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ABSTRACT

Side-stream enhanced biological phosphorus removal process (S2EBPR) refers to modified EBPR
configurations that have been demonstrated to improve the performance stability and offer a suite
of advantages compared to conventional EBPR design. Design and optimization of S2EBPR
requires modification of the current EBPR models that were not able to fully reflect the metabolic
functions of and competition between the PAOs and GAOs under extended anaerobic conditions
as in the S2EBPR conditions. In this study, we proposed and validated an improved iEBPR model
for simulating PAO and GAO competition that incorporated heterogeneity and versatility in PAO
sequential polymer usage, staged maintenance-decay and glycolysis-TCA pathway shifts. The
iEBPR model was first calibrated against a bulk batch test experimental data. The improved iEBPR
model performed better than the previous EBPR model for predicting the soluble orthoP, ammonia,
biomass glycogen and PHA temporal profiles in a batch starvation testing under prolong anaerobic
conditions. We further validated the model with another independent set of batch anaerobic batch
testing data that included high-resolution cellular and population-level intracellular polymers
measurements enabled by single-cell Raman microspectroscopy technique. The model accurately
predicted the temporal changes in the intracellular polymers at cellular and population levels
within PAOs and GAOs, further confirmed the proposed mechanism of sequential polymer
utilization, and polymer availability-dependent and staged maintenance and decay in PAOs. These
results indicate that under extended anaerobic phases as in S2EBPR, the PAOs may gain
competitive advantage over GAOs due to the possession of multiple intracellular polymers and the
adaptive switching of the anaerobic metabolic pathways that consequently lead to the later and

slower decay in PAOs than GAOs. The iEBPR model can be applied to facilitate and optimize the
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design and operations of S2EBPR for more reliable nutrient removal and recovery from

wastewater.

INTRODUCTION

Enhanced biological phosphorus removal (EBPR) process has been recommended as a promising
strategy to achieve sustainable wastewater P removal and simultaneous P recovery !. Current
EBPR systems are driven by and engineered to favor a key functional group, phosphate-
accumulating organisms (PAOs) such as the Candidatus Accumulibacter phosphatis, which is the
most commonly found PAO in EBPR systems. Glycogen-accumulating organisms (GAOs) are
often found to coexist with PAOs but lacking polyP metabolism. They have similar glycogen-
based VFA-PHA metabolism >3 concerned to be niche VFA competitor with PAOs but have
limited contribution to P removal performance. PAO-GAO competition could be a critical factor
in EBPR performance and is kinetically affected by various factors including pH, temperature and
hydraulic retention time (HRT) etc. +®. Meanwhile, the existence of GAOs does not necessarily

deteriorate EBPR performance as long as PAOs are kinetically favored '--1°.

The performance stability of EBPR has been a concern for its wide implementation in practice and
its sustainability advantages are often offset by the needs to have chemicals standby for ensuring
reliable P removal performance to consistently meet compliance !, Many facilities still suffer
from inconsistent performance with unpredicted upsets, particularly for those with relatively weak
influent readily biodegradable COD (rbCOD) %12 An emerging technology that has been
demonstrated to successfully address this common stability challenge is side-stream RAS and
mixed liquor hydrolysis/fermentation-based side-stream EBPR (S2EBPR) 'W:!L.13-18 SO)EBPR

refers to modified EBPR configurations that include diversion of a portion of RAS or anaerobic
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mixed liquor to a side-stream reactor, where simultaneous VFA production via sludge hydrolysis
and fermentation and PAO activity-related P release and carbon uptake occur. Compared to
conventional EBPR design, the S2EBPR offers a suite of advantages including influent-carbon
independent condition for PAO enrichment that eliminates the influences of fluctuating influent
loads, more controllable lower-redox environment with more complex VFA composition that
provides more favorable selection of PAOs over GAOs, flexible implementation configurations
and potential reduction of carbon footprint and denitrification enhancement by diverting more

influent carbon to denitrification *-%-11:19-22

While full-scale processes demonstrated the potential promises and advantages of S2EBPR %11:13-
18 existing knowledge gaps in fundamental understanding of the biochemical mechanisms and
microbial ecology involved in S2ZEBPR hampers its wider application and implementation. Design
and optimization of S2ZEBPR requires adequate EBPR models that can capture the underlying key
mechanisms involved in the S2ZEBPR such as the VFA production via hydrolysis and fermentation,
and PAO and GAO competition in the extended-anaerobic side-stream reactor. A few recent
modeling efforts failed to predict either this competitive advantage or the performance superiority
observed in S2EBPR systems compared to the conventional EBPR systems 2324, This suggested
that there are still critical aspects in the current EBPR models that cannot reflect the metabolic
functions of and competition between the PAOs and GAOs under the S2EBPR conditions, such as
cell maintenance, biomass decay, the utilization of intracellular polymers, and PAO/GAO

metabolic versatility under the prolonged anaerobic condition 23-2°,

PAOs’ cell maintenance is a hypothesized metabolic process from the observation of their steady-

