

1 **Type VI secretion system killing by commensal *Neisseria*
2 is influenced by the spatial dynamics of bacteria**

3
4 Rafael Custodio, Rhian M. Ford[#], Cara J. Ellison, Guangyu Liu,

5 Gerda Mickute, Christoph M. Tang, and Rachel M. Exley^{*}

6

7 Sir William Dunn School of Pathology,

8 University of Oxford,

9 South Parks Road,

10 Oxford OX1 3RE,

11 United Kingdom

12

13 #current address: Centre for Biomolecular Sciences, University of Nottingham, UK

14

15 *Correspondence: rachel.exley02@path.ox.ac.uk

16

17

18

19 **ABSTRACT**

20 **Type VI Secretion Systems (T6SS) are widespread in bacteria and can dictate the**
21 **development and organisation of polymicrobial ecosystems by mediating contact**
22 **dependent killing. In *Neisseria* species, including *Neisseria cinerea* a commensal of the**
23 **human respiratory tract, interbacterial contacts are mediated by Type four pili (Tfp) which**
24 **promote formation of aggregates and govern the spatial dynamics of growing *Neisseria***
25 **microcolonies. Here we show that *N. cinerea* expresses a plasmid-encoded T6SS that is**
26 **active and can limit growth of related pathogens. We explored the impact of Tfp**
27 **expression on *N. cinerea* T6SS-dependent killing and show that expression of Tfp by prey**
28 **strains enhances their susceptibility to T6SS, by keeping them in close proximity of T6SS-**
29 **wielding attacker strains. Our findings have important implications for understanding how**
30 **spatial constraints during contact-dependent antagonism can shape the evolution of**
31 **microbial communities.**

32

33

34

35

36

37

38

39 **INTRODUCTION**

40 The human microbiota is critical for the development of a healthy gastrointestinal immune
41 system (Round and Mazmanian, 2009; Sommer and Bäckhed, 2013) and can also protect the
42 host from invasion by pathogenic bacteria (Kamada et al., 2013). The microbes that carry
43 out these important functions live as part of complex communities shaped by their fitness
44 and ability to adapt to their environment, and which can be remodeled through mutualistic
45 and antagonistic interactions (Garcia-Bayona and Comstock, 2018; Little et al., 2008; Nadell
46 et al., 2016). Competition for niche and host-derived resources has therefore driven the
47 evolution in bacteria of an array of mechanisms to suppress growth of, or kill neighbouring
48 microbes. One mechanism, the Type VI Secretion System (T6SS), provides an effective
49 strategy to eliminate competitors in a contact-dependent manner. The T6SS is a contractile,
50 bacteriophage-like nanomachine that delivers toxins into the cytosol of target organisms
51 (Cianfanelli et al., 2016; Ho et al., 2014). T6SS-associated effectors possess a broad range of
52 activities, including nucleases (Koskineni et al., 2013; Ma et al., 2014; Pissaridou et al.,
53 2018), phospholipases (Flaughnati et al., 2016; Russell et al., 2013), peptidoglycan
54 hydrolases (Whitney et al., 2013) and pore-forming proteins (Mariano et al., 2019); each
55 effector is associated with a cognate immunity protein to prevent self-intoxication
56 (Alcoforado Diniz et al., 2015; Unterweger et al., 2014). T6SSs have been best characterised
57 in pathogenic bacteria, including *Pseudomonas*, *Vibrio*, *Salmonella* and *Shigella*, where its
58 impact in pathogenesis and bacterial competition has been established *in vitro* and in some
59 cases *in vivo* (Anderson et al., 2017; Sana et al., 2016). However, commensal bacteria also
60 harbour T6SS, although how these systems combat pathogens has only been elucidated for
61 *Bacterioidetes* in the intestinal tract (Russell et al., 2014); further studies are needed to gain

62 a greater appreciation of how T6SS in commensals influence microbial communities and
63 pathogens in other niches.

64

65 The human nasopharynx hosts a polymicrobial community (Kumpitsch et al., 2019; Marchesi
66 et al., 2017; Ramos-Sevillano et al., 2019), which can include the obligate human pathobiont
67 *Neisseria meningitidis*, as well as related but generally non-pathogenic, commensal
68 *Neisseria* species (Diallo et al., 2016; Dorey et al., 2019; Gold et al., 1978; Knapp and Hook,
69 1988; Sheikhi et al., 2015). *In vivo* studies have demonstrated an inverse relationship
70 between carriage of commensal *Neisseria lactamica* and *N. meningitidis* (Deasy et al., 2015),
71 while *in vitro* studies have revealed that some commensal *Neisseria* demonstrate potentially
72 antagonistic effects against their pathogenic relatives (Custodio et al., 2020; Kim et al.,
73 2019). Commensal and pathogenic *Neisseria* species have also been shown to interact
74 closely in mixed populations (Custodio et al., 2020; Higashi et al., 2011a). Social interactions
75 among *Neisseria* are mediated by surface structures known as Type IV pili (Tfp). These
76 filamentous organelles enable pathogenic *Neisseria* to adhere to host cells (Nassif et al.,
77 1993; Virji et al., 1991), and are crucial for microbe-microbe interactions and the formation
78 of bacterial aggregates and microcolonies (Helaine et al., 2007; Higashi et al., 2007). In
79 addition, Tfp interactions can dictate bacterial positioning within a community; non-piliated
80 strains have been shown to be excluded to the expanding edge of colonies growing on solid
81 media (Oldewurtel et al., 2015; Zöllner et al., 2017) while heterogeneity in pili, for example
82 through post translational modifications, can alter how cells integrate into micocolonies
83 (Zöllner et al., 2017).

84

85 We recently demonstrated that the pathogen *N. meningitidis* closely interacts with
86 commensal *Neisseria cinerea* on human epithelial cell surfaces in a Tfp-dependent manner
87 (Custodio et al., 2020). Here, whole genome sequence analysis revealed that the *N. cinerea*
88 isolate used in our studies encodes a T6SS. We provide the first description of a functional
89 T6SS in *Neisseria* spp.. We show that the *N. cinerea* T6SS is encoded on a plasmid and
90 antagonises pathogenic relatives, *N. meningitidis* and *Neisseria gonorrhoeae*. Moreover, we
91 examined whether Tfp influence the competitiveness of microbes in response to T6SS-
92 mediated antagonism and demonstrate that T6SS-mediated competition is facilitated by
93 Tfp in bacterial communities.

94

95 **RESULTS**

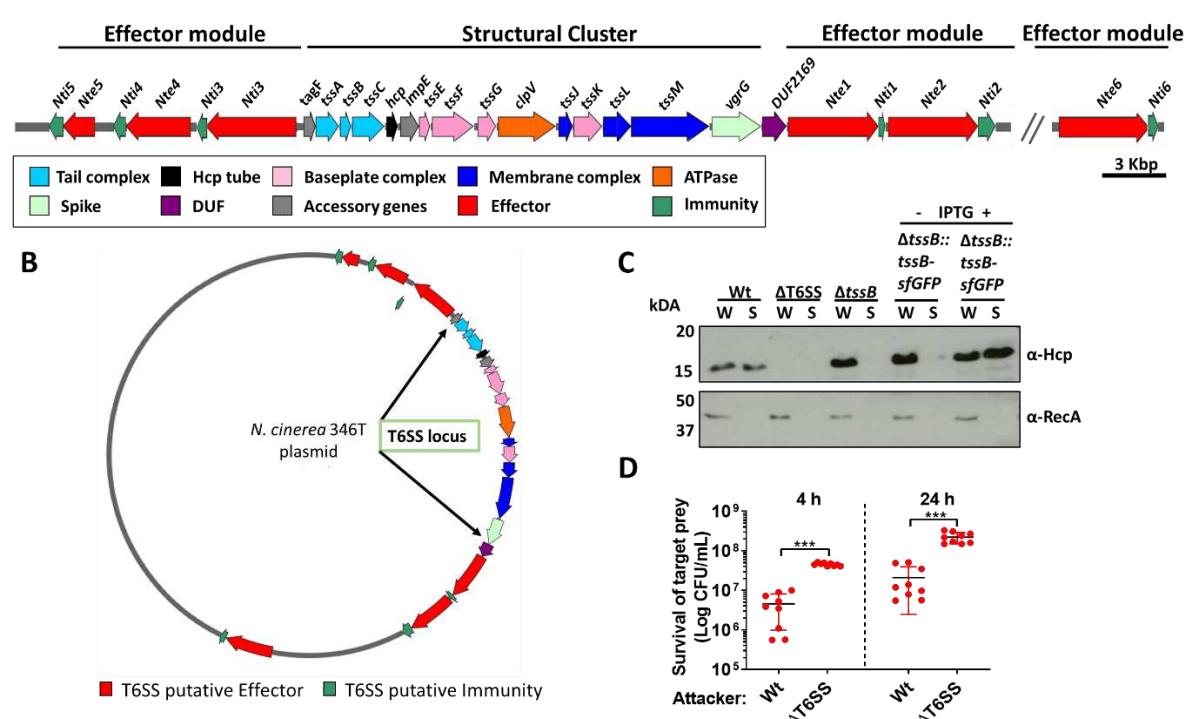
96 ***N. cinerea* 346T encodes a functional T6SS on a plasmid**

97 We identified a single locus in *N. cinerea* isolate CCUG346T (346T)
98 (<https://www.ccug.se/strain?id=346>) that encodes homologues of all 13 components that
99 are necessary for a functional T6SS (Cascales and Cambillau, 2012), including genes
100 predicted to encode canonical T6SS components Hcp and VgrG (**Figure 1A - table**
101 **supplement 1**). We used T6SS-effector prediction software tools (Li et al., 2015) to search
102 for putative effectors. In total we identified six putative effector and immunity genes,
103 termed *Nte* and *Nti* for Neisseria T6SS effector/immunity, respectively. All Ntes contain a
104 conserved Rhs domain, frequently associated with polymorphic toxins (Busby et al., 2013),
105 and a variable C-terminal region. Nte1 contains an N-terminal PAAR motif, which can
106 associate with the VgrG tip of T6SS (Shneider et al., 2013) and C-terminal phospholipase
107 domain (cd00618). Nte2 also contains an N-terminal PAAR domain and has a predicted
108 RNase domain (pfam15606) in its C-terminal region, while Nte3 is a putative HNH

109 endonuclease (pfam14411). Nte4 contains a GIY-YIG nuclease domain (cd00719) and Nte5 is
110 predicted to be an HNH/endo VII nuclease (pfam14412), with Nte6 predicted to contain an
111 HNHc endonuclease active site (cd00085).

112

113 Of note, all predicted T6SS-related *orfs* and Nte/Ntis in *N. cinerea* 346T were found to be
114 encoded on a 108,141 bp plasmid, revealed by PacBio sequencing, and confirmed by PCR
115 and sequencing. Nte/Nti 1-5 are encoded adjacent to the structural genes cluster, with
116 Nte6/Nti6 encoded elsewhere in the plasmid (**Figure 1B - figure supplement 1**). Thus, our
117 analysis reveals that the human commensal *N. cinerea* harbours a plasmid-borne T6SS
118 together with six putative effector-immunity pairs.


119

120 Contraction of T6SSs leads to Hcp secretion, a hallmark of a functional T6SS (Cascales and
121 Cambillau, 2012). Therefore, to establish whether the *N. cinerea* T6SS is functional, we
122 assessed Hcp levels in whole cell lysates and supernatants from wild-type *N. cinerea*, a
123 Δ T6SS mutant lacking 10 core genes including *hcp*, and a Δ *tssB* mutant. As expected, Hcp
124 was detected in both fractions from the wild-type strain but not in cell lysates or
125 supernatants from the Δ T6SS mutant (**Figure 1C**). Importantly, Hcp was present in cell
126 lysates from the Δ *tssB* mutant, but not detected in cell supernatants, consistent with TssB
127 being a component of the T6SS-tail-sheath required for contraction (Brackmann et al.,
128 2018). Hcp secretion was restored by complementation of the Δ *tssB* mutant by
129 chromosomal expression of TssB with a C-terminal sfGFP fusion (Δ *tssB::tssB-sfGFP) (**Figure**
130 **1C**).*

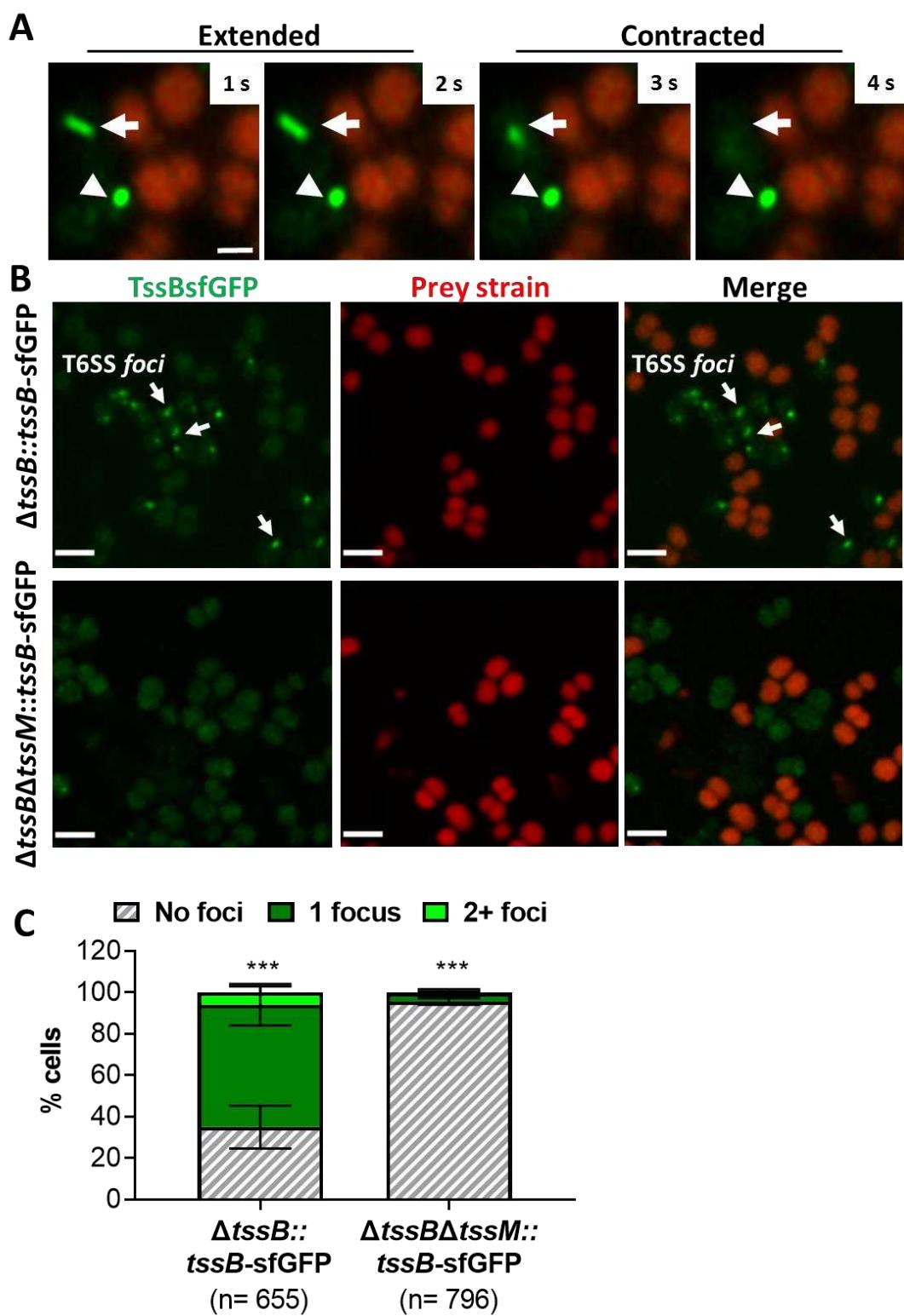
131

132 Next, we performed competition assays between *N. cinerea* 346T or the Δ T6SS mutant
133 against *N. cinerea* 27178A which lacks a T6SS and Nte/Nti pairs identified in *N. cinerea* 346T.
134 The survival of *N. cinerea* 27178A was reduced by around an order of magnitude following
135 incubation with *N. cinerea* 346T compared with the Δ T6SS mutant (Figure 1D, $p < 0.0001$
136 and $p < 0.0001$, respectively), confirming that the *N. cinerea* 346T T6SS is active during inter-
137 bacterial competition.

