

1 **Developmental dynamics of voltage-gated sodium channel isoform expression in the human  
2 and mouse neocortex**

3  
4 Lindsay Liang<sup>1</sup>, Siavash Fazel Darbandi<sup>1</sup>, Sirisha Pochareddy<sup>2</sup>, Forrest O. Gulden<sup>2</sup>, Michael C.  
5 Gilson<sup>1</sup>, Brooke K. Sheppard<sup>1</sup>, Atehsa Sahagun<sup>3</sup>, Joon-Yong An<sup>4</sup>, Donna M. Werling<sup>5</sup>, John L.R.  
6 Rubenstein<sup>1</sup>, Nenad Šestan<sup>2,6,7,8,9</sup>, Kevin J. Bender<sup>3</sup>, and Stephan J. Sanders<sup>1,10,11,†</sup>

7  
8 <sup>1</sup>Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San  
9 Francisco, CA 94158.

10 <sup>2</sup>Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine,  
11 New Haven, CT 06510, USA.

12 <sup>3</sup>Department of Neurology, University of California, San Francisco, San Francisco, CA 94158,  
13 USA.

14 <sup>4</sup>School of Biosystem and Biomedical Science, College of Health Science, Korea University,  
15 Seoul, 02841, Republic of Korea.

16 <sup>5</sup>Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.

17 <sup>6</sup>Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center,  
18 Yale School of Medicine, New Haven, CT 06510, USA.

19 <sup>7</sup>Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA.

20 <sup>8</sup>Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.

21 <sup>9</sup>Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology  
22 of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA.

23 <sup>10</sup>Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158,  
24 USA.

25 <sup>11</sup>Bakar Computational Health Sciences Institute, University of California, San Francisco, San  
26 Francisco, CA 94158, USA.

27  
28 <sup>†</sup>Please address correspondence to: [stephan.sanders@ucsf.edu](mailto:stephan.sanders@ucsf.edu) (S.J.S.)

29  
30

31 **Abstract**

32

33 **Objective:** Genetic variants in the voltage-gated sodium channels *SCN1A*, *SCN2A*, *SCN3A*, and  
34 *SCN8A* are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The  
35 mRNA splicing patterns of all four genes vary across development in the rodent brain, including  
36 mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and  
37 adult (5A). A second pair of mutually exclusive exons is reported in *SCN8A* only (18N and 18A).  
38 We aimed to quantify the expression of individual exons in the developing human neocortex.  
39 **Methods:** RNA-seq data from 176 human dorsolateral prefrontal cortex samples across  
40 development were analyzed to estimate exon-level expression. Developmental changes in exon  
41 utilization were validated by assessing intron splicing. Exon expression was also estimated in  
42 RNA-seq data from 58 developing mouse neocortical samples.

43 **Results:** In the mature human neocortex, exon 5A is consistently expressed at least 4-fold  
44 higher than exon 5N in all four genes. For *SCN2A*, *SCN3A*, and *SCN8A* a synchronized 5N/5A  
45 transition occurs between 24 post-conceptual weeks (2<sup>nd</sup> trimester) and six years of age. In  
46 mice, the equivalent 5N/5A transition begins at or before embryonic day 15.5. In *SCN8A*, over  
47 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development,  
48 most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion  
49 occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons  
50 showed comparably dynamic developmental trajectories.

51 **Significance:** Splice isoforms, which alter the biophysical properties of the encoded channels,  
52 may account for some of the observed phenotypic differences across development and  
53 between specific variants. Manipulation of the proportion of splicing isoforms at appropriate  
54 stages of development may act as a therapeutic strategy for specific mutations or even epilepsy  
55 in general.

56

57 **Keywords**

58 isoform, splicing, epilepsy, neurodevelopmental disorders, *SCN1A*, *SCN2A*, *SCN3A*, *SCN8A*, 5A,  
59 5N, 18A, 18N

60

61 **1. Introduction**

62 Genetic variation in the genes *SCN1A*, *SCN2A*, *SCN3A*, and *SCN8A* are a major cause of epileptic  
63 encephalopathy (EE), autism spectrum disorder (ASD), and developmental delay.<sup>1–3</sup> These four  
64 homologous genes encode voltage-gated sodium channels (Nav1.1, Nav1.2, Nav1.3, and Nav1.6  
65 respectively) that are critical for a range of functions in the central nervous system,<sup>4</sup> including  
66 axonal action potential initiation and propagation,<sup>5,6</sup> dendritic excitability,<sup>7,8</sup> macroscopic  
67 anatomical development,<sup>9</sup> and activity-dependent myelination.<sup>10</sup> The functional role,  
68 subcellular location, expression-level, and isoform selection of voltage-gated sodium channels  
69 vary across development and understanding this relationship is critical for understanding the  
70 etiology of the associated disorders and their therapeutic management.<sup>7,11–19</sup> While some  
71 isoform-level differences have been assayed in rodents and mature human brains,<sup>20–22</sup> the  
72 trajectories in the developing human cortex have not been described.<sup>23</sup>

73

74 Sodium channel genes are composed of multiple exons, which can be protein-coding (CDS for  
75 CoDing Sequence), untranslated regions (UTRs), or non-coding exons (NCEs). Differing  
76 combinations of these exons are called isoforms, which can change the amino acid sequence of  
77 the encoded proteins (proteoforms). The best-characterized isoform change across these four  
78 sodium channels are the two mutually exclusive copies of the fifth protein-coding exon.<sup>17,24</sup> This  
79 exon encodes part of the first domain of the Na<sub>v</sub> channel, including the end of transmembrane  
80 segment S3, most of transmembrane segment S4, and a short extracellular linker connecting  
81 these two segments. In humans, each copy of this fifth protein-coding exon is 92 nucleotides in  
82 length, encoding 30 amino acids, of which one to three amino acids vary between the two exon  
83 copies for each gene (Fig. 1B). 'A' isoforms (5A) include the ancestral and canonical copy, with  
84 an aspartic acid residue (Asp/D) encoded at position 7 of 30.<sup>25</sup> 'N' isoforms (5N) use the  
85 alternative copy, with an asparagine (Asn/N) residue at position 7 of 30 in *SCN1A*, *SCN2A*, and  
86 *SCN8A* and a serine residue (Ser/S) in *SCN3A*. Despite this relatively small change in protein  
87 structure, differential inclusion of 5N or 5A can have marked effects on channel function.  
88 Indeed, these splice isoforms can alter channel electrophysiological characteristics,<sup>26,27</sup> the  
89 functional impacts of variants associated with seizure,<sup>23</sup> neuronal excitability,<sup>28</sup> response to  
90 anti-epileptics,<sup>21,22,26</sup> and seizure-susceptibility.<sup>28</sup>

91

92 The utilization of the 5N or 5A varies across development, with 5N generally being expressed at  
93 higher levels in the neonatal period while 5A predominates in adults.<sup>27</sup> This switch is defined  
94 best in mouse, where the 5N:5A ratio varies by gene and brain region along with  
95 developmental stage.<sup>20</sup> For *Scn2a* in mouse neocortex, the 5N:5A ratio is 2:1 at birth (postnatal  
96 day 0/P0) and flips to 1:3 by P15. For both *Scn3a* and *Scn8a*, 5A predominates throughout the  
97 postnatal period with a 1:2 ratio at P0 increasing to 1:5 by P15.<sup>20</sup> *Scn1a* lacks a functional copy  
98 of 5N in the mouse genome. Similar developmental profiles currently have not been reported  
99 for humans beyond the of 5N/5A utilization *SCN1A* in adults, in which a 5N:5A ratio of over 1:5  
100 was observed in the temporal cortex and hippocampus of adult surgical resections.<sup>21,22</sup>

101

102 In addition to the 5N/5A switch, a similar developmental shift in mutually exclusive exons has  
103 been reported for "exons 18N or 18A" in *SCN8A* only, regulated by the RNA-binding protein  
104 RBFOX1.<sup>16,29,30</sup> Using GENCODE human v31 gene definitions,<sup>31</sup> 18A maps to the 20<sup>th</sup> protein-

105 coding exon of major *SCN8A* isoforms (CDS 20, Fig. 1A), while 18N encodes the 8<sup>th</sup> and last  
106 protein-coding exon (CDS 8) of a shorter eight protein-coding exon transcript  
107 (ENST00000548086.3, Fig. S1). In the embryonic mouse brain, most *SCN8A* transcripts include  
108 18N or skip both 18N and 18A, leading to non-functional channels, while 18A predominates in  
109 the adult mouse and human brain.<sup>16</sup>

110

111 Here, we present data on the utilization of GENCODE-annotated protein-coding exons in four  
112 seizure-associated voltage-gated sodium channels in the human and mouse neocortex across  
113 development. We demonstrate a synchronized transition from 5N to 5A utilization between 24  
114 post-conceptual weeks (2<sup>nd</sup> trimester) and six years-of-age across all four voltage-gated sodium  
115 channels and a transition from 18N to 18A in *SCN8A* from 13 post-conceptual weeks to 6  
116 months-of-age. These isoform differences can modify the function of the encoded voltage-  
117 gated sodium channels, raising the potential that interventions, such as antisense  
118 oligonucleotides, could be used to modify the isoform ratio as a potential therapy for disorders  
119 caused by variants in sodium channel genes or epilepsy.

