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ABSTRACT 22 

Side-stream enhanced biological phosphorus removal process (S2EBPR) refers to modified EBPR 23 

configurations that have been demonstrated to improve the performance stability and offer a suite 24 

of advantages compared to conventional EBPR design. Design and optimization of S2EBPR 25 

requires modification of the current EBPR models that were not able to fully reflect the metabolic 26 

functions of and competition between the PAOs and GAOs under extended anaerobic conditions 27 

as in the S2EBPR conditions. In this study, we proposed and validated an improved iEBPR model 28 

for simulating PAO and GAO competition that incorporated heterogeneity and versatility in PAO 29 

sequential polymer usage, staged maintenance-decay and glycolysis-TCA pathway shifts. The 30 

iEBPR model was first calibrated against a bulk batch test experimental data. The improved iEBPR 31 

model performed better than the previous EBPR model for predicting the soluble orthoP, ammonia, 32 

biomass glycogen and PHA temporal profiles in a batch starvation testing under prolong anaerobic 33 

conditions. We further validated the model with another independent set of batch anaerobic batch 34 

testing data that included high-resolution cellular and population-level intracellular polymers 35 

measurements enabled by single-cell Raman microspectroscopy technique. The model accurately 36 

predicted the temporal changes in the intracellular polymers at cellular and population levels 37 

within PAOs and GAOs, further confirmed the proposed mechanism of sequential polymer 38 

utilization, and polymer availability-dependent and staged maintenance and decay in PAOs. These 39 

results indicate that under extended anaerobic phases as in S2EBPR, the PAOs may gain 40 

competitive advantage over GAOs due to the possession of multiple intracellular polymers and the 41 

adaptive switching of the anaerobic metabolic pathways that consequently lead to the later and 42 

slower decay in PAOs than GAOs. The iEBPR model can be applied to facilitate and optimize the 43 
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design and operations of S2EBPR for more reliable nutrient removal and recovery from 44 

wastewater. 45 

INTRODUCTION 46 

Enhanced biological phosphorus removal (EBPR) process has been recommended as a promising 47 

strategy to achieve sustainable wastewater P removal and simultaneous P recovery 1. Current 48 

EBPR systems are driven by and engineered to favor a key functional group, phosphate-49 

accumulating organisms (PAOs) such as the Candidatus Accumulibacter phosphatis, which is the 50 

most commonly found PAO in EBPR systems. Glycogen-accumulating organisms (GAOs) are 51 

often found to coexist with PAOs but lacking polyP metabolism. They have similar glycogen-52 

based VFA-PHA metabolism 2,3 concerned to be niche VFA competitor with PAOs but have 53 

limited contribution  to P removal performance. PAO-GAO competition could be a critical factor 54 

in EBPR performance and is kinetically affected by various factors including pH, temperature and 55 

hydraulic retention time (HRT) etc. 438. Meanwhile, the existence of GAOs does not necessarily 56 

deteriorate EBPR performance as long as PAOs are kinetically favored 1,9,10. 57 

The performance stability of EBPR has been a concern for its wide implementation in practice and 58 

its sustainability advantages are often offset by the needs to have chemicals standby for ensuring 59 

reliable P removal performance to consistently meet compliance 1,9,11. Many facilities still suffer 60 

from inconsistent performance with unpredicted upsets, particularly for those with relatively weak 61 

influent readily biodegradable COD (rbCOD) 1,5,6,12. An emerging technology that has been 62 

demonstrated to successfully address this common stability challenge is side-stream RAS and 63 

mixed liquor hydrolysis/fermentation-based side-stream EBPR (S2EBPR) 1,9,11,13318. S2EBPR 64 

refers to modified EBPR configurations that include diversion of a portion of RAS or anaerobic 65 
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mixed liquor to a side-stream reactor, where simultaneous VFA production via sludge hydrolysis 66 

and fermentation and PAO activity-related P release and carbon uptake occur. Compared to 67 

conventional EBPR design, the S2EBPR offers a suite of advantages including influent-carbon 68 

independent condition for PAO enrichment that eliminates the influences of fluctuating influent 69 

loads, more controllable lower-redox environment with more complex VFA composition that 70 

provides more favorable selection of PAOs over GAOs, flexible implementation configurations 71 

and potential reduction of carbon footprint and denitrification enhancement by diverting more 72 

influent carbon to denitrification 1,9,11,19322.. 73 

While full-scale processes demonstrated the potential promises and advantages of S2EBPR 9,11,13374 

18, existing knowledge gaps in fundamental understanding of the biochemical mechanisms and 75 

microbial ecology involved in S2EBPR hampers its wider application and implementation. Design 76 

and optimization of S2EBPR requires adequate EBPR models that can capture the underlying key 77 

mechanisms involved in the S2EBPR such as the VFA production via hydrolysis and fermentation, 78 

and PAO and GAO competition in the extended-anaerobic side-stream reactor. A few recent 79 

modeling efforts failed to predict either this competitive advantage or the performance superiority 80 

observed in S2EBPR systems compared to the conventional EBPR systems 23,24. This suggested 81 

that there are still critical aspects in the current EBPR models that cannot reflect the metabolic 82 

functions of and competition between the PAOs and GAOs under the S2EBPR conditions, such as 83 

cell maintenance, biomass decay, the utilization of intracellular polymers, and PAO/GAO 84 

metabolic versatility under the prolonged anaerobic condition 25,26. 85 

PAOs’ cell maintenance is a hypothesized metabolic process from the observation of their steady-86 

state and consistent intracellular glycogen and polyP degradation that are independent of their 87 
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EBPR-related metabolic activities such as PHA synthesis 2,4,24,27331. Studies showed that PAOs 88 

continued consuming their intracellular glycogen and polyP both during short-term (about 10 hrs) 89 

