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Abstract

Here we propose that much of the magnetic interference observed when using optically pumped
magnetometers can be modeled spatially as a mean (magnetic) field. We show that this approximation
reduces sensor level variability and substantially improves statistical power. This model does not
require knowledge of the underlying neuroanatomy nor the sensor positions. It only needs
information about the sensor orientation. Due to the model’s low rank there is little risk of removing
substantial neural signal. However, we provide a framework to assess this risk for any sensor number,
design or subject neuroanatomy. We find that the risk of unintentionally removing neural signal is
reduced when multi-axis recordings are performed. We validated the method using a binaural
auditory evoked response paradigm and demonstrated that the mean field correction increases
reconstructed SNR in relevant brain regions in both the spatial and temporal domain. Considering the
model’s simplicity and efficacy, we suggest that this mean field correction can be a powerful
preprocessing step for arrays of optically pumped magnetometers.

1. Introduction

As Optically Pumped Magnetometers (OPMs) become more sensitive (Kominis, Kornack, Allred, &
Romalis, 2003), there is an increasing need to develop methods that minimize the magnetic
interference they experience. A number of distinct approaches to this problem have been developed.

Hardware developments to mitigate interference include active shielding systems to null low-
frequency fields around the participant’s head (Holmes et al.,, 2019; livanainen, Zetter, Gron,
Hakkarainen, & Parkkonen, 2019). This approach is attractive as it allows simplification of the helmet
design (to comprise just the magnetometers). Furthermore, these coils have made feasible the
imaging of neural responses during participant movement (Boto et al., 2019; Holmes et al., 2018,
2019). Whilst these coils prevent artefacts in the region of 0—1 Hz that would move the sensors
outside their dynamic range, they do not correct for the subtler modulations of interference
encountered when someone rotates their head. This modulation of interference could theoretically
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be corrected with high dynamic range field nulling coils but this further complicates the hardware
development.

Another hardware option is to configure the sensors as gradiometers which have excellent noise
suppression (Colombo et al., 2016; Nardelli, Perry, Krzyzewski, & Knappe, 2020; Sheng et al., 2017)
and are capable of unshielded neural recordings (Limes et al., 2020). In contrast, atomic
magnetometers (Osborne, Orton, Alem, & Shah, 2018) typically require considerable active and
passive shielding for successful MEG recordings (Barry et al., 2019; Lin et al., 2019; Tierney et al., 2018,
2020). However, the appeal of magnetometers lie in their simplicity of construction, compact size and
extreme sensitivity (Allred, Lyman, Kornack, & Romalis, 2002; Kominis et al., 2003). Furthermore,
gradiometers necessarily must have a baseline that is 1-2 times larger than the distance to the brain
region of interest (Hdmaldinen, Hari, llImoniemi, Knuutila, & Lounasmaa, 1993). This constraint may
place a limit on the wearability of atomic gradiometer systems, and consequently compact
magnetometer designs for wearable systems are more attractive.

In addition to hardware developments, there are a number of software approaches that can be used
to reduce interference. Perhaps some of the most widely used methods are the Signal Source
Separation (SSS) method (Taulu & Kajola, 2005) and the Dual Signal Subspace Projection (DSSP)
method (Sekihara et al., 2016). Both methods aim to partition the data into separate subspaces that
originate from inside the brain and outside the brain. Once these subspaces are defined the temporal
intersection of these subspaces can be used to further reduce interference (Golub & Van Loan, 1996).
When this temporal extension is used with SSS it is referred to as tSSS (Taulu & Hari, 2009). The
methods diverge in the form of the basis sets used to represent the neural and external subspace. SSS
uses a set of spherical harmonics and considers the low (spatial) frequency terms to originate from
outside the head. DSSP uses the eigenmodes of the lead fields to define the neural space while the
nullspace of the neural space defines the external space. Both methods have proved very useful in
dealing with challenging interference such as that from vagus nerve stimulators or deep brain
stimulators (Cai et al., 2019; Kandemir, Litvak, & Florin, 2020).

However, these methods make a number of assumptions that should be considered before use with
small channel (< 50) OPM systems. For instance, inherent to DSSP is the assumption that the rank of
the data is much greater than the rank of the lead fields. This is clearly the case in cryogenic MEG
systems that may have 300 sensors and a lead field rank in the range of 50-100 (livanainen et al., 2020;
Nenonen, Taulu, Kajola, & Ahonen, 2007; Tierney, Mellor, et al., 2019). In OPM systems this may not
be the case and the rank of the lead fields may be comparable to the rank of the data because typical
systems currently operate with fewer than 50 sensors (Hill et al., 2020).

