the PRS and covariates 

(sex, age, genotyping batch and first 20 PCs) as explanatory variables and a model including 

only the covariates (without a PRS) as explanatory variables. The PRS prediction �! was finally 

reported as �! =
4('(),+,-)
/ -4(+,-)

/

*-4('(),+,-)
/  for the quantitative traits and transformed to the liability scale 

for the case-control data38. Additionally, the AUC was reported for the case-control data. 

2.5. Code availability 

The analysis pipeline was generated using gwf (https://docs.gwf.app/) and R scripts. All code 

used in this project is available at 

https://drive.google.com/drive/folders/1u6U55e8MERt3zzbQ3OQbiNJD5lLqGtUx?usp=sharing. 

3. Results 

3.1. Performance on simulated data 

We evaluated the prediction accuracy of the PRSs using simulated data to explore the 

relationship between the combining approaches and the training sample size. Using the UK 

Biobank genetic data, we simulated traits with 10,000 (10k) and 100,000 (100k) causal SNPs, 

aiming at representing the polygenicity range of complex traits, and different sizes of training 

sample (10%, 25%, 50%, 75% and 90% of N ~ 300,000 individuals) of individual-level data 

(internal) and GWAS summary statistics (external). First, we compared the prediction accuracy 

of PRSs trained only on internal data (using BOLT-LMM) or external data (using C+T or 

LDpred) in terms of mean prediction �! (Fig. 1A) and AUC (Supplementary Fig. 1). For all 

simulated scenarios, the BOLT-LMM outperformed other methods, with a larger relative 

improvement in the simulations with 10k causal SNPs. The comparison between the GWAS 

summary statistics-based methods resulted in C+T being generally preferred in the simulations 

with 10k and LDpred in the ones with 100k causal SNPs. These results highlight the benefits of 

using the individual-level data for training PRSs over the derived GWAS summary statistics. 

We also compared the prediction accuracy of PRSs using different data-combining 

approaches (SCT, Meta-GWAS and Meta-PRS) in the simulated traits (Fig. 1B, Supplementary 

Fig. 2). The external and internal datasets were matched to create combinations with different 

ratios of each data type (9:1, 3:1, 1:1, 1:3, 1:9; e.g. 3:1 indicates a scenario where the external 

data was 75% and the internal data was 25% of the total N ~ 300k individuals in the training set). 

For Meta-PRS, we observed a positive relation between the size of the internal data and the mean 

prediction �!. The opposite was observed for SCT, where larger external datasets provided 

larger mean predictions. The ratio of data showed no effect for Meta-GWAS, with constant 
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prediction �! along the simulated ratios (Fig. 1B). These results indicated that it was possible to 

optimize PRS prediction accuracy by selecting a data-combining approach depending on the 

sample size ratio between the available internal and external data. While the classical Meta-

GWAS was a valid strategy in ratios of 1:1, scenarios with a more skewed ratio benefit from 

approaches like Meta-PRS and SCT, which use the individual-level data for training. 

Aiming to simplify the construction of the Meta-PRS, we attempted to use the square root 

of the effective sample size (9�%55) to weight the internal and external PRSs. This simplified 

version of Meta-PRS is faster and does not need of a validation dataset. In the previously-

described simulated scenarios, we compared the mean prediction �! of PRSs weighted by 9�%55 

and PRSs weighted by linear regression effect sizes (using a validation dataset). We only 

observed a small increase in mean prediction �! in the scenarios with large individual-level data 

(ratios 1:3 and 1:9), with the other remaining the same (Supplementary Fig. 3). 
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Fig. 1 Prediction accuracy of the PRSs in the simulation study. Each panel displays the mean 

and 95% CI of the PRS prediction �! (y-axis) for each data combining approach. The traits were 

simulated from a liability threshold model with 10,000 (10k) and 100,000 (100k) causal SNPs 

and heritability /! of 0.5, and case-control status was inferred from a disease prevalence of 0.2. 

