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Abstract

Long-range spatial interactions among genomic regions are critical for regulating gene
expression, and their disruption has been associated with a host of diseases. However, when
modeling the effects of regulatory factors, most deep learning models either neglect long-range
interactions or fail to capture the inherent 3D structure of the underlying genomic organiza-
tion. To address these limitations, we present GC-MERGE, a Graph Convolutional Model
for Epigenetic Regulation of Gene Expression. Using a graph-based framework, the model
incorporates important information about long-range interactions via a natural encoding of
spatial interactions into the graph representation. It integrates measurements of both the spa-
tial genomic organization and local regulatory factors, specifically histone modifications, to
not only predict the expression of a given gene of interest but also quantify the importance
of its regulatory factors. We apply GC-MERGE to datasets for three cell lines - GM12878
(Iymphoblastoid), K562 (myelogenous leukemia), and HUVEC (human umbilical vein en-
dothelial) - and demonstrate its state-of-the-art predictive performance. Crucially, we show
that our model is interpretable in terms of the observed biological regulatory factors, high-

lighting both the histone modifications and the interacting genomic regions contributing to a
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gene’s predicted expression. We provide model explanations for multiple exemplar genes and
validate them with evidence from the literature. Our model presents a novel setup for predict-
ing gene expression by integrating multimodal datasets in a graph convolutional framework.
More importantly, it enables interpretation of the biological mechanisms driving the model’s

predictions. Available at: https://github.com/rsinghlab/GC-MERGE.

1 Introduction

Gene regulation determines the fate of every cell, and its disruption leads to diverse diseases rang-
ing from cancer to neurodegeneration [Krijger and de Laat, 2016, Schoenfelder and Fraser, 2019].
Although specialized cell types — from neurons to cardiac cells — exhibit different gene expres-
sion patterns, the information encoded by the linear DNA sequence remains virtually the same
in all non-reproductive cells of the body. Therefore, the observed differences in cell type must
be encoded by elements extrinsic to sequence, commonly referred to as epigenetic factors. Epi-
genetic factors found in the local neighborhood of a gene typically include histone marks (also
known as histone modifications). These marks are naturally occurring chemical additions to hi-
stone proteins that control how tightly the DNA strands are wound around the proteins and the
recruitment or occlusion of transcription factors. Recently, the focus of attention in genomics
has shifted increasingly to the study of long-range epigenetic regulatory interactions that result
from the three-dimensional organization of the genome [Rowley and Corces, 2018]. For example,
one early study demonstrated that chromosomal rearrangements, some located as far as 125 kilo-
basepairs (kbp) away, disrupted the region downstream of the PAX6 transcription unit causing
Aniridia (absence of the iris) and related eye anomalies [Kleinjan et all, 2001]. Thus, chromo-
somal rearrangement can not only directly affect the expression of proximal genes but can also
indirectly affect a gene located far away by perturbing its regulatory (e.g., enhancer-promoter) in-
teractions. This observation indicates that while local regulation of genes is informative, studying
long-range gene regulation is critical to understanding cell development and disease. However, ex-

perimentally testing for all possible combinations of long-range and short-range regulatory factors
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Figure 1: Overview of GC-MERGE. Our framework integrates local histone mark (HM) sig-
nals and long-range spatial interactions to predict and understand gene expression. (I) Inputs to
the model include Hi-C maps for each chromosome, with the binned chromosomal regions cor-
responding to nodes in the graph, and the average ChlP-seq readings of six core histone marks
in each region, which constitute the initial feature embedding of the nodes. (II) For nodes corre-
sponding to regions containing a gene, the model performs repeated graph convolutions over the
neighboring nodes to yield either a binarized class prediction of gene expression activity (either
active or inactive) or a continuous, real-valued prediction of expression level. (III) Finally, expla-
nations for the model’s predictions for any gene-associated node can be obtained by calculating
the importance scores for each of the features and the relative contributions of neighboring nodes.
Therefore, the model provides biological insight into the pattern of histone marks and the genomic
interactions that work together to predict gene expression.

for ~ 20, 000 genes is infeasible given the vast size of the search space. Therefore, computational
and data-driven approaches are necessary to efficiently search this space and reduce the number of
testable hypotheses.

In recent years, deep learning frameworks have been applied to predict gene expression from
histone modifications, and their empirical performance has often exceeded the previous machine
learning methods [[Cheng et all, 2011}, Dong et all, 2012, Karlic et al., 2010]. Among their many
advantages, deep neural networks perform automatic feature extraction by efficiently exploring
feature space and then finding nonlinear transformations of the weighted averages of those fea-
tures. This formulation is especially relevant to model complex biological systems since they are

inherently nonlinear. For instance, |Singh et all [2016] introduced DeepChrome, which used a con-
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volutional neural network (CNN) to aggregate five types of histone mark ChIP-seq signals in a
10, 000 bp region around the transcription start site (TSS) of each gene. Using a similar setup, they
next introduced attention layers to their model [Singh et all, 2017], yielding a comparable perfor-
mance but with the added ability to visualize feature importance within the local neighborhood of
a gene. These methods framed the gene expression problem as a binary classification task in which
the gene was either active or inactive. |Agarwal and Shendure [2020] introduced Xpresso, a CNN
framework that operated on the promoter sequences of each gene and 8 other annotated features as-
sociated with mRNA decay to predict steady-state mRNA levels. This model focused primarily on
the regression task, such that each prediction corresponded to the logarithm of a gene’s expression.
While all the studies mentioned previously accounted for combinatorial interactions among fea-
tures at the local level, they did not incorporate long-range regulatory interactions known to play
a critical role in differentiation and disease [Krijger and de Laat, 2016, [Schoenfelder and Fraser,
2019].

Modeling these long-range interactions is a challenging task due to two significant reasons.
First, it is difficult to confidently pick an input size for the genomic regions as regulatory elements
can control gene expression from various distances. Second, inputting a large region will introduce
sparsity and noise into the data, making the learning task difficult. A potential solution to this prob-
lem is to incorporate information from long-range interaction networks captured from experimental
techniques like Hi-ChIP [Mumbach et al., 2016] and Hi-C [[Van Berkum et al., 2010]. These tech-
niques use high-throughput sequencing to measure 3D genomic structure, in which each read pair
corresponds to an observed 3D contact between two genomic loci. While Hi-C captures the global
interactions of all genomic regions, Hi-ChIP focuses only on spatial interactions mediated by a
specific protein. Recently, Zeng et all [2019b] combined a CNN, encoding promoter sequences,
with a fully connected network using Hi-ChIP datasets to predict gene expression values. The
authors then evaluated the relative contributions of the promoter sequence and promoter-enhancer
submodules to the model’s overall performance. While this method incorporated long-range inter-

action information, its use of HiChIP experiments narrowed this information to spatial interactions
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facilitated by H3K27ac and YY1. Furthermore, CNN models can only capture local topological
patterns instead of modeling the underlying spatial structure of the data, thus limiting interpretation
to local sequence features.