4,27,28 and long-term (³5 days) 29 anaerobic treatments without external VFA supply and they were 90 

not coupled with EBPR-associated VFA uptake and storage. Similar experimental evidence was 91 

observed for GAOs who had cell maintenance during both short-term 2,24,30,31 and long-term 29 92 

anaerobic conditions solely based on glycogen. The possession and ability to utilize both polyP 93 

and glycogen depending on their availability for maintenance energy derivation by PAOs led to 94 

the seemingly inconsistent observations of polymer utilization priority under the similar anaerobic 95 

conditions. This highlighted the importance of the more pronounced effects of anaerobic metabolic 96 

versatility of PAOs, particularly under extended anaerobic condition such as those in S2EBPRs 97 

32,33. However, in current EBPR models, PAO cell maintenance is often approximated by either 98 

first-order decay of polyP and/or glycogen (e.g. ASM2 and ASM3+BioP 34), or polyP-only 99 

cleavage (e.g. Barker&Dold and UCTPHO+ 35,36) without accounting for glycogen. Recent studies 100 

attempted sequential polymer usage strategy 26,37,38 to mitigate the overestimation of polymer 101 

consumption encountered in traditional EBPR models that use first-order decay (e.g. ASM2 and 102 

ASM3+BioP 34) and polyP cleavage (e.g. Barker&Dold and UCTPHO+ 35,36, which ignores 103 

glycogen). More accurate modeling of the cell maintenance processes in PAOs and GAOs under 104 

the unique and prolonged anaerobic conditions can  improve the modeling efficiency of S2EBPR 105 

systems39. Li et al. (2018; 2020) and Santos et al. (2020) further extended the cell maintenance to 106 

the <survival= hypothesis, in which maintenance precedes biomass decay, to explain the observed 107 

low PAO/GAO decay rate in comparison to other heterotrophic organisms under anaerobic 108 

conditions 26,38,40. However, with complex microbial communities, current population-level 109 
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models still cannot estimate the effect of mixture phenotypes and non-uniformity in polymer 110 

distributions 8,41 and capture the detailed PAO-GAO competition at phenotype/cell group level. 111 

The most debated aspect related to the  Accumulibacter’s anaerobic metabolism is the source of 112 

reducing power (NAD(P)H). In early studies, this source was deduced to be exclusively supported 113 

by glycolysis (referred to as Mino model) 42 or solely supported by tricarboxylic acid (TCA) cycle 114 

(referred to as Comeau-Wentzel model) 27,43. Both models were supported by additional 115 

experiments 4,44, while some others suggested potential coexistence and simultaneous contribution 116 

to t NAD(P)H production 45–48. A switch between these pathways may occur and was hypothesized 117 

to be related with intracellular polymer availability or depletion 25,45,48,49. Another critical discussion 118 

on the anaerobic operation of complete TCA proposed that the oxidation of succinate 119 

thermodynamically is unfavorable which relies on external electron acceptors (TEAs) 28. Four 120 

potential mechanisms have been proposed that either bypass this oxidation step or employ 121 

alternative ways to sink the electrons, namely succinate-propionate shunt 50, partial reductive TCA 122 

cycle 50–52, glyoxylate shunt 47,53,54 or proton motive force-driven quinol-NAD(P)+ reductase 55. Each 123 

proposed theoretical pathway was supported by physiological, genomics, transcriptomics or 124 

proteomics evidences, and exhibits different stoichiometry on glycogen, polyP, VFAs, PHAs and 125 

CO2 release. This metabolic versatility may help explain the wide range of stoichiometry observed 126 

in a variety of full-scale studies 25. Santos et al. (2020) introduced the pathway switching 127 

mechanism to better reproduce this complicated, flexible metabolic network 38. However, 128 

traditional EBPR models cannot simulate such pathway shift effects as the essential yield 129 

coefficients was kept constant during the simulation after calibration, nor distinguish between 130 

coexisting PAO phenotypes with different glycolysis and TCA cycle operations. 131 
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In this study, with the long-term goal to better predict the S2EBPR processes, we proposed and 132 

validated an improved model for PAO and GAO competition under extended anaerobic conditions 133 

that incorporated heterogeneity and versatility in PAO sequential polymer usage, staged 134 

maintenance-decay and glycolysis-TCA pathway shifts. More importantly, we further calibrated 135 

and verified the model by leveraging the power of single-cell Raman microspectroscopy 136 

technology that enabled cellular-level quantification of intracellular dynamics under various 137 

conditions 8,41,56. The model was first calibrated using a previously published 8-day anaerobic 138 

starvation testing in PAO-enriched (85% as PAO) EBPR batch reactor 33. Then the calibrated 139 

model was validated using an independent 72-hour continuous anaerobic incubation batch test with 140 

sludge from a full-scale S2EBPR system. The model outperformed the previous model in 141 

predicting the experimentally observed trends of intracellular polymer biomass content under 142 

anaerobic conditions and was proven to be more effective in simulating PAO/GAO maintenance 143 

behavior under those extended anaerobic conditions than conventional models. The proposed 144 

mechanism can be incorporated into industrial EBPR models to more accurately reveal the overall 145 