state and consistent intracellular glycogen and polyP degradation that are independent of their
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88  EBPR-related metabolic activities such as PHA synthesis 2*2%27-3! Studies showed that PAOs
89  continued consuming their intracellular glycogen and polyP both during short-term (about 10 hrs)
90 #2728 and long-term (=5 days) * anaerobic treatments without external VFA supply and they were
91 not coupled with EBPR-associated VFA uptake and storage. Similar experimental evidence was
92  observed for GAOs who had cell maintenance during both short-term 2243°3! and long-term »
93  anaerobic conditions solely based on glycogen. The possession and ability to utilize both polyP
94  and glycogen depending on their availability for maintenance energy derivation by PAOs led to
95 the seemingly inconsistent observations of polymer utilization priority under the similar anaerobic
96  conditions. This highlighted the importance of the more pronounced effects of anaerobic metabolic
97  versatility of PAOs, particularly under extended anaerobic condition such as those in S2ZEBPRs
98 323 However, in current EBPR models, PAO cell maintenance is often approximated by either
99 first-order decay of polyP and/or glycogen (e.g. ASM2 and ASM3+BioP **), or polyP-only
100  cleavage (e.g. Barker&Dold and UCTPHO+ %-¢) without accounting for glycogen. Recent studies
101  attempted sequential polymer usage strategy 26378 to mitigate the overestimation of polymer
102 consumption encountered in traditional EBPR models that use first-order decay (e.g. ASM2 and
103 ASM3+BioP **) and polyP cleavage (e.g. Barker&Dold and UCTPHO+ 53¢, which ignores
104  glycogen). More accurate modeling of the cell maintenance processes in PAOs and GAOs under
105  the unique and prolonged anaerobic conditions can improve the modeling efficiency of S2ZEBPR
106  systems®. Li et al. (2018; 2020) and Santos et al. (2020) further extended the cell maintenance to
107  the “survival” hypothesis, in which maintenance precedes biomass decay, to explain the observed
108  low PAO/GAO decay rate in comparison to other heterotrophic organisms under anaerobic

109  conditions 2°%4% However, with complex microbial communities, current population-level
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110 models still cannot estimate the effect of mixture phenotypes and non-uniformity in polymer

111  distributions 3*! and capture the detailed PAO-GAO competition at phenotype/cell group level.

112 The most debated aspect related to the Accumulibacter’s anaerobic metabolism is the source of
113 reducing power (NAD(P)H). In early studies, this source was deduced to be exclusively supported
114 by glycolysis (referred to as Mino model) #? or solely supported by tricarboxylic acid (TCA) cycle
115  (referred to as Comeau-Wentzel model) #’#*. Both models were supported by additional
116  experiments *#, while some others suggested potential coexistence and simultaneous contribution
117 to t NAD(P)H production =8, A switch between these pathways may occur and was hypothesized
118  tobe related with intracellular polymer availability or depletion 23434849 Another critical discussion
119 on the anaerobic operation of complete TCA proposed that the oxidation of succinate
120 thermodynamically is unfavorable which relies on external electron acceptors (TEAs) 2. Four
121 potential mechanisms have been proposed that either bypass this oxidation step or employ
122 alternative ways to sink the electrons, namely succinate-propionate shunt 3, partial reductive TCA
123 cycle 32, glyoxylate shunt 75354 or proton motive force-driven quinol-NAD(P)* reductase *°. Each
124 proposed theoretical pathway was supported by physiological, genomics, transcriptomics or
125  proteomics evidences, and exhibits different stoichiometry on glycogen, polyP, VFAs, PHAs and
126  CO, release. This metabolic versatility may help explain the wide range of stoichiometry observed
127  in a variety of full-scale studies 2. Santos et al. (2020) introduced the pathway switching
128  mechanism to better reproduce this complicated, flexible metabolic network *. However,
129  traditional EBPR models cannot simulate such pathway shift effects as the essential yield
130 coefficients was kept constant during the simulation after calibration, nor distinguish between

131  coexisting PAO phenotypes with different glycolysis and TCA cycle operations.
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132 In this study, with the long-term goal to better predict the S2ZEBPR processes, we proposed and
133 validated an improved model for PAO and GAO competition under extended anaerobic conditions
134  that incorporated heterogeneity and versatility in PAO sequential polymer usage, staged
135  maintenance-decay and glycolysis-TCA pathway shifts. More importantly, we further calibrated
136  and verified the model by leveraging the power of single-cell Raman microspectroscopy
137  technology that enabled cellular-level quantification of intracellular dynamics under various
138  conditions #4!°, The model was first calibrated using a previously published 8-day anaerobic
139  starvation testing in PAO-enriched (85% as PAO) EBPR batch reactor 3. Then the calibrated
140  model was validated using an independent 72-hour continuous anaerobic incubation batch test with
141  sludge from a full-scale S2EBPR system. The model outperformed the previous model in
142 predicting the experimentally observed trends of intracellular polymer biomass content under
143 anaerobic conditions and was proven to be more effective in simulating PAO/GAO maintenance
144  behavior under those extended anaerobic conditions than conventional models. The proposed
145  mechanism can be incorporated into industrial EBPR models to more accurately reveal the overall

146  EBPR performance and PAO/GAO competitive dynamics as observed in S2ZEBPR systems.

147  METHODOLOGY

148  Agent-based EBPR model structure

149  An agent-based EBPR model (named as iEBPR) was developed based on the model (named as
150  iAlgae) developed by Bucci et al. (2012) . In this study, three population groups are included,
151 namely PAOs, GAOs and OHOs (ordinary heterotrophic organisms, accounting for all non-

152 PAO/GAO biomasses). The agent-based approach splits each biomass category in 10,000 agents
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153  (representing cell groups with phenotypic heterogeneity) with randomly seeded polymer contents

154  and kinetic parameters.

