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Abstract

Objective: Genetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and
SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The
MRNA splicing patterns of all four genes vary across development in the rodent brain, including
mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and
adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A).
We aimed to quantify the expression of individual exons in the developing human neocortex.
Methods: RNA-seq data from 176 human dorsolateral prefrontal cortex samples across
development were analyzed to estimate exon-level expression. Developmental changes in exon
utilization were validated by assessing intron splicing. Exon expression was also estimated in
RNA-seq data from 58 developing mouse neocortical samples.

Results: In the mature human neocortex, exon 5A is consistently expressed at least 4-fold
higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A a synchronized 5N/5A
transition occurs between 24 post-conceptual weeks (2" trimester) and six years of age. In
mice, the equivalent 5N/5A transition begins at or before embryonic day 15.5. In SCN8A, over
90% of transcripts in the mature human cortex include exon 18A. Early in fetal development,
most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion
occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons
showed comparably dynamic developmental trajectories.

Significance: Splice isoforms, which alter the biophysical properties of the encoded channels,
may account for some of the observed phenotypic differences across development and
between specific variants. Manipulation of the proportion of splicing isoforms at appropriate
stages of development may act as a therapeutic strategy for specific mutations or even epilepsy
in general.

Keywords
isoform, splicing, epilepsy, neurodevelopmental disorders, SCN1A, SCN2A, SCN3A, SCN8A, 5A,
5N, 18A, 18N
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61 1. Introduction
62  Genetic variation in the genes SCN1A, SCN2A, SCN3A, and SCN8A are a major cause of epileptic
63  encephalopathy (EE), autism spectrum disorder (ASD), and developmental delay.™ These four
64  homologous genes encode voltage-gated sodium channels (Nay1.1, Nay1.2, Nay1.3, and Nay1.6
65  respectively) that are critical for a range of functions in the central nervous system,* including
66  axonal action potential initiation and propagation,>® dendritic excitability,”® macroscopic
67 anatomical development,® and activity-dependent myelination.2® The functional role,
68  subcellular location, expression-level, and isoform selection of voltage-gated sodium channels
69  vary across development and understanding this relationship is critical for understanding the
70  etiology of the associated disorders and their therapeutic management.”71% While some
71  isoform-level differences have been assayed in rodents and mature human brains,?%22 the
72  trajectories in the developing human cortex have not been described.??
73
74  Sodium channel genes are composed of multiple exons, which can be protein-coding (CDS for
75  CoDing Sequence), untranslated regions (UTRs), or non-coding exons (NCEs). Differing
76  combinations of these exons are called isoforms, which can change the amino acid sequence of
77  the encoded proteins (proteoforms). The best-characterized isoform change across these four
78  sodium channels are the two mutually exclusive copies of the fifth protein-coding exon.”:24 This
79  exon encodes part of the first domain of the Nay channel, including the end of transmembrane
80 segment S3, most of transmembrane segment S4, and a short extracellular linker connecting
81 these two segments. In humans, each copy of this fifth protein-coding exon is 92 nucleotides in
82 length, encoding 30 amino acids, of which one to three amino acids vary between the two exon
83  copies for each gene (Fig. 1B). ‘A’ isoforms (5A) include the ancestral and canonical copy, with
84  an aspartic acid residue (Asp/D) encoded at position 7 of 30.2° ‘N’ isoforms (5N) use the
85 alternative copy, with an asparagine (Asn/N) residue at position 7 of 30 in SCN1A, SCN2A, and
86  SCNS8A and a serine residue (Ser/S) in SCN3A. Despite this relatively small change in protein
87  structure, differential inclusion of 5N or 5A can have marked effects on channel function.
88 Indeed, these splice isoforms can alter channel electrophysiological characteristics,?%?” the
89 functional impacts of variants associated with seizure,?? neuronal excitability,?® response to
90 anti-epileptics,212226 and seizure-susceptibility.?®
91
92  The utilization of the 5N or 5A varies across development, with 5N generally being expressed at
93  higher levels in the neonatal period while 5A predominates in adults.?’ This switch is defined
94  best in mouse, where the 5N:5A ratio varies by gene and brain region along with
95 developmental stage.?’ For Scn2a in mouse neocortex, the 5N:5A ratio is 2:1 at birth (postnatal
96 day 0/P0) and flips to 1:3 by P15. For both Scn3a and Scn8a, 5A predominates throughout the
97  postnatal period with a 1:2 ratio at PO increasing to 1:5 by P15.2° Scnla lacks a functional copy
98 of 5N inthe mouse genome. Similar developmental profiles currently have not been reported
99 for humans beyond the of 5N/5A utilization SCN1A in adults, in which a 5N:5A ratio of over 1:5
100 was observed in the temporal cortex and hippocampus of adult surgical resections.?122
101
102  In addition to the 5N/5A switch, a similar developmental shift in mutually exclusive exons has
103  beenreported for “exons 18N or 18A” in SCN8A only, regulated by the RNA-binding protein
104  RBFOX1.162%30 Using GENCODE human v31 gene definitions,3! 18A maps to the 20" protein-
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105  coding exon of major SCN8A isoforms (CDS 20, Fig. 1A), while 18N encodes the 8" and last