To address these issues, we developed a Graph Convolutional Model of Epigentic Regulation
of Gene Expression (GC-MERGE), a graph-based deep learning framework that integrates 3D ge-
nomic data with histone mark signals to predict gene expression. Figure [l provides a schematic of
our overall approach. Unlike previous methods, our model incorporates genome-wide interaction
frequencies of the Hi-C data by encoding it via a graph convolutional network (GCN), thereby
capturing the underlying spatial structure. GCNs are particularly well-suited to representing spa-
tial relationships, as a Hi-C map can be represented as an adjacency matrix of an undirected graph
G € {V, E}. Here, V nodes represent the genomic regions and F edges represent their interac-
tions. Our formulation leverages information from both local as well as distal regulatory factors
that control gene expression. While some methods use a variety of other features, such as pro-
moter sequences or ATAC-seq levels [Agarwal and Shendure, 2020, Dong et al., 2012, Zeng et al.,
2019b], we focus our efforts solely on histone modifications and extract their relationship to the
genes. We show that our model provides state-of-the-art performance for the gene expression pre-
diction tasks even with this simplified set of features for three difference cell lines - GM12878
(Iymphoblastoid), K562 (myelogenous leukemia), and HUVEC (human umbilical vein endothe-
lial).

A significant contribution of our work is to enable researchers to determine which regulatory in-
teractions — local or distal — contribute towards the gene’s expression prediction and which histone
marks are involved in these interactions. This information can suggest promising hypotheses and
guide new research directions by making the model’s predictive drivers more transparent. To that
effect, we adapt a recent model explanation approach specifically for GCNs known as GNNEx-
plainer [Ying et al., 2019], which quantifies the relative importance of the nodes and edges in a
graph that drive the output prediction. We integrate this method within our modeling framework to

highlight the important histone modifications (node features) and the important long-range interac-
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tions (edges) that contribute to a particular gene’s predicted expression. To validate the model’s ex-
planations, we use two high-throughput experimental studies [Jung et al., 2019, [Fulco et al.,[2019]
that identify significant regulatory interactions. While existing methods [Singh et al., 2016, 2017,
Agarwal and Shendure, 2020, Zeng et al., [2019b] can provide feature-level interpretations (impor-
tant histone modifications or sequences), the unique modeling of Hi-C data as a graph allows
GC-MERGE to provide additional edge-level interpretations (important local and global interac-
tions in the genome). Table 1 places the proposed framework among state-of-the-art deep learning

models and lists each model’s properties.

2 Methods

2.1 Graph convolutional networks (GCNs)

Graph convolutional networks (GCNs) are a generalization of convolutional neural networks (CNN
s) to graph-based relational data that is not natively structured in Euclidean space [Liu and Zhou,
2020]. Due to the expressive power of graphs, GCNs have been applied across a wide variety of
domains, including recommender systems [Jin et alJ,2020] and social networks [Qiu et al., 2018].
The prevalence of graphs in biology has made these models a popular choice for tasks like char-
acterizing protein-protein interactions [Yang et al., [2020], predicting chromatin signature profiles
[Lanchantin and Qi, 2020], and inferring the chemical reactivity of molecules for drug discovery
[Sun et all, 2020].

We use the GraphSAGE formulation [Hamilton et al., 2017] as our GCN for its relative sim-
plicity and its capacity to learn generalizable, inductive representations not limited to a specific
graph. The input to the model is represented as a graph G € {V, E'}, with nodes V" and edges E,
and a corresponding adjacency matrix A € RY*Y [Liu and Zhou, 2020], where N is the number
of nodes. For each node v, there is also an associated feature vector x,. The goal of the network
is to learn a state embedding A € R? for v, which is obtained by aggregating information over

v’s neighborhood K times, where d is the dimension of the embedding vector. This new state
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embedding is then fed through a fully-connected network to produce an output ¢,,, which can then
be applied to downstream classification or regression tasks.

Within this modeling framework, the first step is to initialize each node with its input features.
In our case, the feature vector x,, € R™ is obtained from the ChIP-seq signals corresponding to
the six (m = 6) core histone marks (H3K4mel, H3K4me3, H3K9me3, H3K36me3, H3K27me3,

and H3K27ac) in our dataset:

h, =z, 6]

Next, to transition from the (k — 1)th layer to the k" hidden layer in the network for node v,
we apply an aggregation function to the neighborhood of each node. This aggregation function
is analogous to a convolution operation over regularly structured Euclidean data such as images.
While standard convolution function operates over a grid and represents a pixel as a weighted
aggregation of its neighboring pixels, in an analogous manner, a graph convolution performs this
operation over the neighbors of a node in a graph. In our case, the aggregation function calculates

the mean of the neighboring node features:

X hk:—l
_ U
Moo= ¥ g
u€N (v)
Here, N (v) represents the adjacency set of node v. We update the node’s embedding by con-
catenating the aggregation with the previous layer’s representation to retain information from the
original embedding. Next, just as done in a standard convolution operation, we take the ma-
trix product of this concatenated representation with a learnable weight matrix to complete the
weighted aggregation step. Finally, we apply a non-linear activation function, such as ReLU, to

capture the higher-order non-linear interactions among the features:
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Here, || represents concatenation, o is a non-linear activation function, and Wy is a learnable
weight parameter. After this step, each node is assigned a new embedding. After K iterations, the

node embedding encodes information from the neighbors that are K -hops away from that node:

z, = h 4)

Here, z, is the final node embedding after K iterations.

GC-MERGE is a flexible framework that can formulate gene expression prediction as both a
classification and a regression task. For the classification task, we feed the learned embedding z,
into a fully connected network and output a prediction v, for each target node using a Softmax
layer to compute probabilities for each class ¢ and then take the argmax. Here, class ¢ € {0,1}
corresponds to whether the gene is either off/inactive (¢ = 0) or on/active (¢ = 1). We use the
true binarized gene expression value y, € {0,1} by thresholding the expression level relative
to the median as the target predictions, consistent with other studies [Singh et al., 2016, 2017].
For the loss function, we minimize the negative log likelihood (NLL) of the log of the Softmax
probabilities. For the regression task, we feed z, into a fully connected network and output a
prediction y,, € R, representing a real-valued expression level. We use the mean squared error
(MSE) as the loss function. For both tasks, the model architecture is summarized in Figure [2 and

described in further detail in Supplemental Section

2.2 Interpretation of GC-MERGE

Although a model’s architecture is integral to its performance, just as important is understanding
how the model arrives at its predictions. Neural networks, in particular, have sometimes been
criticized for being “black box” models, such that no insight is provided into how the model oper-

ates. Most graph-based interpretability approaches either approximate models with simpler models
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Figure 2: Overview of the GCNN model architecture. The datasets used in our model are Hi-
C maps, ChIP-seq signals, and RNA-seq counts. A binarized adjacency matrix (A € RY*%) is
produced from the Hi-C maps by subsampling from the Hi-C matrix. The nodes v in the graph are
annotated with features from the ChIP-seq datasets (x,). Two graph convolutions, each followed
by ReLU, are performed. The output from here is fed into a dropout layer (probability = 0.5),
followed by a linear module comprised of three dense layers, in which ReL.U follows the first two
layers. For the classification model, the output is fed through a softmax layer, and then the argmax
is taken to make the final prediction (y,). For the regression model, the final output represents the
base-10 logarithm of the expression level (with a pseudocount of 1).