138

139

140 **Figure 1. *N. cinerea* expresses a functional T6SS.**


141 **(A)**, Schematic representation of T6SS genes in *N. cinerea* 346T. Canonical *tss* nomenclature
142 was used for genes in the T6SS cluster. **(B)** Map of the T6SS-associated genes encoded by
143 the *N. cinerea* 346T plasmid. **(C)** Expression and secretion of Hcp by wild-type *N. cinerea*
144 346T (Wt) and the T6SS mutant (Δ T6SS). Hcp protein was detected in the whole cell lysates
145 (W) and supernatants (S) by western blot analysis. For strain $\Delta tssB::tssBsfGFP$, bacteria were
146 grown in the presence (+) or absence (-) of 1 mM IPTG; molecular weight marker shown in

147 kDa. RecA is only detected in whole cell lysates. **(D)** Survival of the prey, *N. cinerea* 27178A,
148 after 4 and 24 co-incubation with wild-type *N. cinerea* 346T or the T6SS mutant (Δ T6SS) at
149 10:1 ratio, attacker:prey. The mean \pm SD of three independent experiments are shown: ***p
150 < 0.0001 using unpaired two-tailed Student's t-test.

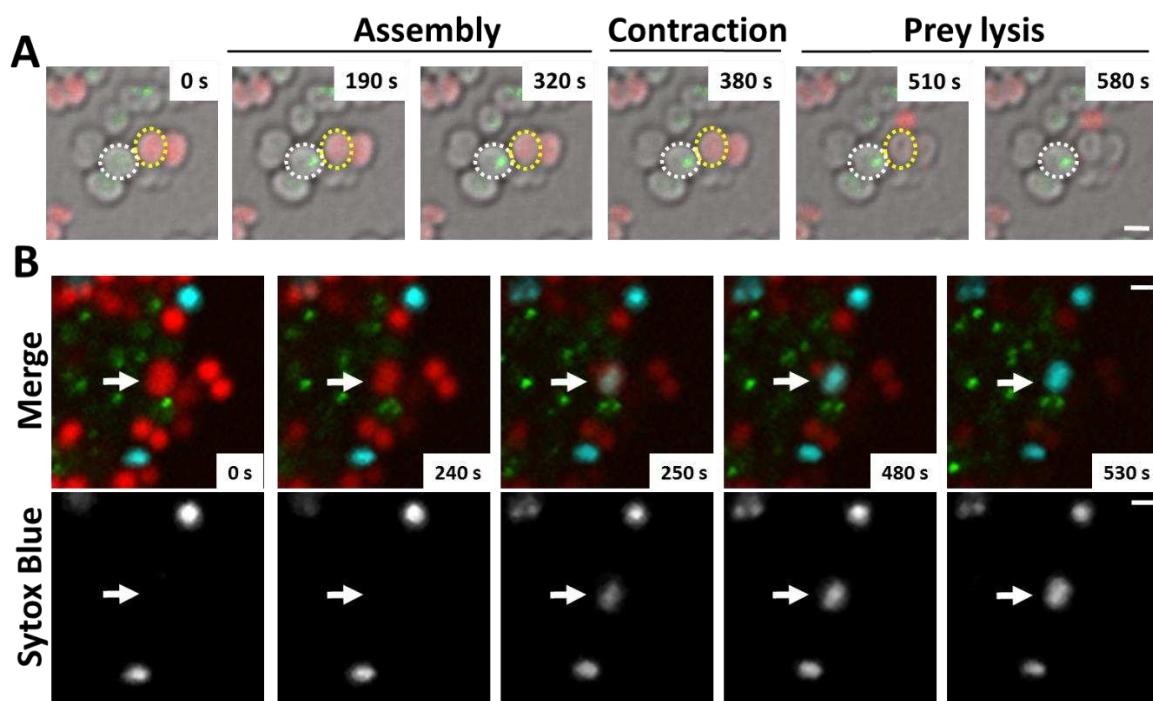
151

152 ***Dynamic behaviour of the Neisseria T6SS in the presence of prey cells***

153 We further analysed the activity of the T6SS by visualising assembly and contraction in *N.*
154 *cinerea* 346T Δ tssB::tssB-sfGFP; this strain exhibits comparable T6SS killing as wild-type *N.*
155 *cinerea* 346T (**figure supplement 2**). Time-lapse microscopy revealed dynamic T6SS foci
156 inside bacteria, with structures extending/contracting over seconds (**Figure 2A - movie**
157 **supplement 1**) consistent with T6SS activity(Gerc et al., 2015; Ringel et al., 2017). To further
158 confirm T6SS activity, we deleted the gene encoding the TssM homologue in strain
159 346T Δ tssB::tssB-sfGFP, abolishing T6SS activity (**Figure 2B**) and confirmed that in the
160 absence of TssM, fluorescent structures were rarely seen (< 5% of cells in the Δ tssM
161 background, compared with > 60% in the strain expressing TssM; **Figure 2C - movie**
162 **supplement 2**).

163

164 **Figure 2. Visualisation of T6SS activity in *N. cinerea*.**


165 **(A)** Assembly and contraction of the T6SS in *N. cinerea*; white arrows indicate contracting

166 T6SSs. Time-lapse images of *N. cinerea* 346T $\Delta tssB::tssB\text{-sfGFP}$ (green) and prey *N. cinerea*

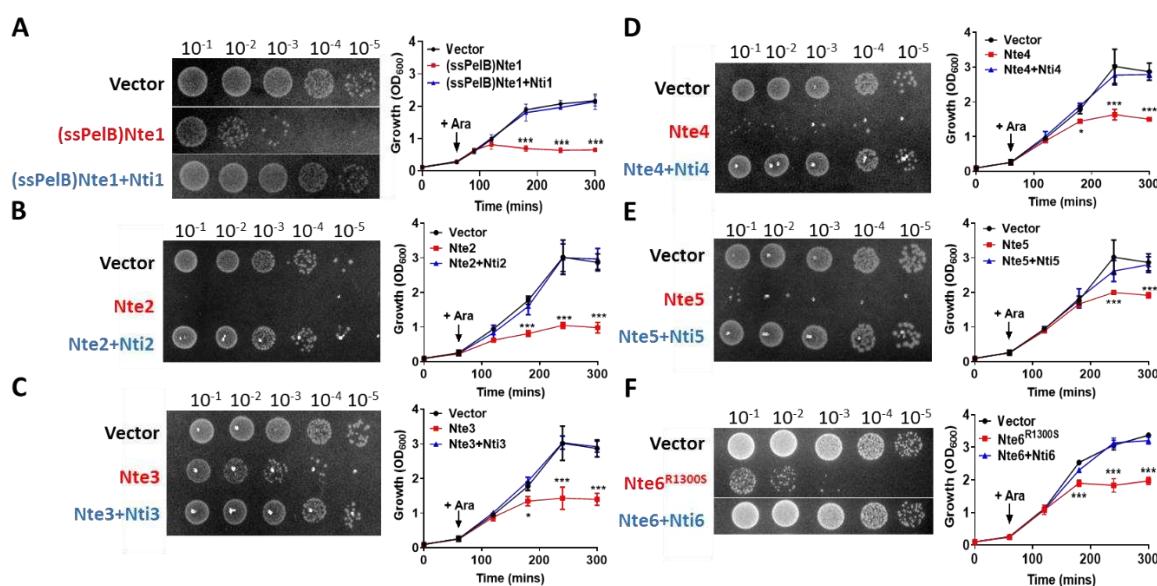
167 27178A_ *sfCherry* (red); the arrowhead shows a non-dynamic focus, scale bar, 1 μ m. See
168 also Movie supplement 1. **(B)** Representative images of *N. cinerea* strains with the
169 TssB::sfGFP fusion with (upper panels) or without (lower panels) TssM. Loss of fluorescent
170 foci upon deletion of *tssM* indicates that foci correspond to active T6SS. The scale bar
171 represents 2 μ m. **(C)** Quantification of TssB-sfGFP foci in different strains. T6SS foci were
172 quantified using ‘analyse particle’ (Fiji) followed by manual inspection. For each strain, at
173 least two images from gel pads were obtained on two independent occasions. Percentage of
174 cells with 0, 1, or 2+ foci are shown and n = number of cells analysed. Data shown are mean
175 \pm SD of two independent experiments: ***p<0.0001 using two-way ANOVA test for multiple
176 comparison. See also Movie supplement 2.

177

178 Finally, we examined whether T6SS assembly induces lysis of prey cells. We imaged *N.*
179 *cinerea* 346T Δ *tssB*::*tssB*-sfGFP with *N. cinerea* 27178 expressing *sfCherry* on gel pads with
180 SYTOX Blue as an indicator of target cell permeability (Ringel et al., 2017). Interestingly, we
181 detected increased SYTOX staining of prey cells immediately adjacent to predator bacteria
182 displaying T6SS activity (**Figure 3 - movie supplement 3**), indicating that *N. cinerea* T6SS
183 induces cell damage and lysis of its prey.

184

185 **Figure 3. *N. cinerea* T6SS induces lysis in prey bacteria.**


186 **(A)** Assembly of T6SS and prey lysis. Time-lapse series of merged images with phase
187 contrast, *N. cinerea* 346T $\Delta TssB+TssBsfGFP$ (green), and *N. cinerea* 27178A sfCherry (red);
188 scale bar, 1 μ m. **(B)** Top row shows merged images of GFP (green, indicating T6SS
189 assembly/contraction), mCherry (red, prey strain), and SYTOX Blue (cyan, showing
190 membrane permeabilisation) channels. The bottom row arrows highlight a prey cell losing
191 membrane integrity (increase in SYTOX Blue staining inside cells) arrows. Representative
192 image from two biological repeats. Scale bars represent 1 μ m. See also Movie supplement 3.

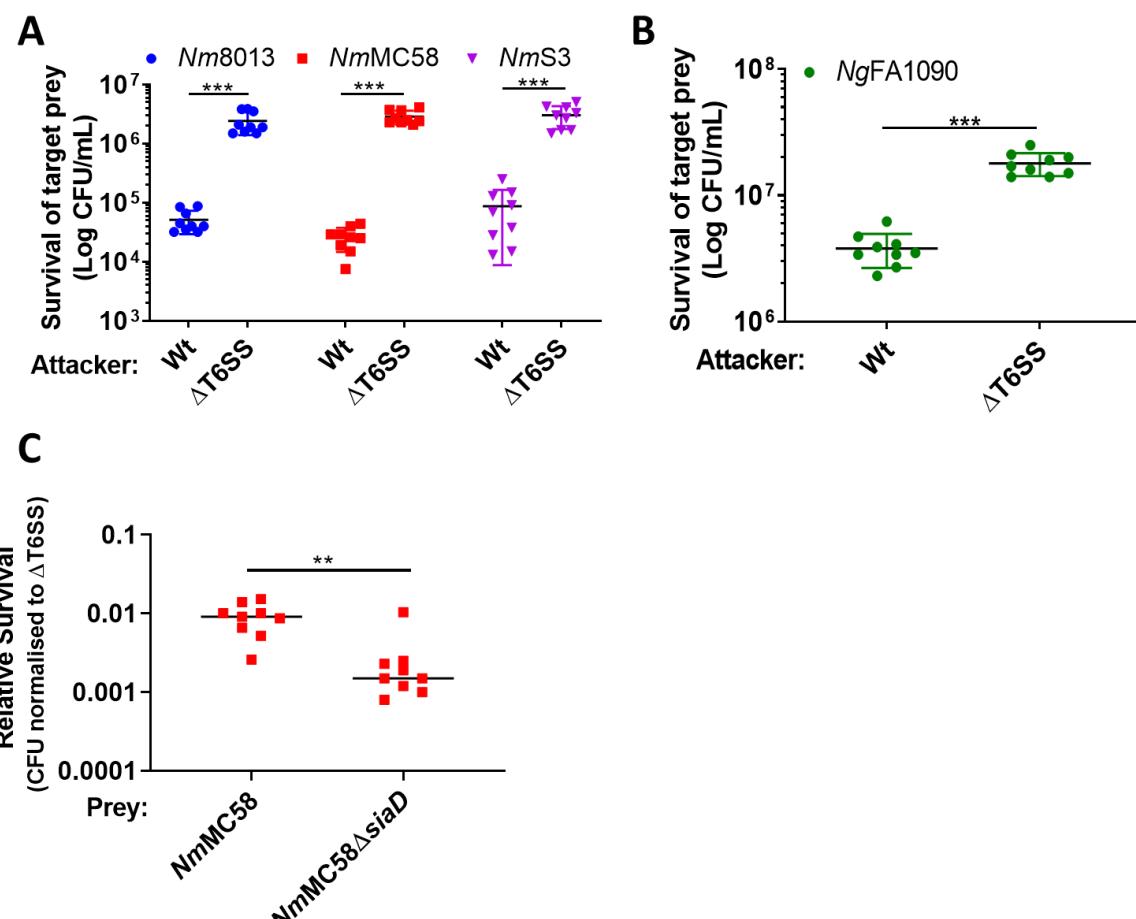
193

194 ***N. cinerea* T6SS effectors are functional toxin/immunity pairs**

195 To characterise the T6SS effector:immunity pairs, we expressed each Nte alone or with its
196 corresponding Nti using an inducible expression plasmid in *E. coli*. We were only able to
197 clone wild-type Nte6 in presence of its immunity protein, so Nte6^{R1300S} was used to analyse
198 toxicity of this effector. In addition, as Nte1 encodes a predicted phospholipase that should

199 be active against cell membranes (Flaughnati et al., 2016), we targeted the putative
200 phospholipase domain of Nte1 to the periplasm by fusing it to the PelB signal sequence
201 (Singh et al., 2013); cytoplasmic expression of the Nte1 phospholipase domain does not
202 inhibit bacterial growth (**figure supplement 3**). All Ntes are toxic, with their expression
203 leading to decreased viability and reduced optical density (OD) of *E. coli* cultures compared
204 to empty vector controls; toxicity was counteracted by co-expression of the corresponding
205 Nti (**Figure 4A-F**). Overall, these findings provide evidence that all six Nte/Ntis are effector-
206 immunity proteins.