EBPR performance and PAO/GAO competitive dynamics as observed in S2EBPR systems. 146 

METHODOLOGY 147 

Agent-based EBPR model structure 148 

An agent-based EBPR model (named as iEBPR) was developed based on the model (named as 149 

iAlgae) developed by Bucci et al. (2012) 56. In this study, three population groups are included, 150 

namely PAOs, GAOs and OHOs (ordinary heterotrophic organisms, accounting for all non-151 

PAO/GAO biomasses). The agent-based approach splits each biomass category in 10,000 agents 152 
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(representing cell groups with phenotypic heterogeneity) with randomly seeded polymer contents 153 

and kinetic parameters.  154 

The metabolic framework and structure of iAlgae were developed based on the International Water 155 

Association's Activated Sludge Model v2 (ASM2) that includes Accumulibacter-PAOs and OHOs 156 

34. A third organism type, namely Competibacter-like GAO, is added to the new model based on 157 

the current understanding of the main cell activities of GAOs including anaerobic VFA-uptake, 158 

PHA synthesis and aerobic biomass growth PHA-degradation and glycogen-accumulation 2,24,31. 159 

At this stage, the iAlgae uses only acetate to represent all VFA species without differentiating 160 

various VFAs such as propionate etc. Similarly, PHB was chosen to represent PHA as in similar 161 

modelling study 38. As we focused on PAO-GAO competition under extended anaerobic condition, 162 

denitrifiers, nitrifiers and other anoxic-related metabolisms are not included in this modeled. The 163 

hydrolysis and fermentation of inert organic matter was considered not bottlenecking the rbCOD 164 

generation and was modeled as instant transformation to the final VFA product. All modeled 165 

processes for Accumulibacter-PAOs, Competibacter-GAOs and OHOs are shown in Table S1-3 166 

with Gujer matrices. 167 

Agent-level energy derivation for cell maintenance and decay with polymer-availability 168 

dependence 169 

Similar to previous studies 37,38, sequential polymer usage and staged cell maintenance-decay was 170 

incorporated into the model however at agent-level. This process replaces the first-order decay 171 

calculation in ASM2. Specifically, this was modeled in two steps below. 172 
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Cell maintenance and sequential polymer usage. Each PAO and GAO agent possesses a 173 

parameter called targeted cell-maintenance rate, denoted as �!"#, expressed in mol-ATP/(C-mol 174 

biomass.hr). The unit was further converted to fit the unit specifications in our model (mg polyP-175 

P and mg glycogen-COD) based on known  stoichiometry and yield coefficients reported in the 176 

previous studies 2,4,31,33. Its proto-value was experimentally determined in previous studies 2,7,31. In 177 

agent-based modeling, the value may vary based between agents to emulate the metabolic 178 

heterogeneity between cells and phenotypes. Each PAO and GAO agent will attempt to fulfill their 179 

own cell-maintenance target according on their local intracellular polymer availability. 180 

Specifically, GAOs will generate ATP via the previously proposed stoichiometry 2,31 when 181 

glycogen is available. For PAO cells, the same glycogen-based stoichiometry was used 33 as well 182 

as the stoichiometry of ATP production from polyP cleavage 4. In addition, extra mechanism must 183 

be introduced to allocate the contributions from both glycogen and polyP based on the agent 184 

phenotype of preferences. For polyP-preferred agents, this was calculated as 185 

�$%&'# = �$%&'#�!"# 186 

�(&')%(*+ = �(&')%(*+%�!"# 2 �$%&'#', 187 

while for glycogen-preferred agents, this was calculated as 188 

�(&')%(*+ = �(&')%(*+�!"# 189 

�$%&'# = �$%&'#%�!"# 2 �(&')%(*+' 190 
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instead. Where: �$%&'#  and �(&')%(*+  are the real-time ATP generation rate from the respective 191 

polymer; �!"#  is the target cell-maintenance rate; �$%&'#  and �(&')%(*+  are Monod functions 192 

scaling the production rate based on the availability of the respective polymer. It is important to 193 

note that this calculation strategy can be easily extended to calculation with more than two 194 

polymers in sequential preferences. This approach simulates the observed sequential polymer 195 

usage in various studies 29,32,33. Unlike other models reported in the literature where the sequence 196 

of polymer usages is pre-chosen 37,38, we set the polymer preference order as an adjustable 197 

parameter to simulate the PAO metabolic versatility and observations with inconsistent 198 

prioritization 32,33. 199 

Sequential and linked cell maintenance and decay. Previous EBPR models considered the cell 200 

decay as an intrinsic process at a constant specific rate i.e., first-order decay. A number of studies 201 

have showed evidence of accelerated biomass decay after depletion of their intracellular polymers, 202 

implying a linkage between these two processes 29,33. To simulate this linkage, we first calculated 203 

the combined ATP production from all involved polymers in cell maintenance, then compared it 204 

with the target cell-maintenance rate (denoted as �!"#) 26. If the production is short from the 205 

target, the proportion of the shortage was used as a switching function to scale the actual biomass 206 

decay rate, namely,	207 

�, = �-./ +1 2 �!"#
�!"#

-, 208 

where: �, is the actual specific decay rate; �-./ is the maximum specific decay rate; �!"# is the 209 

combined ATP production from cell maintenance processes. The decayed biomass then 210 

proportionally regenerates as VFA (rbCOD) based on the empirical PAO/GAO biomass formula 211 
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CH1.93O0.53N0.2 2. This calculation states a <maintenance precedes decay= mechanism that PAO 212 

and GAO biomasses are able to suffer no biomass decay when they have ample polymer for cell 213 

maintenance. In other words, the cell maintenance was hypothesized as a <survival= strategy for 214 