155  The metabolic framework and structure of iAlgae were developed based on the International Water
156  Association's Activated Sludge Model v2 (ASM2) that includes Accumulibacter-PAOs and OHOs
157 34 A third organism type, namely Competibacter-like GAO, is added to the new model based on
158  the current understanding of the main cell activities of GAOs including anaerobic VFA-uptake,
159  PHA synthesis and aerobic biomass growth PHA-degradation and glycogen-accumulation %2431,
160 At this stage, the iAlgae uses only acetate to represent all VFA species without differentiating
161  various VFAs such as propionate etc. Similarly, PHB was chosen to represent PHA as in similar
162 modelling study 8. As we focused on PAO-GAO competition under extended anaerobic condition,
163 denitrifiers, nitrifiers and other anoxic-related metabolisms are not included in this modeled. The
164  hydrolysis and fermentation of inert organic matter was considered not bottlenecking the rbCOD
165  generation and was modeled as instant transformation to the final VFA product. All modeled
166  processes for Accumulibacter-PAOs, Competibacter-GAOs and OHOs are shown in Table S1-3

167  with Gujer matrices.

168  Agent-level energy derivation for cell maintenance and decay with polymer-availability

169  dependence

170  Similar to previous studies 78

, sequential polymer usage and staged cell maintenance-decay was
171  incorporated into the model however at agent-level. This process replaces the first-order decay

172 calculation in ASM2. Specifically, this was modeled in two steps below.
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173 Cell maintenance and sequential polymer usage. Each PAO and GAO agent possesses a
174  parameter called targeted cell-maintenance rate, denoted as m4™F, expressed in mol-ATP/(C-mol
175  biomass.hr). The unit was further converted to fit the unit specifications in our model (mg polyP-
176 P and mg glycogen-COD) based on known stoichiometry and yield coefficients reported in the
177  previous studies >*3133, Its proto-value was experimentally determined in previous studies 273!, In
178  agent-based modeling, the value may vary based between agents to emulate the metabolic
179  heterogeneity between cells and phenotypes. Each PAO and GAO agent will attempt to fulfill their
180 own cell-maintenance target according on their local intracellular polymer availability.

' when

181  Specifically, GAOs will generate ATP via the previously proposed stoichiometry 23
182  glycogen is available. For PAO cells, the same glycogen-based stoichiometry was used * as well
183  as the stoichiometry of ATP production from polyP cleavage #. In addition, extra mechanism must

184  be introduced to allocate the contributions from both glycogen and polyP based on the agent

185  phenotype of preferences. For polyP-preferred agents, this was calculated as

186 T,

— ATP
polyP — Mpolme

— ATP
187 rglycogen - glycogen(m - polyP)J

188  while for glycogen-preferred agents, this was calculated as

— ATP
139 rglycogen - glycogenm
— ATP
190 rpolyP - MpolyP(m - rglycogen)
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191  instead. Where: r

volyp aNd Tyiycogen are the real-time ATP generation rate from the respective

192  polymer; m4TF is the target cell-maintenance rate; M, 1yp and Mgy cogen are Monod functions
193  scaling the production rate based on the availability of the respective polymer. It is important to
194  note that this calculation strategy can be easily extended to calculation with more than two
195  polymers in sequential preferences. This approach simulates the observed sequential polymer
196  usage in various studies 2323, Unlike other models reported in the literature where the sequence
197  of polymer usages is pre-chosen 373, we set the polymer preference order as an adjustable
198  parameter to simulate the PAO metabolic versatility and observations with inconsistent

199  prioritization 323,

200  Sequential and linked cell maintenance and decay. Previous EBPR models considered the cell
201  decay as an intrinsic process at a constant specific rate i.e., first-order decay. A number of studies
202  have showed evidence of accelerated biomass decay after depletion of their intracellular polymers,
203  implying a linkage between these two processes 2%, To simulate this linkage, we first calculated
204  the combined ATP production from all involved polymers in cell maintenance, then compared it
205  with the target cell-maintenance rate (denoted as m4TF) 26, If the production is short from the
206  target, the proportion of the shortage was used as a switching function to scale the actual biomass

207  decay rate, namely,

7,.ATP
208 br = bmax (1 - W)'

209  where: b, is the actual specific decay rate; b4, is the maximum specific decay rate; 7477 is the
210  combined ATP production from cell maintenance processes. The decayed biomass then

211  proportionally regenerates as VFA (rbCOD) based on the empirical PAO/GAO biomass formula
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212 CHi.930053No2 2. This calculation states a “maintenance precedes decay” mechanism that PAO
213 and GAO biomasses are able to suffer no biomass decay when they have ample polymer for cell
214  maintenance. In other words, the cell maintenance was hypothesized as a “survival” strategy for