SSS may suffer from an opposing issue in OPM systems, namely that the rank of the external subspace
(typically 16) may share significant variance with the leadfields of small channel systems (< 50 sensors).
To mitigate this issue, one could use lower order spherical harmonics as the basis set defining the
external subspace. Intriguingly, the lowest order spherical harmonic (the constant term) is absent
from the SSS basis set on the grounds that it reflects the field from monopoles (Chella, Zappasodi,
Marzetti, Penna, & Pizzella, 2012; Nurminen, Taulu, & Okada, 2008; Taulu & Kajola, 2005).

While we do not expect any interfering magnetic field to be exactly constant in space, we may
approximate this interfering field as a spatially constant field. Such an approximation may not be
physically correct, but we will show it to be useful for interference mitigation for two reasons. Firstly,
the model is very low order (rank 3 — the orthogonal spatial axes) and should therefore share minimal
variance with the lead fields. Second, because of its simplicity, it can be updated in real time and track
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interference that is modulated by participant movement. We will motivate its use in the next section
with a toy problem of parallel sensors.

2. Theory
2.1 Magnetic interference is approximately spatially constant

This effect is the basis of all gradiometer based MEG systems and has been extensively described
elsewhere (Hdmalainen et al., 1993; Vrba & Robinson, 2002). We restate it here for completeness. The
interfering signal measured by a sensor (S;) on the head is inversely proportional to the square of the
distance (r) to the interfering field’s source.

Sy oc1/r? 1

The relative signal (S,) experienced by a second (parallel) sensor displaced a distance r + h from the
interference source can be described as

S, =712/(r + h)? 2

By way of example, both S; and S, could be sensors either side of a participant’s head. In this case
h ~ 20 cm. When the distance to the interference is much greater than the head size (7 > h ), the
relative signal is approximately constant as a function of space

r? L 3
-2

S
As such, we argue that much of the interference encountered in OPM systems can be described by a
spatially constant term (a mean field). It should be noted that this term will automatically be removed
in gradiometer systems and will be of most benefit to systems based on magnetometers.

Although this basis set is technically not physically correct (magnetic interference is not constant
across space), it will be shown to be a useful approximation. This spatially constant term can be
encoded in an X 3 matrix (N) that is simply the row-wise concatenation of the n unit normals
representing the sensors’ sensitive axes (0,‘;, O}i,, OZi ). The orientation vectors encode the mean field
because these vectors predict the proportion of a constant field experienced by a sensor. The
superscript i is indicative of the sensor index.

0 o0 o 4
N = :
or or op

This term should explain the majority of interference distant sources when the participant is
stationary. We note that when a participant moves, one could incorporate linear gradient terms.
These would be quite beneficial for very low frequency studies (<3Hz), designing a model informed
closed loop OPM systems (Nardelli et al., 2020) or for informing coil currents in active shielding
systems (Holmes et al., 2019). However, for simplicity we will ignore these higher order terms here
and just focus on the benefits of using a very simple mean field approximation.

2.2 The separation of signal and interference

Once the basis set (N) is defined the n X n mean field projection matrix (M) can be constructed as
follows
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M=1-NN* 5

Where [ signifies the identity matrixand Nt signifies the pseudoinverse of N. This matrix (M) projects
the n X t (number of time points) data matrix (Y) on to the nullspace of the mean field which will
approximately equal the neural subspace (S,cyrq) for distant interference sources.

Sneural ~ MY 6

This approach is a simple linear regression (of N on to Y) and can be viewed as a case of Signal Space
Projection - SSP (Uusitalo & llmoniemi, 1997) for non-orthonormal basis sets. It should be noted that
this approach performs an independent fit of the interference at every time point. As such the model
adapts to the temporal non—stationarities in interference.

3. Methods
3.1 Empty room noise demonstration

We postulated that much of the interference magnetometers experience can be modelled as a mean
field. All measurements were made in the new UCL magnetically shielded room specifically designed
for OP-MEG. The shielded room, constructed by Magnetic Shields Ltd, has internal dimensions of
4377mm x 3377mm x 2182mm and is constructed from two inner layers of Imm mumetal, a 6mm
Copper layer, and then two external layers of 1.5mm mumetal.