PAO and GAO cells under anaerobic conditions 38. 215 

Glycolysis and TCA cycle pathway switching 216 

As discussed previously, current knowledge suggests that PAOs can use both glycolysis and TCA 217 

cycle to generate the reducing power needed in PHA synthesis. The major difference between 218 

glycolysis-oriented and TCA-oriented metabolism (including various TCA-cycle operation 219 

patterns) is glycogen dependency 45,47. Namely, PHA synthesis solely supported by TCA cycle 220 

will remain operatable after glycogen depletion 25,45. Dominant use, or a combined employment at 221 

various degrees of  these two pathways have been evidenced and discussed 20,27,28,43348,57. In this 222 

study, we simplify the metabolic network to two principal stoichiometry models, namely sole 223 

glycolysis (Mino model) 28,57 and full TCA cycle (Comeau-Wentzel model) 27,43, which are both 224 

well established, and widely adopted in EBPR modeling applications. To simulate the various 225 

degrees of deployment of these two pathways, the final stoichiometry was calculated as their 226 

weighted mixture, where the weights of respective pathway was calculated from the availability 227 

of respective polymers. This is considered as a common approach which was also used by previous 228 

studies in both stoichiometric analysis 45,47 and modelling 37,38. Therefore, the change of polymer 229 

availability during simulation will also change the weight ratio between pathways, simulating the 230 

polymer-dependent pathway shift. However, this calculation implies that PAOs much rely on 231 

polyP in PHA synthesis and disallows them shifting to GAO-like metabolism; though it is not 232 

necessarily true in reality 25,58. In addition, to account for the PAO phenotypes that may strictly 233 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.18.387589doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.387589
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

require glycogen in PHA synthesis 28,50, we also included a second type of PAO agents that cannot 234 

switch to TCA-oriented metabolism when glycogen is depleted. This multi-phenotype feature 235 

within a single biomass category is exclusive to agent-based modelling. 236 

Agent pool initialization and discrete-time simulation 237 

All agents were generated by randomizing the cellular states and kinetic traits via individual 238 

seeding distributions, which can be calibrated with observation datasets revealing in-species 239 

heterogeneities. Only the cellular biomass, polymer storage, rates and affinity-related traits are 240 

randomized; stoichiometric coefficients are considered as pre-determined constants as they can be 241 

theoretically determined or empirically justified. The number of agents is an important parameter 242 

in agent-based modeling. A larger agent pool trends to have generated traits statistically better 243 

approximate the pre-defined seeding distributions, however, will proportionally increase the 244 

computational load. We found that using 1,000-10,000 agents per biomass was a good 245 

compromise. In addition, we used discrete-time simulation approach with all agents updated 246 

synchronously at each simulated time step. 247 

Model Calibration 248 

Simulation of the PAO and GAO competition under extended anaerobic conditions via the 249 

modified agent-based EBPR model (iEBPR) was first calibrated with an independent set of data 250 

retrieved from a previous 8-day anaerobic starvation study in a lab-scale Accumulibacter-enriched 251 

(reported abundance of ~85%) EBPR system 33. The initial content of glycogen and PHA was 252 

acquired from the published data with the polyP estimated by assuming a full cleavage and release 253 

at the end of the experimental period. Anaerobic kinetic parameters of PAOs and GAOs are 254 

calibrated. Gradient descent technique is used as automated calibration method. For detail, the 255 
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geometric mean of root mean square errors (RMSEs) calculated from predicted and observed 256 

temporal profiles of PHA, glycogen, orthophosphate and MLVSS was used as the loss function. 257 

The gradient descent algorithm hence could start from an arbitrary initial parameter set then 258 

iteratively adjust those parameter values in the direction where the loss function reduces the fastest, 259 

until hitting a local minimum. The global optimum was attempted by repeating the above process 260 

for 10,000 times; then the final parameter set corresponds to the least loss was selected as the 261 

calibration result. Yield coefficients used the values from previous studies and ASM2 model 262 

defaults with unit conversions if necessary 2,7,59. Table S4-6 shows the final parameter set for 263 

PAOs and OHOs respectively, and unit conversions are shown in Note S7. 264 

Comparison of model results with cellular-level experimental observations via single-cell 265 

Raman microspectroscopy 266 

Previous studied proposed single-cell Raman spectroscopy (SCRS) to be a promising technology 267 

in estimating the glycogen, PHA and polyP in individual cells, to further reveal the polymer 268 

distributions at both cellular and population levels. 41,60362. This phenotypic survey data is 269 

comparable with the polymer distribution predicted by agent-based modelling 56. 270 

SCRS dataset acquisition. An SCRS dataset was first acquired for each individually sludge sample 271 

based on the method detailed in previous studies 1,8,41. Briefly, 1 mL of MLSS was washed twice 272 

with 0.9% (w/v) NaCl solution and homogenized by passing in and out of a 26-gauge needle and 273 

syringe for at least 20 times to obtain uniform distribution of cells, as described previously. Then 274 

6-8 drops of the disrupted sample were spread and dried on aluminum-coated slides (EMF Corp., 275 