Mean and 95% CI of prediction �! were obtained from 10k non-parametric bootstrap samples of 

5 independent replicates. A) Effect of training sample size in the PRSs prediction accuracy. The 

x-axis indicates the percentage of individuals from the total training set (N = 303,728) used as 

individual-level data for BOLT-LMM or GWAS summary statistics for C+T and LDpred. B) 

Effect of the ratio between internal and external data in the combining approaches. The x-axis 

indicates the relative amount of external vs. internal data, e.g. 3:1 indicates a scenario where the 

external data was 25% and the internal data was 75% of the total sample. Fig. 1 is a simplified 

version of Supplementary Fig. 2, selecting a single method per combining approach between 

C+T and LDpred, where the method maximizing mean prediction �! was selected. 
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3.2. Performance on real data 

We investigated the prediction accuracy of the data-combining approaches (Meta-PRS, SCT and 

Meta-GWAS) in real complex traits using internal individual-level data from large genotype 

cohorts (iPSYCH26 and the UK Biobank27) and external GWAS summary statistics without 

samples from these two cohorts. The set of traits selected included the six major psychiatric 

disorders (ASD, ADHD, MDD, BD, SCZ and AN), three other complex diseases (BC, T2D and 

CAD) and two continuous complex traits (height and BMI) (Table 2). The set of SNPs used for 

each trait was the intersection between the SNPs in the individual-level data, GWAS summary 

statistics and the 1,440,616 HapMap3 SNPs. 

 

Table 2: Summary of real datasets. Sample sizes (cases / controls for binary traits) of the 

individual-level datasets for the 12 complex traits, along with the sample sizes of the 

corresponding GWAS summary statistics. The GWAS summary statistics selected did not include 

samples overlapping with the individual-level datasets used here. The table reflects sizes of 

European ancestry, unrelated samples (see Methods) and the ratios are based on effective 

sample sizes. 

Traits 

Individual-

level 

dataset 

Individual-

level 

sample size 

GWAS 

sample 

size 

Ratio 
Overlapping 

SNPs 

Attention deficit hyperactivity 

disorder (ADHD)39 

iPSYCH 

17,072 / 

25,982 

4,225 / 

11,012 
3.4:1 1,105,731 

Autism spectrum disorder 

(ASD)40 

14,682 / 

26,033 

5,305 / 

5,305 
3.5:1 1,177,564 

Anorexia Nervosa (AN)41 
3,181 / 

26,282 

11,940 / 

33,731 
1:3.1 1,134,823 

Schizophrenia (SCZ)42 
2,701 / 

26,277 

21,169 / 

28,117 
1:4.9 1,183,697 

Bipolar Disorder (BD)43 
1,429 / 

26,311 

20,040 / 

30,874 
1:9 1,183,744 

Major depressive disorder 

(MDD)44 

22,469 / 

25,882 

229,897 / 

544,204 
1:13.4 1,094,603 

Height45 

UK 

Biobank 

336,750 253,288 1.3:1 1,000,417 

Body mass index (BMI)46 336,381 339,224 1:1 1,003,044 

Type 2 diabetes (T2D)47 
18,857 / 

318,618 

26,676 / 

132,532 
1:1.2 1,100,399 

Major depressive disorder 

(MDD)48 

28,626 / 

308,849 

45,396 / 

97,250 
1:1.2 1,091,232 

Coronary artery disease (CAD)49 
11,529 / 

325,946 

60,801 / 

123,504 
1:3.7 1,093,989 
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Breast cancer (BC)50 
12,024 / 

169,207 

122,977 / 

105,974 
1:5.1 1,098,351 

 

No single combining approach provided the largest mean prediction �! for all traits (Fig. 

2) or AUC (Supplementary Fig. 4) for all traits. In the cases where the sample size of individual-

level data was larger than the summary statistics (int > ext), Meta-PRS increased mean 

prediction �! over SCT and Meta-GWAS for height, while both Meta-GWAS and Meta-PRS 

had similar results for ASD and ADHD, with large and overlapping CIs. In the cases with equal 

data training sample sizes (1:1), Meta-PRS increased prediction accuracy over Meta-GWAS and 

SCT for BMI and T2D, while the results for Meta-GWAS and Meta-PRS were similar for MDD 

UKB. Finally, in the cases where the sample size of the GWAS summary statistics was larger 

than the individual-level data (ext > int) the results were also diverse. For AN, CAD, SCZ, BD 

and MDD iPSYCH there was no major difference between Meta-GWAS and Meta-PRS. 