whose decisions can be used for explanations [Ribeiro et all, 2016] or use an attention mecha-
nism to identify relevant features in the input that guide a particular prediction [Velickovi¢ et al.,
2017]. In general, these methods, along with gradient-based approaches [Simonyan et al., 2013,
Sundararajan et al., 2017] or DeepLift [Shrikumar et al., 2017], focus on the explanation of im-
portant node features and do not incorporate the structural information of the graph. However, a
recent method called Graph Neural Net Explainer (or GNNExplainer) [Ying et all, 2019], given a
trained GCN, can identify a small subgraph as well as a small subset of features that are crucial for
a particular prediction.

We adapt the GNNExplainer method and integrate it into our classifier framework. GNNEXx-
plainer maximizes the mutual information between the probability distribution of the model’s class
predictions over all nodes and the probability distribution of the class predictions for a particular

node conditioned on some fractional masked subgraph of neighboring nodes and features. Subject
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to regularization constraints, it jointly optimizes the fractional node and feature masks, determining
the extent to which each element informs the prediction for a particular node.

Specifically, given a node v, the goal is to learn a subgraph GG; C G and a feature mask
Xs = {x; | v; € G} that contribute the most toward driving the full model’s prediction of y,.
To achieve this objective, the algorithm learns a mask that maximizes the mutual information (MI)
between the original model and the masked model. Mathematically, this objective function is as

follows:

max MI(Y, (G, Xs)) = HY) — HY | G, Xs) 5)

where [ is the entropy of a distribution. Since this is computationally intractable with an ex-

ponential number of graph masks, GNNExplainer optimizes the following quantity using gradient
descent:

M,N

c
min = 1g— log(Py(Y = y|G = A, © (M), X = X, © 0(M,)) (6)
=1
where ¢ represents the class, A. represents the adjacency matrix of the computation graph,
M, represents the subgraph mask on the edges, and M, represents the node feature mask. The
importance scores of the nodes and features are obtained by applying the sigmoid function to the
subgraph edges and node feature masks, respectively. Finally, the element-wise entropies of the
masks are calculated and added as regularization terms into the loss function. Therefore, in the
context of our model, GNNExplainer learns which genomic interactions (via the subgraph edge
mask) and which histone modifications (via the node feature mask) are most critical to driving the

model’s predictions.

10
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3 Experimental Setup

3.1 Overview of the datasets

GC-MERGE requires the following information: (1) Interactions between the genomic regions
(Hi-C contact maps); (2) Histone mark signals representing the regulatory signals (ChIP-seq mea-
surements); (3) Expression levels for each gene (RNA-seq measurements). Thus, for each gene
in a particular region, the first two datasets are the inputs into our proposed model, whereas gene
expression is the predicted target.

Being consistent with previous studies [Singh et all,2016,2017], we first formulate the predic-
tion problem as a classification task. However, as researchers may be interested in predicting exact
expression levels, we also extend the predictive capabilities of our model to the regression setting.
For the classification task, we binarize the gene expression values as either 0 (low expression) or
1 (high expression) using the median as the threshold, as done in previous studies [Cheng et al.,
2011}, Singh et al., 2016, 2017, Zeng et al., 2019b]. For the regression task, we take the base-10
logarithm of the gene expression values with a pseudo-count of 1.

We focused our experiments on three human cell lines from [Rao et al. [2014]: (1) GM12878,
a lymphoblastoid cell line with a normal karyotype, (2) K562, a myelogenous leukemia cell line,
and (3) HUVEC, a human umbilical vein endothelial cell line. For each of these cell lines, we ac-
cessed RNA-seq expression and ChIP-Seq signal datasets for six uniformly profiled histone marks
from the REMC repository [Roadmap Epigenomics Consortium, 2015]. These histone marks in-
clude (1) H3K4mel, associated with enhancer regions; (2) H3K4me3, associated with promoter
regions; (3) H3K9me3, associated with heterochromatin; (4) H3K36me3, associated with actively
transcribed regions; (5) H3K27me3, associated with polycomb repression; and (6) H3K27ac, also
associated with enhancer regions. We chose these marks because of the wide availability of the
relevant data sets as well as for ease of comparison with previous studies [Singh et al., 2016, 2017,
Zeng et al., 2019b]. In addition, these six core histone marks are the same set of features used in

the widely-cited 18-state ChromHMM model [Ernst and Kellis, 2017], which associates histone
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mark signatures with chromatin states.

3.2 Graph construction and data integration

Our main innovation is formulating the graph-based prediction task to integrate two very dif-
ferent data modalities (histone mark signals and Hi-C interaction frequencies). We represented
each genomic region with a node (v) and connected an edge (e) between it and the nodes cor-
responding to its neighbors (bins with non-zero entries in the adjacency matrix) to construct the
graph (G € {V, E}, with nodes V' and edges F). For chromosome capture data, we used previ-
ously published Hi-C maps at 10 kilobase-pair (kbp) resolution for all 22 autosomal chromosomes
[Rao et al.,[2014]. We obtained an N x N symmetric matrix, where each row or column represents
a 10 kb chromosomal region. Therefore, each bin count corresponds to the interaction frequency
between the two respective genomic regions. Next, we applied VC-normalization on the Hi-C
maps. In addition, because chromosomal regions located closer together will contact each other
more frequently than regions located farther away simply due to chance (rather than due to biolog-
ically significant effects), we made an additional adjustment for this background effect. Following
Sobhy et all [2019], we determined the distance between the regions corresponding to each row
and column. Then, for all pairs of interacting regions located the same distance away, we calcu-
lated the median of the bin counts along each diagonal of the Nx/N matrix and used this as a proxy
for the background. Finally, for each bin, we subtracted the appropriate median and discarded any
negative values. We converted all non-zero values to 1, thus obtaining the binary adjacency matrix
for our model (A € RV*V),