106  protein-coding exon (CDS 8) of a shorter eight protein-coding exon transcript

107 (ENST00000548086.3, Fig. S1). In the embryonic mouse brain, most SCN8A transcripts include
108 18N or skip both 18N and 18A, leading to non-functional channels, while 18A predominates in
109  the adult mouse and human brain.®

110

111  Here, we present data on the utilization of GENCODE-annotated protein-coding exons in four
112  seizure-associated voltage-gated sodium channels in the human and mouse neocortex across
113  development. We demonstrate a synchronized transition from 5N to 5A utilization between 24
114  post-conceptual weeks (2"? trimester) and six years-of-age across all four voltage-gated sodium
115 channels and a transition from 18N to 18A in SCN8A from 13 post-conceptual weeks to 6

116  months-of-age. These isoform differences can modify the function of the encoded voltage-
117  gated sodium channels, raising the potential that interventions, such as antisense

118 oligonucleotides, could be used to modify the isoform ratio as a potential therapy for disorders
119  caused by variants in sodium channel genes or epilepsy.

120
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121 2. Materials and Methods

122

123 2.1 Genomic data

124  To quantify the relative proportion of protein-coding exon expression across development in
125 the human cortex, we assessed bulk tissue RNA-seq data from 176 post mortem dorsolateral
126  prefrontal cortex (DLPFC) samples from the BrainVar cohort.32 The BrainVar cohort also has
127  corresponding whole-genome sequencing data that were used to derive per sample genotypes,
128  as described previously.3?2 To assess corresponding patterns of exon expression in mouse cortex
129  across development, we assessed 58 samples with bulk tissue RNA-seq data in wildtype C57/B6
130  mice. Thirty-four of these were generated as controls for ongoing experiments and 24 were
131  downloaded from GEO.33

132

133 2.2 Exon expression

134  To assess exon expression in the human cortex, the 100bp paired-read RNA-seq data from

135  BrainVar were aligned to the GRCh38.p12 human genome using STAR aligner3* and exon-level
136  read counts for GENCODE v31 human gene definitions were calculated with DEXSeqg*® and

137  normalized to counts per million (CPM).3¢ Despite the similar amino acid sequence, the

138 nucleotide sequence of 5N and 5A is sufficiently differentiated across the four genes that 100bp
139  reads align unambiguously to one location in the genome.3” Reads were detected in 5N and 5A
140 for all samples, across all four genes, with the exception of the SCN1A for which 31 of 176

141  samples (17.6%) had no detectable 5N reads (Fig. 2A). Along with quantifying the expression of
142 5N and 5A (Fig. 2), we also assessed expression for the surrounding constitutive exons, as a

143  control (Fig. S2). For the mouse cortical data, the same analysis methods were used but with
144  alternative references, specifically the GRCm38/mm10 genome and GENCODE vM25 gene

145  definitions. A similar approach was used to assess the utilization of 18N and 18A in SCN8A.