215 PAO and GAO cells under anaerobic conditions 3%.

216  Glycolysis and TCA cycle pathway switching

217  As discussed previously, current knowledge suggests that PAOs can use both glycolysis and TCA
218  cycle to generate the reducing power needed in PHA synthesis. The major difference between
219  glycolysis-oriented and TCA-oriented metabolism (including various TCA-cycle operation
220  patterns) is glycogen dependency *>*7. Namely, PHA synthesis solely supported by TCA cycle
221  will remain operatable after glycogen depletion 2>#°, Dominant use, or a combined employment at
222 various degrees of these two pathways have been evidenced and discussed 20-27-28:43-48.57 1 this
223 study, we simplify the metabolic network to two principal stoichiometry models, namely sole
224 glycolysis (Mino model) 2%°7 and full TCA cycle (Comeau-Wentzel model) 2”43, which are both
225  well established, and widely adopted in EBPR modeling applications. To simulate the various
226  degrees of deployment of these two pathways, the final stoichiometry was calculated as their
227  weighted mixture, where the weights of respective pathway was calculated from the availability
228  ofrespective polymers. This is considered as a common approach which was also used by previous
229  studies in both stoichiometric analysis ***’ and modelling 37-*¥. Therefore, the change of polymer
230  availability during simulation will also change the weight ratio between pathways, simulating the
231  polymer-dependent pathway shift. However, this calculation implies that PAOs much rely on
232 polyP in PHA synthesis and disallows them shifting to GAO-like metabolism; though it is not

25,58

233 necessarily true in reality . In addition, to account for the PAO phenotypes that may strictly
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234 require glycogen in PHA synthesis 28

, we also included a second type of PAO agents that cannot
235  switch to TCA-oriented metabolism when glycogen is depleted. This multi-phenotype feature

236  within a single biomass category is exclusive to agent-based modelling.

237  Agent pool initialization and discrete-time simulation

238  All agents were generated by randomizing the cellular states and kinetic traits via individual
239  seeding distributions, which can be calibrated with observation datasets revealing in-species
240  heterogeneities. Only the cellular biomass, polymer storage, rates and affinity-related traits are
241  randomized; stoichiometric coefficients are considered as pre-determined constants as they can be
242 theoretically determined or empirically justified. The number of agents is an important parameter
243 in agent-based modeling. A larger agent pool trends to have generated traits statistically better
244  approximate the pre-defined seeding distributions, however, will proportionally increase the
245  computational load. We found that using 1,000-10,000 agents per biomass was a good
246  compromise. In addition, we used discrete-time simulation approach with all agents updated

247  synchronously at each simulated time step.

248  Model Calibration

249  Simulation of the PAO and GAO competition under extended anaerobic conditions via the
250  modified agent-based EBPR model (iIEBPR) was first calibrated with an independent set of data
251  retrieved from a previous 8-day anaerobic starvation study in a lab-scale Accumulibacter-enriched
252 (reported abundance of ~85%) EBPR system 33. The initial content of glycogen and PHA was
253 acquired from the published data with the polyP estimated by assuming a full cleavage and release
254  at the end of the experimental period. Anaerobic kinetic parameters of PAOs and GAOs are

255  calibrated. Gradient descent technique is used as automated calibration method. For detail, the
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256  geometric mean of root mean square errors (RMSEs) calculated from predicted and observed
257  temporal profiles of PHA, glycogen, orthophosphate and MLVSS was used as the loss function.
258  The gradient descent algorithm hence could start from an arbitrary initial parameter set then
259  iteratively adjust those parameter values in the direction where the loss function reduces the fastest,
260  until hitting a local minimum. The global optimum was attempted by repeating the above process
261  for 10,000 times; then the final parameter set corresponds to the least loss was selected as the
262  calibration result. Yield coefficients used the values from previous studies and ASM2 model

2,7,59

263  defaults with unit conversions if necessary . Table S4-6 shows the final parameter set for

264  PAOs and OHOs respectively, and unit conversions are shown in Note S7.

265 Comparison of model results with cellular-level experimental observations via single-cell

266 Raman microspectroscopy

267  Previous studied proposed single-cell Raman spectroscopy (SCRS) to be a promising technology
268  in estimating the glycogen, PHA and polyP in individual cells, to further reveal the polymer

41,60-62

269  distributions at both cellular and population levels. . This phenotypic survey data is

270  comparable with the polymer distribution predicted by agent-based modelling >°.

271  SCRS dataset acquisition. An SCRS dataset was first acquired for each individually sludge sample
272 based on the method detailed in previous studies #4!, Briefly, 1 mL of MLSS was washed twice
273 with 0.9% (w/v) NaCl solution and homogenized by passing in and out of a 26-gauge needle and
274  syringe for at least 20 times to obtain uniform distribution of cells, as described previously. Then
275  6-8 drops of the disrupted sample were spread and dried on aluminum-coated slides (EMF Corp.,

276  Ithaca, US). After that, the slide was dipped into ice-cold Milli-Q water several times to remove
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277  salt particles, and dried by filtered nitrogen gas. For each sample, Raman spectra for at least 40
278  single cells were acquired using a multiline confocal Raman spectrometer (LabRam HR Evolution,
279  Horiba Jobin Yvon, Kyoto, Japan) configured with a 532 nm Nd:YAG laser and a 600 gr/mm
280  grating. A 100x long working distance objective with a numerical aperture (NA) of 0.9 and a
281  working distance of 0.21 mm was used to observe and collect Raman signal from single cells. The
282  acquisition time for each individual spectrum was 20 seconds per cell and the laser power was set

283 to 10%. Spectra were collected with scan from 400 cm™! to 1800 cm™'.