Due to the large size of the Hi-C graph, we subsampled neighbors to form a subgraph for each
node we fed into the model. While there are methods to perform subsampling on large graphs
using a random node selection approach (e.g., Zeng et al. [2019a]), we used a simple strategy of
selecting the top j neighbors with the highest Hi-C interaction frequency values. We empirically
selected the value of 7 = 10 for the number of neighbors. Increasing the size of the subsampled

neighbor set (i.e., 7 = 20) did not improve the performance further, as shown in Supplementary

12
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Figure

To integrate the Hi-C datasets with the RNA-seq and ChIP-seq datasets, we obtained the aver-
age ChIP-seq signal for each of the six core histone marks over the 10 kbp chromosomal region
corresponding to each node. In this way, we associated a feature vector of length six with each
node (x, € R%). For assigning an output value to the node, we took each gene’s transcriptional
start site (TSS) and assigned its expression value to the node corresponding to the chromosomal
region with its TSS as output (y,). If multiple genes were assigned to the same node, we took the
median of the expression levels, i.e., the median of all the values corresponding to the same node.
Given our framework, we could allot the output gene expression to only a subset of nodes that con-
tained gene TSSs while aiming to use histone modification signals from all the nodes. Therefore,
to enable training with such a unique setting, we applied a mask during the training phase so that
the model made predictions only on nodes with assigned gene expression values. Note that the
graph convolution operation used information from all the related nodes but made predictions on
the subset of nodes with output values.

The overall size of our data set consisted of 279, 606 total nodes and 16, 699 gene-associated
nodes for GM 12878, 279, 601 total nodes and 16, 690 gene-associated nodes for K562, and 279, 59-
8 total nodes and 16, 681 gene-associated nodes for HUVEC. When running the model on each cell
line, we assigned 70% of the gene-associated nodes to the training set, 15% to the validation set,
and 15% to the testing set. Then, we performed hyperparameter tuning using the training and val-
idation sets and report performance on the independent test set. The details of the hyperparameter

tuning are provided in Supplementary section [S1.2]

3.3 Baseline models

We compared GC-MERGE with the following deep learning baselines for gene expression predic-

tion both the classification and regression tasks:

* Multi-layer perceptron (MLP): A neural network comprised of three fully connected lay-

€rs.
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* Shuffled neighbor model: GC-MERGE applied to shuffled Hi-C matrices, such that the
neighbors of each node are randomized. We include this baseline to see how the performance

of GCN is affected when the provided spatial information is random.

* Convolutional neural network (CNN): A convolutional neural network based on DeepChr-
ome [Singh et al., 2016]. This model takes 10 kb regions corresponding to the genomic
regions demarcated in the Hi-C data and subdivides each region into 100 bins. Each bin is
associated with six channels, corresponding to the ChIP-seq signals of the six core histone
marks used in the present study. A standard convolution is applied to the channels, followed

by a fully connected network.

For the regression task, the range of the outputs is the set of continuous real numbers. For the
classification task, a Softmax function is applied to the model’s output to yield a binary predic-
tion. None of the baseline methods incorporate spatial information. Therefore, they only process
histone modification information from the regions whose gene expression is being predicted. In
contrast, GC-MERGE solves a more challenging task by processing information from the neigh-
boring regions as well.

For the CNN baseline, genomic regions are subdivided into smaller 100-bp bins, consistent
with [Singh et al. [2016]. However, GC-MERGE and the baselines other than the CNN average
the histone modification signals over the entire 10 kb region. We also implemented GC-MERGE
on higher resolution ChIP-seq datasets (1000-bp bins), which we fed through a linear embedding
module to form features for the Hi-C nodes. We did not observe an improvement in the perfor-
mance for the high-resolution input (Supplemental Figure [S2)).

Additionally, we compared our results to the published results of two other recent deep learning
methods, Xpresso by IAgarwal and Shendure [2020] and DeepExpression by Zeng et all [2019b],
when such comparisons were possible, although in some cases the experimental data sets were

unavailable or the code provided did not run.
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Figure 3: Comparison of AUROC and PCC scores for all models. GC-MERGE gives state-of-
the-art performance for both the classification and the regression task. For each reported metric, we
take the average of ten runs and denote the standard deviation by the error bars on the graph. (a) For
the classification task, the AUROC metrics for GM 12878, K562, and HUVEC were 0.91, 0.92, and
0.90, respectively. For each of these cell lines, GC-MERGE improves prediction performance over
other baselines. (b) For the regression task, GC-MERGE obtains PCC scores of 0.77, 0.79, and
0.76 for GM12878, K562, and HUVEC, respectively. These scores are better than the respective
baselines. (c) Scatter plots of the logarithm of the predicted expression values versus the true
expression values are shown for all three cell lines.

3.4 Evaluation metrics

For the classification task, we evaluated model performance by using two metrics: the area under
the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve
(AUPR). For the regression task, we calculated the Pearson correlation coefficient (PCC), which

quantifies the correlation between the true and predicted gene expression values in the test set.

4 Results

4.1 GC-MERGE gives state-of-the-art performance for the gene expression
prediction task

We evaluate GC-MERGE and the baseline models on both the classification and regression tasks

for the GM 12878, K562, and HUVEC cell lines. As earlier studies formulated the problem as
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a classification task [Singh et all, 2016, 2017, [Zeng et all, 2019b], we first apply GC-MERGE to
make a binary prediction of whether each gene is active or inactive. In Figure 3(a), we show that
our model’s performance is an improvement over all other alternatives, achieving 0.91, 0.92, and
0.90 AUROC scores. We also measure model performance using the AUPR score and achieve
similar results (Supplementary Figure [S3)). For the K562 cell line, we note that the performance of
GC-MERGE (AUROC = 0.92) is similar to that reported for DeepExpression (AUROC = 0.91) by
Zeng et al. [2019b], a CNN model that uses promoter sequence data as well as spatial information
from H3K27ac and YY1 Hi-ChIP experiments. We could not compare to DeepExpression for the
GM12878 and HUVEC cell lines as the experimental data sets were unavailable. For the Xpresso
framework presented in!Agarwal and Shendure [2020], a CNN model that uses promoter sequence
and 8 features associated with mRNA decay to predict gene expression, the task is formulated as a
regression problem, so no comparisons could be made for the classification setting.