However, for BC, the data-combining approach with the largest mean prediction �! was SCT. 

Generally, the Meta-GWAS showed a larger mean prediction �! than Meta-PRS for the 

psychiatric disorders, though with large and overlapping CIs. This was independent of the 

sample size ratio of internal vs. external data. For most outcomes validated in the UK Biobank 

data, the most accurate approach was Meta-PRS, where the largest improvement was for height, 

BMI and T2D. For these outcomes the internal effective sample size was larger than for most of 

the other outcomes. BC was the only trait where SCT led to the most predictive PRS, even 

though the ratio internal:external was similar to other traits like CAD. 

The PRS method-specific results showed a preference of LDpred over C+T in 6/12 traits, 

both in PRS trained on external or meta-analyzed summary statistics (Supplementary Fig. 5), 

while for the rest of the traits both methods had similar results. We also compared the Meta-PRS 

constructed with linear regression weights to the one weighed by effective sample sizes (9�%55) 

of training data (Supplementary Fig. 6). As in the simulations, we only observed an increase in 

mean prediction �! in the traits with large individual-level data (height and BMI). In the rest of 

the traits, there was no preference for a specific weight type. The use of 9�%55 as weights is 

therefore recommended for these traits, as it does not require a validation set. 
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Fig. 2 Prediction accuracy of the combining approaches in 12 complex traits from iPSYCH 

and UK Biobank. Each panel displays the mean and 95% CI of the PRS prediction �! (y-axis) 

for each data combining approach, of PRS trained on individual-level data (int), GWAS 

summary statistics (ext) or both (ext+int) (x-axis). The prediction �! was transformed to the 

liability-scale using a population prevalence of 0.01 (ASD), 0.05 (ADHD), 0.15 (MDD UK 

Biobank), 0.05 (T2D), 0.01 (AN), 0.03 (CAD), 0.01 (SCZ), 0.07 (BC), 0.01 (BD) and 0.08 

(MDD iPSYCH). The methods noted as int and ext were fitted using BOLT-LMM with 

individual-level data and LDpred or C+T with GWAS summary statistics, respectively. For 

simplification, only the ext PRS with larger mean prediction �! is shown, the full results are 
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available in the Supplementary Fig.5. Mean and 95% CI of the prediction �! were obtained from 

10k non-parametric bootstrap samples of the 5 cross-validation subsets. 

 

4. Discussion 

With genetic data now available to researchers as both large individual-level datasets and GWAS 

summary statistics, we want to understand how to best combine these two types of data to 

optimize polygenic prediction. With this aim, we have evaluated the predictive performance of 

PRSs generated with different data-combining approaches: Meta-GWAS, SCT and Meta-PRS. 

We find that the simple approach of combining two different PRSs (Meta-PRS), trained on 

individual-level data and GWAS summary statistics separately, may yield more accurate PRSs 

than Meta-GWAS, particularly in the cases with sufficiently large individual-level datasets. We 

observe this in simulated data, where Meta-PRS consistently increases the mean prediction �! 

over the widely used Meta-GWAS approach, and in the real complex traits with a large 

individual-level dataset e.g. height, BMI, and T2D. Another advantage of Meta-PRS is that it 

allows to combine multiple pre-calculated PRSs, irrespective of prediction method. When 

validation data is not available, we show that one can use the square root of the training sample 

sizes as weights. The same approach could also be used to combine multiple PRSs (e.g. in the 

PGS Catalog51), being standardized and averaged together with their corresponding training 

sample sizes. As an alternative approach, the scores in Meta-PRS could be weighted using MT-

BLUP52. 