We provide empirical demonstration of this by assessing the ability of the basis set, N to mitigate
interference in an empty room noise recording. We placed 31 Gen-2 QuSpin OPMs in a participant
specific scanner cast (Boto et al., 2016). We recorded 3 minutes of empty room noise data with a 16-
bit precision ADC (national instruments) at 6000 Hz sampling rate. We record both the radial and
tangential fields from the sensors to double the effective channel count and increase the degrees of
freedom. We performed the analysis as described in section 2 using N as the basis set.

3.2 Lead field errors

Any spatial basis set will share variance (even if only by chance) with the lead fields (the basis set
defining the neural subspace). Therefore, a certain percentage of brain signal may be removed
following this (or any) regression. To directly assess how much variance is shared between the mean
field and the lead fields, we regress the mean field (N) on to simulated lead fields and calculate the
variance explained. The signal loss in decibels (dB) can be calculated as 10log,,(1 — VE), where VE
is the fraction of shared variance between the lead fields and N.

For the simulation, the sensor array defining the lead fields was a custom made scanner cast (Boto et
al., 2016) with 72 sensor slots. For every sensor position two sensor orientations were simulated (one
radial and one tangential to the head). The result was 72 sensors and 144 channels. The brain mesh
used to generate these leadfields was the MNI canonical mesh available in SPM12, warped to the
anatomy of the individual the custom scanner cast was made for. The separation between vertices is
approximately 5 mm on average. The orientation of the source was defined by the surface normal of
the cortical mesh at that location. The forward model was the Nolte single shell model (Nolte, 2003)
and sensors were assumed to be point magnetometers.

3.3 Sensor level analysis

Here we show how the proposed approximation can improve the statistical power of sensor level
analyses, even during participant motion (~45 degrees rotation) using an auditory evoked response
paradigm. One male, aged 26 years, participated in this study and gave informed written consent in
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line with UCL ethics. The auditory tones had a duration of 70ms (5ms rise and fall times) and
frequencies of 500-800Hz in steps of 50Hz. The inter-stimulus interval was 0.5s. Stimuli were
presented via Psychopy (Peirce 2009), through MEG-compatible ear tubes with etymotic transducers,
and the volume was adjusted to a comfortable level, as specified by the participant. A total of around
1400 individual auditory tones were presented. During the experiment, the participant was instructed
to continually, slowly rotate their head by 45 degrees in any direction that was comfortable and to
ignore the auditory tones. This was done to deliberately create rotation induced non-stationarities in
the recorded data. No motion tracking was performed.

Data were acquired with the same 31 sensors (62 channels) in section 3.1 at 6000Hz using a national
instrument 9205 ADC (16 bit system) and subsequently downsampled to 600Hz. The same mean field
correction was applied to the data as in section 3.1. Data were then band passed filtered between 2
and 40Hz with a notch at 50Hz. The data were averaged across trials to observe an evoked response.
A one sample student t-test was conducted at each time point across trials. Data were corrected for
multiple comparisons using Bonferroni correction. For comparison, the same analysis pipeline was
repeated but without the use of the mean field correction.

3.4 Source level analysis

To examine the effect of the mean field correction at the source level, we reconstructed the source
space time courses using Minimum Norm (Hamaldinen et al., 1993) as implemented in SPM12 (Friston
et al., 2008; Lopez, Litvak, Espinosa, Friston, & Barnes, 2014) for both the mean field corrected data
and the uncorrected data.

We then (in a similar manner to the sensor level) constructed one-sample t-tests but this time focusing
on the M100 evoked response. The resulting statistical parametric map was smoothed with a 20mm
Gaussian kernel and corrected for multiple comparisons using Bonferroni correction. The squared t-
statistic (across trials) represents the SNR (power) of the evoked response and can be interpreted as
an F-statistic showing at what time points SNR is greater than 0. We calculate these SNR-time series
for both the mean field corrected and uncorrected data at the region of highest statistical power
(global maximum). We also calculate how this SNR varies with distance from the global maximum to
measure the Full Width at Half Maximum (FWHM) of the SNR.

3.5 Software

All analysis was carried out using the SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) software package
and custom Matlab scripts. All software is available on request from the corresponding author and
will be made freely available via GitHub (https://github.com/tierneytim/OPM).