With respect to the regression task, Figure B(b) compares our model’s performance with the
baselines and Figure [3lc) shows the predicted versus true gene expression values for GC-MERGE.
For GM 12878, the Pearson correlation coefficient of GC-MERGE predictions (PCC = 0.77) is bet-
ter than the other baselines. Furthermore, we note that our model performance also compares fa-
vorably to numbers reported for Xpresso (PCC ~ 0.65) [[Agarwal and Shendure, 2020]. For K562,
GC-MERGE again outperforms all alternative baseline models (PCC = 0.79). In addition, GC-
MERGE performance also exceeds that of Xpresso (PCC ~ 0.71) [Agarwal and Shendure, [2020]
as well as DeepExpression (PCC = 0.65) [Zeng et al.,2019b]. Our model gives better performance
(PCC = 0.76) relative to the baselines for HUVEC as well. Neither Xpresso nor DeepExpression
studied this cell line. While the metrics presented for GC-MERGE are not directly comparable
to the reported numbers for Xpresso and DeepExpression, it is encouraging to see that they are
in the range of these state-of-the-art results. An interesting observation here is that the shuffled
baseline behaves very similar to the MLP. We hypothesize that the GCN models will most likely
ignore the random interaction information and focus on the histone modification signals to make

the predictions.
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Furthermore, compared to the CNN and MLP baselines, our results suggest that including
spatial information can improve gene expression predictive performance over methods that solely
use local histone mark features as inputs. We want to emphasize that while all models can predict
reasonably well, only GC-MERGE can model the spatial information across multiple genomic
regions (including those not associated with the gene) with histone modifications to predict gene
expression. Therefore, a state-of-the-art performance on this challenging task indicates that the
model can leverage multimodal data sets to learn the relevant connections. An important aim is
to go beyond the prediction task and extract these learned relationships from the model. Thus, we

present GC-MERGE as a hypothesis driving tool for understanding epigenetic regulation.

4.2 Interpretation of GC-MERGE highlights relevant long-range interac-

tions and histone modification profiles

To determine the underlying biological factors driving the model’s predictions, we integrate the
GNNE«xplainer method [Ying et al., 2019], designed for classification tasks, into our modeling
framework. Once trained, we show that GC-MERGE can determine which spatial interactions and
histone marks are most critical to a gene’s expression prediction. We validate our approach using
two experimental data sets that identify interactions of regulatory elements. The first data set is
drawn from an analytical study by Jung et al. [2019], which uses promoter capture Hi-C to identify
candidate regulatory elements that interact with promoters of interest in conjunction with eQTL
expression levels and other epigenetic signals. The second functional characterization study by
Fulco et all [2019], introduces a new experimental technique called CRISPRi-FlowFISH, in which
candidate regulatory elements are perturbed, and the effects on the expression of specific genes of
interest are measured.

For the promoter capture Hi-C data [Jung et al., 2019], we examined GM 12878, a lymphoblas-
toid cell line, and selected four exemplar genes that are among the most highly expressed in our
data set: SIDT1, AKR1B1, LAPTMS, and TOP2B. Brief descriptions of the genes are included

in Supplemental Section [S2|and the chromosomal coordinates and corresponding node identifiers
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Figure 4: Model explanations for exemplar genes validated by promoter-capture Hi-C. Top:
For (a) SIDTI, designated as node 60561 (yellow circle), the subgraph of neighbor nodes is dis-
played. The size of each neighbor node correlates with its predictive importance as determined by
GNNE«xplainer. Nodes in red denote regions corresponding to known enhancer regions regulating
SIDT1 [Jung et al., 2019] (note that multiple interacting fragments can be assigned to each node,
see Supplemental Table [S3). All other nodes are displayed in gray. The thickness of each edge is
inversely correlated with the genomic distance between each neighbor node and the central node,
such that thicker edges indicate neighbor nodes that are closer in sequence-space to the gene of
interest. Nodes with importance scores corresponding to outliers have been removed for clarity.
Bottom: The scaled feature importance scores for each of the six core histone marks used in this
study are shown in the bar graph. Results also presented for (b) AKR1BI, (c) LAPTMS, and (d)
TOP2B.

for each gene can be found in Supplemental Table In Figure d(a), we show that for SIDT1,
the nodes that are ranked as the top three by importance score (indicated by the size of the node)
correspond to known regulatory regions. In addition, we plot the importance scores assigned to the
histone marks (node features) that are most consequential in determining the model’s predictions.
The bar graph shows that H3K4me3 is the most important feature in determining the model’s pre-
diction. This histone mark profile has been associated with regions flanking transcription start sites
(TSS) in highly expressed genes [Ernst and Kellis, 2017]. We report similar results for AKR1B1
(Figure (b)), where the node ranked as the most important corresponds to a confirmed regulatory

region and TOP2B (Figure d(d)), where two of the most important nodes correspond to regula-
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Figure 5
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Figure 5: Model explanations for exemplar genes validated by CRISPRi-FlowFISH. Top: For
(a) BAX, designated as node 264956 (yellow circle), the subgraph of neighbor nodes is displayed.
The size of each neighbor node correlates with its predictive importance as determined by GN-
NExplainer. Nodes in red denote regions corresponding to known enhancer regions regulating
BAX [Fulco et al., 2019] (note that multiple interacting fragments can be assigned to each node,
see Supplemental Table [S3). All other nodes are displayed in gray. The thickness of each edge is
inversely correlated with the genomic distance between each neighbor node and the central node,
such that thicker edges indicate neighbor nodes that are closer in sequence-space to the gene of
interest. Nodes with importance scores corresponding to outliers have been removed for clarity.
Bottom: The scaled feature importance scores for each of the six core histone marks used in this
study are shown in the bar graph. Results also presented for (b) HNRNPAI, (c) PRDX2, and (d)
RAD23A.

tory regions. For LAPTMS5, shown in Figure Hi(c), the top-ranked node corresponds to a validated
regulatory region. For the histone importance score profile, the feature deemed most important is
H3K27ac. This histone mark has been associated with the promoter regions of highly expressed
genes as well as active enhancer regions [Ernst and Kellis, 2017].

For the CRISPRi-FlowFISH data set [Fulco et all, 2019], we again highlight four exemplar
genes: BAX, HNRNPA1, PRDX2, and RAD23A. Descriptions of each of these genes can be
found in Supplementary Section [S2} and the gene coordinates and corresponding node IDs can be
found in Supplementary Table [S2l For BAX, shown in Figure [5(a), the two top-ranked nodes by

importance score correspond to functional enhancer regions. The histone mark importance scores
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pinpoint the H3K4me3 mark as most critical to the model’s predictions. For HNRNPA1 (Figure
(b)), two out of the three highest-ranked nodes correspond to regulatory regions. The histone
marks most important to the model’s predictions are H3K36me3, H3K27ac, and H3K4me3. This
chromatin signature is indicative of genic enhancer regions [Ernst and Kellis, 2017]. For PRXD2
(Figure (3c)), the top two nodes by importance correspond to functional enhancer regions, and the
histone mark importance scores indicate that H3K27ac and H3K4me3 play crucial roles in driving
the gene’s predicted expression. For RAD23A (Figure 5(d)), the top two nodes again correspond
to experimentally validated regulatory regions. From the histone mark importance profile, it can
be seen that H3K27ac plays an influential role.