146

147 2.3 Intron splicing

148 We applied a complementary approach to detecting 5N and 5A exon usage by assessing intron
149  splicing via reads that map across exon-exon junctions in the same 176 BrainVar samples. Reads
150 were aligned with OLego aligner®® using the same genome build and gene definitions as for

151  exon expression. Clusters of differential intron splicing were identified with Leafcutter®® and
152  differences across development were detected by comparing 112 prenatal samples to 60

153  postnatal samples. No cluster was detected for 5SN/5A in SCN1A, preventing assessment across
154  development, but clusters were identified and assessed for the other three genes and for

155  18N/18Ain SCN8A (Figs. 3, 5).

156

157 2.4 Quantitative trait locus (QTL) analysis

158  Common variants with a minor allele frequency 25% in both the prenatal (N =112) and

159  postnatal (N = 60) samples and Hardy Weinberg equilibrium p value > 1x101? were identified
160  previously.3? Variants within one million basepairs of each sodium channel gene were extracted
161 andintegrated with the Leafcutter clusters, along with the first five principal components

162  calculated from common variants identified in whole-genome sequencing data from these

163  samples and 3,804 parents from the Simons Simplex Collection3?4° to predict sQTLs with

164  FastQTL.*! This analysis was performed on all samples, prenatal-only samples, and postnatal-
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165 only samples, with false discovery rate (FDR) estimated from the results of each analysis using
166  the Benjamini-Hochberg procedure.*? To assess correlation of 5N expression for the SNP

167 rs3812718, genotypes were extracted for chr2:166,053,034 C>T (GRCh38) and compared with
168 5N expression calculated by DEXSeq, as described above.

169

170 2.5 Statistical analysis

171  The 5N:5A expression ratio was calculated from normalized exon expression values (CPM).

172  Linear regression was used to assess whether this ratio varied across development by

173  comparing the log-transformed 5N:5A ratio to log-transformed post-conceptual days (Fig. 2).
174  The difference in ratio was also assessed between the mid-late fetal samples (N=112) and

175  childhood/adolescent/young adult samples (N=35) with a two-tailed Wilcoxon test. To compare
176  intron splicing between prenatal and postnatal samples, we used the P-values estimated with a
177  Dirichlet-multinomial generalized linear model, as implemented in Leafcutter.3®

178

179 3. Results

180

181 3.1 Expression of voltage-gated sodium channels in the human cortex

182  Gene expression varies dramatically across development for many genes, especially during the
183  late-fetal transition, during which half the genes expressed in the brains undergo a concerted
184  increase or decrease in expression.12324344 Tg assess gene-level developmental trajectories, we
185  analyzed bulk-tissue RNA-seq of the human DLPFC in 176 post mortem samples from the

186  BrainVar cohort (104 male, 72 female, spanning 6 post-conceptual weeks to 20 years after

187  birth).22 The gene-level expression profile of all four voltage-gated sodium channels changes
188  during this late-fetal transition (Fig. 1F-1), with SCN1A, SCN2A, and SCN8A expression rising from
189  mid-fetal development through infancy to early childhood, while SCN3A expression falls.

190
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192 Figure 1. Splicing isoforms in voltage-gated sodium channels. A) Voltage-gated sodium channels are composed of four similar
193 domains (I, 11, lll, IV), each of which includes six transmembrane segments with extracellular or intracellular linkers. The fourth
194 transmembrane segment (S4) in each domain acts as a voltage sensor. Between the fifth and sixth transmembrane segment

195 (S5, S6) is a pore loop that forms the ion selectivity filter. The fifth protein-coding exon (5N/5A, CDS 5) encodes a portion of the
196 first domain, while the 20t protein-coding exon (18N/18A, CDS 20) encodes a similar portion of the third domain. B) Location,
197 genomic coordinates (GRCh38/hg38), and amino acid sequence of the ‘5A’ and ‘5N’ exons four sodium channels. C) Patterns of
198 whole-gene expression in the human dorsolateral prefrontal cortex (DLPFC) across prenatal and postnatal development from
199 the BrainVar dataset 32. CPM: counts per million. Genomic coordinates are based on GRCh38/hg38 using GENCODE v31 gene
200  definitions.