284  SCRS data processing. Raman spectra processing and polymer relative abundance calculation
285  were detailed by Gu et al. (2018)!. All Raman spectra were processed using cosmic spike removal,
286  smoothing, background subtraction and baseline correction using LabSpec 6 software (Horiba
287  Jobin Yvon, Kyoto, Japan). Quality control was conducted by excluding the spectra showing
288  unexpected signals (damaged) or low SNR, or lack of major characteristic peaks from bacterial
289  components such as phenylalanine (~1002 cm) and amide I (~1657 cm™!). The candidate PAO
290 and GAO populations were quantified based on the different combinations of intracellular
291  polymeric inclusions, including poly-P (band at 690-700 cm™ for P-O-P vibrations and band at
292 1168-1177 cm! for PO, stretching band), PHAs (bands at ~434 cm™!',~839 cm!, and ~1723 cm™),
293  and glycogen (bands at ~480 cm',~852 cm!, and ~938 cm), as described previously 2. The
294  relative content of poly-P, PHAs, and glycogen in each candidate PAO and GAO cell were
295  evaluated based on the intensity of the bands at 1168-1177 cm, ~1723 cm™!, and ~480 cm!,
296  respectively (normalized against the intensity of the amide I band). The polymer distribution in
297  PAO and GAO biomass was then estimated based on the polymer relative abundances within PAO

298  and GAO candidate cells collected in each sample respectively.
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299  RESULTS AND DISCUSSION

300  Model calibration with batch testing results

301  The model was calibrated against the temporal profile of orthophosphate and residual ammonia
302  concentration, intracellular glycogen and PHA storage (Figure 1). The ammonia concentration was
303  calculated from the modeled biomass decay in the same method proposed by Lu et al. (2007) 3.
304  Figure 1 shows the comparison of the experimental data with the predicted orthoP, ammonia,
305 glycogen and PHA temporal profiles by the improved model and previous agent-based model
306 iEBPR (without the staged maintenance-decay and sequential polymer utilization for cell
307 maintenance). The improved iIEBPR model performed quantitatively better than the previous
308 iAlgea model (Table 1). Particularly, note that the revised model reflects the “S-shape” of the
309  orthoP profile indicating a first acceleration and then deceleration of polyP degradation. While the
310  previous model predicted a deviated profile without this acceleration. The glycogen profiles are
311  predicted with similar trend from both models; while only the improved model predicted the
312  increase in polyP-origin ATP production from Day 1-3 resulted from the sequential polymer
313  utilization that shifted from glycogen-dependent to poly-P dominant. Based on these experimental
314  observations, the 8-day anaerobic starvation could be divided into four phases: Day 0-1: Glycogen
315  degradation phase signatured by fast glycogen reservoir depletion within the first day,
316  accompanied by corresponding PHA formation; Day 1-2: Continuous glycogen degradation but
317  with a slower rate until the end of Day 2; the PHA formation rate was also lowered concurrently.
318  The glycogen content was still above detection limit after this stage, but no significant change was
319  observed afterwards. Meanwhile, there was minimal decay of biomass (indicated by releasing

320 residual ammonia); Day 2-4: PolyP degradation phase accompanied with increasing residual
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321  orthoP concentration and slowly increasing residual ammonia implying no significant cell decay;
322  Day 4-8: Decelerating releasing rate of phosphate indicated the degradation of polyP was slowing
323  down, which was accompanied with detectable increase in the residual ammonia signifying

324  accelerated cell biomass decay.

300 -

250 -

200 -

150 -

100 -

Residual orthophosphate (mgP/L)

Time (day)

—— PO4-P (staged) ---- POg4-P (conv. model) ¢ POs-P (observed)
—— NHs-N (staged) ---- NHas-N (conv. model) > NHs-N (observed)
325


https://doi.org/10.1101/2020.11.18.387589
http://creativecommons.org/licenses/by-nc-nd/4.0/

326

327
328
329
330
331
332
333
334
335
336

337

338

339

340

341

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.387589; this version posted November 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

(9]
|

AN e e

) 1

] 1

3- /B | 1
7O : i

/ 1 1 1

) 1

|

Glycogen storage (C-mmol/L)
PHA storage (C-mmol/L)
-~
)_/’

1 \ 1

{ < ) 1

! \ |
- N

g |

|

e L rf

. SEO y, N P

Ty - T o T T 1T o - T ]

/
/

A
v

| i | | | i i

4 5 6 7 8
Time (day)

o
[ g 1 VS SN0
N
w

A

---- glycogen (conv. model) ¢> glycogen (observed)
- PHA (conv. model) <> PHA (observed)

—— glycogen (staged)
—— PHA (staged)

Figure 1. Model calibration by comparing the simulations results via the iIEBPR model against the temporal
experimentally measured profiles of PO4-P, ammonia, intracellular glycogen and PHA in an acetate-fed
lab-scale EBPR system with approximately 85% Accumulibacter-PAOs during an 8-day anaerobic
starvation batch test (Lu et al. (2007)). Top shows the residual orthophosphate and ammonia-nitrogen
profiles, and the bottom shows intracellular glycogen and PHA. Results were also compared with the
simulation results from the previous iAlgae model that uses first-order polymer decay. Number (1)-(4)
indicate the four differential stages observed during the batch test: (1) rapid glycogen degradation; (2)
transit stage with decreasing glycogen depletion rate and increasing polyP hydrolysis rate; (3) polyP
degradation with glycogen being depleted; and (4) polyP depleting stage with on-set of significant cell
decay (indicated by the increased release of residual ammonia).