Both H3K4me3 and H3K27ac are active cis-regulatory elements used to deduce the enhancer-
promoter interactions [Salviato et al.,2021], and, interestingly, interpretation of GC-MERGE high-
lights these histone marks out of the six chosen for this study.

To confirm that the node importance scores obtained from GNNExplainer do not merely reflect
the relative magnitudes of the Hi-C counts or the distances between genomic regions, we investi-
gated the relationships among the Hi-C counts, genomic distances, and scaled importance scores.
We observe that the scaled importance scores do not correlate to the Hi-C counts or the pairwise
genomic distances. For instance, for SIDT1 (Supplemental Figure [S4(a) and Supplemental Table
[S4)), the three experimentally validated interacting nodes have importance scores ranking among
the highest (10.0, 6.6 and 5.7). However, they do not correspond to the nodes with the most Hi-
C counts (413, 171, and 155 for each of the three known regulatory regions, while the highest
count is 603). In addition, these nodes are located 20, 30, and 40 kbp away from the gene region
— distances which are characteristic of distal enhancers [[Dekker and Misteli, 2015] — while other
nodes at the same or closer distances do not have promoter-enhancer interactions. For LAPTMS
(Supplemental Figure [S4(c) and Supplemental Table [S4)), the node with the highest importance
score has an experimentally confirmed interaction and is located 170 kbp away from the gene re-
gion. We perform similar analysis for all of the other exemplar genes (Supplemental Figure [S4/and

Supplemental Table [S4)). Therefore, we show that by modeling the histone modifications and the
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spatial configuration of the genome, GC-MERGE infers connections that can serve as important

hypothesis-driving observations for gene regulatory experiments.

5 Discussion

We present GC-MERGE, a graph-based deep learning model, which integrates both local and
long-range epigenetic data in a GCN framework to predict gene expression and explain its chief
drivers. We demonstrate the model’s state-of-the-art performance for the gene expression predic-
tion task, outperforming the baselines on the GM 12878, K562, and HUVEC cell lines. We also
determine the relative contributions of histone modifications and genomic interactions for multiple
exemplar genes, showing that our model recapitulates known experimental results in a biologically
interpretable manner.

For future work, we anticipate applying our model to additional cell lines as high-quality Hi-C
data sets become available. Another avenue of particular importance would be to develop more
robust methods for interpreting GCNs. For example, while the GNNExplainer model is a theoreti-
cally sound framework and yields an unbiased estimator for the importance scores of the subgraph
nodes and features, there is variation in the interpretation scores generated over multiple runs.
Furthermore, with larger GCNs, the optimization function utilized in GNNExplainer is challeng-
ing to minimize in practice. The importance scores converge with little differentiation for some
iterations, and the method fails to arrive at a compact representation. This issue may be due to
the relatively small penalties the method applies for constraining the optimal size of the mask and
the entropy of the distribution. We plan to address this issue in the future by implementing more
robust forms of regularization. In addition, although much of the GCN literature has focused on
node features, more recent work also incorporates edge weights. In the context of our problem,
edge weights could be assigned by using the Hi-C counts in the adjacency matrix. Another natu-
ral extension to our model would be to include other types of experimental data as features, such

as promoter sequence or ATAC-seq measurements. Lastly, the GCN framework is flexible and
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general enough to be applied to many other classes of biological problems that require integrating
diverse, multimodal data sets relationally.

In summary, GC-MERGE demonstrates proof-of-principle for using GCNs to predict gene ex-
pression using both local epigenetic features and long-range spatial interactions. More importantly,
interpretation of this model allows us to propose plausible biological explanations of the key reg-
ulatory factors driving gene expression and provide guidance regarding promising hypotheses and

new research directions.
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Computational Inputs Interpretation

Study Local Histone Marks Additional Features Long-ra.nge Feature-leYel Edge-leve.l
(e.g. promoter sequence) Interactions | Interpretation Interpretation

DeepChrome X X

AttentiveChrome X X

Xpresso X X

DeepExpression X X X

GC-MERGE X X X X

Table 1: Comparison of the properties of previous deep learning models predicting gene ex-
pression with GC-MERGE. The proposed method integrates local and long-range regulatory
interactions, capturing the underlying 3D genomic spatial structure as well as highlighting both
the critical node-level (histone modifications) and edge-level (genomic interactions) features.
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Supplementary Information

S1 GC-MERGE model details

S1.1 Model architecture and training

The GC-MERGE architecture is represented in Figure 2l Here, the first layer of the model per-
forms a graph convolution on the initial feature embeddings with an output embedding size of
256, followed by application of ReLLU, a non-linear activation function. The second layer of the
model performs another graph convolution with the same embedding size of 256 on the trans-
formed representations, again followed by application of ReLLU. Next, the output is fed into three
successive linear layers of sizes 256, 256, and 2, respectively. A regularization step is performed
by using a dropout layer with probability 0.5. The model was trained using ADAM, a stochas-
tic gradient descent algorithm [Kingma and Ba, 2015]. We used the PyTorch Geometric package
[Fey and Lenssen, 2019] to implement our code. Additional details regarding hyperparameter tun-

ing can be found in the Supplemental Section

S1.2 Hyperparameter tuning

Table [S1l details the hyperparameters and the range of values we used to conduct a grid search to
determine the optimized model. Specifically, we varied the number of graph convolutional lay-
ers, number of linear layers, embedding size for graph convolutional layers, linear layer sizes, and
inclusion (or exclusion) of an activation function after the graph convolutional layers. Through
earlier iterations of hyperparameter tuning, we also tested the type of activation functions used for
the linear layers of the model (ReLU, LeakyReL.U, sigmoid, or tanh), methods for accounting for
background Hi-C counts, as well as dropout probabilities. Some combinations of hyperparameters
were omitted from our grid search because the corresponding model’s memory requirements did

not fit on the NVIDIA Titan RTX and Quadro RTX GPUs available to us on Brown University’s
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Hyperparameter Values

Number of graph convolutional layers 1,2

Number of linear layers 1,2,3

Graph convolutional layer embedding sizes 64, 128, 256, 384

Linear layer sizes Keep sizes of all linear layers constant;

alternatively, for each subsequent layer, divide size by 2
Activation function after graph convolutional layers Include; alternatively, do not include

Table S1: Hyperparameter combinations used for tuning in grid search. A grid search was
conducted by varying the following hyperparameters: number of graph convolutional layers, num-
ber of linear layers, embedding size for graph convolutional layers, linear layer sizes, and inclu-
sion/exclusion of activation function after the graph convolutional layers.

