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Abstract

Single-cell RNA sequencing (scRNA-seq) can be used to gain insights into cellular heterogeneity within
complex tissues. However, a variety of technical artifacts can be present in scRNA-seq data and need to be
assessed before downstream analyses can be performed. While several algorithms and tools have been
developed to perform individual quality control (QC) tasks, they are scattered in different packages across
several programming environments. Comprehensive pipelines to streamline the process of generating and
visualizing QC metrics are lacking. To address this need, we built the SCTK-QC pipeline within the
singleCellTK R package (https://github.com/compbiomed/singleCellTK). Features in this pipeline include the
ability to import data from 11 different preprocessing tools or file formats, perform empty droplet detection with
2 different algorithms, generate standard quality control metrics such as number of UMIs per cell or the
percentage of mitochondrial counts, predict doublets using 6 different algorithms, and estimate ambient RNA.
QC data can be exported to R and/or Python objects used in popular down-stream workflows. Results are
visualized in an easy-to-read HTML report. This pipeline can also be used by non-computational users with an
interactive graphical user interface developed with R/Shiny. Overall, the SCTK-QC pipeline will streamline and

standardize QC analysis for scRNA-seq data across a variety of different single-cell transcriptomic platforms

and preprocessing tools.
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Introduction
Single-cell RNA-sequencing (scRNA-seq) has been instrumental in providing detailed insights into cellular
heterogeneity related to tissue development and disease pathogenesis'. With the advent of microfluidic
devices, the transcriptome for thousands of individual cells can be measured in a single run®. These devices
work by partitioning cells into droplets along with beads containing oligonucleotide primers with unique
barcodes. Within each droplet, reverse transcription is initially used to create barcoded cDNA and then
additional amplification steps are used to create final sequencing libraries depending on the protocol®. Other
approaches such as SMART-seq2 and CEL-seq2 can be used to profile cells that have been sorted into 96- or

384-well plates*®. Many of these protocols use unique molecular indices (UMIs) to barcode each individual

mRNA molecule and correct for biases in amplification®.

Despite the advances in scRNA-seq protocols, poor-quality cells can still be present in high-quality runs.
Technical artifacts related to the cell dissociation process, cell encapsulation, library preparation, or
sequencing can affect various aspects of data quality. Low quality cells need to be excluded and technical
artifacts need to be systematically assessed in each sample before downstream analyses can be performed.
We briefly describe five types of QC analyses and metrics that are commonly utilized in scRNA-seq data
analysis: 1) Cells in which barcoding or amplification reactions were not successful will have lower numbers of
UMIs and genes detected. Lower numbers of detected UMIs and genes can hinder downstream analyses such
as clustering because the genes that are able to distinguish cell populations may not be adequately measured.
Often, these cells are excluded by setting a minimum threshold on the number of detected UMI and/or genes.
2) Another aspect unique to droplet-based microfluidic devices is that the majority of the droplets will not
contain an actual cell’. Despite the absence of a cell, these “empty droplets” may contain low levels of
background ambient RNA that was present in the cell solution®. An algorithm is needed to determine which
droplets likely contained a real cell versus those that just contain ambient RNA®. Only droplets predicted to
contain an actual cell are used in downstream analyses. 3) Doublets and multiplets occur when two or more
cells are partitioned into a single droplet or well and will result in an artificial hybrid expression profile of each
individual cell®. Several algorithms have been developed to identify potential doublets by combining expression

profiles of randomly selected cells and then scoring each cell against the in silico doublets®°. These tools can
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be used to flag potentially problematic cell clusters that are actually combinations of two different cell types. 4)
Ambient RNA in the cell suspension can also be present in droplets containing a cell as well as empty droplets.
These ambient transcripts will be counted along with a cell’'s native RNA and result in contamination of highly-
expressed genes from other cell types. Tools such as DecontX can be used to estimate contamination levels
and deconvolute each cell into counts derived from native RNA and counts from contaminating ambient RNA™.
5) Perturbations during sample preparation can lead to biological artifacts. For example, cells that become
stressed during tissue dissociation may express abnormally large proportions of mitochondrial genes in their
transcriptome®®. These cells may appear as a unique cluster in the scRNA-seq data even though they were not
present in the original tissue sample. If not taken into account, these factors can confound downstream

analyses or produce erroneous findings. Therefore, performing comprehensive QC is a crucial step in sSCRNA-

seq data analysis to ensure valid results.