In the case of BC, which has several large effects and relatively low polygenicity, the 

SCT PRS prediction is the most accurate, presumably because it relies more on variant thinning. 

For psychiatric disorders, we found that the Meta-GWAS generally yielded the most predictive 

PRSs, despite these disorders being very polygenic and often having relatively large individual-

level data sample sizes. The results for the psychiatric disorders are contrary to what we expected 

based on our simulations regarding the preferred data-combining approach, although we note 

that the expected relative improvement of Meta-PRS over Meta-GWAS is small if polygenicity 

is large. Nevertheless, we want to highlight that leveraging the two types of data (individual-

level data and GWAS summary statistics) always increased the prediction performance of PRSs 

over not combining data, even in the cases where either of these were small. 

Our simulations represent an idealized scenario where we assume that the genetic 

architecture is invariant between cohorts/samples (i.e. genetic correlation is 1). Studies have 

shown that psychiatric disorders can be quite heterogenous between cohorts18, especially for the 

iPSYCH data where Schork et al. 201953 estimated the genetic correlation for psychiatric 

disorders between external and iPSYCH samples to be between 0.5-0.8. Given that we found that 

Meta-GWAS provided more accurate predictions in the iPSYCH data, it may suggest that it is 
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more robust to disease heterogeneity than Meta-PRS. However, if the genetic architecture is 

similar between samples (high genetic correlation), we expect Meta-PRS to have the advantage 

given even larger individual-level data sample sizes. Similar to disease heterogeneity, differences 

in genetic ancestry between the training and testing data can also decrease the prediction 

accuracy of PRSs17. In the case of ancestry heterogeneity, the linear combination of PRS trained 

independently on different ancestries improves prediction for admixed individuals54, but the 

extent to which these sample heterogeneities affect each of the prediction accuracy in the 

compared data-combining approaches should be further studied. 

In Meta-PRS we combined the BOLT-LMM and LDpred (or C+T) predictions, and 

therefore the results may not be fully generalizable to other methods e.g. a more accurate method 

may lead to more accurate Meta-GWAS scores. Nevertheless, given that LDpred generally 

performs well for polygenic traits in independent comparisons55,56, we believe it acts as a good 

proxy for other similar methods, such as lasso regression9, SBayesR11, and PRS-CS10. In the case 

of individual-level data and low polygenicity, L1-penalized regression may also provide more 

accurate PRSs than BOLT-LMM20. 

In summary, we found that a simple additive model of two polygenic scores (Meta-PRS) 

often outperformed the accuracy of approaches that first meta-analyzed SNP effects (Meta-

GWAS) in highly polygenic traits. Fundamentally, the improvement in Meta-PRS prediction 

accuracy stems from the fact that methods that train a polygenic prediction model on individual-

level data have access to more training information than methods that only train on a summary of 

this data and usually make fewer assumptions. However, Meta-GWAS has the advantage that 

each effect estimate is updated separately, possibly making it more robust to small sample sizes 

and changes in genetic architecture. 

Acknowledgments 

This study was funded by grants from The Lundbeck Foundation (R102-A9118, R155-2014-

1724, and R248-2017-2003) and The Danish National Research Foundation (Niels Bohr 

Professorship to Prof. John J. McGrath). The authors gratefully acknowledge the Psychiatric 

Genomics Consortium (PGC) and the research participants and employees of 23andMe, Inc. for 

providing the summary statistics. All of the computing for this project was performed on the 

GenomeDK cluster. We would like to thank GenomeDK and Aarhus University for providing 

computational resources and support that contributed to these research results. This research has 

been conducted using the UK Biobank Resource under Application Number 41181. 

Conflicts of interest 

The authors report no conflicts of interest. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

References 

1. Wray, N. R. et al. Research review: Polygenic methods and their application to psychiatric 

traits. J. Child Psychol. Psychiatry 55, 1068–1087 (2014). 

2. Zhu, X. & Stephens, M. Large-scale genome-wide enrichment analyses identify new trait-

associated genes and pathways across 31 human phenotypes. Nat. Commun. 9, 4361 (2018). 