207
208 **Figure 4. Putative *N. cinerea* T6SS effectors are toxic in *E. coli*.**
209 **(A)** Arabinose (Ara) induced expression of T6SS effector Nte1 in periplasm of *E. coli* leads to
210 reduction in CFU and OD at 600 nm (OD₆₀₀). Co-expression of putative immunity Nti1
211 restores growth to levels of strain with empty vector (pBAD33). **(B)-(E)** Cytoplasmic
212 expression of putative effectors Nte2-5 without cognate immunity reduces growth and
213 survival of *E. coli*. **(F)** Expression of Nte6^{R1300S} reduces viability and growth when expressed
214 in *E. coli*. Expression of Nti6 with Nte6 does not impact growth. In (A)-(F) number of CFU at
215 120 mins post induction are shown. Data shown are the mean ± SD of three independent


216 experiments: NS, not significant, ***p < 0.0001, *p < 0.05 using two-way ANOVA test for
217 multiple comparison. Images of colonies for Nte1 and Nte6 are composite as strains were
218 spotted to different areas of the same plates.

219

220 ***Commensal Neisseria T6SS kills human pathogens***

221 We next investigated whether commensal *N. cinerea* can deploy T6SS to antagonise the
222 related pathogenic species, *N. meningitidis* and *N. gonorrhoeae*. We performed competition
223 assays with three *N. meningitidis* strains (belonging to different lineages and expressing
224 different polysaccharide capsules *i.e.* serogroup B or C), and a strain of *N. gonorrhoeae*. *N.*
225 *cinerea* 346T caused between a 50 to 100-fold decrease in survival of the meningococcus
226 compared with the ΔT6SS strain, irrespective of lineage or serogroup (**Figure 5A**) and an
227 approximately 5-fold reduction in survival of the gonococcus (**Figure 5B**). We also
228 investigated whether the meningococcal capsule protects against T6SS assault. Using a
229 capsule-null strain ($\Delta siaD$) in competition assays with wild-type *N. cinerea* 346T or the T6SS
230 mutant, we found there was an approximately 5-fold reduction in survival of the $\Delta siaD$
231 mutant compared to the isogenic wild-type strain (**Figure 5C**). Therefore, the meningococcal
232 capsule protects bacteria against T6SS attack.

233

234

235 **Figure 5: *N. cinerea* T6SS is active against pathogenic *N. meningitidis* and *N. gonorrhoeae***

236 **(A)** Recovery of wild-type *N. meningitidis* (Nm8013, NmMC58, NmS3) after 4 h co-incubation

237 with *N. cinerea* 346T wild-type (Wt) or the T6SS mutant (Δ T6SS) at a 100:1 attacker:prey

238 ratio. **(B)** Recovery of wild-type *N. gonorrhoeae* (FA1090) after 4 h co-incubation with *N.*

239 *cinerea* 346T wild-type (Wt) or the T6SS mutant (Δ T6SS) at a 10:1 attacker:prey ratio,

240 attacker:prey. **(C)** Unencapsulated *N. meningitidis* (NmMC58 Δ siaD) is more susceptible to

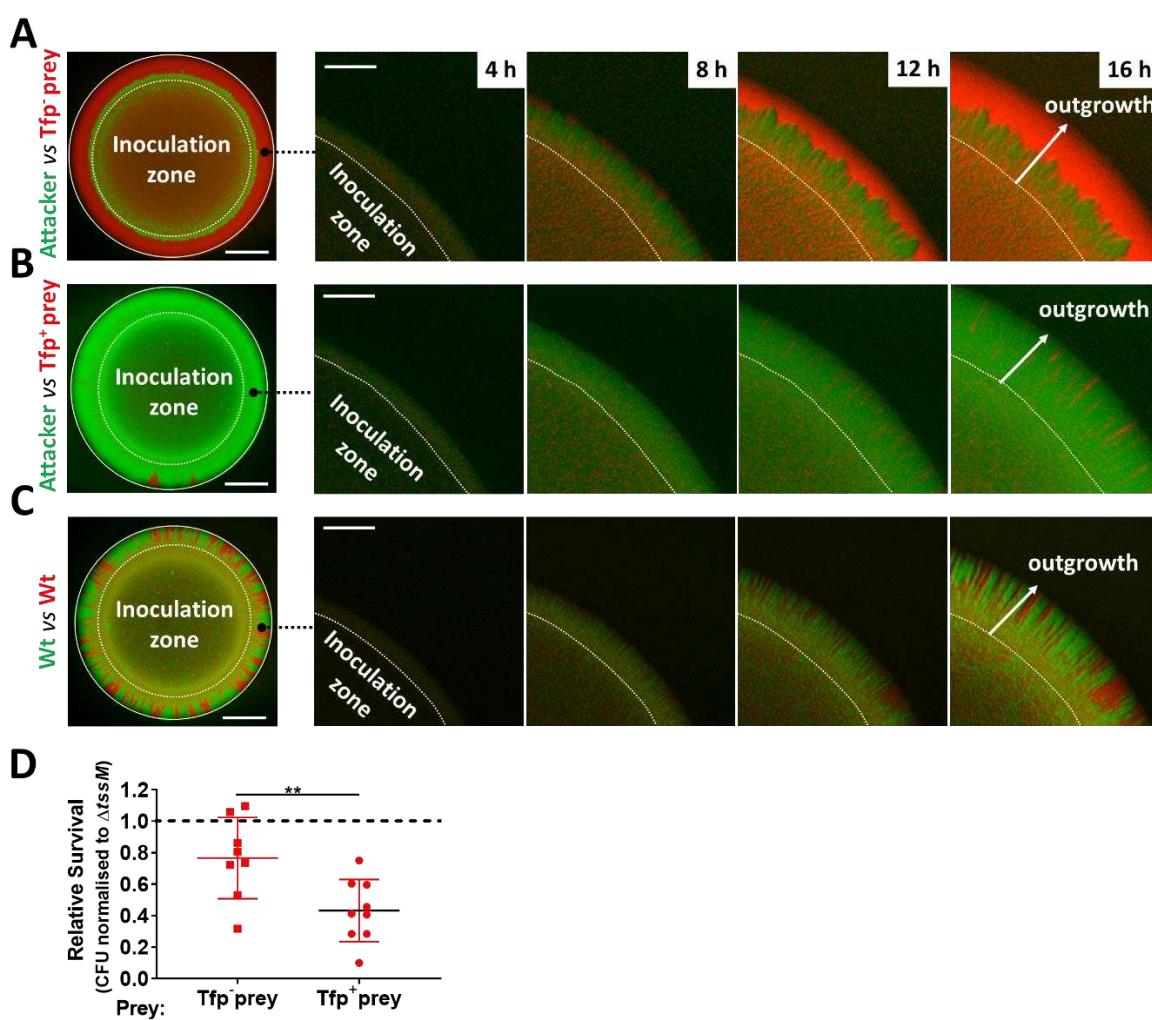
241 T6SS-mediated killing than wild-type *N. meningitidis*. Recovery of NmMC58 or the capsule-

242 null mutant (NmMC58 Δ siaD) after 4 h co-culture with *N. cinerea* 346T (Wt) or a T6SS-

243 deficient mutant (Δ T6SS) at ratio of 100:1, attacker:prey. Relative survival is defined as the

244 fold change in recovery of *N. meningitidis* following incubation with wild-type *N. cinerea*

245 compared to *N. cinerea* Δ T6SS. Data shown are the mean \pm SD of three independent


246 experiments: NS, not significant, ***p < 0.0001, **p < 0.001 using unpaired two-tailed
247 Student's t-test for pairwise comparison (B and C) or one-way ANOVA test for multiple
248 comparison (A).

249

250 ***Spatial segregation driven by Type IV pili dictates prey survival against T6SS assault.***

251 Despite the potency of T6SS in *Neisseria* warfare, this nanomachine operates when bacteria
252 are in close proximity, so we hypothesised that Tfp, which are critical for the formation of
253 *Neisseria* microcolonies and organisation of bacterial communities (Higashi et al., 2007;
254 Mairey et al., 2006; Oldewurtel et al., 2015; Zöllner et al., 2017), could influence T6SS-
255 mediated antagonism. To test this we constructed fluorophore expressing, piliated and non-
256 piliated 'prey' strains (*i.e.* sfCherry-expressing 346TΔ*nte/i3-5* which is sensitive to T6SS-
257 mediated attack (**figure supplement 4**). Prey strains were mixed with piliated attacker strain
258 *N. cinerea* 346T expressing sfGFP at a 1:1 ratio on solid media, and the spatiotemporal
259 dynamics of bacterial growth examined by time-lapse stereo microscopy over 24 h, while
260 the relative proportion of each strain was analysed by flow cytometry at 24 h (**figure**
261 **supplement 5**). As expected based on previous observations of Tfp-mediated cell sorting in
262 *Neisseria* (Oldewurtel et al., 2015; Zöllner et al., 2017), the non-piliated prey strain
263 (346TΔ*nte/i3-5ΔpilE1/2_sfCherry*; red) segregates to the periphery of the colony, in this
264 location the prey strain escapes T6SS-mediated assault and dominates the expanding colony
265 (**Figure 6A - movie supplement 4 and figure supplement 5**). In contrast, when the prey is
266 piliated, pilus-mediated cell interactions prevent displacement of cells to the expanding
267 front (Oldewurtel et al., 2015; Ponisch et al., 2018; Zöllner et al., 2017), so the susceptible
268 strain (Tfp-expressing 346TΔ*nte/i3-5_sfCherry* Tfp+, red) is outcompeted by the T6SS+ strain
269 (Tfp-expressing 346T_sfGfp Tfp+, green) (**Figure 6B - movie supplement 5 and figure**

270 **supplement 5).** When both strains are pilated and immune to T6SS attack, there is no
271 dominance of either strain (**Figure 6C - movie supplement 6 and figure supplement 5**).
272 Assessment of the relative recovery of pilated and non-piliated prey in competition assays
273 also supported the observation that the pilation status of the prey impacts survival against
274 T6SS (**Figure 6D**). These results highlight that, Tfp influence the outcome of T6SS-mediated
275 antagonism through structuring and partitioning bacteria in mixed microcolonies.

276
277 **Figure 6: Predator and prey pilation promotes T6SS killing.**
278 **(A)** Fluorescence microscopy images taken at specific times after inoculation of mixed (1:1
279 ratio) bacterial colonies. A T6SS-susceptible, non-piliated prey strain (346T Δ nte/i3-
280 5 Δ pilE1/2_sfCherry, red) migrates to the expanding edge of the colony over time,

281 segregating from the T6SS+ attacker strain (*N. cinerea* 346T_gfp, green) and dominating the
282 expanding population. **(B)** The same susceptible prey strain but expressing pili does not
283 segregate, and after 24h is outcompeted by the pilated T6SS+ attacker. **(C)** The non-T6SS-
284 susceptible pilated prey strain (346T_sfCherry, red) and pilated attacker strain (346T_sfGfp,
285 green) do not segregate, but due to immunity against T6SS attack, no dominance is
286 observed. Images of colonies are representative of three independent experiments. Scale
287 bar, 500 μ m. Expanding colony edge images are stills at indicated times from time-lapse
288 imaging performed on one occasion. Scale bar 100 μ m. Movies supplement 4-6 show
289 expanding colonies in A-C, respectively. **(D)** The influence of pilation on T6SS killing.
290 Recovery of non-piliated and pilated prey strains after 24 h co-culture with *N. cinerea* 346T
291 (Wt) and a *tssM*-deficient mutant ($\Delta tssM$) at ratio of 10:1, attacker:prey. Relative survival is
292 defined as the fold change in recovery of prey following incubation with wild-type attacker
293 *N. cinerea* compared to *N. cinerea* $\Delta tssM$. Data shown are the mean \pm SD of three
294 independent experiments: **p < 0.01 using unpaired two-tailed Student's t-test for pairwise
295 comparison.