201

202

203 3.2 Developmental trajectories of 5N and 5A expression in the human cortex

204  The majority of protein-coding exons follow the expression trajectory of their parent gene
205  across development (Fig. S3), however all four sodium channels show dynamic changes in the
206 utilization of 5N/5A (Fig. 2). This is especially marked for SCN2A and SCN8A, where 5N is
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207  expressed at a higher level than 5A in the mid-fetal brain but this reverses soon after birth.
208  Plotting the 5N:5A ratio allows exon utilization to be assessed independent of changes in gene
209  expression (Fig. 2). All four genes show changes in the N:A ratio across development, with a
210 modest change for SCN1A (0.14 fetal to 0.02 childhood/adolescent; p=0.00003, two-sided

211  Wilcoxon test, Figure 2B) and dramatic changes for SCN2A (3.7 to 0.09; p=5x10°, Fig. 2D),
212 SCN3A (0.96 to 0.18; p=6x1078, Fig. 2F), and SCNS8A (3.7 to 0.09; p=5x10%°, Fig. 2H). As a

213 control, we applied this approach to assess the ratio of CDS 4 and CDS 6 across development.
214  We observed no developmental shift in the 4:6 ratio for SCN1A, SCN2A, and SCN3A, however
215  the exon 4:6 ratio is marginally higher than expected in the prenatal period for SCN8A (0.82 vs.
216  0.66; 9x1019, Fig. S2). This developmental variation in SCN8A is not observed for the

217  surrounding protein-coding exons and reflects a modest increase in CDS 4 expression in the
218  prenatal period, based on the expected expression given the exon length (Fig. S4).

219
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Figure 2. Expression of 5N and 5A in the human cortex across development. A) The expression of 5N (blue) and 5A (red) in
SCN1A is shown for 176 BrainVar human cortex (DLPFC) samples across development (points). On the left, the colored line
shows the Loess smoothed average and 95% confidence interval (shaded region). On the right, boxplots show the median and
interquartile range for the same data, binned into fetal, transitional, and mature developmental stages. B) The ratio of 5N and
5A expression from panel ‘A’ is shown across development (left) and in three developmental stages (right). C-H) Panels A and B
are repeated for the genes SCN2A, SCN3A, SCN8A. For comparison, the same plots for CDS four and six are shown in Figure S2.
CPM: Counts per million; DLPFC: Dorsolateral prefrontal cortex. Statistical tests: B, D, F, H) Left panel, linear regression of
loga(5N:5A ratio) and log,(post-conceptual days). Right panel, two-tailed Wilcoxon test of log,(5N:5A ratio) values between fetal
and mature groups.

3.3 Intron splicing around 5N and 5A in the human cortex
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To verify that mutually exclusive use of 5N and 5A underlies the observed exon expression
changes (Fig. 2), we considered RNA-seq reads that spanned exon-exon junctions to quantify
intron splicing. Clusters of differential intron splicing corresponding to 5N/5A usage were
identified by Leafcutter for SCN2A, SCN3A, and SCN8A (Fig. 3), but not SCN1A, likely due to the
consistently low expression of N isoforms (Fig. 2). The splicing patterns for SCN2A, SCN3A, and
SCN8A are consistent with the observed exon expression changes (Fig. 2, 3) and at least 99% of
reads are consistent with mutually exclusive 5N/A utilization.
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N:A=0.15 8% 5N 5%
- <1%
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Figure 3. Intron splicing of sodium channel genes in the developing human cortex. A) Sashimi plot of splicing in the prenatal
(top, N=112 samples) and postnatal (bottom, N=60 samples) DLPFC for SCN2A. Linewidth is proportional to percentage of split
reads observed for each intron and this value is given as a percentage. Introns related to 5N inclusion are shown in blue, those
related to 5A inclusion are shown in red, and others are in grey. B-C) Equivalent plots for SCN3A (a negative strand gene with
the orientation reversed to facilitate comparison to the other two genes) and SCN8A. P-values compare the prenatal and
postnatal cluster using a Dirichlet-multinomial generalized linear model, as implemented in Leafcutter.3?