While a large number of QC algorithms and software tools have been produced to address the specific
challenges inherent in scRNA-seq data, these tools are implemented in different packages across various
programming environments. In order to generate a comprehensive set of QC metrics, users need to separately
download, install, and run each tool for each sample and independently assess the results®®. Currently, there is
a lack of standardized workflows that can streamline the process of generating QC metrics from different tools.
In order to address these limitations, we have developed the SCTK-QC pipeline within the singleCellTK R
package. This pipeline can import single-cell RNA-seq data from a variety of preprocessing tools, run a
multitude of different tools to generate comprehensive sets of QC metrics, visualize the results within detailed

HTML reports, and export the results in an organized manner in various formats.
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Results
Overview of SCTK-QC Pipeline
The SCTK-QC pipeline is accessible through the singleCellTK package in R/Bioconductor. This pipeline
assumes that the raw sequencing reads have been aligned, a correction for UMI and cell barcodes has been
applied, and a count matrix containing genes and cells has been created by an upstream preprocessing tool
such as CellRanger’ or STARsolo'. For data generated with microfluidic devices, the first major step after UMI
counting is to detect cell barcodes that represent droplets containing a true cell and exclude empty droplets
that only contain ambient RNA®. We use the terms “Droplet” matrix to denote a count matrix that still contains
empty droplets, “Cell” matrix to denote a count matrix of cells where empty droplets have been excluded but no
other filtering has been performed, and “FilteredCell” matrix to indicate a count matrix where poor quality cells
have also been excluded. The Droplet and Cell matrices have also been called “raw” and “filtered” matrices,
respectively, by tools such as CellRanger. However, using the term “filtered” can be ambiguous as other forms
of cell filtering can be applied beyond empty droplets (e.g. excluding poor-quality cells based on low number of
UMIs). Additionally, even after excluding empty droplets and poor-quality cells, the matrix will still contain
unnormalized counts, which is also commonly referred to as the “raw” count matrix. To eliminate ambiguity of
these terms, we adopt the nomenclature of “Droplet”, “Cell”, and “FilteredCell” to describe the level of filtering

on the dimensions of the count matrix while we prefer the terms “Raw”, “Normalized”, and “Scaled” to denote

the level of processing for the counts within the matrix.

The major steps in the SCTK-QC pipeline include: 1) importing of the Droplet matrix, 2) detection and
exclusion of empty droplets to create the Cell matrix, 3) calculation of a comprehensive set of QC metrics on
the Cell matrix, 4) visualization of results in HTML format, and 5) exporting the data to formats used in
downstream analysis workflows (Figure 1). Note that several preprocessing tools automatically exclude empty
droplets and create a Cell matrix. The SCTK-QC pipeline also has the ability to import a Cell matrix and start
with the calculation of QC metrics in step 3 or import both the Droplet and Cell matrices and perform QC on
each matrix independently. The single-cell data is stored within the pipeline as a SingleCellExperiment
object®. Cell-level metrics generated by QC tools are stored in the colData slot alongside other imported cell-

level annotations and corrected raw counts matrices created by any QC tool are stored in the assays slot. For
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reproducibility, the parameters and seeds used to run the functions within the pipeline will be also stored in the
metadata slot. Overall, the pipeline supports importing data from 11 different preprocessing tools or file
formats, empty droplet detection with 2 algorithms, generation of standard QC metrics, doublet detection using
6 algorithms, and estimation of ambient RNA (Table 1). SCTK-QC integrates numerous tools across different
programming environments such as R and Python. To streamline installation and minimize challenges with
package dependencies, we have built Docker and Singularity images which are available through DockerHub

(campbio/sctk_gc). The specific algorithms and tools used in each step of the pipeline are described in more

detail below.

1. Data import

SCTK-QC can automatically import data from a variety of preprocessing tools and file formats. Supported
preprocessing tools include CellRanger’, BUStools™, STARSolo™, SEQC®®, Optimus'’, and dropEST™.
Generally, users will only need to specify the top-level directories for one or more samples and SCTK-QC will
import and combine each sample into a single matrix. Alternatively, specific file formats such as Market
Exchange Format (MEX) or a file containing comma-separated values (.csv) can be specified along with
separate files for feature and cell annotation. By default, SCTK-QC will run QC analysis on both Droplet matrix
and Cell matrix if both of them are provided. However, users can also choose to run QC only on the Droplet or
only on the Cell matrix. The sample labels for each cell are stored in a variable called “sample” within the
colData slot of the SingleCellExperiment object. Each QC algorithm will be applied to cells from each sample

separately.