296

297 **DISCUSSION**

298 Here we identified a T6SS in a commensal *Neisseria* spp. which can kill T6SS-deficient *N.*
299 *cinerea* isolates and the related pathogens, *N. meningitidis*, with which it shares an
300 ecological niche (Knapp and Hook, 1988), and *N. gonorrhoeae*. Of note, the *N. cinerea* T6SS
301 is encoded on a large plasmid, with structural genes for the single T6SS apparatus clustered
302 in one locus, similar to other T6SS (Anderson et al., 2017; Liaw et al., 2019; Sana et al.,
303 2016). Effectors Nte1 to 5 are also encoded in the same locus, but with Nte6 encoded
304 elsewhere on the plasmid. To date, plasmid encoded T6SS have only been described in

305 *Campylobacter* species (Marasini and Fakhr, 2016), with this plasmid T6SS mobilised *via*
306 conjugation (Marasini et al., 2020). Although other small plasmids have been reported in *N.*
307 *cinerea* (Knapp et al., 1984; Roberts, 1989) and *N. cinerea* can be a recipient of *N.*
308 *gonorrhoeae* plasmids (Genco et al., 1984), it is not yet known whether T6SS plasmids are
309 widespread among *Neisseria*, or whether the plasmid can be mobilised by conjugation or
310 transformation. Interestingly, in *Acinetobacter baylyi*, T6SS induced prey cell lysis
311 contributes to acquisition of plasmids from target cells (Ringel et al., 2017). Therefore, it will
312 be interesting to see whether other *Neisseria* species with T6SS genes (Marri et al., 2010)
313 harbour T6SS-expressing plasmids.

314

315 Examination of *N. cinerea* T6SS activity revealed several interesting features. Microscopy
316 demonstrated that T6SS attack (tit-for-tat) is not required to provoke firing of the system.
317 Instead, the T6SS appears to be constitutively active in *N. cinerea* (**Figure 2**). Furthermore,
318 the system is capable of inducing lysis of prey bacteria (**Figure 3**). The consequences of T6SS
319 attack are determined by the repertoire and activities of effectors, and their site of delivery.
320 Many different effector activities have been proposed including lipases, peptidoglycan
321 hydrolases, metalloproteases and nucleases (Lewis et al., 2019). Effector activities can result
322 in target cell lysis to varying degrees (Ringel et al., 2017; Smith et al., 2020). Of the six Ntes
323 we identified, lysis could be mediated by Nte1 which harbours a putative phospholipase
324 domain in the C-terminus. Alternatively, a combination of effectors might be needed to
325 elicit prey lysis.

326

327 Polysaccharide capsules are largely thought to provide bacteria with a strategy for evading
328 host immune killing (Lewis and Ram, 2014). Here, we found that the meningococcal capsule

329 has an alternative role in defence against other bacteria. Meningococcal strains lacking a
330 capsule were at a significant disadvantage in the face of a T6SS-expressing competitor
331 implicating this surface polysaccharide in protection against T6SS assault. Similar findings
332 have been reported for other bacteria; for example the extracellular polysaccharide of *V.*
333 *cholerae* and the colonic acid capsule of *E. coli* confer defence against T6SS attack (Hersch et
334 al., 2020; Toska et al., 2018). One potential mechanism is that the capsule sterically impairs
335 the ability of the T6SS to penetrate the target cell membrane, and/or inhibits access of T6SS
336 effectors to their cellular targets. Interestingly, recent genetic evidence indicates that some
337 commensal *Neisseria* species also have capacity to produce polysaccharide capsules
338 (Clemence et al., 2018), which might also confer a survival advantage in mixed populations
339 that include strains expressing T6SS.

340

341 Most bacteria exist within complex polymicrobial communities in which the spatial and
342 temporal dynamics of proliferation and death has a major effect on their fitness and survival
343 (Nadell et al., 2016). While structured complex microbial societies can benefit all their
344 members (Gabrilska and Rumbaugh, 2015; Wolcott et al., 2013), antagonistic neighbours,
345 especially those deploying contact-dependent killing mechanisms, can disrupt communities.
346 Although T6SS-mediated killing can be advantageous to a producing strain during bacterial
347 competition, this requires intimate association with its prey (MacIntyre et al., 2010; Russell
348 et al., 2014). Thus, one way for susceptible bacteria to evade T6SS killing is to avoid direct
349 contact with attacking cells (Borenstein et al., 2015; Smith et al., 2020). In *Neisseria*, the Tfp
350 is a key mediator of interbacterial and interspecies interactions (Custodio et al., 2020;
351 Higashi et al., 2011b) and pilus-mediated interactions influence the spatial structure of a
352 growing community (Oldewurtel et al., 2015; Zöllner et al., 2017). In *N. gonorrhoeae*, non-

353 pilated bacteria segregate to the expanding front of the colony and Tfp-mediated spatial
354 reorganisation can allow bacteria to avoid external stresses or strains competing for
355 resources (Oldewurtel et al., 2015; Zöllner et al., 2017). We predicted that this would be
356 especially relevant in the context of T6SS mediated antagonism, where physical exclusion
357 driven by Tfp-loss or modification, which may occur naturally in a polymicrobial
358 environment and is an established phenomenon in pathogenic *Neisseria* (Hagblom et al.,
359 1985; Helm and Seifert, 2010), could be an effective strategy to evade and survive an
360 antagonistic interaction, while pilus-mediated interactions might be less favourable for a
361 susceptible prey. Our results demonstrate that piliation of the predator and prey strains of
362 *N. cinerea* led to dominance of the T6SS-expressing strain, indicating that *N. cinerea* Tfp
363 amplify T6SS-mediated competition. It is noteworthy that many bacteria (e.g. *Pseudomonas*
364 *aeruginosa*, *Vibrio cholerae*, *Acinetobacter baumannii*, enteropathogenic *E. coli*) that employ
365 T6SS for inter-bacterial competition also express Tfp. Therefore, our findings are of broad
366 relevance for the impact of contact dependent killing, and further emphasise how precise
367 spatial relationships can have profound effects on how antagonistic and mutualistic factors
368 combine to influence the development of microbial communities.

369

370 MATERIALS AND METHODS

371

372 ***Bacterial strains and growth***

373 Bacterial strains used in this study are shown in **Table Supplement 2**. *Neisseria* spp. were
374 grown on Brain Heart Infusion (BHI, Oxoid) agar with 5% defibrinated horse blood or in BHI
375 broth at 37°C with 5% CO₂ or GC-medium supplemented with 1.5% base agar (w/v) and 1%
376 Vitox (v/v; Oxoid). GW-medium (Wade and Graver, 2007) was used for *N. cinerea*

377 microscopy experiments. *E. coli* was grown on LB (Lennox Broth base, Invitrogen) agar or in
378 liquid LB at 37°C with shaking. Antibiotics were added at the following concentrations: for *E.*
379 *coli*, carbenicillin (carb) 100 µg/ml, kanamycin (kan) 50 µg/ml, and chloramphenicol (cm) 20
380 µg/ml; for *Neisseria* spp. kan 75 µg/ml, spectinomycin (spec) 65 µg/ml, erythromycin (ery)
381 15 µg/ml, and polymyxin B (pmB) 10 µg/ml.

382

383 ***DNA Isolation and whole-genome sequencing (WGS)***

384 Genomic DNA was extracted using the Wizard Genomic Kit (Promega), and sequenced by
385 PacBio (Earlham Institute, Norwich) using single-molecule real-time (SMRT) technology;
386 reads were assembled *de novo* with HGAP3 (Chin et al., 2013).

387

388 ***Construction of N. cinerea mutants***

389 Primers used in this study are listed in **Table supplement 3**. Target genes were replaced with
390 antibiotic cassettes as previously (Wörmann et al., 2016). Constructs were assembled into
391 pUC19 by Gibson Assembly (New England Biolabs), and hosted in *Escherichia coli* DH5α.
392 Plasmids were linearised with *Scal*, and gel extracted relevant linearised fragments used to
393 transform *N. cinerea*; transformants were checked by PCR and sequencing.

394 Complementation or chromosomal insertion of genes encoding fluorophores was achieved
395 using pNCC1-Spec, a spectinomycin-resistant derivative of pNCC1 (Wörmann et al., 2016).

396 For visualisation of T6SS-sheaths, *sfgfp* was cloned in-frame with *tssB* and a short linker
397 (encoding 3×Ala 3×Gly) by Gibson Assembly (New England Biolabs) into pNCC1-Spec to allow
398 IPTG-inducible expression of TssB-sfGFP. PCR was performed using Herculase II (Agilent) or
399 Q5 High-fidelity DNA Polymerase (New England Biolabs).

400

401 ***Analysis of effector/immunity activity in E. coli***

402 Putative effector coding sequences with or without cognate immunity gene were amplified
403 by PCR from *N. cinerea* 346T gDNA and either assembled by Gibson Assembly (NEB) into
404 pBAD33 or, for Nte1 with or without addition of the PelB signal sequence, cloned in to
405 pBAD33 using XbaI / SphI restriction enzyme sites. Plasmids were transformed into *E. coli*
406 DH5 α and verified by sequencing (Source Bioscience). For assessment of toxicity, strains
407 with recombinant or empty pBAD33 plasmids were grown overnight in LB supplemented
408 with 0.8% glucose (w/v), then diluted to an OD₆₀₀ of 0.1 and incubated for 1 hour at 180 rpm
409 and 37°C; bacteria were pelleted and resuspended in LB with arabinose (0.8% w/v) to induce
410 expression and incubated at 37°C, 180 rpm for a further 4 h. The OD₆₀₀ and CFU/ml of
411 cultures were determined; aliquots were diluted and plated to media containing 0.8%
412 glucose at relevant time points up to 5 h.

413

414 ***Hcp protein expression, purification and antibody generation***

415 Codon optimised *hcp* was synthesised with a sequence encoding an N-terminal 6x His Tag
416 and a 3C protease cleavage site, and flanked by *Ncol* and *Xhol* restriction sites
417 (ThermoFisher). The fragment was ligated into *Ncol* and *Xhol* sites in pET28a (Novagen)
418 using QuickStick T4 DNA Ligase (Bioline) and transformed into *E. coli* B834. Bacteria were
419 grown at 37°C, 150 rpm to an OD₆₀₀ of 1.0, and expression of 6xHis-3C-Hcp was induced with
420 1 mM IPTG for 24 h at 16°C. Cells were resuspended in Buffer A (50 mM Tris-HCl buffer pH
421 7.5, 10 mM Imidazole, 500 mM NaCl, 1 mM DTT) containing protease inhibitors, 1 mg/mL
422 lysozyme and 100 μ g/mL DNase then subsequently homogenised with an EmulsiFlex-C5
423 (Avestin). Lysed cells were ultracentrifuged and the cleared supernatant loaded onto a Ni
424 Sepharose 6 Fast Flow His Trap column (GE Healthcare) equilibrated with Buffer A. The

425 column was washed with Buffer A, then Buffer B (50 mM Tris-HCl buffer pH 7.5, 35 mM
426 Imidazole, 500 mM NaCl, 1 mM DTT) before elution with 10 mL of Buffer C (50 mM Tris-HCl
427 buffer pH 7.5, 300 mM Imidazole, 150 mM NaCl, 1 mM DTT). The eluate was incubated with
428 the HRV-3C protease (Sigma) then applied to a Ni Sepharose column. The eluate containing
429 protease and cleaved protein was concentrated using Amicon Ultra 10,000 MWCO
430 (Millipore), then passed through a Superdex-200 column (GE Healthcare, Buckinghamshire,
431 UK). Fractions were analysed by SDS-PAGE and Coomassie blue staining, and those with Hcp
432 pooled and used to generate polyclonal antibodies (EuroGentec).

433

434

435 ***Hcp secretion assay***

436 Bacteria were grown in BHI broth for 4-5 h then harvested and lysed in an equal volume of
437 SDS-PAGE lysis buffer (500 mM Tris-HCl [pH 6.8], 5% SDS, 15% glycerol, 0.5% bromophenol
438 blue containing 100 mM β -mercaptoethanol); supernatants were filtered (0.22 μ m pore,
439 Millipore) and proteins precipitated with 20% (v/v) trichloroacetic acid. Hcp was detected by
440 Western blot with anti-Hcp (1:10,000 dilution) and goat anti-rabbit IgG–HRP (1:5000, sc-
441 2004; Santa Cruz). Anti-RecA (1:5000 dilution, ab63797; Abcam) followed by goat anti-rabbit
442 IgG–HRP and detection with ECL detection Reagent (GE Healthcare) or Coomassie blue
443 staining were used as loading controls.

444

445 ***Live cell imaging of T6SS activity***

446 Bacteria were grown overnight on BHI agar, resuspended in PBS and 20 μ l spotted onto
447 fresh BHI agar containing 1 mM IPTG and incubated for 4 h at 37°C. After incubation, 500 μ l
448 of 10⁹ cfu/mL bacterial suspension of attacker was mixed with the prey strain at a 1:1 ratio.

449 Cells were harvested by centrifugation for 3 min at 6000 rpm, resuspended in 100 μ L of PBS
450 or GW media and 2 μ l spotted on 1% agarose pads (for T6SS dynamics) or GW media with
451 0.1 mM IPTG and 0.5 μ M SYTOX™Blue (Thermo Fisher Scientific) for assessment of prey
452 permeability. Fluorescence microscopy image sequences were acquired within 20-30
453 minutes of sample preparation with an inverted Zeiss 880 Airyscan microscope equipped
454 with Plan-Apochromat 63 \times /1.4-NA oil lens and fitted with a climate chamber mounted
455 around the objective to perform the imaging at 37°C with 5% CO₂. Automated images were
456 collected at 1 sec, 10 sec or 1 min intervals and processed with Fiji (Schindelin et al., 2012).
457 Background noise was reduced using the “Despeckle” filter. The XY drift was corrected using
458 StackReg with “Rigid Body” transformation (Thévenaz et al., 1998). Experiments and imaging
459 were performed on at least two independent occasions.

460

461 ***Quantitative competition assays***

462 Strains grown overnight on BHI agar were resuspended in PBS and diluted to 10⁹ CFU/mL,
463 mixed at the indicated ratio, then 20 μ l spotted onto BHI agar in triplicate and incubated at
464 37°C with 5% CO₂. At specific time-points, entire spots were harvested and resuspended in 1
465 mL of PBS. The cellular suspension was then serially diluted in PBS and aliquots spotted onto
466 selective media. Colonies were counted after ~16 h incubation at 37 °C with 5% CO₂.
467 Experiments were performed on at least three independent occasions. For different prey
468 analysis relative survival was defined as the fold change in recovery of prey following
469 incubation with wild-type attacker *N. cinerea* compared to a T6SS-deficient *N. cinerea*.