Ithaca, US). After that, the slide was dipped into ice-cold Milli-Q water several times to remove 276 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.18.387589doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.387589
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

salt particles, and dried by filtered nitrogen gas. For each sample, Raman spectra for at least 40 277 

single cells were acquired using a multiline confocal Raman spectrometer (LabRam HR Evolution, 278 

Horiba Jobin Yvon, Kyoto, Japan) configured with a 532 nm Nd:YAG laser and a 600 gr/mm 279 

grating. A 100× long working distance objective with a numerical aperture (NA) of 0.9 and a 280 

working distance of 0.21 mm was used to observe and collect Raman signal from single cells. The 281 

acquisition time for each individual spectrum was 20 seconds per cell and the laser power was set 282 

to 10%. Spectra were collected with scan from 400 cm-1 to 1800 cm-1. 283 

SCRS data processing. Raman spectra processing and polymer relative abundance calculation 284 

were detailed by Gu et al. (2018)1. All Raman spectra were processed using cosmic spike removal, 285 

smoothing, background subtraction and baseline correction using LabSpec 6 software (Horiba 286 

Jobin Yvon, Kyoto, Japan). Quality control was conducted by excluding the spectra showing 287 

unexpected signals (damaged) or low SNR, or lack of major characteristic peaks from bacterial 288 

components such as phenylalanine (~1002 cm-1) and amide I (~1657 cm-1). The candidate PAO 289 

and GAO populations were quantified based on the different combinations of intracellular 290 

polymeric inclusions, including poly-P (band at 690-700 cm-1 for P-O-P vibrations and band at 291 

1168-1177 cm-1 for PO2
- stretching band), PHAs (bands at ~434 cm-1,~839 cm-1, and ~1723 cm-1), 292 

and glycogen (bands at ~480 cm-1,~852 cm-1, and ~938 cm-1), as described previously 62. The 293 

relative content of poly-P, PHAs, and glycogen in each candidate PAO and GAO cell were 294 

evaluated based on the intensity of the bands at 1168-1177 cm-1, ~1723 cm-1, and ~480 cm-1, 295 

respectively (normalized against the intensity of the amide I band). The polymer distribution in 296 

PAO and GAO biomass was then estimated based on the polymer relative abundances within PAO 297 

and GAO candidate cells collected in each sample respectively. 298 
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RESULTS AND DISCUSSION 299 

Model calibration with batch testing results 300 

The model was calibrated against the temporal profile of orthophosphate and residual ammonia 301 

concentration, intracellular glycogen and PHA storage (Figure 1). The ammonia concentration was 302 

calculated from the modeled biomass decay in the same method proposed by Lu et al. (2007) 33. 303 

Figure 1 shows the comparison of the experimental data with the predicted orthoP, ammonia, 304 

glycogen and PHA temporal profiles by the improved model and previous agent-based model 305 

iEBPR (without the staged maintenance-decay and sequential polymer utilization for cell 306 

maintenance). The improved iEBPR model performed quantitatively better than the previous 307 

iAlgea model (Table 1). Particularly, note that the revised model reflects the <S-shape= of the 308 

orthoP profile indicating a first acceleration and then deceleration of polyP degradation. While the 309 

previous model predicted a deviated profile without this acceleration. The glycogen profiles are 310 

predicted with similar trend from both models; while only the improved model predicted the 311 

increase in polyP-origin ATP production from Day 1-3 resulted from the sequential polymer 312 

utilization that shifted from glycogen-dependent to poly-P dominant. Based on these experimental 313 

observations, the 8-day anaerobic starvation could be divided into four phases: Day 0-1: Glycogen 314 

degradation phase signatured by fast glycogen reservoir depletion within the first day, 315 

accompanied by corresponding PHA formation; Day 1-2: Continuous glycogen degradation but 316 

with a slower rate until the end of Day 2; the PHA formation rate was also lowered concurrently. 317 

The glycogen content was still above detection limit after this stage, but no significant change was 318 

observed afterwards. Meanwhile, there was minimal decay of biomass (indicated by releasing 319 

residual ammonia); Day 2-4: PolyP degradation phase accompanied with increasing residual 320 
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orthoP concentration and slowly increasing residual ammonia implying no significant cell decay; 321 

Day 4-8: Decelerating releasing rate of phosphate indicated the degradation of polyP was slowing 322 

down, which was accompanied with detectable increase in the residual ammonia signifying 323 

accelerated cell biomass decay. 324 

 325 
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 326 

Figure 1. Model calibration by comparing the simulations results via the iEBPR model against the temporal 327 
experimentally measured profiles of PO4-P, ammonia, intracellular glycogen and PHA in an acetate-fed 328 
lab-scale EBPR system with approximately 85% Accumulibacter-PAOs during an 8-day anaerobic 329 
starvation batch test (Lu et al. (2007)). Top shows the residual orthophosphate and ammonia-nitrogen 330 
profiles, and the bottom shows intracellular glycogen and PHA. Results were also compared with the 331 
simulation results from the previous  iAlgae model that uses first-order polymer decay. Number (1)-(4) 332 
indicate the four differential stages observed during the batch test: (1) rapid glycogen degradation; (2) 333 
transit stage with decreasing glycogen depletion rate and increasing polyP hydrolysis rate; (3) polyP 334 
degradation with glycogen being depleted; and (4) polyP depleting stage with on-set of significant cell 335 
decay (indicated by the increased release of residual ammonia). 336 