Notably, the calibrated PAO cell maintenance rate was 2.1 X 1073 mol ATP/(C-mol VSS-hr),
which resided in the range shown in Table 1. The model calibration suggested that only a very
small or portion of PAOs (< 1%) can utilize TCA cycle. This agreed with the results found in

original experiment where no significant PHA formation was observed after glycogen depletion

33
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342 Table 1. Modelling accuracy (RMSE) comparison between iEBPR and iAlgae. Observation data acquired
343  from an 8-day anaerobic starvation test of an acetate-fed PAO-enriched (about 85% as PAOs) lab-scale
344 sludge by Lu et al. (2007).

RMSE
Model PO4-P NH4*-N PHA Glycogen
mgP/L mgN/L C-mol/L C-mol/L
iIEBPR (Improved with staged maintenance-decay,
sequential anaerobic maintenance polymer usage 5.98 0.18 0.34 0.12
and glycolysis-TCA pathway switching, this study)
iAlgae-ASM23+36 33.0 1.08 0.34 0.19

345

346  Improved accuracy in predicting PAOs’ competitive advantage

347  Comparing to the Lu et al. (2007)’s original experimental data, both the improved iEBPR and the
348  conventional iAlgea models predicted a high-rate glycogen utilization in the first stage day, while,
349  only the improved model that incorporated staged maintenance and decay was able to predict the
350  accelerated polyP degradation upon the depletion of glycogen as observed in the stage 2 and 3.
351  This suggested that Accumulibacter-like PAOs biomass seemed to prefer the utilization of
352  glycogen over poly-P as energy source when both are available as they are consumed first and
353  fulfilled the theoretical cell-maintenance ATP requirements. This was accompanied by the
354  transition from glycogen-oriented towards a polyP-oriented cell maintenance. Figure 2 shows the

355  calculated distribution of ATP production originated from the glycogen versus those from polyP.

356  Note that the previous model (iAlgae) that uses the first-order decay to approximate cell

357  maintenance failed to reflect the observed transition from dominantly glycogen-dependent ATP
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production to a stage with accelerated polyP utilization upon the depletion of glycogen (Figure 1
and Figure 2). The overestimation of PAOs’ polyP consumption under anaerobic conditions within
the first 24 hrs (more relevant to the anaerobic condition in full-scale EBPR systems) hence may
underestimate the PAOs’ competition advantage under anaerobic conditions. This overestimated
polyP cleavage caused the traditional model to over-predict about 56 mgP/L P release than the
observation at the end of Day 2 Figure 1 (top). The incorporation of the staged-maintenance and
decay with sequential polymer utilization better predicted PAOs biomass decay kinetics under

anaerobic conditions comparing to conventional model.
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367

368  Figure 2. Comprison of model predictions and experimental observations of glycogen-contributed (top) and
369  polyP-contributed (bottom) ATP during an 8-day anaerobic starvation testing with acetate-fed lab-scale
370  EBPR system containing about 85% as Accumulibacter-PAOs (used as calibration dataset) by Lu et al.
371  (2007). The improved model (this study) is designed with sequential anaerobic maintenance polymer usage,
372  staged maintenance-decay and glycolysis-TCA pathway shift; iAlgae uses the same first-order decay as
373 ASM2°*%

374  The staged maintenance-decay mechanism also predicts a different PAO biomass decay kinetics
375  from those by the traditional first-order model. An accelerating release of ammonia nitrogen was
376  observed in the experiments which accompanied with the deceleration of polyP release at the end
377  of Day 4. This indicates the PAO cells approached the depletion of both intracellular polymers and
378  started decay, as the nitrogen-containing substance began to lysis from dying cells as ammonia
379 3363, The improved model captured the ammonia release acceleration by using the staged

380 maintenance-decay mechanism (Figure 1 top). The calibrated PAOs biomass decay rate was
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381  0.007/d, being close to the reported value as 0.006/d as reported in original experiment. To predict
382  the same amount of biomass decay using the traditional constant first-order lysis mechanism, the
383  decay rate had to be calibrated to 0.0028/d (the dash line of NH4"-N in Figure 1 (top)), which is
384  53% less than the reported value. This inaccurate approximation of biomass decay when using
385  traditional model may potentially lead to either overestimating PAO biomass loss before their
386  polymer depletion or underestimating the PAOs’ biomass loss after. This effect can have much
387  more impact on simulating processes with extended anaerobic incubation HRT such as in S2ZEBPR
388  system, therefore it is crucial to incorporate this mechanism in order to improve the modeling

389  performance of a variety of S2ZEBPR systems.