4. Results
4.1 Empty room demonstration

In the empty room recordings —see Figure 1- the drift (<1Hz) and 50 Hz components are reduced by a
factor of 10, whereas the vibration components within the 3 and 20 Hz band are reduced by up to a
factor of 5 (15dB). It is important to note that this improvement was achieved by using only the 3
regressors of the basis N. The noise floor reached 10fT at higher frequencies. These reductions provide
an empirical verification that the mean field approximations does indeed explain a majority of variance
in the magnetic interference encountered in our magnetically shielded room.
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Figure 1. Mean field approximation for empty room noise data. In (A) the power spectral density (rms) is displayed for both
uncorrected data (left) and corrected data (right). The average power spectral density is highlighted in black. The dotted black
line is at 15 fT. Large sources of interference (drift, 50 Hz) experienced a 10-fold reduction in magnitude while nearly 5-fold
reduction in interference was observed between 5 and 20 Hz. In (B) representative time segments are shown. The uncorrected
data in the left panel show that the environmental noise within the room could change quickly by a few hundred picotestla.
Whereas in the corrected time series (right) these changes were reduced to the order of tens of picotesla. In (C) the average
shielding factor across the 62 channels in decibels (dB) is plotted as a function of frequency. There is a positive effect across
the entire bandwidth analysed (0-100 Hz).

4.2 Lead field errors

We next examined whether the proposed mean field correction attenuated useful signal as well as
interference. As is apparent in Figure 2, the signal loss was, on average, less than 0.5dB for an array
consisting of both radial and tangential OPMs. It reaches a maximum of ~1.5dB for the combined array
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and, as such, the reduction in noise observed in Figure 1 outweighs any signal loss. What is perhaps
most interesting here is that the signal loss is much lower for a dual-axis recording as opposed to
recordings from either axis individually. There is also a clear pattern of increased signal loss at depth
with single axis recordings, although, this effect is mitigated by dual-axis recordings.
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Figure 2. Maximal lead field error due to mean field approximation. For the 72 sensor system the lead-field error (expressed
as signal loss in dB, more negative values indicating greater signal loss) is shown for sensors measuring radially, tangentially
and in dual axis mode. It is clear that the deeper sources share more variance with the mean field basis set but this effect is
greatly diminished when data are collected in dual axis mode.

4.3 Sensor level analysis.

As shown in Figure 3, we assessed OPM measured auditory evoked responses during movement (~45
degrees rotation). The sensor level evoked response (in Figure 3A and 3B) was obscured across many
sensors due to trial to trial variation. This is reflected in the t-statistics which either did not achieve
significance or were weakly significant for the early 100ms component. However, when the mean field
correction was applied, the evoked response became much clearer (Figure 3C). This reduction in
variation was reflected in the increased magnitude of the t-statistics (Figure 3D).
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Figure 3. Interference correction in the presence of motion. In (A) and (B) the evoked response and associated t-statistics are
shown for the auditory evoked response when no correction is applied. The 100ms and 200ms response are difficult to discern
from the data and the statistical efficiency is poor due to the high level of variation. However in (C) and (D) when the mean
field approximation is applied both the 100ms and 200ms response are clearly visible in both the evoked response and the t-
statistic.

4.4 Source level demonstration

The results were encouraging when we examined the source level. The SPMs were both broadly
similar for corrected and uncorrected data but the mean field corrected data had more supra-
threshold vertices and higher statistical power (Figure 4A and 4B). When we looked directly at how
the SNR changed with space (Figure 4C) we observed that the FWHM of the SNR was comparable
between both methods, but the SNR was higher for the mean field corrected data. We also directly
calculated the SNR across trials (power) at every time point for both methods. This can be interpreted
as an F-statistic and clearly showed that the mean field corrected data had better source level SNR
than the uncorrected data (Figure 4D) at the time points of high signal (100ms and 200ms).
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Figure 4. Source level results. In (A) and (B), statistical parametric maps (t-statistic) are shown for the 100ms response to
auditory stimuli for both the uncorrected and mean field corrected data respectively. Both situations resulted in bilateral
maxima observed in auditory cortex. In (C) the SNR as a function of space is shown. Both methods had comparable FWHMs
but the mean field corrected data had better SNR. In (D) the SNR (power) is shown over time for both methods. The mean
field method reconstructed more power in the auditory cortex with higher SNR for both the 100ms component as well as the

200ms component.

5. Discussion

In this study we demonstrated that a mean field correction provides a simple but powerful approach
for the reduction of interference observed by OPMs in both the temporal and spatial domains.