470

471 ***Competition assays assessed by Fluorescence microscopy and flow cytometry***

472 Bacteria were prepared and grown as described for quantitative competition assays except
473 using 1 μ l spot volume and spotted onto GC-medium supplemented with 0.5% base agar
474 (w/v) and 1% Vitox (v/v; Oxoid). At various time points expanding colonies were imaged
475 using a M125C stereo microscope equipped with a DFC310FX digital camera (Leica
476 Microsystems) and images processed with Fiji. Images were imported using “Image
477 Sequence” and corrected with StackReg as described. For flow cytometry, colonies were
478 harvested, fixed with 4% PFA for 20 min then washed with PBS. Samples were analysed
479 using a Cytoflex LX (Beckman Coulter), and at least 10^4 events recorded. Fluorescence,
480 forward and side scatter data were collected to distinguish between debris and bacteria.
481 Results were analysed by calculating the number of events positive for either GFP or Cherry
482 signal in FlowJo v10 software (Becton Dickinson Company). Events that were negative for
483 fluorescence or positive for both markers were also plotted. Flow cytometry analysis was
484 performed on two independent occasions. Stereo microscopy analysis was performed on
485 three independent occasions with technical duplicates each time.

486

487 ***Statistical analyses***

488 Graphpad Prism7 software (San Diego, CA) was used for statistical analysis. We used One-
489 way/two-way ANOVA with Tukey post hoc testing for multiple comparisons and unpaired
490 two-tailed Student’s t-test for pairwise comparisons. In all cases, $p < 0.05$ was considered
491 statistically significant.

492

493 **ACKNOWLEDGEMENTS**

494 We thank members of the Foster group (Oxford) especially Daniel Unterweger (now at the
495 University of Kiel) for advice and assistance with microscopy as well as Alan Wainman of the

496 SWDSP Bioimaging facility. We are grateful to M. Basler (Basel) for valuable advice, and to
497 Meningitis Now for funding. Work in CMT's lab is supported by a Wellcome Trust
498 Investigator award (102908/Z/13/Z).

499

500 **COMPETING INTERESTS**

501 The authors declare no competing interests.

502

503 **REFERENCES**

504 Alcoforado Diniz, J., Liu, Y.C., and Coulthurst, S.J. (2015). Molecular weaponry: diverse
505 effectors delivered by the Type VI secretion system. *Cellular microbiology* **17**, 1742-1751.

506 Anderson, M.C., Vonaesch, P., Saffarian, A., Marteyn, B.S., and Sansonetti, P.J. (2017). *Shigella*
507 *sonnei* Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy.

508 *Cell host & microbe* **21**, 769-776.e763.

509 Borenstein, D.B., Ringel, P., Basler, M., and Wingreen, N.S. (2015). Established Microbial
510 Colonies Can Survive Type VI Secretion Assault. *PLoS computational biology* **11**, e1004520.

511 Brackmann, M., Wang, J., and Basler, M. (2018). Type VI secretion system sheath inter-subunit
512 interactions modulate its contraction. *EMBO reports* **19**, 225-233.

513 Busby, J.N., Panjikar, S., Landsberg, M.J., Hurst, M.R., and Lott, J.S. (2013). The BC component
514 of ABC toxins is an RHS-repeat-containing protein encapsulation device. *Nature* **501**, 547-550.

515 Cascales, E., and Cambillau, C. (2012). Structural biology of type VI secretion systems. *Philos
516 Trans R Soc Lond B Biol Sci* **367**, 1102-1111.

517 Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland,
518 A., Huddleston, J., Eichler, E.E., *et al.* (2013). Nonhybrid, finished microbial genome
519 assemblies from long-read SMRT sequencing data. *Nature methods* **10**, 563-569.

520 Cianfanelli, F.R., Monlezun, L., and Coulthurst, S.J. (2016). Aim, Load, Fire: The Type VI
521 Secretion System, a Bacterial Nanoweapon. *Trends in microbiology* 24, 51-62.

522 Clemence, M.E.A., Maiden, M.C.J., and Harrison, O.B. (2018). Characterization of capsule
523 genes in non-pathogenic *Neisseria* species. *Microb Genom* 4.

524 Custodio, R., Johnson, E., Liu, G., Tang, C.M., and Exley, R.M. (2020). Commensal *Neisseria*
525 *cinerea* impairs *Neisseria meningitidis* microcolony development and reduces pathogen
526 colonisation of epithelial cells. *PLoS pathogens* 16, e1008372.

527 Deasy, A.M., Guccione, E., Dale, A.P., Andrews, N., Evans, C.M., Bennett, J.S., Bratcher, H.B.,
528 Maiden, M.C., Gorrige, A.R., and Read, R.C. (2015). Nasal Inoculation of the Commensal
529 *Neisseria lactamica* Inhibits Carriage of *Neisseria meningitidis* by Young Adults: A Controlled
530 Human Infection Study. *Clinical infectious diseases : an official publication of the Infectious
531 Diseases Society of America* 60, 1512-1520.

532 Diallo, K., Trotter, C., Timbine, Y., Tamboura, B., Sow, S.O., Issaka, B., Dano, I.D., Collard, J.M.,
533 Dieng, M., Diallo, A., *et al.* (2016). Pharyngeal carriage of *Neisseria* species in the African
534 meningitis belt. *The Journal of infection* 72, 667-677.

535 Dorey, R.B., Theodosiou, A.A., Read, R.C., and Jones, C.E. (2019). The nonpathogenic
536 commensal *Neisseria*: friends and foes in infectious disease. *Curr Opin Infect Dis* 32, 490-496.

537 Flaughnatti, N., Le, T.T., Canaan, S., Aschtgen, M.S., Nguyen, V.S., Blangy, S., Kellenberger, C.,
538 Roussel, A., Cambillau, C., Cascales, E., *et al.* (2016). A phospholipase A1 antibacterial Type VI
539 secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for
540 delivery. *Molecular microbiology* 99, 1099-1118.

541 Gabrilska, R.A., and Rumbaugh, K.P. (2015). Biofilm models of polymicrobial infection. *Future
542 microbiology* 10, 1997-2015.

543 Garcia-Bayona, L., and Comstock, L.E. (2018). Bacterial antagonism in host-associated
544 microbial communities. *Science (New York, NY)* **361**.

545 Genco, C.A., Knapp, J.S., and Clark, V.L. (1984). Conjugation of plasmids of *Neisseria*
546 gonorrhoeae to other *Neisseria* species: potential reservoirs for the beta-lactamase plasmid.
547 *J Infect Dis* **150**, 397-401.

548 Gerc, A.J., Diepold, A., Trunk, K., Porter, M., Rickman, C., Armitage, J.P., Stanley-Wall, N.R.,
549 and Coulthurst, S.J. (2015). Visualization of the *Serratia* Type VI Secretion System Reveals
550 Unprovoked Attacks and Dynamic Assembly. *Cell reports* **12**, 2131-2142.

551 Gold, R., Goldschneider, I., Lepow, M.L., Draper, T.F., and Randolph, M. (1978). Carriage of
552 *Neisseria meningitidis* and *Neisseria lactamica* in infants and children. *J Infect Dis* **137**, 112-
553 121.

554 Hagblom, P., Segal, E., Billyard, E., and So, M. (1985). Intragenic recombination leads to pilus
555 antigenic variation in *Neisseria gonorrhoeae*. *Nature* **315**, 156-158.

556 Helaine, S., Dyer, D.H., Nassif, X., Pelicic, V., and Forest, K.T. (2007). 3D structure/function
557 analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili.
558 *Proceedings of the National Academy of Sciences of the United States of America* **104**, 15888-
559 15893.

560 Helm, R.A., and Seifert, H.S. (2010). Frequency and rate of pilin antigenic variation of *Neisseria*
561 *meningitidis*. *J Bacteriol* **192**, 3822-3823.

562 Hersch, S.J., Watanabe, N., Stietz, M.S., Manera, K., Kamal, F., Burkinshaw, B., Lam, L., Pun,
563 A., Li, M., Savchenko, A., *et al.* (2020). Envelope stress responses defend against type six
564 secretion system attacks independently of immunity proteins. *Nature microbiology* **5**, 706-
565 714.

566 Higashi, D.L., Biais, N., Weyand, N.J., Agellon, A., Sisko, J.L., Brown, L.M., and So, M. (2011a).
567 *N. elongata* produces type IV pili that mediate interspecies gene transfer with *N.*
568 *gonorrhoeae*. *PLoS One* 6, e21373.

569 Higashi, D.L., Biais, N., Weyand, N.J., Agellon, A., Sisko, J.L., Brown, L.M., and So, M. (2011b).
570 *N. elongata* Produces Type IV Pili That Mediate Interspecies Gene Transfer with *N.*
571 *gonorrhoeae*. *Plos One* 6.

572 Higashi, D.L., Lee, S.W., Snyder, A., Weyand, N.J., Bakke, A., and So, M. (2007). Dynamics of
573 *Neisseria gonorrhoeae* attachment: Microcolony development, cortical plaque formation,
574 and cytoprotection. *Infection and immunity* 75, 4743-4753.

575 Ho, B.T., Dong, T.G., and Mekalanos, J.J. (2014). A view to a kill: the bacterial type VI secretion
576 system. *Cell host & microbe* 15, 9-21.

577 Kamada, N., Chen, G.Y., Inohara, N., and Núñez, G. (2013). Control of pathogens and
578 pathobionts by the gut microbiota. *Nature immunology* 14, 685-690.

579 Kim, W.J., Higashi, D., Goytia, M., Rendón, M.A., Pilligua-Lucas, M., Bronnimann, M., McLean,
580 J.A., Duncan, J., Trees, D., Jerse, A.E., *et al.* (2019). Commensal *Neisseria* Kill *Neisseria*
581 *gonorrhoeae* through a DNA-Dependent Mechanism. *Cell host & microbe* 26, 228-239.e228.

582 Knapp, J.S., and Hook, E.W., 3rd (1988). Prevalence and persistence of *Neisseria cinerea* and
583 other *Neisseria* spp. in adults. *J Clin Microbiol* 26, 896-900.

584 Knapp, J.S., Totten, P.A., Mulks, M.H., and Minshew, B.H. (1984). Characterization of *Neisseria*
585 *cinerea*, a nonpathogenic species isolated on Martin-Lewis medium selective for pathogenic
586 *Neisseria* spp. *J Clin Microbiol* 19, 63-67.

587 Koskineni, S., Lamoureux, J.G., Nikolakakis, K.C., t'Kint de Roodenbeke, C., Kaplan, M.D., Low,
588 D.A., and Hayes, C.S. (2013). Rhs proteins from diverse bacteria mediate intercellular

589 competition. *Proceedings of the National Academy of Sciences of the United States of*
590 *America* **110**, 7032-7037.

591 Kumpitsch, C., Koskinen, K., Schopf, V., and Moissl-Eichinger, C. (2019). The microbiome of
592 the upper respiratory tract in health and disease. *BMC Biol* **17**, 87.

593 Lewis, J.M., Deveson Lucas, D., Harper, M., and Boyce, J.D. (2019). Systematic Identification
594 and Analysis of *Acinetobacter baumannii* Type VI Secretion System Effector and Immunity
595 Components. *Frontiers in microbiology* **10**, 2440.

596 Lewis, L.A., and Ram, S. (2014). Meningococcal disease and the complement system.
597 *Virulence* **5**, 98-126.

598 Li, J., Yao, Y., Xu, H.H., Hao, L., Deng, Z., Rajakumar, K., and Ou, H.Y. (2015). SecReT6: a web-
599 based resource for type VI secretion systems found in bacteria. *Environmental microbiology*
600 **17**, 2196-2202.

601 Liaw, J., Hong, G., Davies, C., Elmi, A., Sima, F., Stratikos, A., Stef, L., Pet, I., Hachani, A.,
602 Corcionivoschi, N., *et al.* (2019). The *Campylobacter jejuni* Type VI Secretion System Enhances
603 the Oxidative Stress Response and Host Colonization. *Frontiers in microbiology* **10**, 2864.

604 Little, A.E.F., Robinson, C.J., Peterson, S.B., Raffa, K.E., and Handelsman, J. (2008). Rules of
605 Engagement: Interspecies Interactions that Regulate Microbial Communities. *Annu Rev*
606 *Microbiol* **62**, 375-401.

607 Ma, L.S., Hachani, A., Lin, J.S., Filloux, A., and Lai, E.M. (2014). *Agrobacterium tumefaciens*
608 deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial
609 competition in planta. *Cell host & microbe* **16**, 94-104.

610 MacIntyre, D.L., Miyata, S.T., Kitaoka, M., and Pukatzki, S. (2010). The *Vibrio cholerae* type VI
611 secretion system displays antimicrobial properties. *Proceedings of the National Academy of*
612 *Sciences of the United States of America* **107**, 19520-19524.

613 Mairey, E., Genovesio, A., Donnadieu, E., Bernard, C., Jaubert, F., Pinard, E., Seylaz, J., Olivo-
614 Marin, J.C., Nassif, X., and Dumenil, G. (2006). Cerebral microcirculation shear stress levels
615 determine *Neisseria meningitidis* attachment sites along the blood-brain barrier. *J Exp Med*
616 203, 1939-1950.

617 Marasini, D., and Fakhr, M.K. (2016). Complete Genome Sequences of *Campylobacter jejuni*
618 Strains OD267 and WP2202 Isolated from Retail Chicken Livers and Gizzards Reveal the
619 Presence of Novel 116-Kilobase and 119-Kilobase Megaplasmids with Type VI Secretion
620 Systems. *Genome Announc* 4.

621 Marasini, D., Karki, A.B., Bryant, J.M., Sheaff, R.J., and Fakhr, M.K. (2020). Molecular
622 characterization of megaplasmids encoding the type VI secretion system in *Campylobacter*
623 *jejuni* isolated from chicken livers and gizzards. *Scientific reports* 10, 12514.

624 Marchesi, J.R., Cleary, D.W., and Clarke, S.C. (2017). The nasopharyngeal microbiome.
625 *Emerging Topics in Life Sciences* 1, 297-312.

626 Mariano, G., Trunk, K., Williams, D.J., Monlezun, L., Strahl, H., Pitt, S.J., and Coulthurst, S.J.
627 (2019). A family of Type VI secretion system effector proteins that form ion-selective pores.
628 *Nature communications* 10, 5484.

629 Marri, P.R., Paniscus, M., Weyand, N.J., Rendon, M.A., Calton, C.M., Hernandez, D.R., Higashi,
630 D.L., Sodergren, E., Weinstock, G.M., Rounsley, S.D., *et al.* (2010). Genome sequencing reveals
631 widespread virulence gene exchange among human *Neisseria* species. *PLoS One* 5, e11835.