390  Case study: Simulating PAO and GAO competition under prolonged anaerobic incubation

391  using Full-scale S2EBPR biomass

392  Model prediction at bulk level

393  The calibrated model was used to simulate an independent anaerobic incubation batch testing
394  similar to the conditions in side-stream reactor in S2EBPR systems %, The testing sludge was
395 sampled from the side-stream fermentation reactor (SSR configuration) of South Cary Water
396  Reclamation Facility (Apex, North Carolina) as described by Nicholas et al. (2018) and Onnis-
397 Hayden et al. (2018) %4 It was estimated to contain 6.9% biovolume as Accumulibacter-PAOs
398 and 1.1% as known GAOs by fluoresces in-situ hybridization (FISH) 4. The batch test was
399  conducted as a 72-hour anaerobic incubation without external VFA feeding, and the residual
400  orthophosphate, residual VFA, MLSS glycogen and PHA were monitored and measured at 0, 6,

401 12, 18, 24, 36 and 72 hours after the beginning of this incubation. The model was fitted to these
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402  temporal profiles with adjustment on initial status and biomass-composition-related parameters,
403  including initial polymer contents, biomass concentration of all three species and the fraction of
404  TCA-cycle-enabled agents in PAO species. In addition, OHOs’ biomass decay rate was also
405  adjusted to the experimentally identified value. All other kinetic and stoichiometric parameters
406  were set identical to the lab-scale sludge calibration results, no more kinetic calibrations were
407  conducted. GAOs’ kinetic and stoichiometric parameters were set identical to PAOs' except the
408  yield ratio of PHA to VFA uptake, since GAOs lack polyP and rely on glycogen to provide both

409  ATP and reducing power in this process .
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Figure 3. Comparison of experimental measurements with Simulated temporal trends of residual orthoP,
intracellular PHA and glycogen in a 72-hour anaerobic incubation batch test using sludge sampled from
full-scale S2ZEBPR system (SSR configuration, South Cary WRF, Apex, NC) estimated to contain 6.9% as
Accumulibacter-PAO, 1.1% as GAOs (by FISH, biovolume), using the improved model iEBPR that
incorporates sequential polymer utilization in cell maintenance, staged maintenance-decay and glycolysis-

TCA pathway shift. Top: residual orthophosphate and residual VFA; Bottom: MLSS glycogen and PHA.

Figure 3 shows the comparison of the observed measurements with the predicted temporal profiles
of residual PO4-P, residual VFA, total MLSS PHA and glycogen during the anaerobic batch
testing. The OHO decay rate was calculated to be 0.0076/d based on the VFA requirement to fit

the observed stoichiometry of P release, glycogen consumed and PHA formation, since in this

model the hydrolysis and fermentation process is integrated into biomass decay. The simulated
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423  residual PO4-P, MLSS glycogen and PHA agreed well with observed data with RMSEs of
424  49mgP/L, 16.5mgCOD/L and 11.15 mgCOD/L respectively; the RMSE of residual VFA was
425  8.9mgCOD/L and about 22mgCOD/L VFA was overestimated by the model at 72 hours. The
426  model predicted a transitioning at around 45 hours from high-rate active P release with significant
427  PHA synthesis phase to a second phase with slower increase in both PHA and residual P.
428  Calculated yield ratio of the active P release to PHA formation from 36-72 hours was 1.77 mol-
429  P/C-mol PHA, which is higher than the typical range 0.36-0.77 mol-P/C-mol PHA for A/O
430  enriched sludge #*%3¢4" and 0.78-1.22 mol-P/C-mol PHA for S2EBPR sludge 2°. This implies an
431  excessive source was contributing to the PO4-P release which was not related to VFA uptake and

432 PHA formation, potentially being cell maintenance.

433  Model prediction at cellular and population level

434  However, investigate detailed polymer transformation at this bulk level is limited due to the lack
435  of resolution of real-time polymer distribution at population and cellular levels that better reflect
436  the competition between PAOs and GAOs , which may result in different metabolic patterns co-
437  exist according to the actual polymer storage in individual cells. To further validate the proposed
438  mechanism of polymer-dependent and staged maintenance and decay, SCRS was employed to
439  measure and reveal the intracellular polymer dynamics in PAOs and GAOs that ultimately dictates
440  their competition, and they were compared with the agent-based model results. The initial
441  distributions of PAOs’ and GAOs’ intracellular polymers namely polyP and glycogen in PAOs
442  and glycogen in GAOs, were adjusted manually after their means were determined in the previous
443 bulk-level step following the previous protocol >°. Their temporal trends were represented by

444  snapshotting the modeled residue polymers across PAO/GAO species at 0, 6, 12, 24 36 and 72
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445  hours, and were compared to the experimentally acquired distributions by SCRS at the same time
446  points. 419061 Ag shown in Figure 4, the model accurately predicted the measurements at cellular
447  and population levels, proving that the model mechanisms to be effective in modeling highly

448  resolved PAO/GAO intracellular polymer metabolisms.
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450  Figure 4. PAO polyP, glycogen and GAO glycogen in-species distribution by agent-based modeling (lines)
451  and the actual distribution acquired by Raman single-cell microspectrascopy (dots) during a 72-hranaerobic
452 incubation batch test (this study) with sludge sampled from full-scale S2EBPR system (SSR configuration,

453  South Cary WRF, Apex, NC).
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455  Figure 5. iEBPR predicted PAO and GAO decay based on sequential polymer utilization in cell
456  maintenance and staged maintenance-decay mechanism of a 72-hour anaerobic incubation batch test using
457  sludge sampled from full-scale S2EBPR system (SSR configuration, South Cary WRF, Apex, NC)
458  estimated to contain 6.9% as Accumulibacter-PAO, 1.1% as GAOs (by FISH, biovolume). GAOs were
459  speculated to have more cumulative biomass decay due to their earlier depletion of intracellular polymers.