The correction we propose adds to the existing model-based software approaches for the separation
of signal from interference. The attraction of using such a low order model lies in both the simplicity
of implementation and the low likelihood of removing neural signal. As sensor numbers in OPM arrays
are typically much lower than cryogenic MEG systems, the likelihood that any spatial basis set will
explain some neural signal by chance is increased. As such, default settings for current spatial
desnoising algorithms may not be appropriate, and will need to be adjusted for OPM experiments.
Here we provide an explicit framework by which it is possible to calculate the worst-case shared
variation for any given array or sensor design and any user specified basis set.

This framework could easily be extended to incorporate a temporally extended mean field correction,
similar to tSSS (Taulu & Hari, 2009) but this should be done with some caution. As already noted, for
some arrays there will be a non-negligible correlation between a basis set and a lead field. As such,
some neural activity will exist in the intersection of these subspaces. This will therefore distort neural
activity and should be considered carefully on a case by case basis. The temporal extensions should,
arguably, only be used if one can demonstrate that the spatial basis defining the external subspace is

nearly orthogonal to the leadfields.
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An alternative and powerful model based approach lies in the use of DSSP (Sekihara et al., 2016) which
uses the eigenmodes of the lead fields as a spatial basis set to explain the data (effectively modelling
the neural subspace at the sensor level). As it is directly modelling the neural subspace it typically
rejects less neural data than tSSS (Cai et al., 2019). However, it relies on having an accurate forward
model. Neither SSS nor the mean field correction suggested here require a forward model. In fact, the
mean field correction only requires knowledge of the relative sensor orientations, whereas SSS
requires knowledge of the sensors positions and orientation.

More data driven approaches lie in the use of adaptive source reconstruction techniques such as
beamformers (Belardinelli, Ortiz, Barnes, Noppeney, & Preissl, 2012; Van Veen & Buckley, 1988). In
principle, for stationary participants, the mean field correction will be of little benefit for beamformer
studies (unless the interference covariance changes over time). However, for moving participants, the
beamformer will be less effective at removing correlated interference because the estimate of the
covariance matrix will be inefficient and biased due to movement induced non-stationarities (although
see (Woolrich et al., 2013) for a non-stationary implementation). Ultimately, the mean field correction
suggested here offers a compromise between model complexity, variance shared with the leadfields,
ease of implementation and non-stationary interference reduction.

While the proposed correction outlined here can help improve the quality of data in OPM experiments
using a very low order model, it has some limitations. Most notably, the basis set will share some
variation with the leadfields. This shared variation gets smaller with increased number of sensors and
simultaneous multi-axis measurements but it nevertheless still exists. The effect of this will depend
on the array geometry, sensor design and sensor number. The results here clearly point to the utility
of multi-axis measurements to help mitigate this problem. With regards to sensor numbers one can
reproduce the analysis of Figure 2 for any channel count/positioning or subject specific anatomy and
weigh up the expected signal loss with the observed interference reduction.

An issue associated with array geometry is the requirement for accurate knowledge of the sensors’
sensitive axis. This may be slightly different from the physical orientation of the sensor due to the
presence of cross-talk (Tierney, Holmes, et al., 2019) or imperfect on board coil design. However, such
issues can be reduced by operating the sensors with coils specifically designed to reduce cross-talk
(Nardelli, Krzyzewski, & Knappe, 2019) or by the use of data driven approaches which can learn sensor
sensitive axes from the data (Duque-mufioz et al., 2019).

Necessarily, OPMs operate with the aid of on board magnetic coils to maintain zero field at the sensor
(Osborne et al., 2018; Tierney, Holmes, et al., 2019). If the magnetic field from these on board coils is
not updated as the field at the sensor changes, there will be a component of the motion artefact that
is a function of this initial sensor specific magnetic field (e.g. when someone rotates their head the
magnetic field designed to keep zero field in one orientation will be incorrectly applied to a different
orientation). We do not investigate this effect here but note that it could be mitigated by operating
sensors in a closed loop mode (Nardelli et al., 2020), learning this field profile directly from the data
itself or by utilizing active shielding so as to keep these values to a minimum (Holmes et al., 2018,
2019; livanainen et al., 2019).

While these issues will be the subject of future work, the data presented here clearly show that a
simple mean field correction can mitigate much of the interference observed in OPM recordings and
improve statistical power both temporally and spatially at sensor and source level. This approximation
benefits from multi-axis measurement and, in this case, has minimal negative impact on the neural
subspace. These features, coupled with its ease of implementation and lack of reliance on knowledge
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of the underlying neuroanatomy, render this an appealing and powerful preprocessing step for arrays
of OPM:s.
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