120

121 **2. Materials and Methods**

122

123 **2.1 Genomic data**

124 To quantify the relative proportion of protein-coding exon expression across development in  
125 the human cortex, we assessed bulk tissue RNA-seq data from 176 *post mortem* dorsolateral  
126 prefrontal cortex (DLPFC) samples from the BrainVar cohort.<sup>32</sup> The BrainVar cohort also has  
127 corresponding whole-genome sequencing data that were used to derive per sample genotypes,  
128 as described previously.<sup>32</sup> To assess corresponding patterns of exon expression in mouse cortex  
129 across development, we assessed 58 samples with bulk tissue RNA-seq data in wildtype C57/B6  
130 mice. Thirty-four of these were generated as controls for ongoing experiments and 24 were  
131 downloaded from GEO.<sup>33</sup>

132

133 **2.2 Exon expression**

134 To assess exon expression in the human cortex, the 100bp paired-read RNA-seq data from  
135 BrainVar were aligned to the GRCh38.p12 human genome using STAR aligner<sup>34</sup> and exon-level  
136 read counts for GENCODE v31 human gene definitions were calculated with DEXSeq<sup>35</sup> and  
137 normalized to counts per million (CPM).<sup>36</sup> Despite the similar amino acid sequence, the  
138 nucleotide sequence of 5N and 5A is sufficiently differentiated across the four genes that 100bp  
139 reads align unambiguously to one location in the genome.<sup>37</sup> Reads were detected in 5N and 5A  
140 for all samples, across all four genes, with the exception of the *SCN1A* for which 31 of 176  
141 samples (17.6%) had no detectable 5N reads (Fig. 2A). Along with quantifying the expression of  
142 5N and 5A (Fig. 2), we also assessed expression for the surrounding constitutive exons, as a  
143 control (Fig. S2). For the mouse cortical data, the same analysis methods were used but with  
144 alternative references, specifically the GRCm38/mm10 genome and GENCODE vM25 gene  
145 definitions. A similar approach was used to assess the utilization of 18N and 18A in *SCN8A*.

146

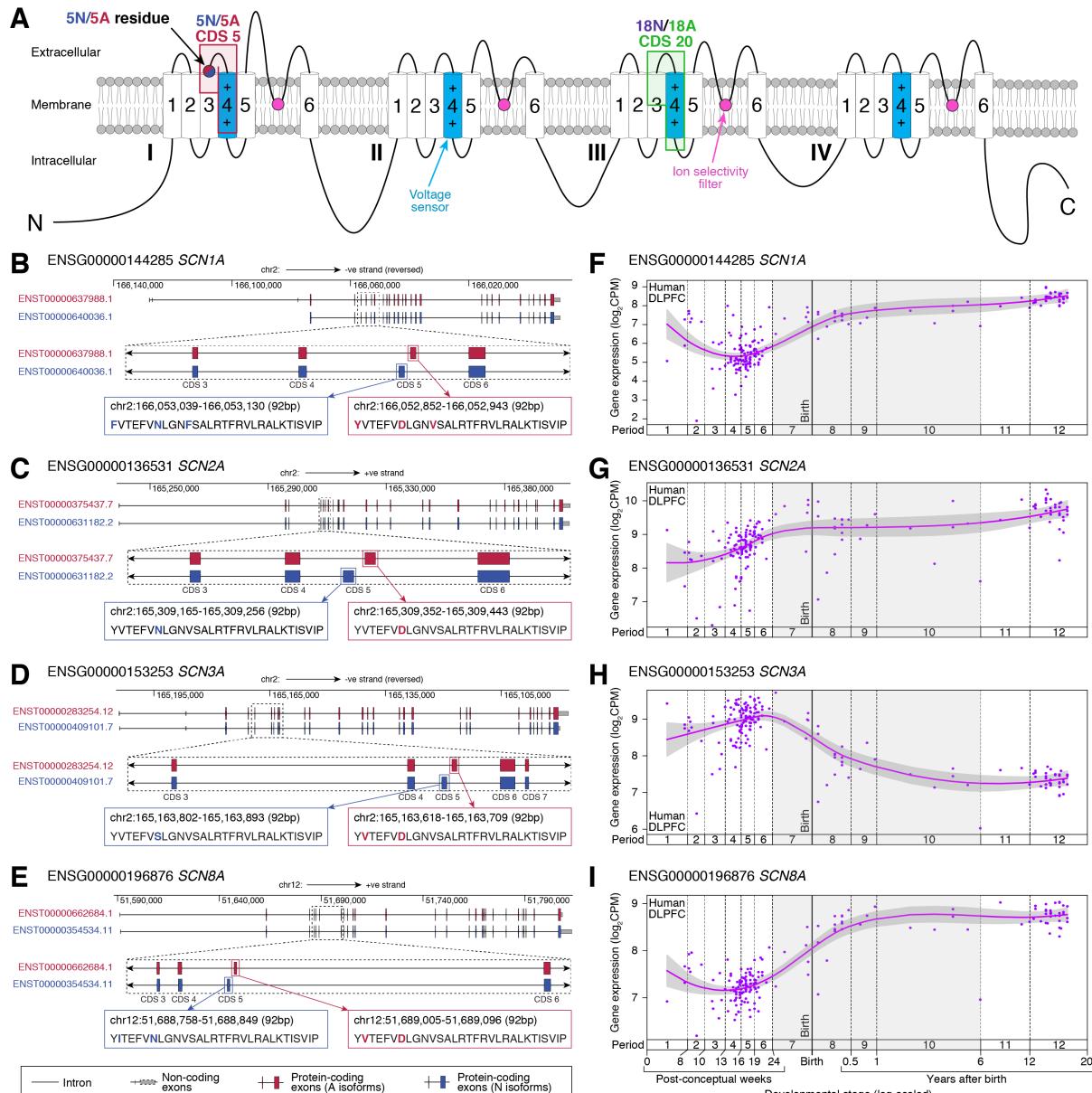
147 **2.3 Intron splicing**

148 We applied a complementary approach to detecting 5N and 5A exon usage by assessing intron  
149 splicing via reads that map across exon-exon junctions in the same 176 BrainVar samples. Reads  
150 were aligned with OLego aligner<sup>38</sup> using the same genome build and gene definitions as for  
151 exon expression. Clusters of differential intron splicing were identified with Leafcutter<sup>39</sup> and  
152 differences across development were detected by comparing 112 prenatal samples to 60  
153 postnatal samples. No cluster was detected for 5N/5A in *SCN1A*, preventing assessment across  
154 development, but clusters were identified and assessed for the other three genes and for  
155 18N/18A in *SCN8A* (Figs. 3, 5).

156

157 **2.4 Quantitative trait locus (QTL) analysis**

158 Common variants with a minor allele frequency  $\geq 5\%$  in both the prenatal (N = 112) and  
159 postnatal (N = 60) samples and Hardy Weinberg equilibrium p value  $\geq 1 \times 10^{-12}$  were identified  
160 previously.<sup>32</sup> Variants within one million basepairs of each sodium channel gene were extracted  
161 and integrated with the Leafcutter clusters, along with the first five principal components  
162 calculated from common variants identified in whole-genome sequencing data from these  
163 samples and 3,804 parents from the Simons Simplex Collection<sup>32,40</sup> to predict sQTLs with  
164 FastQTL.<sup>41</sup> This analysis was performed on all samples, prenatal-only samples, and postnatal-


165 only samples, with false discovery rate (FDR) estimated from the results of each analysis using  
166 the Benjamini-Hochberg procedure.<sup>42</sup> To assess correlation of 5N expression for the SNP  
167 rs3812718, genotypes were extracted for chr2:166,053,034 C>T (GRCh38) and compared with  
168 5N expression calculated by DEXSeq, as described above.  
169

## 170 **2.5 Statistical analysis**

171 The 5N:5A expression ratio was calculated from normalized exon expression values (CPM).  
172 Linear regression was used to assess whether this ratio varied across development by  
173 comparing the log-transformed 5N:5A ratio to log-transformed post-conceptual days (Fig. 2).  
174 The difference in ratio was also assessed between the mid-late fetal samples (N=112) and  
175 childhood/adolescent/young adult samples (N=35) with a two-tailed Wilcoxon test. To compare  
176 intron splicing between prenatal and postnatal samples, we used the P-values estimated with a  
177 Dirichlet-multinomial generalized linear model, as implemented in Leafcutter.<sup>39</sup>  
178