Center for Computation and Visualization (CCV) computing cluster. We recorded the loss curves
for the training and validation sets over 800 epochs for the classification task and 1000 epochs for
the regression task, by which time the model began to overfit. In addition, the data was split into
sets of 70% for training, 15% for validation, and 15% for testing. The optimal hyperparameters
for our final model that also proved to be computationally feasible are as follows: 2 graph convo-
lutional layers, 3 linear layers, graph convolutional layer embedding size of 256, linear layer sizes
that match that of the graph convolutional layers, and using an activation function (ReL.U) after all

graph convolutional layers and all linear layers except for the last.

Figure S1
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Figure S1: Effect of number of neighbors on classification performance. The performance of
the model on the classification task is plotted as a function of the number of neighbors subsam-
pled for each genic node. Including additional neighbors beyond 10 does not lead to substantial
performance improvements with respect to either (a) AUROC or (b) AUPR.
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Figure S2: Comparison of fine-grained versus coarse-grained ChIP-seq signals. For the
coarse-grained resolution, ChIP-seq signals were averaged over the entire Hi-C bin (10000 bp
resolution). For the fine-grained resolution, ChIP-seq signals were first averaged over 1000 bp
bins and then fed into two embedding linear layers followed by ReLLU. The output of these em-
bedding layers was then was used to feature annotate each node. (a) For the classification task,
the fine-grained resolution ChIP-seq data performs slightly worse than or comparable to that of
the coarse-grained resolution ChIP-seq data as measured by AUROC. (b) For the regression task,
the fine-grained resolution ChIP-seq data produces performance worse than or comparable to the
coarse-grained resolution ChIP-seq data as measured by PCC.

S2 Analysis of exemplar genes

» SIDT1 encodes a transmembrane dsRNA-gated channel protein and is part of a larger family

of proteins necessary for systemic RNA interference [Elhassan et all, 2012, [Entrez Gene,

1988]. This gene has also been implicated in chemoresistance to the drug gemcitabine in

adenocarcinoma cells [[Elhassan et al., 2012].

* AKRI1BI1 encodes an enzyme that belongs to the aldo-keto reductase family. It has also been

identified as a key player in complications associated with diabetes [Donaghue et all, 2005,

Entrez Gene, 1988].

* LAPTMS encodes a receptor protein that spans the lysosomal membrane [Entrez Gene,

1988]. It is highly expressed in immune cells and plays a role in the downregulation of T and
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Gene Node ID Coordinates
TOP2B 51806 chr3:25639475-25706398
SIDTI 60561 chr3:113251143-113348425

LAPTMS 3123 chr1:31205316-31230667
AKRIBI1 136736 chr7:134127127-134144036
BAX 264956  chr19:49458072-49465055
HNRNPA1 200470  chr12:54673977-54680872
PRDX?2 261302  chr19:12907634-12912694
RAD23A 261316  chr19:13056654-13064448

Table S2: Node coordinates for all exemplar genes: SIDT1, AKR1B1, LAPTMS, TOP2B,
BAX, HNRNPA1, PRDX2, and RAD23A. For each gene, the second and third columns list the
corresponding node identifiers and the chromosome coordinates, respectively. The fourth column
lists the gene’s actual chromosomal coordinates. Note that the transcription start site was used as
the basis for assigning each gene to a node.

B cell receptors and the upregulation of macrophage cytokine production [Glowacka et al.,

2012].

* TOP2B encodes DNA topoisomerase Il beta, a protein that controls the topological state of
DNA during transcription and replication [Entrez Gene, [1988]. It transiently breaks and then
reforms duplex DNA, relieving torsional stress. Mutations in this enzyme can lead to B cell

immunodeficiency [Broderick et all,2019].

* BAX encodes a protein that forms a heterodimeric complex with BCL2, which activates
apoptosis by aggregating at the mitochondrial membrane and inducing its permeabilization
[Entrez Gene, (1988, [Pena-Blanco and Garcia-Sdez, 2018]. The tumor suppressor gene P53

plays a role in its regulation.

* HNRNPAI1 encodes a protein that forms part of the heterogeneous nuclear ribonucleoprotein
(hnRNP) complex, which binds to nuclear pre-mRNA and helps to regulate RNA transport,
metabolism, and splicing [Entrez Gene, 1988, Roy et all, 2017]. Mutations in this gene have

been linked to the development of amyotrophic lateral sclerosis.

* PRDX2 encodes an enzyme that reduces hydrogen peroxide and alkyl hydroperoxides [Entrez Gene,
1988]. It protects against oxidative stress [Jin et all, 2020] as well as stabilizes hemoglobin,

making it a therapeutic target for the treatment of hemolytic anemia.
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* RAD23A encodes a protein that carries out nucleotide excision repair [Fang et al., 2013,
Entrez Gene, [1988]. It also plays a role in transporting poly-ubiquitinated proteins to the

proteasome for degradation.

Gene Neighbor Node ID Node Coordinates Regulatory Region Coordinates
51819 chr3:25830000-25840000
51820 chr3:25840000-25850000
51821 chr3:25850000-25860000
51822 chr3:25860000-25870000
51823 chr3:25870000-25880000 chr3:25878006-25881223
TOP2B
51824 chr3:25880000-25890000 chr3:25884649-25858494,
chr3:25878006-25881223
51829 chr3:25930000-25940000
51830 chr3:25940000-25950000
51831 chr3:25950000-25960000
51832 chr3:25960000-25970000 chr3:113212739-113215893
60557 chr3:113210000-113220000 chr3:113212739-113215893
60558 chr3:113220000-113230000 chr3:113228501-113232053
60559 chr3:113230000-113240000 chr3:113228501-113232053
60560 chr3:113240000-113250000
60562 chr3:113260000-113270000
SIDT1
60563 chr3:113270000-113280000
60564 chr3:113280000-113290000
60565 chr3:113290000-113300000
60566 chr3:113300000-113310000
60582 chr3:113460000-113470000
3119 chr1:31190000-31200000