3.4 Developmental trajectories of 5N and 5A expression in the mouse cortex

We repeated the analysis of sodium channel 5N/5A expression using bulk tissue RNA-seq data
from the mouse cortex across development (N=58; E15.5 to P75). Our data are consistent with
the N:A ratios described previously.?® We observe more substantial differences at the extremes
of development: SCN2A (3.3 fetal to 0.06 mature; p=0.00003, two-sided Wilcoxon test, Fig. 4C),
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SCN3A (2.4 to 0.14; p=0.00008, Fig. 4E), and SCN8A (1.8 to 0.22; p=0.00003, Fig. 4G). Mice lack a

functional 5N exon in SCN1A.
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Figure 4. Expression of 5N and 5A in the mouse cortex across development. A) The expression of 5A (red) in Scnla is shown
for 58 mouse cortex samples across development (points); no functional 5N equivalent is present in the mouse genome. On the
left, the colored line shows the Loess smoothed average and 95% confidence interval (shaded region). On the right, boxplots
show the median and interquartile range for the same data, binned into fetal, transitional, and mature developmental stages.
B) The Loess smoothed average expression of the four voltage-gated sodium channels in human cortex (top, Fig. 1) and mouse
cortex (bottom). C) Panel ‘A’ is repeated for Scn2a with the inclusion of 5N (blue). D) The ratio of 5N and 5A expression from
panel ‘C’" is shown across development (left) and in three developmental stages (right). Values reported previously in mouse
cortex are shown in the same scale in green for comparison 20, E-H) Panels ‘C’ and ‘D’ are repeated for the genes Scn3a, Scn8a.
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267 CPM: Counts per million. Statistical tests: D, F, H) Left panel, linear regression of log,(5N:5A ratio) and log,(post-conceptual
268 days). Right panel, two-tailed Wilcoxon test of log>(5N:5A ratio) values between fetal and mature groups.

269

270 3.5 No evidence of common polymorphisms regulating 5N or 5A utilization

271 A common polymorphism (rs3812718, GRCh38 chr2:166,053,034 C>T, IVS5N+5G>A) has

272  previously been associated with epilepsy, seizures, and response to anti-epileptics,?122:26:4>46
273  though this variant did not reach genome-wide significance in a mega-analysis of epilepsy.*’
274  Prior analyses of expression in the adult human temporal cortex showed evidence that the

275 homozygous variant allele (TT in DNA, AA in cDNA) was associated with reduced utilization of
276  5N.?Y*8 We do not observe evidence for such a relationship in the prenatal or postnatal

277  prefrontal cortex (Fig. S5) and this polymorphism is not identified as a splicing quantitative trait
278  locus (QTL) in GTEx.* Furthermore, this variant is not predicted to alter splicing behavior using
279  the SpliceAl algorithm.>® The TT genotype is associated with increased expression of SCN1A in
280  the adult human basal ganglia with (p=1x100).4°

281

282 3.6 Developmental trajectories of 18N and 18A expression in SCNSA

283  We next considered the developmental timing of the transition between 18N and 18A in SCN8A
284  (Fig. 1A, 5A). Intron splicing shows a robust difference between prenatal and postnatal human
285  dorsolateral prefrontal cortex (P = 4 x 10185, Fig. 5B), with the prenatal period characterized by
286  high frequencies of transcripts excluding 18A, either including 18N or skipping both 18N and
287  18A, while in the postnatal cortex 18A is included in 93% of reads. Considering exon expression
288  (Fig. 5C, 5D), the expression of 18A increases markedly over development and this is distinct
289  from other protein-coding exons for SCN8A (Fig. S3). The 18N/18A transition begins around 13
290 post-conceptual weeks and continues till six months-of-age, with both timepoints being earlier
291 than the equivalents for 5N/5A in SCN8A and the other genes.
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294 Figure 5. Developmental trajectories of CDS 20 (18N/18A) in human cortex in SCN8A. A) Location, genomic coordinates

295 (GRCh38/hg38), and amino acid sequence of the 18N and 18A exons in SCN8A. B) Sashimi plot of intron splicing in the prenatal
296 (top, N=112 samples) and postnatal (bottom, N=60 samples) dorsolateral prefrontal cortex. Linewidth is proportional to

297 percentage of reads observed for each exon-exon junction and this value is also shown as a percentage. Introns related to 18N
298 exon inclusion are shown in purple, those related to 18A exon inclusion are shown in green, and others are in grey. C)
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299 Expression of the 18N (purple) and 18A (green) for 176 BrainVar human dorsolateral prefrontal cortex samples across

300 development (points). On the left, the colored line shows the Loess smoothed average with the shaded area showing the 95%
301 confidence interval. On the right, boxplots show the median and interquartile range for the same data, binned into fetal,
302 transitional, and mature developmental stages. D) The 18N:18A ratio is shown for each sample from panel ‘C’ across

303 development (left) and binned into three groups (right). CPM: Counts per million; Statistical analyses: B) Dirichlet-multinomial
304 generalized linear model, as implemented in Leafcutter,3® D) Left panel, linear regression of log,(18N:18A ratio) and logx(post-

305 conceptual days). Right panel, two-tailed Wilcoxon test of log,(18N:18A ratio) values between fetal and mature groups.