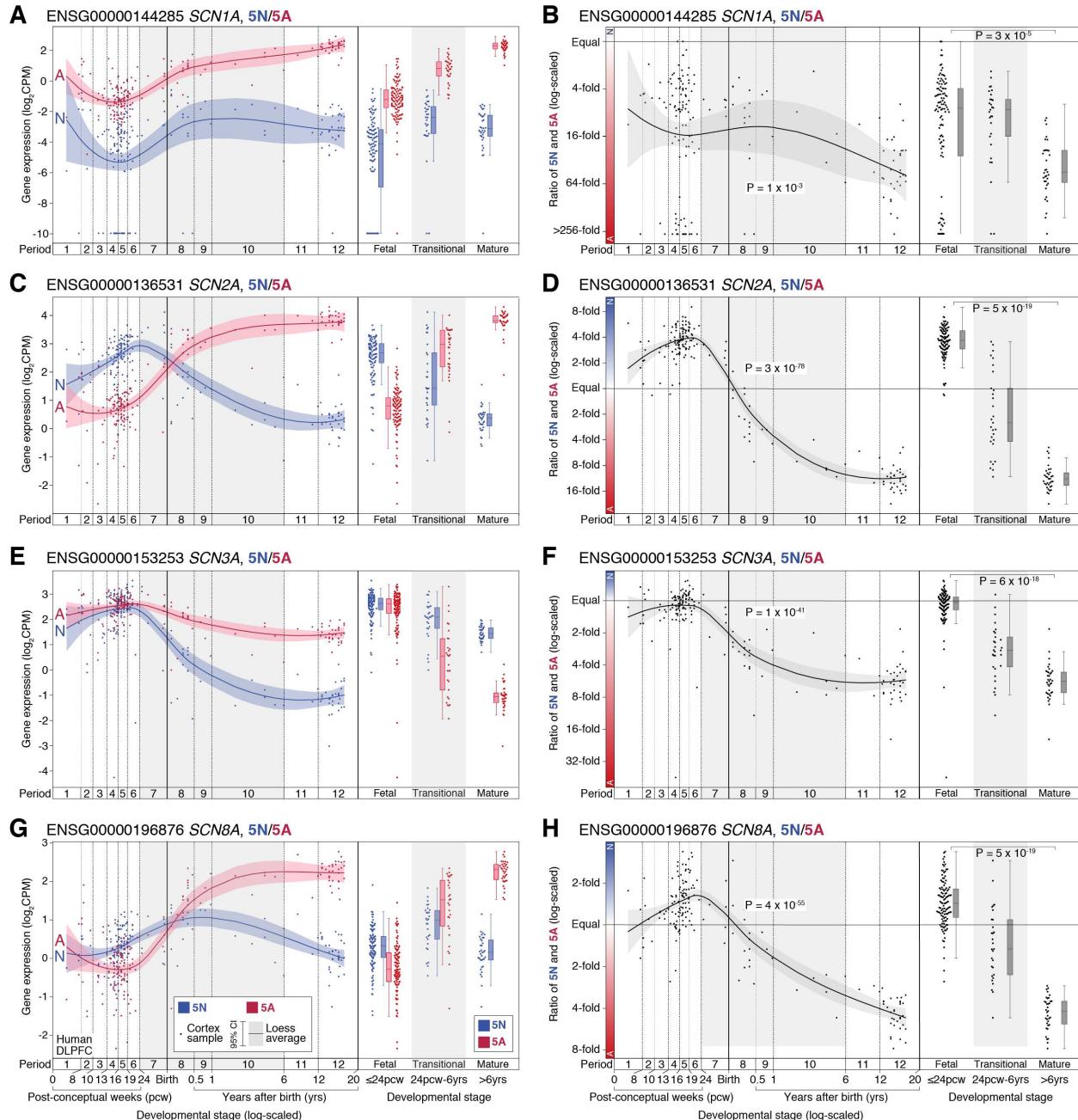
## 179 **3. Results**

180  
181 **3.1 Expression of voltage-gated sodium channels in the human cortex**  
182 Gene expression varies dramatically across development for many genes, especially during the  
183 late-fetal transition, during which half the genes expressed in the brains undergo a concerted  
184 increase or decrease in expression.<sup>12,32,43,44</sup> To assess gene-level developmental trajectories, we  
185 analyzed bulk-tissue RNA-seq of the human DLPFC in 176 *post mortem* samples from the  
186 BrainVar cohort (104 male, 72 female, spanning 6 post-conceptual weeks to 20 years after  
187 birth).<sup>32</sup> The gene-level expression profile of all four voltage-gated sodium channels changes  
188 during this late-fetal transition (Fig. 1F-I), with *SCN1A*, *SCN2A*, and *SCN8A* expression rising from  
189 mid-fetal development through infancy to early childhood, while *SCN3A* expression falls.  
190



191

192 **Figure 1. Splicing isoforms in voltage-gated sodium channels. A)** Voltage-gated sodium channels are composed of four similar  
193 domains (I, II, III, IV), each of which includes six transmembrane segments with extracellular or intracellular linkers. The fourth  
194 transmembrane segment (S4) in each domain acts as a voltage sensor. Between the fifth and sixth transmembrane segment  
195 (S5, S6) is a pore loop that forms the ion selectivity filter. The fifth protein-coding exon (5N/5A, CDS 5) encodes a portion of the  
196 first domain, while the 20th protein-coding exon (18N/18A, CDS 20) encodes a similar portion of the third domain. **B)** Location,  
197 genomic coordinates (GRCh38/hg38), and amino acid sequence of the '5A' and '5N' exons for four sodium channels. **C)** Patterns of  
198 whole-gene expression in the human dorsolateral prefrontal cortex (DLPFC) across prenatal and postnatal development from  
199 the BrainVar dataset <sup>32</sup>. CPM: counts per million. Genomic coordinates are based on GRCh38/hg38 using GENCODE v31 gene  
200 definitions.


201

202

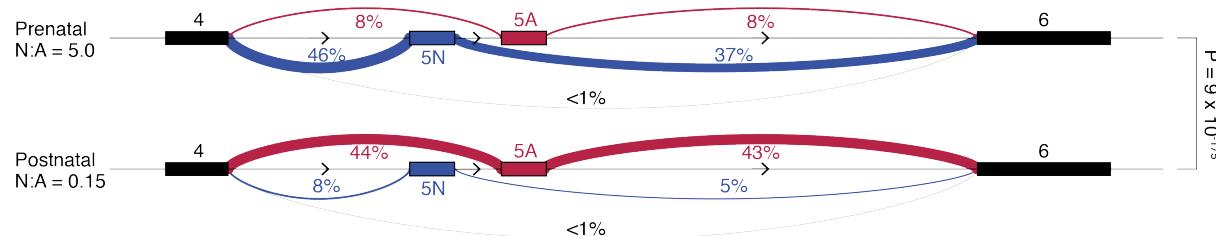
### 203 3.2 Developmental trajectories of 5N and 5A expression in the human cortex

204 The majority of protein-coding exons follow the expression trajectory of their parent gene  
205 across development (Fig. S3), however all four sodium channels show dynamic changes in the  
206 utilization of 5N/5A (Fig. 2). This is especially marked for *SCN2A* and *SCN8A*, where 5N is

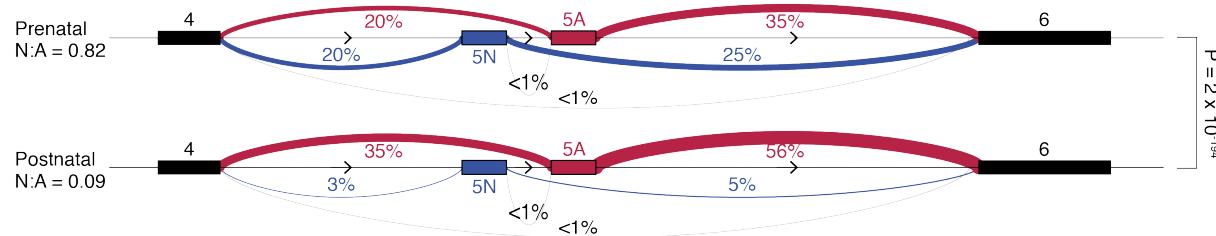
207 expressed at a higher level than 5A in the mid-fetal brain but this reverses soon after birth.  
208 Plotting the 5N:5A ratio allows exon utilization to be assessed independent of changes in gene  
209 expression (Fig. 2). All four genes show changes in the N:A ratio across development, with a  
210 modest change for *SCN1A* (0.14 fetal to 0.02 childhood/adolescent;  $p=0.00003$ , two-sided  
211 Wilcoxon test, Figure 2B) and dramatic changes for *SCN2A* (3.7 to 0.09;  $p=5\times10^{-19}$ , Fig. 2D),  
212 *SCN3A* (0.96 to 0.18;  $p=6\times10^{-18}$ , Fig. 2F), and *SCN8A* (3.7 to 0.09;  $p=5\times10^{-19}$ , Fig. 2H). As a  
213 control, we applied this approach to assess the ratio of CDS 4 and CDS 6 across development.  
214 We observed no developmental shift in the 4:6 ratio for *SCN1A*, *SCN2A*, and *SCN3A*, however  
215 the exon 4:6 ratio is marginally higher than expected in the prenatal period for *SCN8A* (0.82 vs.  
216 0.66;  $9\times10^{-10}$ , Fig. S2). This developmental variation in *SCN8A* is not observed for the  
217 surrounding protein-coding exons and reflects a modest increase in CDS 4 expression in the  
218 prenatal period, based on the expected expression given the exon length (Fig. S4).  
219