3. Anderson, J. S., Shade, J., DiBlasi, E., Shabalin, A. A. & Docherty, A. R. Polygenic risk 

scoring and prediction of mental health outcomes. Curr Opin Psychol 27, 77–81 (2019). 

4. Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association 

studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 

(2019). 

5. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based 

linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 

6. Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: Polygenic risk score software. 

Bioinformatics 31, 1466–1468 (2015). 

7. Privé, F., Vilhjálmsson, B. J., Aschard, H. & Blum, M. G. B. Making the most of clumping 

and thresholding for polygenic scores. Am. J. Hum. Genet. 105, 1213–1221 (2019). 

8. Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic 

risk scores. Am. J. Hum. Genet. 97, 576–592 (2015). 

9. Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via 

penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480 (2017). 

10. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via 

bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019). 

11. Lloyd-Jones, L. R. et al. Improved polygenic prediction by bayesian multiple regression on 

summary statistics. Nat. Commun. 10, 5086 (2019). 

12. Chun, S. et al. Non-parametric polygenic risk prediction via partitioned GWAS summary 

statistics. Am. J. Hum. Genet. 107, 46–59 (2020). 

13. Yang, S. & Zhou, X. Accurate and scalable construction of polygenic scores in large biobank 

data sets. Am. J. Hum. Genet. 106, 679–693 (2020). 

14. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals 

with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018). 

15. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A tool for genome-wide 

complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 

16. Goddard, M. Genomic selection: Prediction of accuracy and maximisation of long term 

response. Genetica 136, 245–257 (2009). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

17. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health 

disparities. Nat. Genet. 51, 584–591 (2019). 

18. Schwabe, I. et al. Unraveling the genetic architecture of major depressive disorder: Merits 

and pitfalls of the approaches used in genome-wide association studies. Psychol. Med. 49, 2646–

2656 (2019). 

19. Robinson, M. R. et al. Genetic evidence of assortative mating in humans. Nature Human 

Behaviour 1, 0016 (2017). 

20. Privé, F., Aschard, H. & Blum, M. G. B. Efficient implementation of penalized regression for 

genetic risk prediction. Genetics 212, 65–74 (2019). 

21. Abraham, G., Kowalczyk, A., Zobel, J. & Inouye, M. SparSNP: Fast and memory-efficient 

analysis of all SNPs for phenotype prediction. BMC Bioinformatics 13, 88 (2012). 

22. Erbe, M. et al. Improving accuracy of genomic predictions within and between dairy cattle 

breeds with imputed high-density single nucleotide polymorphism panels. J. Dairy Sci. 95, 

4114–4129 (2012). 

23. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with bayesian sparse linear 

mixed models. PLoS Genet. 9, e1003264 (2013). 

24. Speed, D. & Balding, D. J. MultiBLUP: Improved SNP-based prediction for complex traits. 

Genome Res. 24, 1550–1557 (2014). 

25. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association 

for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018). 

26. Pedersen, C. B. et al. The iPSYCH2012 case–cohort sample: New directions for unravelling 

genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6 

(2017). 

27. Bycroft, C. et al. The UK biobank resource with deep phenotyping and genomic data. Nature 

562, 203–209 (2018). 

28. Inouye, M. et al. Genomic risk prediction of coronary artery disease in 480,000 adults: 

Implications for primary prevention. J. Am. Coll. Cardiol. 72, 1883–1893 (2018). 

29. Krapohl, E. et al. Multi-polygenic score approach to trait prediction. Mol. Psychiatry 23, 

1368–1374 (2018). 

30. Loh, P.-R. et al. Efficient bayesian mixed-model analysis increases association power in 

large cohorts. Nat. Genet. 47, 284–290 (2015). 

31. Privé, F., Aschard, H., Ziyatdinov, A. & Blum, M. G. B. Efficient analysis of large-scale 

genome-wide data with two R packages: Bigstatsr and bigsnpr. Bioinformatics 34, 2781–2787 

(2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

32. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of 

genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 

33. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: Better, faster, stronger. 