306

307 3.7 Other annotated protein-coding exons with distinct developmental trajectories

308 To assess whether other protein-coding exons undergo distinct developmental transitions (Fig.
309 S3), we calculated the ratios of all pairs of protein-coding exons within each for the four sodium
310 channel genes and assessed whether the ratio was correlated with development stage using
311 linear regression. This is the same calculation used to quantify the 5N/5A and 18N/18A

312 transitions (Fig. 2, 5D) and distinguishes exons with expression profiles that differ from the rest
313  of the gene (e.g. 5A in SCN2A), rather than simply being expressed at reduced levels, suggesting
314  alternative regulatory processes (Fig. S3). Visualizing the R? values of these correlations

315  provides simple method to identify the such distinct trajectories (Fig. 6). Aside from 5N/5A and,
316 in SCN8A, 18N/18A, no protein-coding exons common to most isoforms (consistent CDS in Fig.
317  S3) show differential expression, but a few weakly expressed protein-coding exons specific to a
318  small number of isoforms (variable CDS in Fig. S3) do vary across development (Fig. 6).

319

320 GENCODE defines seven variable CDS exons for SCN1A (DEXSeq divisions: 006, 015, 021, 031,
321 034,047, 049; Table S2, Fig. 6A). Of these, only 021 shows a distinct developmental trajectory
322  (Fig. 6A), with reduced postnatal expression relative to other SCN1A exons (Fig. S3). This result
323 s verified by the intron splicing data (p = 6 x 107°, Leafcutter).

324
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Figure 6. Identification of protein-coding exons with complex developmental trajectories. A) The correlation between the
ratio of CPM expression between pairs of exons (log-scaled) and developmental stage (post conceptual days, log-scaled) for
SCN1A was assessed with a linear model (e.g. Fig. 2B). The R2 value of each exon pair is show as a heat map with ‘hot’ colors
representing exon-pairs with high R2 values for which variation in the ratio is correlated with developmental age, i.e. pairs of
exons that show substantially different expression across development. Exon numbers from DEXSeq (Table S2) are shown on
the bottom and right and equivalent CDS number on the top and left (see Table S2). B-D) The analysis is repeated for SCN2A,
SCN3A, and SCN8A.

In SCN2A, the 5N/5A trajectories stand out clearly (Fig. 6B). There are four variable CDS exons
(DEXSeq divisions: 064, 079, 083, 087; Table S2, Fig. 6B), three of which have distinct
developmental trajectories (Fig. 6B, S3): 064 (Fig. S3, P = 2 x 102, Leafcutter), 079 (Fig. S3, P =7
x 10733, Leafcutter), 087 (Fig. S3, P = 2 x 1029, Leafcutter). The single variable CDS exon in
SCN3A, 023 (Table S2, Fig. 6C), varies across development (Fig. S3, P = 3 x 108, Leafcutter).
Finally, aside from 18N, there are five variable CDS exons in SCN8A (DEXSeq divisions: 018, 028,
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341 029,031, 039; Table S2, Fig. 6D) of which 018 and 029 vary across development (Fig. 6D), but
342  neither of these are validated by Leafcutter.

343

344  Discussion

345  Using transcriptomic data from 176 human dorsolateral prefrontal cortex samples, we

346  characterized the developmental patterns for all protein-coding exons in SCN1A, SCN2A,

347  SCN3A, and SCN8A (Fig. 6, S3). We observed a coordinated decrease in the 5N:5A ratio between
348 24 post-conceptual weeks (2" trimester) and six years-of-age that is synchronized with

349  widespread transcriptomic changes in the brain during the late-fetal transition.3%44 This is

350 preceded by a similar decrease in the 18N:18A ratio in SCN8A from 13 post-conceptual weeks
351 to 6 months-of-age, which is regulated by RBFOX1. By analyzing a wider developmental window
352  than prior analyses?%?148 we observed more dynamic changes and larger disparities in exon
353  expression.