460  Agent-based modeling predicted slower and less PAOs decay than GAOs.

461  PAO-GAO competition. The SCRS dataset showed a clear 2-phase glycogen depletion trend in
462  GAO cells: (1) an active utilization phase before 36 hours; (2) nearly depleted to a full depletion
463  within 36-72 hours. The glycogen in PAOs showed a similar decreasing trend but a portion of the
464  PAO cells contained detectable amount of glycogen up to 72 hours. In contrary to the faster
465  depletion, GAO cells were estimated to contain higher initial glycogen contents. The mean

466  available glycogen content in GAO cells was estimated to be 0.126 mgCOD/mgMLVSS COD,

467  while was 0.098 mgCOD/mgMLVSS COD in PAO cells. This difference agreed with previous
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468  studies suggesting that GAOs has a higher capability of glycogen storages 223237, The faster
469  depletion indicated that the GAOs have higher overall glycogen utilization rate than PAOs under
470  such conditions. The model identified this difference as an indication that the two independent
471  sources, polyP and glycogen, potentially provide larger amount of energy (ATP) anaerobically.
472  Hence PAOs may gain competitive advantage over GAOs for persisting a longer period of
473  maintenance under extended anaerobic conditions, and potentially start decay later and slower in
474  the first 36 hours of incubation (Figure 4, Figure 5). This differential decay rates in PAOs and
475  GAOs would likely contribute to the PAO’s competitive advantage over GAOs under prolonged
476  anaerobic conditions. As a result, the staged maintenance-decay model predicted GAOs had 33%
477  more cumulative biomass decayed (1.6%) than PAOs (1.2%) during the 72-hr incubation (Figure
478 5). Meanwhile, the model predicted a complete depletion of polyP at 72 hours, which is consistent
479  with the relatively consistent residue polyP level in PAOs as revealed by the SCRS. This implies
480  a background amount of polyP potentially from non-PAO cells or “inert” polyP portion which is

481 not releasable 3°.

482  Glycolysis-TCA pathway switch. SCRS data revealed that only about half of observed PAO
483  population contained glycogen at the beginning of this anaerobic incubation (Figure 4). Some of
484  the Accumulibacter-PAOs could have accumulated glycogen below SCRS detection limit, or there
485  were non-Accumulibacter-PAOs that had different metabolisms, for example, Tetrasphaera 3¢,
486 A comprehensive model for these non-Accumulibacter-PAOs is still under active exploration. In
487  addition, current knowledge assumes that PHA is always the final product of glycogen degradation

4547 Therefore assuming all PAOs being

488  in Accumulibacter-PAOs’ anaerobic metabolism
489  Accumulibacter-PAOs may potentially lead to an over-prediction of overall PHA formation since

490  PHA is not synthesized by Tetrasphaera %. Under these assumptions, the model suggested that
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491  almost all PAO cells in this case study can use TCA cycles to support PHA synthesis, and the
492  employment of TCA cycle was predicted to be at greater extent of involvement comparing to the
493  glycolysis-based metabolism. This was supported by the observed consistent, continuous P release
494  and PHA formation independent to the decreasing availability of glycogen. Detailed calculations
495  on the agent-based simulation results showed that PAOs had accumulated 0.20 C-mol VFA/C-mol
496  VSS by the end of 72 hours, which was significantly higher than GAOs VFA uptake, 0.61 C-mol
497  VFA/C-mol VSS. Using the stoichiometry of 0.22 mol NAD(P)H/C-mol VFA (TCA cycle) ** and
498  0.33 mol NAD(P)H/C-mol VFA (using glycogen) *, it is calculated that 59% of total reducing
499  power consumed in PAOs’ PHA synthesis was provided from TCA cycle during the 72hr
500  incubation. This further indicates that under extended anaerobic phases as in S2ZEBPR, the PAOs
501 may gain competitive advantage over GAOs due to the possession of multiple intracellular

502  polymers and the adaptive switching of the anaerobic metabolic pathways.

503 The iEBPR agent-based model that incorporates the sequential polymer usage, staged
504  maintenance-decay processes and glycolysis-TCA pathway shift was developed, which was
505 calibrated and validated using both bulk batch test experimental data and high-resolution cellular
506  and population-level measurements enabled by SCRS. These newly proposed model modifications
507  are expected to improve the simulation accuracy on S2EBPR systems, particularly SSR (side-
508  stream RAS fermentation) and SSRC (SSR with carbon addition) configurations where a longer
509 anaerobic S2EBPR SRT may lead to the manifestation of more complicated PAO/GAO
510  competition metabolisms that differ from those in play in conventional EBPR systems (i.e. A20
511  configuration). The model revealed that under extended anaerobic phases as in S2ZEBPR, the PAOs
512 may gain competitive advantage over GAOs due to the possession of multiple intracellular

513  polymers and the adaptive switching of the anaerobic metabolic pathways that consequently lead
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514  to longer maintenance period prior to the later and slower decay in PAOs compared with shorter
515  maintenance period before the earlier and faster decay in GAOs. The iIEBPR model can be applied
516  to facilitate and optimize the design and operations of S2ZEBPR for more reliable nutrient removal

517  and recovery from wastewater.
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