Notably, the calibrated PAO cell maintenance rate was 2.1 × 1001 mol ATP/(C-mol VSS·hr), 337 

which resided in the range shown in Table 1. The model calibration suggested that only a very 338 

small or portion of PAOs (< 1%) can utilize TCA cycle. This agreed with the results found in 339 

original experiment where no significant PHA formation was observed after glycogen depletion 340 

33. 341 
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Table 1. Modelling accuracy (RMSE) comparison between iEBPR and iAlgae. Observation data acquired 342 

from an 8-day anaerobic starvation test of an acetate-fed PAO-enriched (about 85% as PAOs) lab-scale 343 

sludge by Lu et al. (2007). 344 

Model 

RMSE 

PO4-P 

mgP/L 

NH4
+-N 

mgN/L 

PHA 

C-mol/L 

Glycogen 

C-mol/L 

iEBPR (Improved with staged maintenance-decay, 

sequential anaerobic maintenance polymer usage 

and glycolysis-TCA pathway switching, this study) 

5.98 0.18 0.34 0.12 

iAlgae-ASM234,56 33.0 1.08 0.34 0.19 

 345 

Improved accuracy in predicting PAOs9 competitive advantage 346 

Comparing to the Lu et al. (2007)9s original experimental data, both the improved iEBPR and the 347 

conventional iAlgea models predicted a high-rate glycogen utilization in the first stage day, while, 348 

only the improved model that incorporated staged maintenance and decay was able to predict the 349 

accelerated polyP degradation upon the depletion of glycogen as observed in the stage 2 and 3. 350 

This suggested that Accumulibacter-like PAOs biomass seemed to prefer the utilization of 351 

glycogen over poly-P as energy source when both are available as they are consumed first and 352 

fulfilled the theoretical cell-maintenance ATP requirements. This was accompanied by the 353 

transition from glycogen-oriented towards a polyP-oriented cell maintenance. Figure 2 shows the 354 

calculated distribution of ATP production originated from the glycogen versus those from polyP.  355 

Note that the previous model (iAlgae) that uses the first-order decay to approximate cell 356 

maintenance failed to reflect the observed transition from dominantly glycogen-dependent ATP 357 
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production to a stage with accelerated polyP utilization upon the depletion of glycogen (Figure 1 358 

and Figure 2). The overestimation of PAOs9 polyP consumption under anaerobic conditions within 359 

the first 24 hrs (more relevant to the anaerobic condition in full-scale EBPR systems) hence may 360 

underestimate the PAOs9 competition advantage under anaerobic conditions. This overestimated 361 

polyP cleavage caused the traditional model to over-predict about 56 mgP/L P release than the 362 

observation at the end of Day 2 Figure 1 (top). The incorporation of the staged-maintenance and 363 

decay with sequential polymer utilization better predicted PAOs biomass decay kinetics under 364 

anaerobic conditions comparing to conventional model. 365 

 366 
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 367 

Figure 2. Comprison of model predictions and experimental observations of glycogen-contributed (top) and 368 
polyP-contributed (bottom) ATP during an 8-day anaerobic starvation testing with acetate-fed lab-scale 369 
EBPR system containing about 85% as Accumulibacter-PAOs (used as calibration dataset) by Lu et al. 370 
(2007). The improved model (this study) is designed with sequential anaerobic maintenance polymer usage, 371 
staged maintenance-decay and glycolysis-TCA pathway shift; iAlgae uses the same first-order decay as 372 
ASM2 34,56.  373 

The staged maintenance-decay mechanism also predicts a different PAO biomass decay kinetics 374 

from those by the traditional first-order model. An accelerating release of ammonia nitrogen was 375 

observed in the experiments which accompanied with the deceleration of polyP release at the end 376 

of Day 4. This indicates the PAO cells approached the depletion of both intracellular polymers and 377 

started decay, as the nitrogen-containing substance began to lysis from dying cells as ammonia 378 

33,63. The improved model captured the ammonia release acceleration by using the staged 379 

maintenance-decay mechanism (Figure 1 top). The calibrated PAOs biomass decay rate was 380 
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0.007/d, being close to the reported value as 0.006/d as reported in original experiment. To predict 381 

the same amount of biomass decay using the traditional constant first-order lysis mechanism, the 382 

decay rate had to be calibrated to 0.0028/d (the dash line of NH4
+-N in Figure 1 (top)), which is 383 

53% less than the reported value. This inaccurate approximation of biomass decay when using 384 

traditional model may potentially lead to either overestimating PAO biomass loss before their 385 

polymer depletion or underestimating the PAOs9 biomass loss after. This effect can have much 386 

more impact on simulating processes with extended anaerobic incubation HRT such as in S2EBPR 387 

system, therefore it is crucial to incorporate this mechanism in order to improve the modeling 388 

performance of a variety of S2EBPR systems.  389 

Case study: Simulating PAO and GAO competition under prolonged anaerobic incubation 390 

using Full-scale S2EBPR biomass 391 

Model prediction at bulk level 392 

The calibrated model was used to simulate an independent anaerobic incubation batch testing 393 

similar to the conditions in side-stream reactor in S2EBPR systems 64. The testing sludge was 394 

sampled from the side-stream fermentation reactor (SSR configuration) of South Cary Water 395 

Reclamation Facility (Apex, North Carolina) as described by Nicholas et al. (2018) and Onnis-396 