354

355  Recent advances have shown that differential splicing patterns can be effective therapeutic
356 targets in humans, for example through intrathecal antisense oligonucleotides.>>? Since the
357 electrophysiological consequences of some epileptic encephalopathy associated variants differ
358 between 5N and 5A, manipulating this ratio may offer therapeutic benefit in individuals

359  carrying these variants. We consider three therapeutic scenarios.

360

361 First, for individuals with disorder-associated genetic variants within the 30 amino acids

362 encoded by the 5t exon, expressing the other copy of the 5% exon could skip the variant.

363  Theoretically, this approach could benefit individuals with both loss-of-function (protein-

364 truncating variants, missense, splice site) and gain-of-function (missense) variants in the 5t
365 exon. At present, ten such cases have been identified, all with epileptic encephalopathy

366 variants identified in the 5A exon of SCN2A and SCN8A.>3>* Since the total transcript level

367 would be unchanged, this strategy may provide a wider therapeutic window than simply

368  decreasing expression levels. The success of the therapy would depend upon the proportion of
369 transcripts expressing the alternate 5™ exon and the ability of this exon to functionally replace
370 the original 5" exon.

371

372  Second, splice isoforms can also have an effect on the biophysical effects of variants outside the
373 5™ exon. For example, three recently characterized epileptic encephalopathy associated

374  variants in SCN2A—T236S, E999K, and S1336Y—all exhibit more pronounced alterations in their
375 electrophysiological properties in 5N Nay1.2 isoforms.?3 Two other epileptic encephalopathy-
376  associated variants—M252V and L1563V —exhibit biophysical changes only when expressed on
377  5Nisoform.*>5 For individuals with these mutations, tilting expression towards the 5A isoform
378  could provide some symptomatic improvement, especially during infancy. Including both the
379 5N and 5Aisoforms in functional characterization of variant impact may identify many more
380  such variants.?3

381

382  Finally, modifying splicing might aid seizure control in older children and adults. At this age, the
383 5Aisoform is predominantly utilized in both SCN2A or SCN8A, which are mainly expressed in
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glutamatergic neurons.!! Reverting expression to the fetal/neonatal state by encouraging 5N
utilization could reduce the excitability of cortical glutamatergic neurons, potentially

limiting seizures. Since this would require repeated intrathecal administration, it would likely be
limited to the most severe cases of epilepsy. Furthermore, it remains to be seen whether this
approach could offer therapeutic benefits above and beyond existing antiepileptic drugs.

Our analysis was limited by the use of short-read transcriptomic data, leading us to focus on
quantifying exon-level expression (Fig. 2) and splice junction usage (Fig. 3), rather than relying
on estimates of isoform utilization (Fig. S1). We also elected to focus on protein-coding
transcripts and exons defined by GENCODE (v31) rather than attempting de novo transcriptome
assembly. Emerging long-read transcriptomic technology may substantially expand estimates of
isoform and exon diversity but these technologies have not been applied to the developing
human brain at scale.>®*>” We also note that transcriptomic data is only partially predictive of
protein levels and other factors, including channel transport and degradation, may influence
the impact of isoforms on neuronal function. Comparing the human and mouse cortex data
(Figs. 2, 4), it is possible that more substantial differences in gene and exon expression may be
observed at earlier embryonic times in the mouse or with larger sample sizes. In addition, the
use of bulk-tissue transcriptomic data limits our ability to assess how individual cell-types or
cell-states contribute to the observed isoform trajectories. Technological and methodological
advances may provide insights at cell-level resolution in the future.®®

Conclusion

Dramatic differences in exon usage of SCN1A, SCN2A, SCN3A, and SCN8A observed in rodent
brains also occur in the human developing cortex, beginning in mid-fetal development and
continuing through childhood. These changes in splicing affect the biophysical properties of the
encoded channels and are likely to contribute to differences in phenotype observed between
individuals with different variants and across development.
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