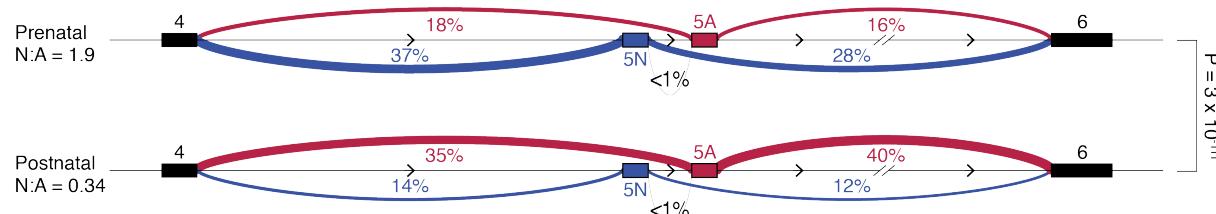
220  
221


**Figure 2. Expression of 5N and 5A in the human cortex across development.** **A)** The expression of 5N (blue) and 5A (red) in *SCN1A* is shown for 176 BrainVar human cortex (DLPFC) samples across development (points). On the left, the colored line shows the Loess smoothed average and 95% confidence interval (shaded region). On the right, boxplots show the median and interquartile range for the same data, binned into fetal, transitional, and mature developmental stages. **B)** The ratio of 5N and 5A expression from panel 'A' is shown across development (left) and in three developmental stages (right). **C-H)** Panels A and B are repeated for the genes *SCN2A*, *SCN3A*, *SCN8A*. For comparison, the same plots for CDS four and six are shown in Figure S2. CPM: Counts per million; DLPFC: Dorsolateral prefrontal cortex. Statistical tests: B, D, F, H) Left panel, linear regression of  $\log_2(5N:5A)$  ratio and  $\log_2$ (post-conceptual days). Right panel, two-tailed Wilcoxon test of  $\log_2(5N:5A)$  values between fetal and mature groups.

222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232


### 3.3 Intron splicing around 5N and 5A in the human cortex

233 To verify that mutually exclusive use of 5N and 5A underlies the observed exon expression  
234 changes (Fig. 2), we considered RNA-seq reads that spanned exon-exon junctions to quantify  
235 intron splicing. Clusters of differential intron splicing corresponding to 5N/5A usage were  
236 identified by Leafcutter for *SCN2A*, *SCN3A*, and *SCN8A* (Fig. 3), but not *SCN1A*, likely due to the  
237 consistently low expression of N isoforms (Fig. 2). The splicing patterns for *SCN2A*, *SCN3A*, and  
238 *SCN8A* are consistent with the observed exon expression changes (Fig. 2, 3) and at least 99% of  
239 reads are consistent with mutually exclusive 5N/A utilization.  
240


### A ENSG00000136531 *SCN2A*



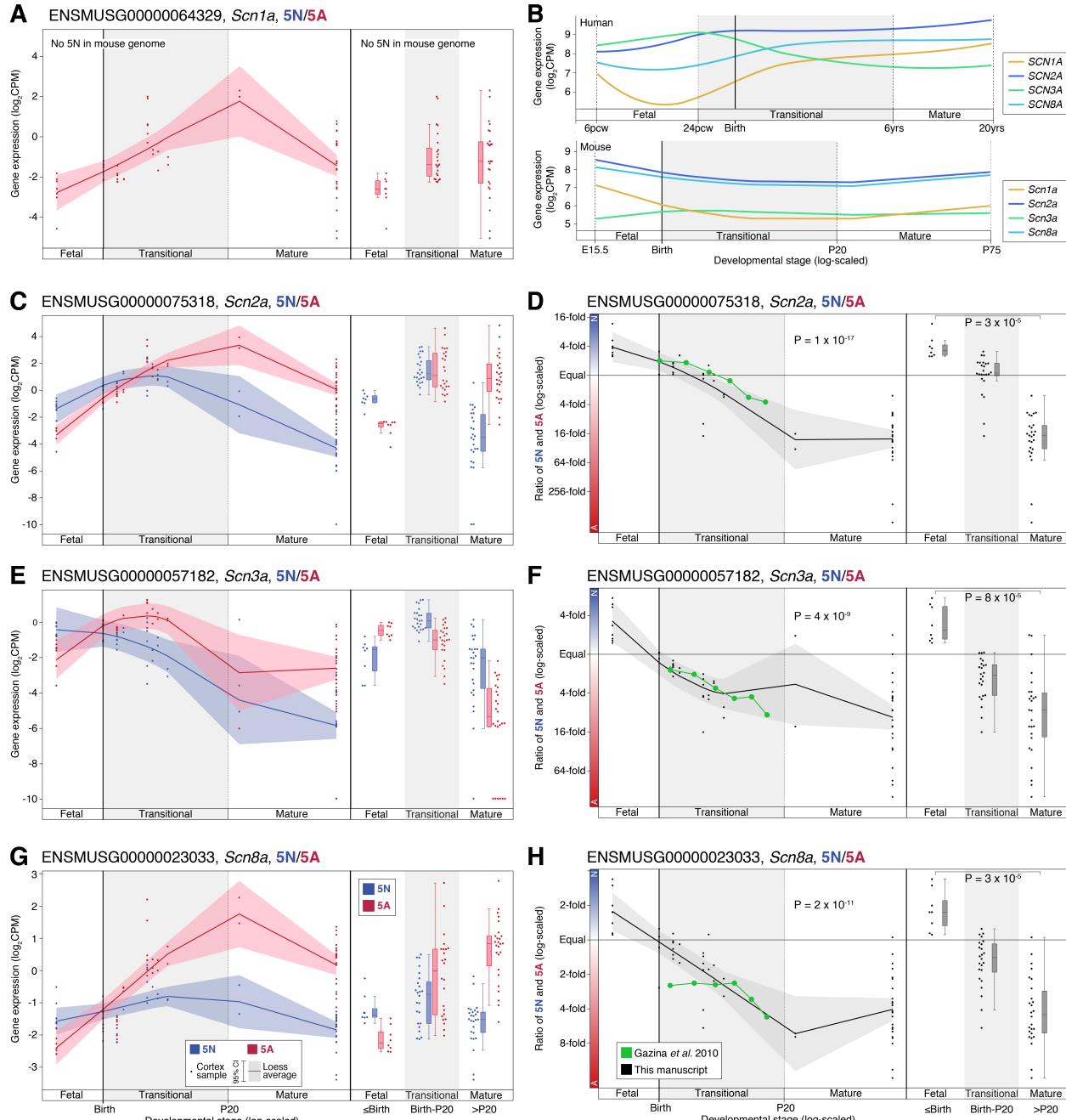
### B ENSG00000153253 *SCN3A* (reversed)



### C ENSG00000196876 *SCN8A*



241  
242


243 **Figure 3. Intron splicing of sodium channel genes in the developing human cortex.** A) Sashimi plot of splicing in the prenatal  
244 (top, N=112 samples) and postnatal (bottom, N=60 samples) DLPFC for *SCN2A*. Linewidth is proportional to percentage of split  
245 reads observed for each intron and this value is given as a percentage. Introns related to 5N inclusion are shown in blue, those  
246 related to 5A inclusion are shown in red, and others are in grey. B-C) Equivalent plots for *SCN3A* (a negative strand gene with  
247 the orientation reversed to facilitate comparison to the other two genes) and *SCN8A*. P-values compare the prenatal and  
248 postnatal cluster using a Dirichlet-multinomial generalized linear model, as implemented in Leafcutter.<sup>39</sup>  
249

### 250 3.4 Developmental trajectories of 5N and 5A expression in the mouse cortex

251 We repeated the analysis of sodium channel 5N/5A expression using bulk tissue RNA-seq data  
252 from the mouse cortex across development (N=58; E15.5 to P75). Our data are consistent with  
253 the N:A ratios described previously.<sup>20</sup> We observe more substantial differences at the extremes  
254 of development: *SCN2A* (3.3 fetal to 0.06 mature; p=0.00003, two-sided Wilcoxon test, Fig. 4C),

255 *SCN3A* (2.4 to 0.14;  $p=0.00008$ , Fig. 4E), and *SCN8A* (1.8 to 0.22;  $p=0.00003$ , Fig. 4G). Mice lack a  
 256 functional 5N exon in *SCN1A*.