Hayden et al. (2018) 9,64. It was estimated to contain 6.9% biovolume as Accumulibacter-PAOs 397 

and 1.1% as known GAOs by fluoresces in-situ hybridization (FISH) 64. The batch test was 398 

conducted as a 72-hour anaerobic incubation without external VFA feeding, and the residual 399 

orthophosphate, residual VFA, MLSS glycogen and PHA were monitored and measured at 0, 6, 400 

12, 18, 24, 36 and 72 hours after the beginning of this incubation. The model was fitted to these 401 
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temporal profiles with adjustment on initial status and biomass-composition-related parameters, 402 

including initial polymer contents, biomass concentration of all three species and the fraction of 403 

TCA-cycle-enabled agents in PAO species. In addition, OHOs9 biomass decay rate was also 404 

adjusted to the experimentally identified value. All other kinetic and stoichiometric parameters 405 

were set identical to the lab-scale sludge calibration results, no more kinetic calibrations were 406 

conducted. GAOs9 kinetic and stoichiometric parameters were set identical to PAOs' except the 407 

yield ratio of PHA to VFA uptake, since GAOs lack polyP and rely on glycogen to provide both 408 

ATP and reducing power in this process 2,7. 409 

 410 
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 411 

Figure 3. Comparison of experimental measurements with Simulated temporal trends of residual orthoP, 412 

intracellular PHA  and glycogen in a 72-hour anaerobic incubation batch test using sludge sampled from 413 

full-scale S2EBPR system (SSR configuration, South Cary WRF, Apex, NC) estimated to contain 6.9% as 414 

Accumulibacter-PAO, 1.1% as GAOs (by FISH, biovolume),  using the improved model iEBPR that 415 

incorporates sequential polymer utilization in cell maintenance, staged maintenance-decay and glycolysis-416 

TCA pathway shift. Top: residual orthophosphate and residual VFA; Bottom: MLSS glycogen and PHA. 417 

Figure 3 shows the comparison of the observed measurements with the predicted temporal profiles 418 

of residual PO4-P, residual VFA, total MLSS PHA and glycogen during the anaerobic batch 419 

testing. The OHO decay rate was calculated to be 0.0076/d based on the VFA requirement to fit 420 

the observed stoichiometry of P release, glycogen consumed and PHA formation, since in this 421 

model the hydrolysis and fermentation process is integrated into biomass decay. The simulated 422 
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residual PO4-P, MLSS glycogen and PHA agreed well with observed data with RMSEs of 423 

4.9mgP/L, 16.5mgCOD/L and 11.15 mgCOD/L respectively; the RMSE of residual VFA was 424 

8.9mgCOD/L and about 22mgCOD/L VFA was overestimated by the model at 72 hours. The 425 

model predicted a transitioning at around 45 hours from high-rate active P release with significant 426 

PHA synthesis phase to a second phase with slower increase in both PHA and residual P. 427 

Calculated yield ratio of the active P release to PHA formation from 36-72 hours was 1.77 mol-428 

P/C-mol PHA, which is higher than the typical range 0.36-0.77 mol-P/C-mol PHA for A/O 429 

enriched sludge 4,30,36,47 and 0.78-1.22 mol-P/C-mol PHA for S2EBPR sludge 20. This implies an 430 

excessive source was contributing to the PO4-P release which was not related to VFA uptake and 431 

PHA formation, potentially being cell maintenance. 432 

Model prediction at cellular and population level 433 

However, investigate detailed polymer transformation at this bulk level is limited due to the lack 434 

of resolution of real-time polymer distribution at population and cellular levels that better reflect 435 

the competition between PAOs and GAOs , which may result in different metabolic patterns co-436 

exist according to the actual polymer storage in individual cells. To further validate the proposed 437 

mechanism of polymer-dependent and staged maintenance and decay, SCRS was employed to 438 

measure and reveal the intracellular polymer dynamics in PAOs and GAOs that ultimately dictates 439 

their competition, and they were compared with the agent-based model results. The initial 440 

distributions of PAOs9 and GAOs9 intracellular polymers namely polyP and glycogen in PAOs 441 

and glycogen in GAOs, were adjusted manually after their means were determined in the previous 442 

bulk-level step following the previous protocol 56. Their temporal trends were represented by 443 

snapshotting the modeled residue polymers across PAO/GAO species at 0, 6, 12, 24 36 and 72 444 
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hours, and were compared to the experimentally acquired distributions by SCRS at the same time 445 

points. 41,60,61. As shown in Figure 4, the model accurately predicted the measurements at cellular 446 

and population levels, proving that the model mechanisms to be effective in modeling highly 447 

resolved PAO/GAO intracellular polymer metabolisms. 448 

 449 

Figure 4. PAO polyP, glycogen and GAO glycogen in-species distribution by agent-based modeling (lines) 450 

and the actual distribution acquired by Raman single-cell microspectrascopy (dots) during a 72-hranaerobic 451 

incubation batch test (this study) with sludge sampled from full-scale S2EBPR system (SSR configuration, 452 

South Cary WRF, Apex, NC). 453 
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 454 

Figure 5. iEBPR predicted PAO and GAO decay based on sequential polymer utilization in cell 455 

maintenance and staged maintenance-decay mechanism of a 72-hour anaerobic incubation batch test using 456 

sludge sampled from full-scale S2EBPR system (SSR configuration, South Cary WRF, Apex, NC) 457 

estimated to contain 6.9% as Accumulibacter-PAO, 1.1% as GAOs (by FISH, biovolume). GAOs were 458 

speculated to have more cumulative biomass decay due to their earlier depletion of intracellular polymers. 459 