2020.04.28.066720 (2020). 

34. Lam, M. et al. RICOPILI: Rapid imputation for COnsortias PIpeLIne. Bioinformatics 36, 

930–933 (2020). 

35. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. 

Bioinformatics 26, 2867–2873 (2010). 

36. Privé, F., Luu, K., Blum, M. G. B., McGrath, J. J. & Vilhjálmsson, B. J. Efficient toolkit 

implementing best practices for principal component analysis of population genetic data. 

Bioinformatics (2020). 

37. Janssens, A. C. J. W. & Martens, F. K. Reflection on modern methods: Revisiting the area 

under the ROC curve. Int. J. Epidemiol. (2020). 

38. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability 

for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011). 

39. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention 

deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019). 

40. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. 

Nat. Genet. 51, 431–444 (2019). 

41. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates 

metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019). 

42. Consortium, S. W. G. of T. P. G. & Schizophrenia Working Group of the Psychiatric 

Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. 

Nature vol. 511 421–427 (2014). 

43. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar 

disorder. Nat. Genet. 51, 793–803 (2019). 

44. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK 

biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1470 (2018). 

45. Wood, A. R. et al. Defining the role of common variation in the genomic and biological 

architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014). 

46. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. 

Nature 518, 197–206 (2015). 

47. Scott, R. A. et al. An expanded Genome-Wide association study of type 2 diabetes in 

europeans. Diabetes 66, 2888–2902 (2017). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

48. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the 

genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018). 

49. Nikpay, M. et al. A comprehensive 1,000 genomes-based genome-wide association meta-

analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015). 

50. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 

551, 92–94 (2017). 

51. Lambert, S. A. et al. The polygenic score catalog: An open database for reproducibility and 

systematic evaluation. medRxiv 2020.05.20.20108217 (2020). 

52. Maier, R. M. et al. Improving genetic prediction by leveraging genetic correlations among 

human diseases and traits. Nat. Commun. 9, 989 (2018). 

53. Schork, A. J. et al. A genome-wide association study of shared risk across psychiatric 

disorders implicates gene regulation during fetal neurodevelopment. Nat. Neurosci. 22, 353–361 

(2019). 

54. Márquez-Luna, C., Loh, P.-R., South Asian Type 2 Diabetes (SAT2D) Consortium, SIGMA 

Type 2 Diabetes Consortium & Price, A. L. Multiethnic polygenic risk scores improve risk 

prediction in diverse populations. Genet. Epidemiol. 41, 811–823 (2017). 

55. Ni, G. et al. A comprehensive evaluation of polygenic score methods across cohorts in 

psychiatric disorders. Genetic and Genomic Medicine (2020). 

56. Pain, O. et al. Evaluation of polygenic prediction methodology within a Reference-

Standardized framework. Cold Spring Harbor Laboratory 2020.07.28.224782 (2020). 

57. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area 

under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Supplementary figures 

 

 

Supplementary Fig. 1 Prediction accuracy of the data-combining approaches in the simulated 

data in terms of AUC. Each panel displays the mean and 95% CI of the PRS AUC (y-axis) for 

each data-combining approach. The traits were simulated from a liability threshold model with 

10,000 (10k) and 100,000 (100k) causal SNPs and heritability /! of 0.5, and case-control status 

was inferred from a disease prevalence of 0.2. Mean and 95% CI of AUC were obtained from 

10k non-parametric bootstrap samples of 5 independent replicates. The black line represents the 

���60& (0.852) for these simulations57. The x-axis indicates the relative amount of external 

vs. internal data, e.g. 3:1 indicates a scenario where the external data was 25% and the internal 

data was 75% of the total sample (N = 303,728). 
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Supplementary Fig. 2 Prediction accuracy of the data-combining approaches using different 

GWAS summary statistics-based PRS methods in the simulated data. Each panel displays the 

mean and 95% CI of the PRS �! (y-axis) for each data-combining approach and PRS method, of 