632 Nadell, C.D., Drescher, K., and Foster, K.R. (2016). Spatial structure, cooperation and
633 competition in biofilms. *Nature reviews Microbiology* 14, 589-600.

634 Nassif, X., Lowy, J., Stenberg, P., Ogaora, P., Ganji, A., and So, M. (1993). Antigenic Variation
635 of Pilin Regulates Adhesion of *Neisseria-Meningitidis* to Human Epithelial-Cells. *Molecular*
636 *microbiology* 8, 719-725.

637 Oldewurtel, E.R., Kouzel, N., Dewenter, L., Henseler, K., and Maier, B. (2015). Differential
638 interaction forces govern bacterial sorting in early biofilms. *eLife* **4**.

639 Pissaridou, P., Allsopp, L.P., Wettstadt, S., Howard, S.A., Mavridou, D.A.I., and Filloux, A.
640 (2018). The *Pseudomonas aeruginosa* T6SS-VgrG1b spike is topped by a PAAR protein eliciting
641 DNA damage to bacterial competitors. *Proceedings of the National Academy of Sciences of*
642 *the United States of America* **115**, 12519-12524.

643 Ponisch, W., Eckenrode, K.B., Alzurqa, K., Nasrollahi, H., Weber, C., Zaburdaev, V., and Biais,
644 N. (2018). Pili mediated intercellular forces shape heterogeneous bacterial microcolonies
645 prior to multicellular differentiation. *Scientific reports* **8**, 16567.

646 Ramos-Sevillano, E., Wade, W.G., Mann, A., Gilbert, A., Lambkin-Williams, R., Killingley, B.,
647 Nguyen-Van-Tam, J.S., and Tang, C.M. (2019). The Effect of Influenza Virus on the Human
648 Oropharyngeal Microbiome. *Clinical Infectious Diseases* **68**, 1993-2002.

649 Ringel, P.D., Hu, D., and Basler, M. (2017). The Role of Type VI Secretion System Effectors in
650 Target Cell Lysis and Subsequent Horizontal Gene Transfer. *Cell reports* **21**, 3927-3940.

651 Roberts, M.C. (1989). Plasmids of *Neisseria gonorrhoeae* and other *Neisseria* species. *Clin*
652 *Microbiol Rev 2 Suppl*, S18-23.

653 Round, J.L., and Mazmanian, S.K. (2009). The gut microbiota shapes intestinal immune
654 responses during health and disease. *Nature reviews Immunology* **9**, 313-323.

655 Russell, A.B., LeRoux, M., Hathazi, K., Agnello, D.M., Ishikawa, T., Wiggins, P.A., Wai, S.N., and
656 Mougous, J.D. (2013). Diverse type VI secretion phospholipases are functionally plastic
657 antibacterial effectors. *Nature* **496**, 508-512.

658 Russell, A.B., Wexler, A.G., Harding, B.N., Whitney, J.C., Bohn, A.J., Goo, Y.A., Tran, B.Q., Barry,
659 N.A., Zheng, H., Peterson, S.B., *et al.* (2014). A type VI secretion-related pathway in
660 Bacteroidetes mediates interbacterial antagonism. *Cell host & microbe* **16**, 227-236.

661 Sana, T.G., Flaughnatti, N., Lugo, K.A., Lam, L.H., Jacobson, A., Baylot, V., Durand, E., Journet,
662 L., Cascales, E., and Monack, D.M. (2016). *Salmonella Typhimurium* utilizes a T6SS-mediated
663 antibacterial weapon to establish in the host gut. *Proceedings of the National Academy of
664 Sciences of the United States of America* **113**, E5044-5051.

665 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
666 Rueden, C., Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source platform for biological-
667 image analysis. *Nature methods* **9**, 676-682.

668 Sheikhi, R., Amin, M., Rostami, S., Shoja, S., and Ebrahimi, N. (2015). Oropharyngeal
669 Colonization With *Neisseria lactamica*, Other Nonpathogenic *Neisseria* Species and *Moraxella*
670 catarrhalis Among Young Healthy Children in Ahvaz, Iran. *Jundishapur J Microb* **8**.

671 Shneider, M.M., Buth, S.A., Ho, B.T., Basler, M., Mekalanos, J.J., and Leiman, P.G. (2013).
672 PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. *Nature* **500**,
673 350-353.

674 Singh, P., Sharma, L., Kulothungan, S.R., Adkar, B.V., Prajapati, R.S., Ali, P.S., Krishnan, B., and
675 Varadarajan, R. (2013). Effect of signal peptide on stability and folding of *Escherichia coli*
676 thioredoxin. *PLoS One* **8**, e63442.

677 Smith, W.P.J., Vettiger, A., Winter, J., Ryser, T., Comstock, L.E., Basler, M., and Foster, K.R.
678 (2020). The evolution of the type VI secretion system as a disintegration weapon. *Plos Biol* **18**.

679 Sommer, F., and Bäckhed, F. (2013). The gut microbiota--masters of host development and
680 physiology. *Nature reviews Microbiology* **11**, 227-238.

681 Thévenaz, P., Ruttimann, U.E., and Unser, M. (1998). A pyramid approach to subpixel
682 registration based on intensity. *IEEE transactions on image processing : a publication of the
683 IEEE Signal Processing Society* **7**, 27-41.

684 Toska, J., Ho, B.T., and Mekalanos, J.J. (2018). Exopolysaccharide protects *Vibrio cholerae*
685 from exogenous attacks by the type 6 secretion system. *Proceedings of the National Academy*
686 *of Sciences of the United States of America* **115**, 7997-8002.

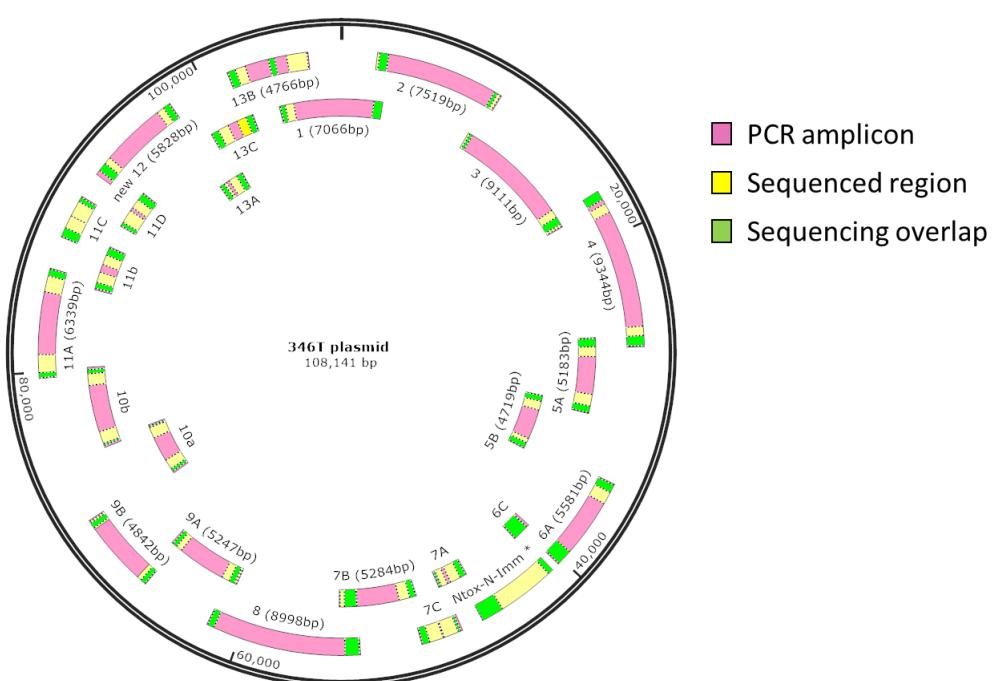
687 Unterweger, D., Miyata, S.T., Bachmann, V., Brooks, T.M., Mullins, T., Kostiuk, B., Provenzano,
688 D., and Pukatzki, S. (2014). The *Vibrio cholerae* type VI secretion system employs diverse
689 effector modules for intraspecific competition. *Nature communications* **5**, 3549.

690 Virji, M., Kayhty, H., Ferguson, D.J., Alexandrescu, C., Heckels, J.E., and Moxon, E.R. (1991).
691 The role of pili in the interactions of pathogenic *Neisseria* with cultured human endothelial
692 cells. *Molecular microbiology* **5**, 1831-1841.

693 Wade, J.J., and Graver, M.A. (2007). A fully defined, clear and protein-free liquid medium
694 permitting dense growth of *Neisseria gonorrhoeae* from very low inocula. *FEMS microbiology*
695 *letters* **273**, 35-37.

696 Whitney, J.C., Chou, S., Russell, A.B., Biboy, J., Gardiner, T.E., Ferrin, M.A., Brittnacher, M.,
697 Vollmer, W., and Mougous, J.D. (2013). Identification, structure, and function of a novel type
698 VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. *The Journal of*
699 *biological chemistry* **288**, 26616-26624.

700 Wolcott, R., Costerton, J.W., Raoult, D., and Cutler, S.J. (2013). The polymicrobial nature of
701 biofilm infection. *Clinical microbiology and infection : the official publication of the European*
702 *Society of Clinical Microbiology and Infectious Diseases* **19**, 107-112.

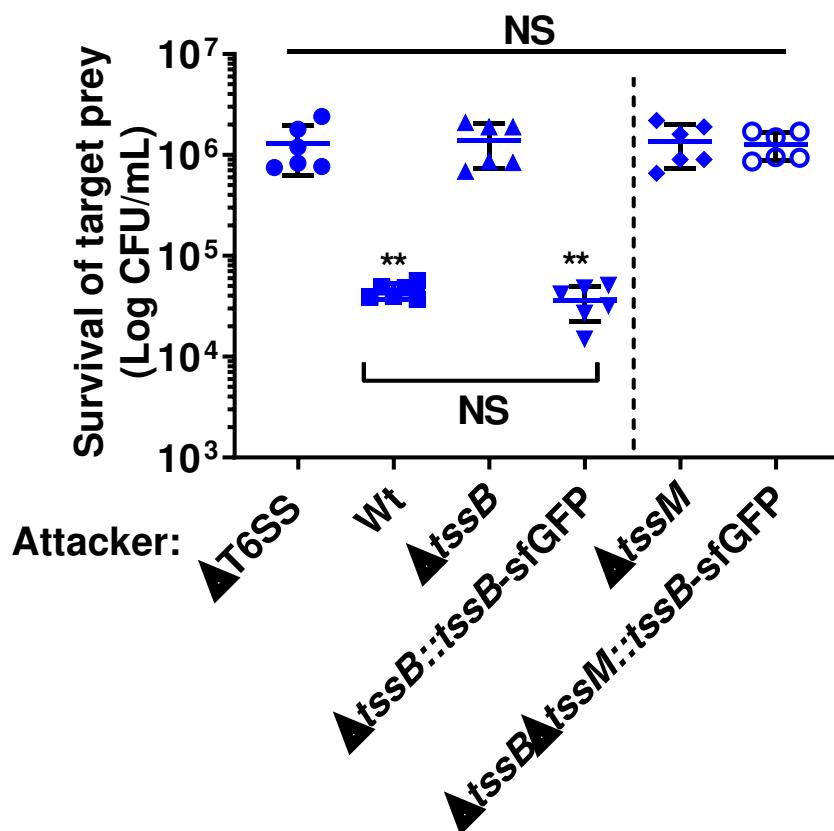

703 Wörmann, M.E., Horien, C.L., Johnson, E., Liu, G., Aho, E., Tang, C.M., and Exley, R.M. (2016).
704 *Neisseria cinerea* isolates can adhere to human epithelial cells by type IV pilus-independent
705 mechanisms. *Microbiology (Reading, England)* **162**, 487-502.

706 Zöllner, R., Oldewurtel, E.R., Kouzel, N., and Maier, B. (2017). Phase and antigenic variation
707 govern competition dynamics through positioning in bacterial colonies. *Scientific reports* 7,
708 12151.

709

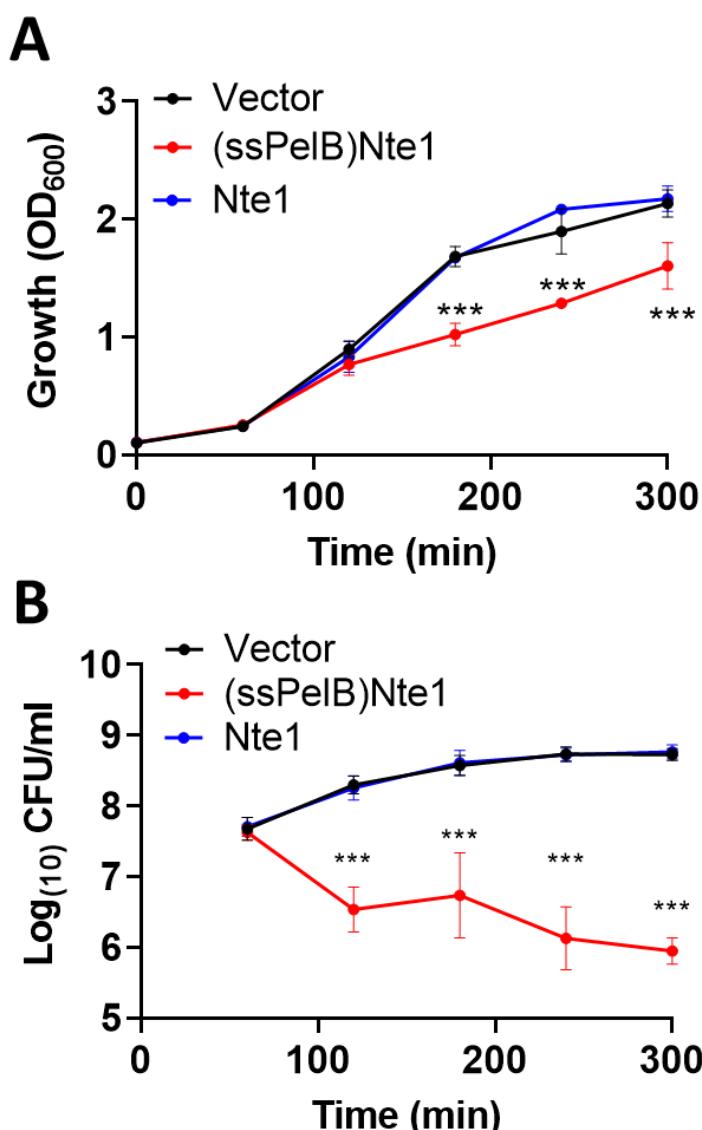
710

711 **SUPPLEMENTARY FIGURES**



712

713 **Figure supplement 1. The *N. cinerea* 346T T6SS is encoded on a plasmid.**


714 Overlapping PCR and sequencing confirms extra-chromosomally closed circular DNA
715 fragment. A total of 25 PCR fragments (pink bars) were amplified from *N. cinerea* 346T
716 gDNA to confirm the plasmid predicted by PacBio whole-genome sequencing. Yellow shows
717 regions which were sequenced, and green indicates the overlapping amplified regions.