Agent-based modeling predicted slower and less PAOs decay than GAOs. 460 

PAO-GAO competition. The SCRS dataset showed a clear 2-phase glycogen depletion trend in 461 

GAO cells: (1) an active utilization phase before 36 hours; (2) nearly depleted to a full depletion 462 

within 36-72 hours. The glycogen in PAOs showed a similar decreasing trend but a portion of the 463 

PAO cells contained detectable amount of glycogen up to 72 hours. In contrary to the faster 464 

depletion, GAO cells were estimated to contain higher initial glycogen contents. The mean 465 

available glycogen content in GAO cells was estimated to be 0.126 mgCOD/mgMLVSS COD, 466 

while was 0.098 mgCOD/mgMLVSS COD in PAO cells. This difference agreed with previous 467 
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studies suggesting that GAOs has a higher capability of glycogen storages 2,28,29,57. The faster 468 

depletion indicated that the GAOs have higher overall glycogen utilization rate than PAOs under 469 

such conditions. The model identified this difference as an indication that the two independent 470 

sources, polyP and glycogen, potentially provide larger amount of energy (ATP) anaerobically. 471 

Hence PAOs may gain competitive advantage over GAOs for persisting a longer period of 472 

maintenance under extended anaerobic conditions, and potentially start decay later and slower in 473 

the first 36 hours of incubation (Figure 4, Figure 5). This differential decay rates in PAOs and 474 

GAOs would likely contribute to the  PAO9s competitive advantage over GAOs under prolonged 475 

anaerobic conditions. As a result, the staged maintenance-decay model predicted GAOs had 33% 476 

more cumulative biomass decayed (1.6%) than PAOs (1.2%) during the 72-hr incubation (Figure 477 

5). Meanwhile, the model predicted a complete depletion of polyP at 72 hours, which is consistent 478 

with the relatively consistent residue polyP level in PAOs as revealed by the SCRS. This implies 479 

a background amount of polyP potentially from non-PAO cells or <inert= polyP portion which is 480 

not releasable 35. 481 

Glycolysis-TCA pathway switch. SCRS data revealed that only about half of observed PAO 482 

population contained glycogen at the beginning of this anaerobic incubation (Figure 4). Some of 483 

the Accumulibacter-PAOs could have accumulated glycogen below SCRS detection limit, or there 484 

were non-Accumulibacter-PAOs that had different metabolisms, for example, Tetrasphaera 65,66. 485 

A comprehensive model for these non-Accumulibacter-PAOs is still under active exploration. In 486 

addition, current knowledge assumes that PHA is always the final product of glycogen degradation 487 

in Accumulibacter-PAOs9 anaerobic metabolism 45,47. Therefore assuming all PAOs being 488 

Accumulibacter-PAOs may potentially lead to an over-prediction of overall PHA formation since 489 

PHA is not synthesized by Tetrasphaera 65. Under these assumptions, the model suggested that 490 
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almost all PAO cells in this case study can use TCA cycles to support PHA synthesis, and the 491 

employment of TCA cycle was predicted to be at greater  extent of involvement comparing to the 492 

glycolysis-based metabolism. This was supported by the observed  consistent, continuous P release 493 

and PHA formation independent to the decreasing availability of glycogen. Detailed calculations 494 

on the agent-based simulation results showed that PAOs had accumulated 0.20 C-mol VFA/C-mol 495 

VSS by the end of 72 hours, which was significantly higher than GAOs VFA uptake, 0.61 C-mol 496 

VFA/C-mol VSS. Using the stoichiometry of 0.22 mol NAD(P)H/C-mol VFA (TCA cycle) 43 and 497 

0.33 mol NAD(P)H/C-mol VFA (using glycogen) 45, it is calculated that 59% of total reducing 498 

power consumed in PAOs9 PHA synthesis was provided from TCA cycle during the 72hr 499 

incubation. This further indicates that under extended anaerobic phases as in S2EBPR, the PAOs 500 

may gain competitive advantage over GAOs due to the possession of multiple intracellular 501 

polymers and the adaptive switching of the anaerobic metabolic pathways. 502 

The iEBPR agent-based model that incorporates the sequential polymer usage, staged 503 

maintenance-decay processes and glycolysis-TCA pathway shift was developed, which was 504 

calibrated and validated using both bulk batch test experimental data and high-resolution cellular 505 

and population-level measurements enabled by SCRS. These newly proposed model modifications 506 

are expected to improve the simulation accuracy on S2EBPR systems, particularly SSR (side-507 

stream RAS fermentation)  and SSRC (SSR with carbon addition) configurations where a longer 508 

anaerobic S2EBPR SRT may lead to the manifestation of more complicated PAO/GAO 509 

competition metabolisms that differ from those in play in conventional EBPR systems (i.e. A2O 510 

configuration). The model revealed that under extended anaerobic phases as in S2EBPR, the PAOs 511 

may gain competitive advantage over GAOs due to the possession of multiple intracellular 512 

polymers and the adaptive switching of the anaerobic metabolic pathways that consequently lead 513 
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to longer maintenance period prior to the later and slower decay in PAOs compared with shorter 514 

maintenance period before the earlier and faster decay in GAOs. The iEBPR model can be applied 515 

to facilitate and optimize the design and operations of S2EBPR for more reliable nutrient removal 516 

and recovery from wastewater. 517 
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