257



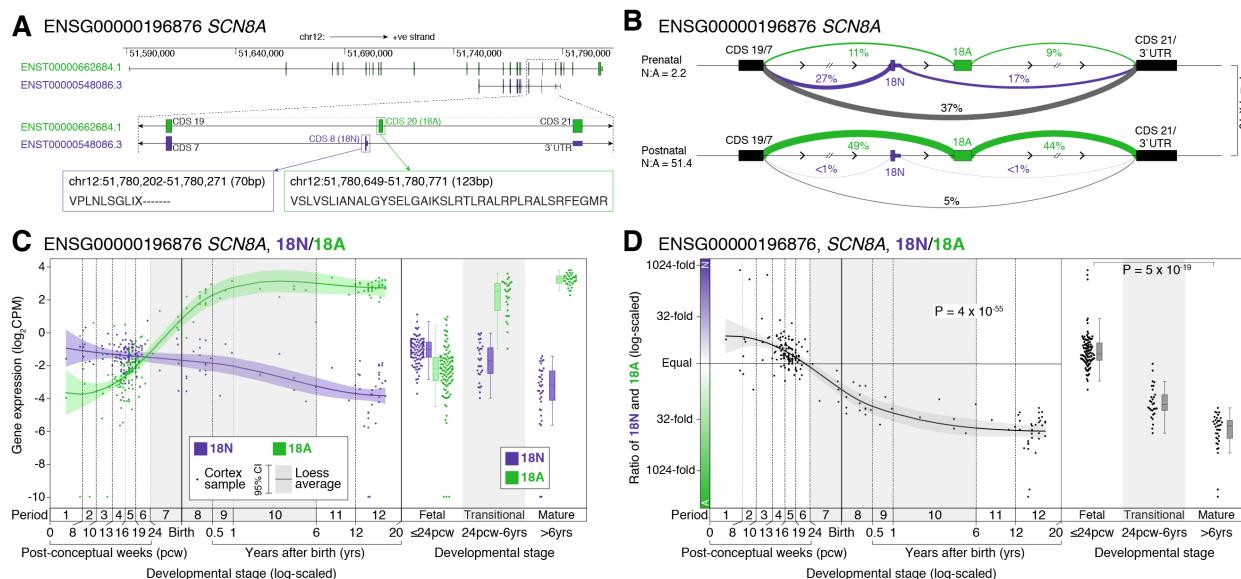
258  
 259  
 260  
 261  
 262  
 263  
 264  
 265  
 266

**Figure 4. Expression of 5N and 5A in the mouse cortex across development.** **A)** The expression of 5A (red) in *Scn1a* is shown for 58 mouse cortex samples across development (points); no functional 5N equivalent is present in the mouse genome. On the left, the colored line shows the Loess smoothed average and 95% confidence interval (shaded region). On the right, boxplots show the median and interquartile range for the same data, binned into fetal, transitional, and mature developmental stages. **B)** The Loess smoothed average expression of the four voltage-gated sodium channels in human cortex (top, Fig. 1) and mouse cortex (bottom). **C)** Panel 'A' is repeated for *Scn2a* with the inclusion of 5N (blue). **D)** The ratio of 5N and 5A expression from panel 'C' is shown across development (left) and in three developmental stages (right). Values reported previously in mouse cortex are shown in the same scale in green for comparison<sup>20</sup>. **E-H)** Panels 'C' and 'D' are repeated for the genes *Scn3a*, *Scn8a*.

267 CPM: Counts per million. Statistical tests: D, F, H) Left panel, linear regression of  $\log_2(5N:5A$  ratio) and  $\log_2(\text{post-conceptual}$   
 268  $\text{days})$ . Right panel, two-tailed Wilcoxon test of  $\log_2(5N:5A$  ratio) values between fetal and mature groups.

269

### 270 3.5 No evidence of common polymorphisms regulating 5N or 5A utilization


271 A common polymorphism (rs3812718, GRCh38 chr2:166,053,034 C>T, IVS5N+5G>A) has  
 272 previously been associated with epilepsy, seizures, and response to anti-epileptics,<sup>21,22,26,45,46</sup>  
 273 though this variant did not reach genome-wide significance in a mega-analysis of epilepsy.<sup>47</sup>  
 274 Prior analyses of expression in the adult human temporal cortex showed evidence that the  
 275 homozygous variant allele (TT in DNA, AA in cDNA) was associated with reduced utilization of  
 276 5N.<sup>21,48</sup> We do not observe evidence for such a relationship in the prenatal or postnatal  
 277 prefrontal cortex (Fig. S5) and this polymorphism is not identified as a splicing quantitative trait  
 278 locus (QTL) in GTEx.<sup>49</sup> Furthermore, this variant is not predicted to alter splicing behavior using  
 279 the SpliceAI algorithm.<sup>50</sup> The TT genotype is associated with increased expression of *SCN1A* in  
 280 the adult human basal ganglia with ( $p=1\times 10^{-10}$ ).<sup>49</sup>

281

### 282 3.6 Developmental trajectories of 18N and 18A expression in *SCN8A*

283 We next considered the developmental timing of the transition between 18N and 18A in *SCN8A*  
 284 (Fig. 1A, 5A). Intron splicing shows a robust difference between prenatal and postnatal human  
 285 dorsolateral prefrontal cortex ( $P = 4 \times 10^{-185}$ , Fig. 5B), with the prenatal period characterized by  
 286 high frequencies of transcripts excluding 18A, either including 18N or skipping both 18N and  
 287 18A, while in the postnatal cortex 18A is included in 93% of reads. Considering exon expression  
 288 (Fig. 5C, 5D), the expression of 18A increases markedly over development and this is distinct  
 289 from other protein-coding exons for *SCN8A* (Fig. S3). The 18N/18A transition begins around 13  
 290 post-conceptual weeks and continues till six months-of-age, with both timepoints being earlier  
 291 than the equivalents for 5N/5A in *SCN8A* and the other genes.

292

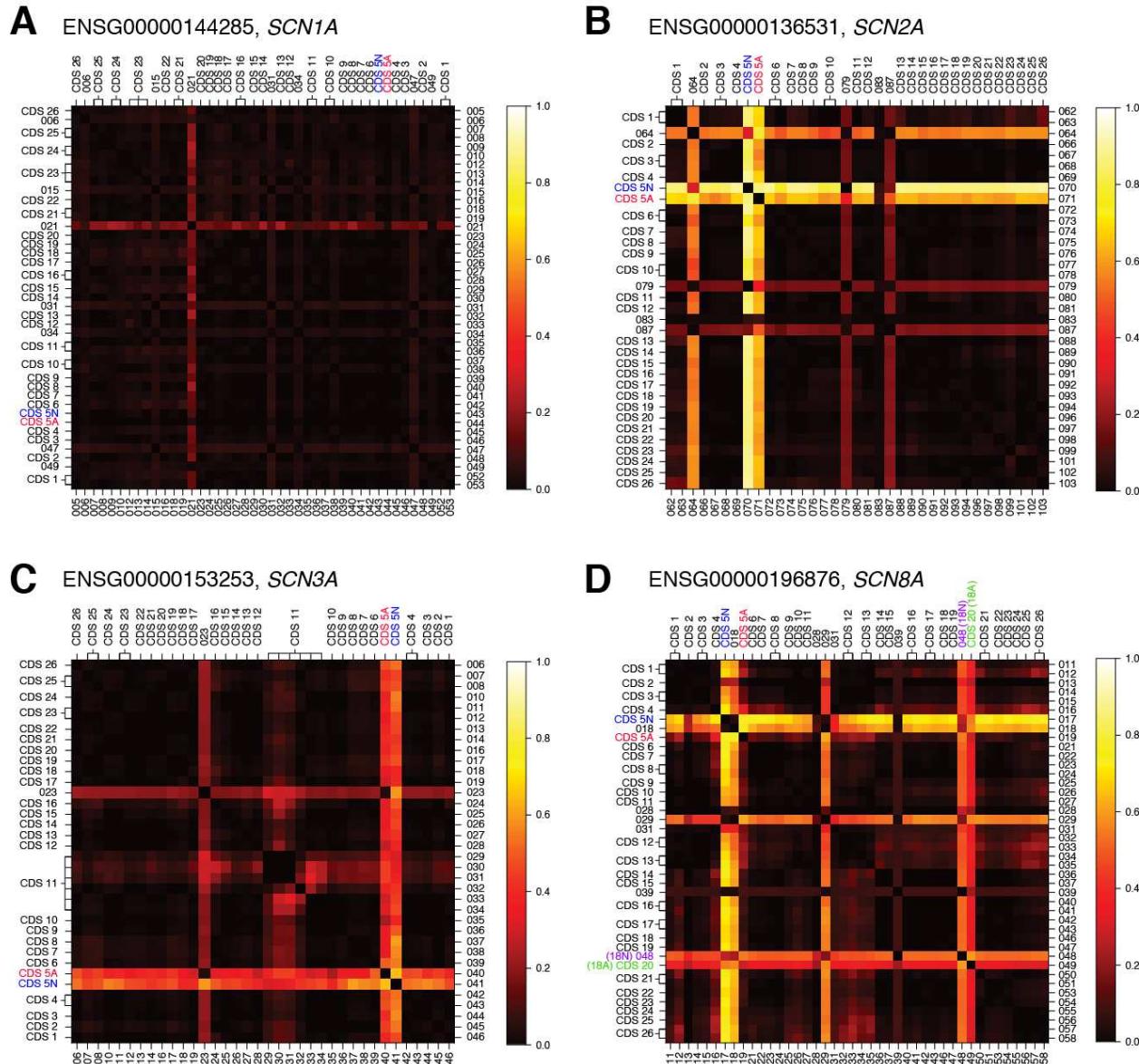


293

294 **Figure 5. Developmental trajectories of CDS 20 (18N/18A) in human cortex in *SCN8A*. A)** Location, genomic coordinates  
 295 (GRCh38/hg38), and amino acid sequence of the 18N and 18A exons in *SCN8A*. **B)** Sashimi plot of intron splicing in the prenatal  
 296 (top, N=112 samples) and postnatal (bottom, N=60 samples) dorsolateral prefrontal cortex. Linewidth is proportional to  
 297 percentage of reads observed for each exon-exon junction and this value is also shown as a percentage. Introns related to 18N  
 298 exon inclusion are shown in purple, those related to 18A exon inclusion are shown in green, and others are in grey. **C)**