718

719

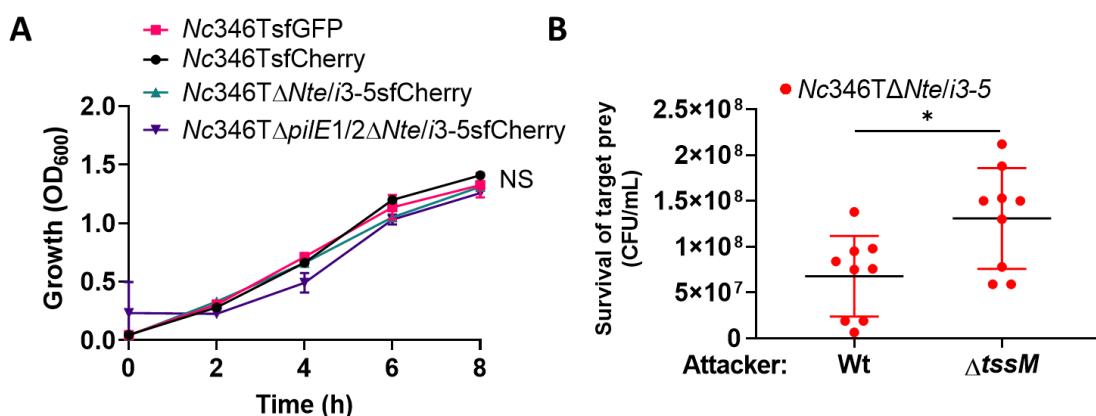
720 **Figure supplement 2. *N. cinerea* T6SS with a TssB C-terminal sfGFP fusion is functional and**
721 **activity is lost upon deletion of *tssM*.** Competition assay measuring the recovery of prey (*N.*
722 *meningitidis* 8013) after 4 h co-incubation with wild-type *N. cinerea* 346T (Wt) and specified
723 mutants at ratio of 100:1 (attacker:prey). Data shown are the mean \pm SD of two
724 independent experiments: NS, not significant, **p < 0.005 using one-way ANOVA test for
725 multiple comparisons.

726

727 **Figure supplement 3. *N. cinerea* putative T6SS effector Nte1 requires a PelB signal**

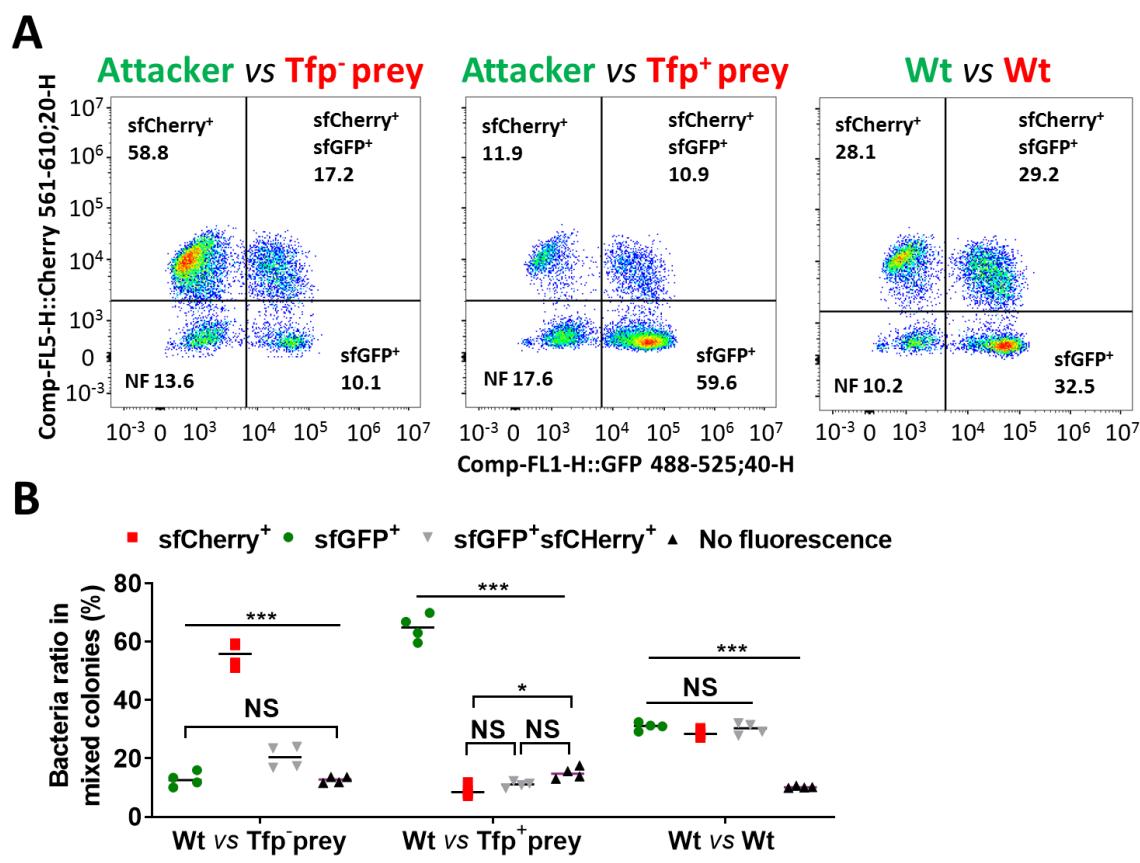
728 **sequence for toxicity in *E. coli*.** (A) Toxicity of Nte1 with or without the PelB signal sequence

729 (ssPelB) following expression in *E. coli*. Expression was induced with L-arabinose at 60 mins


730 and bacterial growth was monitored by measuring the OD₆₀₀ of cultures. A reduction on

731 OD600 was only observed when Nte1 was expressed with ssPelB. (B) Samples collected after

732 addition of arabinose were plated to media containing glucose to repress toxin expression


733 and enumerated. Data, shown are mean \pm SD of three independent experiments: NS, not

734 significant, ***p < 0.0001, *p < 0.05 using two-way ANOVA test for multiple comparison.

735

736 **Figure supplement 4. *N. cinerea* 346T Δ Nte/i3-5 has comparable growth to parent strain**
737 **and is susceptible to T6SS-killing by wild-type *N. cinerea* 346T. (A)** *N. cinerea* 346T strains
738 were grown in liquid BHI media for 8 h at 37 °C with 5% CO₂. Growth was monitored by
739 measuring the OD₆₀₀ of cultures. Data are representative of two independent experiments:
740 NS, not significant, using two-way ANOVA test for multiple comparison. **(B)** Competition
741 assay measuring the recovery of the indicated *N. cinerea* 346T Δ Nte/i3-5 mutant strain after
742 4 h of co-incubation wild-type *N. cinerea* 346T (Wt) or a *tssM*-deficient mutant (Δ *tssM*) at
743 ratio of 10:1 (attacker: prey). Data shown are the mean \pm SD of three independent
744 experiments performed in triplicate: *p < 0.05 using unpaired two-tailed Student's t-test.

758 346T_gfp 31±1%, $p = 0.58$. Data, shown are mean ± SD of two independent experiments:
759 NS, not significant, * $p < 0.05$, *** $p < 0.0001$ using two-way ANOVA test for multiple
760 comparison.

761 **SUPPLEMENTARY TABLES**

762 **Table supplement 1. Putative T6SS core components in *N. cinerea* 346T.**

763

Name	Protein Size (aa)	% aa (coverage) identity with <i>P. aeruginosa</i> PAO1	COG	Putative Localisation	Predicted Function
TssJ	215	35 (58)	COG3521	Outer membrane	Membrane complex
TssL	421	36 (91)	COG3455	Inner membrane	Membrane complex
TssM	1185	27 (93)	COG3523	Inner membrane	Membrane complex
TssK	447	37 (99)	COG3522	Inner membrane	Baseplate complex
TssF	640	33 (99)	COG3515	Inner membrane	Baseplate complex
TssG	346	37 (92)	COG3520	Inner membrane	Baseplate complex
TssE	170	37 (97)	COG3518	Cytoplasmic	Baseplate complex
TssA	355	28 (98)	COG3515	Cytoplasmic	Tail complex
TssB	172	70 (98)	COG3157	Cytoplasmic	Tail complex (sheath)
TssC	499	73 (97)	COG3517	Cytoplasmic	Tail complex (sheath)
ClpV	883	59 (98)	COG0542	Cytoplasmic	ATPase
Hcp	160	41 (100)	COG3157	Cytoplasmic/Inner membrane	Tail complex (Hcp tube)
VgrG	757	35 (99)	COG3501	Inner membrane	Spike

764

765

766 **Table supplement 2. Bacterial strains used in this study.**

Strains or plasmids	Description	Ref/ Source
<i>Neisseria cinerea</i>		
CCUG346T (346T)	wild-type <i>N. cinerea</i>	Bennett et al., 2012
CCUG27178A (27178A)	wild-type <i>N. cinerea</i>	Bennett et al., 2012
346T_sfGFP	346T with chromosomally integrated <i>sfGfp</i> ; Ery ^R	Wörmann et al., 2016
346T_sfCherry	346T with chromosomally integrated <i>sfCherry</i> ; Ery ^R	This study
27178A_sfCherry	27178 with chromosomally integrated <i>sfCherry</i> ; Spec ^R	This study
346TΔT6SS	346T with insertion-deletion of <i>tssC</i> – <i>vgrG</i> region; Ery ^R	This study
346TΔ <i>tssB</i>	346T with insertion-deletion of <i>tssB</i> ; Ery ^R	This study
346TΔ <i>tssB</i> :: <i>tssBsfGFP</i>	346T with insertion-deletion of native <i>tssB</i> and ectopic chromosomal insertion of <i>tssB-sfGFP</i> fusion; Spec ^R Ery ^R	This study
346TΔ <i>tssM</i>	346T with insertion-deletion of <i>tssM</i> ; Tet ^R	This study
346TΔ <i>tssB</i> Δ <i>tssM</i> :: <i>tssB-sfGFP</i>	346T with insertion-deletion of native <i>tssB</i> and <i>tssM</i> and ectopic chromosomal insertion of <i>tssB-sfGFP</i> fusion; Spec ^R Ery ^R Tet ^R	This study
346TΔ <i>nte/i3-5_sfCherry</i>	346T with insertion-deletion of <i>nte/i3-5</i> region and ectopic chromosomal insertion of <i>sfCherry</i> ; Spec ^R Ery ^R	This study
346TΔ <i>nte/i3-5</i> Δ <i>pile1/2_sfCherry</i>	346T with insertion-deletion of <i>nte/i3-5</i> region; ectopic chromosomal insertion of <i>sfCherry</i> ; insertion-deletion of <i>pile1</i> and <i>pile2</i> ; kan ^R , Spec ^R Ery ^R	This study
<i>Neisseria meningitidis</i>		
8013	<i>N. meningitidis</i> wild-type	Rusniok et al., 2009
MC58	<i>N. meningitidis</i> wild-type	Tettelin et al., 2000
S3	<i>N. meningitidis</i> wild-type	Uria et al., 2008
MC58Δ <i>siaD</i>	deletion mutagenesis, NEISO051; Kan ^R	Virji et al., 1995
<i>Neisseria gonorrhoeae</i>		
FA1090 pGCC4	FA1090 with chromosomally integrated plasmid pGCC4; Ery ^R	Mehr and Seifert, 1997
<i>Escherichia coli</i>		
Dh5α	Cloning strain	Lab collection
Dh5α pNCC1-Spec	Dh5α with pNCC1 ² Spec ^R plasmid	This study

Dh5 α pNCC1-Spec-sfGFP	Dh5 α with pNCC1-Spec with sfGFP insert;	This study
Dh5 α pNCC101-Spec-sfCherry	DH5 α with plasmid pNCC101+sfCherry insert. Spec ^R	Lab collection
Dh5 α pUC19:: Δ tssB	DH5 α with pUC19:: Δ tssB deletion construct; Carb ^R Ery ^R	This study
Dh5 α pUC19:: Δ tssM	DH5 α with pUC19:: Δ tssM deletion construct; Carb ^R Tet ^R	This study
Dh5 α pUC19:: Δ T6SS	DH5 α with pUC19:: Δ tssC-vgrG locus deletion construct; Carb ^R Ery ^R	This study
Dh5 α pUC19:: Δ nte3 Δ nte4nNte5	DH5 α with pUC19:: Δ nte3 Δ nte4nNte5 region including respective immunity genes deletion construct; Carb ^R Ery ^R	This study
B834 pET28a	<i>B834 with pET28a IPTG-inducible expression vector, Amp^R</i>	Lab collection
Dh5 α pET28a-His-3C-Hcp	Dh5 α with pET28a vector for IPTG inducible expression of Nc 346T Hcp with N-terminal cleavable HIS tag. Amp ^R	This study
B834 pET28a-His-3C-Hcp	B834 expression strain, with pET28a vector for IPTG inducible expression of Nc 346T Hcp with N-terminal cleavable HIS tag. Amp ^R	This study
Dh5 α pBAD33	Dh5 α with pBAD33 vector for Arabinose-inducible expression, Cm ^R	Lab collection
Dh5 α pBAD33::(ssPelB)Nte1-His	Dh5 α with pBAD33 encoding Nte1 with N-terminal PelB leader peptide and C-terminal his-tag under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33:: (ssPelB)Nte1+Nti1	Dh5 α with pBAD33 encoding Nte1 with N-terminal PelB leader peptide and C-terminal his-tag plus Nti, under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte1-His	Dh5 α with pBAD33 encoding Nte1 with N-terminal his-tag under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte2	Dh5 α with pBAD33 encoding Nte2 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte2+Nti2	Dh5 α with pBAD33 encoding Nte2+Nti2 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte3	Dh5 α with pBAD33 encoding Nte3 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte3+Nti3	Dh5 α with pBAD33 encoding Nte3+Nti3 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte4	Dh5 α with pBAD33 encoding Nte4 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte4+Nti4	Dh5 α with pBAD33 encoding Nte4+Nti4 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte5	Dh5 α with pBAD33 encoding Nte5 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte5+Nti5	Dh5 α with pBAD33 encoding Nte5+Nti5 under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte6 ^{R1300S}	Dh5 α with pBAD33 encoding Nte6 ^{R1300S} under arabinose-inducible promoter control; Cm ^R	This study
Dh5 α pBAD33::Nte6+Nti6	Dh5 α with pBAD33 encoding Nte6+Nti6 under arabinose-inducible promoter control; Cm ^R	This study