PRSs trained on individual-level data (int), GWAS summary statistics (ext) or both (ext+int) (x-

axis). In the case of Meta-GWAS, C+T and LDpred were used on the meta-analyzed summary 

statistics and in Meta-PRS, C+T and LDpred were used to compute the external PRS. The traits 

were simulated from a liability threshold model with 10,000 (10k) and 100,000 (100k) causal 

SNPs and heritability /! of 0.5, and case-control status was inferred from a disease prevalence 

of 0.2. Mean and 95% CI of prediction �! were obtained from 10k non-parametric bootstrap 

samples of 5 independent replicates. 
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Supplementary Fig. 3 Prediction accuracy of Meta-PRS using different weight types in the 

simulated data. Each panel displays the mean and 95% CI of the PRS prediction �! (y-axis) for 

Meta-PRS in each simulated scenario using either C+T or LDpred to generate the external PRS. 

The weights were obtained using linear regression (lm) or the square root of the training 

effective sample size (neff). In the case of the linear regression, the weights are trained in an 

independet validation dataset (see Table 1). The traits were simulated from a liability threshold 

model with 10,000 (10k) and 100,000 (100k) causal SNPs and heritability /! of 0.5, and case-

control status was inferred from a disease prevalence of 0.2. Mean and 95% CI of prediction �! 

were obtained from 10k non-parametric bootstrap samples of 5 independent replicates. 
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Supplementary Fig. 4 Prediction accuracy of the data-combining approaches in 12 complex 

traits from iPSYCH and UK Biobank. Each panel displays the mean and 95% CI of the PRS 

AUC (y-axis) for each data-combining approach, of PRS trained on individual-level data (int), 

GWAS summary statistics (ext) or both (ext+int) (x-axis). The methods noted as int and ext were 

fitted using BOLT-LMM with individual-level data and LDpred or C+T with GWAS summary 

statistics, respectively. For simplification, only the ext PRS with larger mean prediction �! is 

shown. Mean and 95% CI of the AUC were obtained from 10k non-parametric bootstrap 

samples of the 5 cross-validation subsets. 
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Supplementary Fig. 5 Prediction accuracy of the data-combining approaches using different 

GWAS summary statistics-based PRS method in 12 complex traits from iPSYCH and UK 

Biobank. Each panel displays the mean and 95% CI of the PRS �! (y-axis) for each data-

combining approach and PRS method, of PRSs trained on individual-level data (int), GWAS 

summary statistics (ext) or both (ext+int) (x-axis). In the case of Meta-GWAS, C+T and LDpred 

were used on the meta-analyzed summary statistics and in Meta-PRS, C+T and LDpred were 

used to compute the external PRS. The prediction �! was transformed to the liability-scale using 

a population prevalence of 0.01 (ASD), 0.05 (ADHD), 0.15 (MDD UKB), 0.05 (T2D), 0.01 (AN), 

0.03 (CAD), 0.01 (SCZ), 0.07 (BC), 0.01 (BD) and 0.08 (MDD iPSYCH). Mean and 95% CI of 
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the AUC were obtained from 10k non-parametric bootstrap samples of the 5 cross-validation 

subsets. 

 

 

Supplementary Fig. 6 Prediction accuracy of Meta-PRS using different weight types in 12 

complex traits from iPSYCH and UK Biobank. Each panel displays the mean and 95% CI of 

the PRS prediction �! (y-axis) for Meta-PRS in each simulated scenario using either C+T or 

LDpred to generate the external PRS. The weights were obtained using linear regression (lm) or 

the square root of the training effective sample size (neff). In the case of the linear regression, 

the weights are trained in an independet validation dataset (see Table 1). The prediction �! was 

transformed to the liability-scale using a population prevalence of 0.01 (ASD), 0.05 (ADHD), 

0.15 (MDD UKB), 0.05 (T2D), 0.01 (AN), 0.03 (CAD), 0.01 (SCZ), 0.07 (BC), 0.01 (BD) and 

0.08 (MDD iPSYCH). Mean and 95% CI of the AUC were obtained from 10k non-parametric 

bootstrap samples of the 5 cross-validation subsets. 
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