299 Expression of the 18N (purple) and 18A (green) for 176 BrainVar human dorsolateral prefrontal cortex samples across  
300 development (points). On the left, the colored line shows the Loess smoothed average with the shaded area showing the 95%  
301 confidence interval. On the right, boxplots show the median and interquartile range for the same data, binned into fetal,  
302 transitional, and mature developmental stages. **D**) The 18N:18A ratio is shown for each sample from panel 'C' across  
303 development (left) and binned into three groups (right). CPM: Counts per million; Statistical analyses: B) Dirichlet-multinomial  
304 generalized linear model, as implemented in Leafcutter,<sup>39</sup> D) Left panel, linear regression of  $\log_2(18N:18A$  ratio) and  $\log_2(\text{post-}$   
305 conceptual days). Right panel, two-tailed Wilcoxon test of  $\log_2(18N:18A$  ratio) values between fetal and mature groups.

306


### 307 **3.7 Other annotated protein-coding exons with distinct developmental trajectories**

308 To assess whether other protein-coding exons undergo distinct developmental transitions (Fig.  
309 S3), we calculated the ratios of all pairs of protein-coding exons within each for the four sodium  
310 channel genes and assessed whether the ratio was correlated with development stage using  
311 linear regression. This is the same calculation used to quantify the 5N/5A and 18N/18A  
312 transitions (Fig. 2, 5D) and distinguishes exons with expression profiles that differ from the rest  
313 of the gene (e.g. 5A in *SCN2A*), rather than simply being expressed at reduced levels, suggesting  
314 alternative regulatory processes (Fig. S3). Visualizing the  $R^2$  values of these correlations  
315 provides simple method to identify the such distinct trajectories (Fig. 6). Aside from 5N/5A and,  
316 in *SCN8A*, 18N/18A, no protein-coding exons common to most isoforms (consistent CDS in Fig.  
317 S3) show differential expression, but a few weakly expressed protein-coding exons specific to a  
318 small number of isoforms (variable CDS in Fig. S3) do vary across development (Fig. 6).

319

320 GENCODE defines seven variable CDS exons for *SCN1A* (DEXSeq divisions: 006, 015, 021, 031,  
321 034, 047, 049; Table S2, Fig. 6A). Of these, only 021 shows a distinct developmental trajectory  
322 (Fig. 6A), with reduced postnatal expression relative to other *SCN1A* exons (Fig. S3). This result  
323 is verified by the intron splicing data ( $p = 6 \times 10^{-91}$ , Leafcutter).

324



**Figure 6. Identification of protein-coding exons with complex developmental trajectories.** **A**) The correlation between the ratio of CPM expression between pairs of exons (log-scaled) and developmental stage (post conceptual days, log-scaled) for *SCN1A* was assessed with a linear model (e.g. Fig. 2B). The  $R^2$  value of each exon pair is shown as a heatmap with 'hot' colors representing exon-pairs with high  $R^2$  values for which variation in the ratio is correlated with developmental age, i.e. pairs of exons that show substantially different expression across development. Exon numbers from DEXSeq (Table S2) are shown on the bottom and right and equivalent CDS number on the top and left (see Table S2). **B-D)** The analysis is repeated for *SCN2A*, *SCN3A*, and *SCN8A*.

In *SCN2A*, the 5N/5A trajectories stand out clearly (Fig. 6B). There are four variable CDS exons (DEXSeq divisions: 064, 079, 083, 087; Table S2, Fig. 6B), three of which have distinct developmental trajectories (Fig. 6B, S3): 064 (Fig. S3,  $P = 2 \times 10^{-12}$ , Leafcutter), 079 (Fig. S3,  $P = 7 \times 10^{-33}$ , Leafcutter), 087 (Fig. S3,  $P = 2 \times 10^{-20}$ , Leafcutter). The single variable CDS exon in *SCN3A*, 023 (Table S2, Fig. 6C), varies across development (Fig. S3,  $P = 3 \times 10^{-80}$ , Leafcutter). Finally, aside from 18N, there are five variable CDS exons in *SCN8A* (DEXSeq divisions: 018, 028,

341 029, 031, 039; Table S2, Fig. 6D) of which 018 and 029 vary across development (Fig. 6D), but  
342 neither of these are validated by Leafcutter.

343

### 344 Discussion

345 Using transcriptomic data from 176 human dorsolateral prefrontal cortex samples, we  
346 characterized the developmental patterns for all protein-coding exons in *SCN1A*, *SCN2A*,  
347 *SCN3A*, and *SCN8A* (Fig. 6, S3). We observed a coordinated decrease in the 5N:5A ratio between  
348 24 post-conceptual weeks (2<sup>nd</sup> trimester) and six years-of-age that is synchronized with  
349 widespread transcriptomic changes in the brain during the late-fetal transition.<sup>32,44</sup> This is  
350 preceded by a similar decrease in the 18N:18A ratio in *SCN8A* from 13 post-conceptual weeks  
351 to 6 months-of-age, which is regulated by *RBFOX1*. By analyzing a wider developmental window  
352 than prior analyses<sup>20,21,48</sup> we observed more dynamic changes and larger disparities in exon  
353 expression.

354

355 Recent advances have shown that differential splicing patterns can be effective therapeutic  
356 targets in humans, for example through intrathecal antisense oligonucleotides.<sup>51,52</sup> Since the  
357 electrophysiological consequences of some epileptic encephalopathy associated variants differ  
358 between 5N and 5A, manipulating this ratio may offer therapeutic benefit in individuals  
359 carrying these variants. We consider three therapeutic scenarios.

360

361 First, for individuals with disorder-associated genetic variants within the 30 amino acids  
362 encoded by the 5<sup>th</sup> exon, expressing the other copy of the 5<sup>th</sup> exon could skip the variant.  
363 Theoretically, this approach could benefit individuals with both loss-of-function (protein-  
364 truncating variants, missense, splice site) and gain-of-function (missense) variants in the 5<sup>th</sup>  
365 exon. At present, ten such cases have been identified, all with epileptic encephalopathy  
366 variants identified in the 5A exon of *SCN2A* and *SCN8A*.<sup>53,54</sup> Since the total transcript level  
367 would be unchanged, this strategy may provide a wider therapeutic window than simply  
368 decreasing expression levels. The success of the therapy would depend upon the proportion of  
369 transcripts expressing the alternate 5<sup>th</sup> exon and the ability of this exon to functionally replace  
370 the original 5<sup>th</sup> exon.