767

768 **Table supplement 3. Primers used in this study.**

Name	Sequence (5'-3')	Use
T6SSdel-1	CGAAAAGTGCCACCTGACGTATGACTGAAAAGC AATTAGATATC	Deletion of <i>tssC-vgrG</i> locus
T6SSdel-2	GTAAATTAAAGGATAAGAAACGTGGCAG	Deletion of <i>tssC-vgrG</i> locus
T6SSdel-3	TTCTTATCCTAAATTAAACGATCACTCATCATG	Deletion of <i>tssC-vgrG</i> locus
T6SSdel-4	ACTAAACATTTACTTATTAAATAATTATAGCTA TTGAAAAG	Deletion of <i>tssC-vgrG</i> locus
T6SSdel-5	TTAATAAGTAAATGTTGAGTTGCAGAACTTAC	Deletion of <i>tssC-vgrG</i> locus
T6SSdel-6	GATAATAATGGTTCTTAGACGTGCCGTTCCAAT AGGCCATAG	Deletion of <i>tssC-vgrG</i> locus
T6SSdel-conf-F	CCTAAAGCGGCTTCCAAAGACG	Confirmation of <i>tssC-vgrG</i> locus deletion
T6SSdel-conf-R	CCATGCCGGTAAAGGTCAGT	Confirmation of <i>tssC-vgrG</i> locus deletion
TssBdel-1	GATCCTCTAGAGTCGACCTGCAGGCATGCACCTA CCCTGATCCACAAAGCC	Deletion of <i>tssB</i>
TssBdel-2	ATTCAATGACCTTAAATGATAAAAGTTGT	Deletion of <i>tssB</i>
TssBdel-3	ACAACTTTATCATTAAAGGTATTGAATATGA ACGAGAAAAATAAAACACAGTC	Deletion of <i>tssB</i>
TssBdel-4	TTACTTATTAAATAATTATAGCTATTGAAAAGA GATAAGAATTG	Deletion of <i>tssB</i>
TssBdel-5	TATAAATTATTAATAAGTAAGCTTCCAAAGACG AGCAGTAA	Deletion of <i>tssB</i>
TssBdel-6	CAGGAAACAGCTATGACCATGATTACGCCCTAAGT TGCAGGCAACTTCTT	Deletion of <i>tssB</i>
TssBdel-conf-F	ATAGAAACCTACTTTTCGGAAAGC	Confirmation of <i>tssB</i> deletion
TssBdel-conf-R	TTACTTATTAAATAATTATAGCTATTGAAAAGA GATAAGAATTG	Confirmation of <i>tssB</i> deletion
TssMdel-1	GATCCTCTAGAGTCGACCTGCAGGCATGCAACCC TGTCTGGCTAGAGTC	Deletion of <i>tssM</i>
TssMdel-2	ATTGTTTTCCGTATCAATCCAATTCA	Deletion of <i>tssM</i>
TssMdel-3	ATTGGATTGATACGGAAAAACAAATATGAAAAT TATTAATATTGGAGTTTAGCTCATGTT	Deletion of <i>tssM</i>
TssMdel-4	CTAAGTATTATTGAACATATATCGTACTTTAT CTATCCG	Deletion of <i>tssM</i>
TssMdel-5	AAGTACGATATATGTTCAATAAAATACTTAGAA TAAATTAAGGAATTTCAGTGCATTGAG	Deletion of <i>tssM</i>
TssMdel-6	CAGGAAACAGCTATGACCATGATTACGCCGGCA ATATCTAGAACGGATTATCG	Deletion of <i>tssM</i>
TssMdel-Conf-F	AGGACTTCAAGATAGAAGTACGG	Confirmation of <i>tssM</i> deletion
TssMdel-Conf-R	AAAGCCCCTTGTACGATAGC	Confirmation of <i>tssM</i> deletion
Nte345del-1	GATCCTCTAGAGTCGACCTGCAGGCATGCAGAC CTTCATGCTGACTAGTGAT	Deletion of <i>Nte3-Nte5</i> locus
Nte345del-2	GAAGTGTGGATGAACTTTCTATG	Deletion of <i>Nte3-Nte5</i> locus
Nte345del-3	CATAGAAAAAGTCATCCAACACTTCTAAATTAA ACGATCACTCATCATG	Deletion of <i>Nte3-Nte5</i> locus
Nte345del-4	TTACTTATTAAATAATTATAGCTATTG	Deletion of <i>Nte3-Nte5</i> locus
Nte345del-5	CAATAGCTATAAATTATTAATAAGAAAATAAG AAACTGTAAACACAGTGTG	Deletion of <i>Nte3-Nte5</i> locus
Nte345del-6	CAGGAAACAGCTATGACCATGATTACGCCAGTT AACTGTTCGGAAAGGGTGT	Deletion of <i>Nte3-Nte5</i> locus

Nte345del-conf-F	GTTTCGTTGGTGAGGACGG	Confirmation of <i>Nte3-Nte5</i> locus deletion
Nte345del-conf-R	CTACTTATAATCCAATATTTATTGAACAGAGAAC	Confirmation of <i>Nte3-Nte5</i> locus deletion
TssBsfGFP1	CATGATTACGAATTCCCGGATTAAATTAAA	<i>tssB</i> amplification to fuse with sfGFP and clone into pNCC1-spec
TssBsfGFP2	ATGTCACGAAACAAATCATCCGG	<i>tssB</i> amplification to fuse with sfGFP and clone into pNCC1-spec
TssBsfGFP3	CTGCTCGTCTTGGAAC	sfGFP amplification and addition of DNA linker to fuse with <i>tssB</i> and clone into pNCC1-spec
TssBsfGFP4	GCTTCCAAAGACGAGCAGGCAGCAGCAGGTGGTGGTAGCAAAGGAGAAGAACTTTAC	sfGFP amplification and addition of DNA linker to fuse with <i>tssB</i> and clone into pNCC1-spec
sfGFP-Prom-F	GATCCTCTAGAGTCGACCTGCAGGCATGC	sfGFP amplification from pNCC1-sfGFP to clone into pNCC1-spec
sfGFP-Prom-R	TCATTGTAGAGCTATCCATGC	sfGFP amplification from pNCC1-sfGFP to clone into pNCC1-spec
pGib-RBS-Nte2-F	TGACCCGGGTCAATTGTAGAGCTATCCATGCC	<i>Nte2</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nte2-R	TGAAAGCTTTGACAGCTAGCTAGTCCTAGGTTAATGCTAGCCAAACATGTTACACAATAATGGAGTAATGAACATATGAGCAAAGGAGAAGAACT	<i>Nte2</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nti2-R	GATCCTCTAGAGTCGACCTGCAGGCATGCAAAGAAGGAGATATACCATGGCATTCAATAAAATGCC	<i>Nte2</i> and <i>Nti2</i> amplification plus addition of RBS to clone into pBAD33
pGib-RBS-Nte3-F	AAAATCTCTCTCATCCGCAAACAGCCATCATT	<i>Nte3</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nte3-R	TTTCTATTGTTACATTATCCT	<i>Nte3</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nti3-R	AAAATCTCTCTCATCCGCAAACAGCCATTATT	<i>Nte3</i> and <i>Nti3</i> amplification plus addition of RBS to clone into pBAD33
PGIB-RBS-NTE4-F	CAAATTTCTTAGCAGTATTTC	<i>Nte4</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nte4-R	GATCCTCTAGAGTCGACCTGCAGGCATGCAAAGAAGGAGATATACCATGGCTCTTCGGTAAC	<i>Nte4</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nti4-R	AAAATCTCTCTCATCCGCAAACAGCCATTAC	<i>Nte4</i> and <i>Nti4</i> amplification plus addition of RBS to clone into pBAD33
pGib-RBS-Nte5-F	GCTTTAAATTCCGGTG	<i>Nte5</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nte5-R	GATCCTCTAGAGTCGACCTGCAGGCATGCAAAGAAGGAGATATACCATGGCTCTGAAAGC	<i>Nte5</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nti5-R	AAAATCTCTCTCATCCGCAAACAGCCATTAACTCAATCGTTGGCG	<i>Nte5</i> and <i>Nti5</i> amplification plus addition of RBS to clone into pBAD33
pGib-RBS-Nte6-F	AAAATCTCTCTCATCCGCAAACAGCCATTAACTCAATCGTTGGCG	<i>Nte6</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nte6-R	GATCCTCTAGAGTCGACCTGCAGGCATGCAAAGAAGGAGATATACCATGGCTCTTCGGTAAC	<i>Nte6</i> amplification and addition of RBS to clone into pBAD33
pGib-RBS-Nti6-R	AAAATCTCTCTCATCCGCAAACAGCCATTAACTCAATCGTTGGCG	<i>Nte6</i> and <i>Nti6</i> amplification plus addition of RBS to clone into pBAD33

CE043-F	GGCCGGTCTAGAAAGAAGGAGATATACCATGAA ATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTG CTCCTCGC	Addition of 5' <i>PelB leader peptide</i> and 3' 6xHIS-tag to PLA2 domain to clone into pBAD33
CE044-F	GGTCTGCTGCTCCTCGCTGCCAGCCGGCGATG GCCATGGGGGGAAAGTAATTATGCGTTGCA	PLA2 domain amplification and addition of 5' <i>PelB leader peptide</i>
CE046-R	CCGGCCGCATGCCTAGTGATGGTGATGGTGATG CCTATGATTTTAGAC	Addition of 3' 6xHIS-tag to PLA2 domain with or without 5' <i>PelB leader peptide</i> to clone into pBAD33
CE047-R	GATGCCTATGATTTTAGACGTTTTTAATTGTT TTATCG	PLA2 domain amplification with or without addition of 5' <i>PelB leader peptide</i>
CE048-R	CCGGCCGCATGCCTAGTGATGGTGATGGTGATG ATTAAGTTGGATAGTTGAAAATTTTTAAGCT TATATATAAG	PLA2 domain amplification with or without a 5' <i>PelB leader peptide</i> and amplification of <i>Nti1</i> adding a 3' 6xHIS-tag to clone into pBAD33
CE083-F	GGCCGGTCTAGAAAGAAGGAGATATACCATGGG GGGAAGTAATTATGCGTTGCA	PLA2 domain amplification and addition of 3' 6xHIS-tag to clone into pBAD33
MW312	TATAAGGAGGAACATATGGAATACATGTTATAAT AACTATAAC	Spectinomycin cassette amplification from pDG1728 to clone into pNCC1
MW313	GTATTCCATATGTTCTCCTTATAAAATTAGTATA ATTATAG	pNCC1 plasmid backbone amplification
MW314	GCATCCCTAACGACGTCAATTGAAAAAGTGT TCCACC	Spectinomycin cassette amplification from pDG1728 to clone into pNCC1
MW315	TCAATTGACGTCGTTAAGGGATGCATAAACTGCA TCCCTAAC	pNCC1 plasmid backbone amplification

770 **SUPPLEMENTARY MOVIES LEGENDS**

771

772 **Movie supplement 1.** Visualisation of *N. cinerea* T6SS contraction.

773 *N. cinerea* 346T Δ tssB::tssBsfGFP (green) and prey cells *N. cinerea* 27178A_sfCherry (red)

774 were mixed at a ratio of 1:1 and spotted on a 1% agarose PBS pad supplemented with 0.1

775 mM IPTG. The cells were imaged for 12 seconds with a rate of 1 image per second.

776

777 **Movie supplement 2.** Visualisation of *N. cinerea* T6SS foci.

778 *N. cinerea* 346T Δ tssB::tssBsfGFP (green) or *N. cinerea* 346T Δ tssB Δ tssM::tssBsfGFP (green) and

779 prey cells *N. cinerea* 27178A_sfCherry (red) were mixed at a ratio of 1:1 and spotted on a PBS

780 1% agarose pad supplemented with 0.1 mM IPTG. The cells were imaged for 200 seconds with

781 a rate of one image per 10 seconds.

782

783 **Movie supplement 3.** *N. cinerea* T6SS elicits prey lysis.

784 *N. cinerea* 346T Δ tssB::tssBsfGFP (green) and *N. cinerea* 27178A_sfCherry (red) were mixed

785 at a ratio of 1:1 and spotted onto agarose padS supplemented with 0.1 mM IPTG and the

786 cell-impermeable DNA stain SYTOX Blue (0.5 μ M) as an indicator for loss of membrane

787 integrity. The cells were imaged for 10 min with an image taken every 10 seconds.

788

789 **Movie supplement 4.** Growing edge of colonies with a pilated attacker *N. cinerea* 346T_gfp,

790 (green) and non-piliated prey 346T Δ nte/i3-5 Δ pilE1/2_sfCherry (red).

791 Strains were spotted at a ratio of 1:1. Colonies were imaged every 2 h between 4 and 16 h

792 post inoculation. Over time a population of non-piliated prey segregates to the edge, escape

793 T6SS assault and dominates the growing colony.

794

795 **Movie supplement 5.** Growing edge of colonies with a pilated attacker *N. cinerea* 346T_gfp,
796 (green) and pilated prey 346T Δ nte/i3-5_sfCherry (red).

797 Strains were spotted at a ratio of 1:1. Colonies were imaged every 2 h between 4 and 16 h
798 post inoculation. Over time the T6SS expressing strain dominates the colony.

799

800 **Movie supplement 6.** Growing edge of colonies with two wild-type strains. *N. cinerea*
801 346T_gfp (green) and *N. cinerea* 346T_sfCherry (red).

802 Strains were spotted at a ratio of 1:1. Colonies were imaged between 4 and 16 h post
803 inoculation. Images obtained every 2 h. No dominance of either strain is observed.

804