T APTMS
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3120 chr1:31200000-31210000
3124 chr1:31240000-31250000
3125 chr1:31250000-31260000
3137 chr1:31370000-31380000
3138 chr1:31380000-31390000
3139 chr1:31390000-31400000
3140 chr1:31400000-31410000 chr1:31401583-31405576
136734 chr7:134120000-134130000
136738 chr7:134160000-134170000
136739 chr7:134170000-134180000
136740 chr7:134180000-134190000
136741 chr7:134190000-134200000
AKRI1B1
136744 chr7:134220000-134230000
136746 chr7:134240000-134250000
136747 chr7:134250000-134260000
136750 chr7:134280000-134290000
136751 chr7:134290000-134300000 chr7:134293046-134298798
264946 chr19:49350000-49360000
264947 chr19:49360000-49370000
264948 chr19:49370000-49380000 chrl9:49376085-493768,
chr19:49376745-49377245
264949 ¢chr19:49380000-49390000
BAX
264950 chr19:49390000-49400000
264951 chr19:49400000-49410000  chr19:49401746-49402745
264952 chr19:49410000-49420000
264954 chr19:49430000-49440000
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264955 chr19:49440000-49450000
264957 chr19:49460000-49470000
200464 chr12:54610000-54620000
200468 chr12:54650000-54660000
200471 chr12:54680000-54690000  chr12:54689425-54689965
200473 chr12:54700000-54710000  chr12:54700765-54701285
200474 chr12:54710000-54720000
HNRNPA1
200475 chr12:54720000-54730000
200476 chr12:54730000-54740000
200477 chr12:54740000-54750000
200478 chr12:54750000-54760000
200479 chr12:54760000-54770000
261291 chr19:12800000-12810000
261292 chr19:12810000-12820000
261294 chr19:12830000-12840000
261295 chr19:12840000-12850000
PRDX2 261297 chr19:12860000-12870000
261298 chr19:12870000-12880000
chr19:12886184-12886825,
261299 chr19:12880000-12890000  chr19:12888325-12888845,
chr19:12889945-12890545
261304 chr19:12930000-12940000  chr19:12935945-12936745
261305 chr19:12940000-12950000  chr19:12943165-12943725
261308 chr19:12970000-12980000
261310 ¢chr19:12990000-13000000 chri9:12995825-1299632,

chr19:12996905-12998745

RAD23A
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261311 chr19:13000000-13010000
261313 ¢chr19:13020000-13030000
261314 chr19:13030000-13040000
261315 chr19:13040000-13050000  chr19:13049025-13049663
261317 ¢chr19:13060000-13070000
261331 chr19:13200000-13210000
261332 chr19:13210000-13220000
261333 chr19:13220000-13230000

Table S3: Neighbor coordinates for exemplar genes. The second column lists the node identifiers
for all neighboring nodes of the relevant gene, including neighboring nodes that contain interacting
fragments as well as those that do not. The third column third lists the corresponding chromosome
coordinates for the node identifier. The fourth column lists the regulatory fragments that interact
with each gene as described inlJung et all [2019] and [Fulco et all [2019]

Figure S3

H MLP

Il Shuffled
B CNN

[ GC-MERGE

AUPR

GM12878 K562 HUVEC

Figure S3: Comparison of AUPR scores for all models. GC-MERGE gives state-of-the-art per-
formance for classifying genes as either having high expression or low expression. Using the
AUPR metric, GC-MERGE obtains scores of 0.88, 0.89, and 0.88 for GM 12878, K562, and HU-
VEC, respectively.
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Figure S4
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Figure S4: Relationships among importance scores, genomic distances, and Hi-C counts for
all exemplar genes with promoter-capture Hi-C validated regulatory interactions. The ex-
emplar genes are shown by column as follows: (a) TOP2B, (b) SIDTI, (c) LAPTMS, and (d)
AKRIBI. The size of each data point corresponds to the neighbor node’s scaled importance score.
Nodes corresponding to experimentally validated interacting fragments are denoted in red and all
others are denoted in blue. The top panel plots Hi-C counts classified according to experimen-
tal validation, while as the bottom panel plots genomic distance versus experimental interaction.
Neither Hi-C counts nor genomic distance correlate with experimentally validated interactions.

Gene Neighbor Node ID Importance Score Distance (10 kb) Hi-C Counts
51819 4.3 13 186
51820 3.0 14 116
51821 2.5 15 97
51822 6.9 16 87
51823 4.5 17 105

TOP2B
51824 10.0 18 120
51829 3.5 23 101
51830 6.8 24 54
51831 53 25 47
51832 1.0 26 34

38


https://doi.org/10.1101/2020.11.23.394478
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394478; this version posted July 22, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

60557 5.7 4 155
60558 6.6 3 171
60559 10.0 2 413
60560 1.3 1 316
60562 2.7 1 603
SIDT1
60563 1.6 2 287
60564 1.0 3 182
60565 4.7 4 162
60566 29 5 88
60582 5.6 21 70
3119 7.9 4 459
3120 1.0 3 513
3124 3.0 1 812
3125 2.0 2 391
LAPTMS5
3137 32 14 101
3138 7.8 15 145
3139 5.1 16 99
3140 10.0 17 86
136734 2.5 2 191
136738 7.7 2 118
136739 2.5 3 65
136740 1.0 4 78
136741 2.8 5 145
AKRI1B1
136744 24 8 63
136746 5.0 10 53
136747 4.0 11 66
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136750 7.7 14 73
136751 10.0 15 90
264946 39 10 38
264947 4.6 9 45
264948 8.4 8 61
264949 3.5 7 69
264950 3.0 6 55
BAX
264951 10.0 5 79
264952 1.0 4 103
264954 33 2 152
264955 7.4 1 265
264957 6.7 1 153
200464 4.8 6 44
200468 1.6 2 67
200471 6.6 1 83
200473 10.0 3 27
200474 1.1 4 79
HNRNPA1
200475 5.8 5 77
200476 1.0 6 48
200477 33 7 37
200478 39 8 79
200479 7.6 9 49
261291 1.0 11 34
261292 33 10 44
261294 4.8 8 57
261295 3.6 7 47
PRDX2
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261297 4.5 5 36
261298 5.2 4 70
261299 10.0 3 79
261304 8.1 2 116
261305 5.7 3 117
261308 5.5 8 47
261310 9.8 6 90
261311 7.6 5 62
261313 4.9 3 32
261314 1.0 2 73
RAD23A
261315 10.0 1 162
261317 4.3 1 122
261331 2.8 15 32
261332 5.7 16 20
261333 8.1 17 26

Table S4: Relationships among node importance scores, distance from target gene, and Hi-C
counts. For each exemplar gene, the the node IDs of its neighbors are shown (second column)
along with their importance scores (third column), distances from the target gene node (fourth
column), and normalized Hi-C frequency counts (fifth column).

41


https://doi.org/10.1101/2020.11.23.394478
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394478; this version posted July 22, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Figure S5
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Figure S5: Relationships among importance scores, genomic distances, and Hi-C counts for
all exemplar genes with CRISPRi-FlowFISH validated regulatory interactions. The exemplar
genes are shown by column as follows: (a) BAX, (b) HNRNPAI, (c) PRDX2, and (d) RAD23A.
The size of each data point corresponds to the neighbor node’s scaled importance score. Nodes
corresponding to experimentally validated interacting fragments are denoted in red and all others
are denoted in blue. The top panel plots Hi-C counts classified according to experimental valida-
tion, while as the bottom panel plots genomic distance versus experimental interaction. Neither
Hi-C counts nor genomic distance correlate with experimentally validated interactions.
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