371

372 Second, splice isoforms can also have an effect on the biophysical effects of variants outside the  
373 5<sup>th</sup> exon. For example, three recently characterized epileptic encephalopathy associated  
374 variants in *SCN2A*—T236S, E999K, and S1336Y—all exhibit more pronounced alterations in their  
375 electrophysiological properties in 5N Nav1.2 isoforms.<sup>23</sup> Two other epileptic encephalopathy-  
376 associated variants—M252V and L1563V—exhibit biophysical changes only when expressed on  
377 5N isoform.<sup>14,55</sup> For individuals with these mutations, tilting expression towards the 5A isoform  
378 could provide some symptomatic improvement, especially during infancy. Including both the  
379 5N and 5A isoforms in functional characterization of variant impact may identify many more  
380 such variants.<sup>23</sup>

381

382 Finally, modifying splicing might aid seizure control in older children and adults. At this age, the  
383 5A isoform is predominantly utilized in both *SCN2A* or *SCN8A*, which are mainly expressed in

384 glutamatergic neurons.<sup>11</sup> Reverting expression to the fetal/neonatal state by encouraging 5N  
385 utilization could reduce the excitability of cortical glutamatergic neurons, potentially  
386 limiting seizures. Since this would require repeated intrathecal administration, it would likely be  
387 limited to the most severe cases of epilepsy. Furthermore, it remains to be seen whether this  
388 approach could offer therapeutic benefits above and beyond existing antiepileptic drugs.  
389

390 Our analysis was limited by the use of short-read transcriptomic data, leading us to focus on  
391 quantifying exon-level expression (Fig. 2) and splice junction usage (Fig. 3), rather than relying  
392 on estimates of isoform utilization (Fig. S1). We also elected to focus on protein-coding  
393 transcripts and exons defined by GENCODE (v31) rather than attempting *de novo* transcriptome  
394 assembly. Emerging long-read transcriptomic technology may substantially expand estimates of  
395 isoform and exon diversity but these technologies have not been applied to the developing  
396 human brain at scale.<sup>56,57</sup> We also note that transcriptomic data is only partially predictive of  
397 protein levels and other factors, including channel transport and degradation, may influence  
398 the impact of isoforms on neuronal function. Comparing the human and mouse cortex data  
399 (Figs. 2, 4), it is possible that more substantial differences in gene and exon expression may be  
400 observed at earlier embryonic times in the mouse or with larger sample sizes. In addition, the  
401 use of bulk-tissue transcriptomic data limits our ability to assess how individual cell-types or  
402 cell-states contribute to the observed isoform trajectories. Technological and methodological  
403 advances may provide insights at cell-level resolution in the future.<sup>58</sup>

404

## 405 **Conclusion**

406 Dramatic differences in exon usage of *SCN1A*, *SCN2A*, *SCN3A*, and *SCN8A* observed in rodent  
407 brains also occur in the human developing cortex, beginning in mid-fetal development and  
408 continuing through childhood. These changes in splicing affect the biophysical properties of the  
409 encoded channels and are likely to contribute to differences in phenotype observed between  
410 individuals with different variants and across development.

411

## 412 **Acknowledgements**

413 This work was supported by funding provided by the Simons Foundation Autism Research  
414 Initiative (SFARI) grants 574598 (to S.J.S.), 647371 (to S.J.S.), 629287 (to K.J.B.), and 513133 (to  
415 K.J.B.), the National Institute for Mental Health (NIMH) grants: R01 MH111662 (to S.J.S.), U01  
416 MH122681 (to S.J.S.), P50 MH106934 (to N.S.), R01 MH109904 (to N.S.), R01 MH110926 (to N.S.),  
417 and U01 MH116488 (to N.S.), the National Institute of Neurological Disorders and Stroke (NINDS)  
418 grant: R01 NS099099 (to J.L.R.R.), and the National Research Foundation of Korea: NRF-  
419 2020R1C1C1003426 (to J.Y.A.) and NRF-2017M3C7A1026959 (to J.Y.A.).

420

## 421 **Author Contributions**

422 Experimental design, S.J.S.; Data generation, L.L., S.F.D., S.P., F.O.G., A.S., J.Y.A., and J.L.R.R.;  
423 Data processing, L.L., M.C.G., B.K.S., and D.M.W.; Data analysis, L.L., D.M.W., and S.J.S.;  
424 Statistical analysis, S.J.S.; Manuscript preparation, L.L., K.J.B., and S.J.S.

425

## 426 **Declaration of interests**

427 J.L.R.R. is cofounder, stockholder, and currently on the scientific board of *Neurona*, a company  
428 studying the potential therapeutic use of interneuron transplantation.

429 **References**

- 430 1. Heyne HO, Singh T, Stamberger H, Abou Jamra R, Caglayan H, Craiu D, et al. De novo  
431 variants in neurodevelopmental disorders with epilepsy. *Nat Genet* [Internet]. 2018; :1.  
432 Available from: <http://www.nature.com/articles/s41588-018-0143-7>
- 433 2. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An J-Y, et al. Large-Scale  
434 Exome Sequencing Study Implicates Both Developmental and Functional Changes in the  
435 Neurobiology of Autism. *Cell*. 2020; .
- 436 3. Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, et al. Integrating  
437 healthcare and research genetic data empowers the discovery of 49 novel  
438 developmental disorders. *bioRxiv* [Internet]. 2019; :797787. Available from:  
439 <http://biorxiv.org/content/early/2019/10/16/797787.abstract>
- 440 4. Catterall WAWA, Marban E, Catterall WAWA, Cestèle S, Catterall WAWA, Wood JN, et al.  
441 Voltage-gated sodium channels. *J Physiol* [Internet]. 2001; 1(1):17–21. Available from:  
442 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1676000/>  
443 rendertype=abstract%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1676000/abstract  
444 &rendertype=abstract%5Cnhttp://onlinelibrary.wiley.com/doi/10.1111/j.1462-  
445 446 5. Bender KJ, Trussell LO. The physiology of the axon initial segment. *Annu Rev Neurosci*.  
447 2012; 35(1):249–65.
- 448 6. Kole MHP, Stuart GJ. Signal processing in the axon initial segment. *Neuron* [Internet].  
449 2012; 73(2):235–47. Available from: <http://dx.doi.org/10.1016/j.neuron.2012.01.007>
- 450 7. Spratt PWE, Ben-Shalom R, Keeshen CM, Burke KJJ, Clarkson RL, Sanders SJ, et al. The  
451 Autism-Associated Gene Scn2a Contributes to Dendritic Excitability and Synaptic  
452 Function in the Prefrontal Cortex. *Neuron*. 2019; 103(4):673-685.e5.
- 453 8. Hu W, Tian C, Li T, Yang M, Hou H, Shu Y. Distinct contributions of Na(v)1.6 and Na(v)1.2  
454 in action potential initiation and backpropagation. *Nat Neurosci* [Internet]. 2009;  
455 12(8):996–1002. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732110/>
- 456 9. Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JN, et al. Sodium  
457 Channel SCN3A (Na(V)1.3) Regulation of Human Cerebral Cortical Folding and Oral  
458 Motor Development. *Neuron*. 2018; 99(5):905-913.e7.
- 459 10. Berret E, Barron T, Xu J, Debner E, Kim EJ, Kim JH. Oligodendroglial excitability mediated  
460 by glutamatergic inputs and Nav1.2 activation. *Nat Commun* [Internet]. 2017; 8(1).  
461 Available from: <http://dx.doi.org/10.1038/s41467-017-00688-0>
- 462 11. Brunklaus A, Du J, Steckler F, Ghanty IL, Johannessen KM, Fenger CD, et al. Biological  
463 concepts in human sodium channel epilepsies and their relevance in clinical practice.  
464 *Epilepsia*. 2020; 61(3):387–99.
- 465 12. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of  
466 the human brain. *Nature* [Internet]. 2011; 478(7370):483–9. Available from:  
467 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC31440/>

468 13. Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic  
469 and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related  
470 disorders. *Brain* [Internet]. 2017; . Available from:  
471 <https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awx054>

472 14. Liao Y, Anttonen A-K, Liukkonen E, Gaily E, Maljevic S, Schubert S, et al. SCN2A mutation  
473 associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain.  
474 *Neurology*. 2010; 75(16):1454–8.

475 15. Tian C, Wang K, Ke W, Guo H, Shu Y. Molecular identity of axonal sodium channels in  
476 human cortical pyramidal cells. *Front Cell Neurosci* [Internet]. 2014; 8(September):297.  
477 Available from: <http://journal.frontiersin.org/article/10.3389/fncel.2014.00297/abstract>

478 16. Plummer NW, McBurney MW, Meisler MH. Alternative splicing of the sodium channel  
479 SCN8A predicts a truncated two-domain protein in fetal brain and non-neuronal cells. *J  
480 Biol Chem*. 1997; 272(38):24008–15.

481 17. Gustafson TA, Clevinger EC, Neill TJO, Yarowskys PJ, Kruegerg BK. Mutually exclusive  
482 exon splicing of type III brain sodium channel alpha subunit RNA generates  
483 developmentally regulated isoforms in rat brain. *J Biol Chem*. 1993; 268(25):18648–53.

484 18. Zaman T, Helbig KL, Clatot J, Thompson CH, Kang SK, Stouffs K, et al. SCN3A-Related  
485 Neurodevelopmental Disorder: A Spectrum of Epilepsy and Brain Malformation. *Ann  
486 Neurol*. 2020; .

487 19. Zaman T, Helbig I, Božović IB, DeBrosse SD, Bergqvist AC, Wallis K, et al. Mutations in  
488 SCN3A cause early infantile epileptic encephalopathy. *Ann Neurol*. 2018; 83(4):703–17.

489 20. Gazina E V, Richards KL, Mokhtar MBC, Thomas E a, Reid C a, Petrou S. Differential  
490 expression of exon 5 splice variants of sodium channel alpha subunit mRNAs in the  
491 developing mouse brain. *Neuroscience* [Internet]. 2010; 166(1):195–200. Available from:  
492 <http://www.ncbi.nlm.nih.gov/pubmed/20006674>

493 21. Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, et al. Genetic  
494 predictors of the maximum doses patients receive during clinical use of the anti-epileptic  
495 drugs carbamazepine and phenytoin. *Proc Natl Acad Sci U S A*. 2005; 102(15):5507–12.

496 22. Tate SK, Singh R, Hung CC, Tai JJ, Depondt C, Cavalleri GL, et al. A common polymorphism  
497 in the SCN1A gene associates with phenytoin serum levels at maintenance dose.  
498 *Pharmacogenet Genomics*. 2006; 16(10):721–6.

499 23. Thompson CH, Ben-Shalom R, Bender KJ, George AL. Alternative splicing potentiates  
500 dysfunction of early-onset epileptic encephalopathy SCN2A variants. *J Gen Physiol*. 2020;  
501 152(3):1–16.

502 24. Kasai N, Fukushima K, Ueki Y, Prasad S, Nosakowski J, Sugata KI, et al. Genomic structures  
503 of SCN2A and SCN3A - Candidate genes for deafness at the DFNA16 locus. *Gene*. 2001;  
504 264(1):113–22.

505 25. Copley RR. Evolutionary convergence of alternative splicing in ion channels. *Trends  
506 Genet*. 2004; 20(4):171–6.

507 26. Thompson CH, Kahlig KM, George AL. SCN1A splice variants exhibit divergent sensitivity  
508 to commonly used antiepileptic drugs. *Epilepsia*. 2011; 52(5):1000–9.

509 27. Diss JKJ, Fraser SP, Djamgoz MBA. Voltage-gated Na<sup>+</sup> channels: Multiplicity of expression,  
510 plasticity, functional implications and pathophysiological aspects. *Eur Biophys J*. 2004;  
511 33(3):180–93.

512 28. Gazina E V., Leaw BTWW, Richards KL, Wimmer VC, Kim TH, Aumann TD, et al.  
513 “Neonatal” Nav1.2 reduces neuronal excitability and affects seizure susceptibility and  
514 behaviour. *Hum Mol Genet*. 2015; 24(5):1457–68.

515 29. O’Brien JE, Drews VL, Jones JM, Dugas JC, Barres BA, Meisler MH. Rbfox proteins regulate  
516 alternative splicing of neuronal sodium channel SCN8A. *Mol Cell Neurosci* [Internet].  
517 2012; 49(2):120–6. Available from: <http://dx.doi.org/10.1016/j.mcn.2011.10.005>

518 30. Zubović L, Baralle M, Baralle FE. Mutually exclusive splicing regulates the Nav 1.6 sodium  
519 channel function through a combinatorial mechanism that involves three distinct splicing  
520 regulatory elements and their ligands. *Nucleic Acids Res*. 2012; 40(13):6255–69.

521 31. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.  
522 GENCODE: the reference human genome annotation for The ENCODE Project. *Genome*  
523 Res [Internet]. 2012; 22(9):1760–74. Available from:  
524 <http://www.ncbi.nlm.nih.gov/pubmed/22955987>

525 32. Werling DM, Pochareddy S, Choi J, An J-YY, Sheppard B, Peng M, et al. Whole-Genome  
526 and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing  
527 Human Prefrontal Cortex. *Cell Rep*. 2020; 31(1):107489.

528 33. McLaren R, Radcliffe RA, Van Matre ET, Robertson CE, Ir D, Frank DN. The Acute  
529 Influence of Acid Suppression with Esomeprazole on Gastrointestinal Microbiota and  
530 Brain Gene Expression Profiles in a Murine Model of Restraint Stress. *Neuroscience*  
531 [Internet]. 2019; 398:206–17. Available from:  
532 <https://doi.org/10.1016/j.neuroscience.2018.11.048>

533 34. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast  
534 universal RNA-seq aligner. *Bioinformatics*. 2013; 29(1):15–21.

535 35. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data.  
536 *Genome Res*. 2012; 22(10):2008–17.

537 36. Bedre R. reneshbedre/bioinfokit: Bioinformatics data analysis and visualization toolkit.  
538 2020 [cited 2020]; . Available from:  
539 <https://doi.org/10.5281/zenodo.3965241#.X1p62G7zY.E.mendeley>

540 37. Karimzadeh M, Ernst C, Kundaje A, Hoffman MM. Umap and Bismap: quantifying genome  
541 and methylome mappability. *Nucleic Acids Res*. 2018; 46(20):e120.

542 38. Wu J, Anczukow O, Krainer AR, Zhang MQ, Zhang C. OLeg: fast and sensitive mapping of  
543 spliced mRNA-Seq reads using small seeds. *Nucleic Acids Res*. 2013; 41(10):5149–63.

544 39. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al. Annotation-free

545 quantification of RNA splicing using LeafCutter. *Nat Genet.* 2018; 50(1):151–8.

546 40. An J-Y, Lin K, Zhu L, Werling DM, Dong S, Brand H, et al. Genome-wide de novo risk score  
547 implicates promoter variation in autism spectrum disorder. *Science.* 2018;  
548 362(6420):eaat6576.

549 41. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper  
550 for thousands of molecular phenotypes. *Bioinformatics.* 2016; 32(10):1479–85.

551 42. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful  
552 Approach to Multiple Testing. *J R Stat Soc Ser B.* 1995; 57(1):289–300.

553 43. Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, et al.  
554 Spatiotemporal gene expression trajectories reveal developmental hierarchies of the  
555 human cortex. *Science [Internet].* 2017; 358(6368):1318–23. Available from:  
556 <http://www.sciencemag.org/lookup/doi/10.1126/science.aap8809>

557 44. Li M, Santpere G, Kawasawa YI, Evgrafov O V., Gulden FO, Pochareddy S, et al. Integrative  
558 functional genomic analysis of human brain development and neuropsychiatric risks.  
559 *Science.* 2018; 362(6420).

560 45. Tang L, Lu X, Tao Y, Zheng J, Zhao P, Li K, et al. SCN1A rs3812718 polymorphism and  
561 susceptibility to epilepsy with febrile seizures: a meta-analysis. *Gene.* 2014; 533(1):26–  
562 31.

563 46. Wang ZJ, Chen J, Chen HL, Zhang LY, Xu D, Jiang WT. Association between SCN1A  
564 polymorphism rs3812718 and valproic acid resistance in epilepsy children: a case-  
565 control study and meta-analysis. *Biosci Rep.* 2018; 38(6).

566 47. The International League Against Epilepsy Consortium on Complex Epilepsies. Genome-  
567 wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the  
568 common epilepsies. *Nat Commun.* 2018; 9(1):5269.

569 48. Heinzen EL, Yoon W, Tate SK, Sen A, Wood NW, Sisodiya SM, et al. Nova2 interacts with a  
570 Cis-acting polymorphism to influence the proportions of drug-responsive splice variants  
571 of SCN1A. *Am J Hum Genet.* 2007; 80(5):876–83.

572 49. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot  
573 analysis: multitissue gene regulation in humans. *Science [Internet].* 2015;  
574 348(6235):648–60. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25954001>

575 50. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JFJF, Darbandi SFSF, Knowles D,  
576 Li YIYI, et al. Predicting Splicing from Primary Sequence with Deep Learning. *Cell*  
577 [Internet]. 2019; 0(0):1–14. Available from:  
578 <https://linkinghub.elsevier.com/retrieve/pii/S0092867418316295>

579 51. Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, Larson A, et al. Patient-  
580 Customized Oligonucleotide Therapy for a Rare Genetic Disease. *N Engl J Med.* 2019;  
581 381(17):1644–52.

582 52. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen

versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. *N Engl J Med* [Internet]. 2017/11/02. 2017; 377(18):1723–32. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/29091570>

53. Berkovic SF, Grinton B, Dixon-Salazar T, Laughlin BL, Lubbers L, Milder J, et al. De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy. *Genet Med*. 2018; 20(2):275–81.

54. Sanders SJ, Campbell AJ, Cottrell JR, Moller RS, Wagner FF, Auldrige AL, et al. Progress in Understanding and Treating SCN2A-Mediated Disorders. Vol. 41, *Trends in Neurosciences*. 2018. p. 442–56.

55. Xu R, Thomas EA, Jenkins M, Gazina E V., Chiu C, Heron SE, et al. A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel. *Mol Cell Neurosci*. 2007; 35(2):292–301.

56. Anvar SY, Allard G, Tseng E, Sheynkman GM, de Klerk E, Vermaat M, et al. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. *Genome Biol*. 2018; 19(1):1–18.

57. Clark MB, Wrzesinski T, Garcia AB, Hall NAL, Kleinman JE, Hyde T, et al. Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. *Mol Psychiatry* [Internet]. 2020; 25(1):37–47. Available from: <http://dx.doi.org/10.1038/s41380-019-0583-1>

58. Gupta I, Collier PG, Haase B, Mahfouz A, Joglekar A, Floyd T, et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. *Nat Biotechnol*. 2018; .

59. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*. 2010; 26(6):841–2.

60. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. *Nat Methods*. 2017; 14(4):417–9.