2. Empty droplet detection

Detection of empty droplets within the Droplet matrix is accomplished using the algorithms barcodeRanks and
EmptyDrops from the dropletUtils package®. These algorithms are incorporated within the wrapper function
runDropletQC(), implemented within SCTK-QC. barcodeRanks ranks all barcodes within the Droplet matrix
based on total UMI counts per barcode. The knee and inflection points are computed from the log-log plot of
the rank against the total counts. Under the assumption that cells will have a higher number of total UMI counts
than empty droplets, barcodes with total counts under the knee or inflection points are flagged as empty
droplets. Rank, total counts, knee and inflection point are all outputted from the algorithm and stored within the

SingleCellExperiment object. In contrast, emptyDrops differentiates between empty droplets containing
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ambient RNA from true cells by employing a probabilistic model that assumes a “pool” of ambient RNA from
the Droplet matrix randomly contaminates each droplet. By comparison with a pool of ambient RNA simulated
from the counts data, the algorithm determines droplets containing true cells to be those only containing
ambient RNA. Metrics generated from this model include the total UMI counts per barcode, the log-probability,
Monte Carlo p-value, and the g-value for a droplet containing a real cell, and a value signaling whether
increasing the number of iterations within the algorithm will increase the likelihood of identifying a lower p-
value. The SingleCellExperiment object containing the Droplet matrix can be automatically filtered on either the

barcodeRanks or emptyDrops output to create a new SingleCellExperiment object containing the Cell matrix if

this matrix was not originally supplied as input to the SCTK-QC pipeline.

3. Generation of QC metrics

Wrapper functions for each QC algorithm or tool are included in SCTK-QC. Additionally, the wrapper function
runCellQC() is capable of executing these algorithms all at once within SCTK-QC. runCellQC() applies
algorithms available from the scater'® package to the Cell matrix to compute standard metrics. This includes
the total UMI counts per cell, total number of features detected per cell, and the percentage of library size
occupied by the most highly expressed genes in each cell. Users may also supply any gene set of their choice
to calculate the aggregate expression of the gene set per cell. As a specific use case, a list of mitochondrial
genes may be supplied to runCellQC() to compute the mitochondrial gene expression per cell. Mitochondrial
gene sets for mouse and human in Gene Symbol, Ensembl and Entrez formats are stored in the package and
can be supplied to the SCTK-QC pipeline by setting “-M” parameter. The runCellQC() function employs the
following algorithms for doublet identification in the Cell matrix: scrublet®, scDblFinder'®, DoubletFinder'®, and
the cxds, beds and cxds_beds_hybrid models from SCDS? package. All of these algorithms output a doublet
score. Most of these tools also derive a threshold and make a call as to whether each cell is a doublet or a
singlet. Running multiple algorithms allows users to set their own criteria for flagging potential doublets that
works best for their dataset. Finally, the runCellQC() function runs DecontX' to detect ambient RNA
contamination for each cell within the Cell matrix. The percentage of estimated contamination is stored within
the colData and the decontaminated count matrix is stored as an assay in the SingleCellExperiment which can
be optionally used in downstream analysis. After completion of runCellQC(), users can use any combination of

these QC metrics to filter the Cell matrix and create a FilteredCell matrix for use in downstream analyses.
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4. Generation of comprehensive QC HTML reports

Rmarkdown documents can be used to create dynamic HTML or PDF reports useful for systematic display and
evaluation of data®*. We include the functions reportDropletQC(), reportCellQC(), and reportQCTool() which
make use of algorithm-specific Rmarkdown document templates to generate HTML reports with the
visualizations of QC metrics from all algorithms (Figure 2). reportDropletQC() generates a report including a
scatterplot annotating all empty droplets flagged by the EmptyDrops algorithm as well as a curve visualizing
the knee and inflection points identified by BarcodeRanks. For each set of doublet detection algorithm
executed, reportCellQC() generates a report which visualizes the doublet score and call through violin plots,
density plots, and dimensionality reduction plots. These plots are also created to visualize the contamination
percentage of ambient RNAs computed by DecontX if the algorithm has been applied to the data. Additionally,

both reports include a summary table detailing the outputted quality control metrics for all algorithms run.

5. Export to common data structures

Different software packages utilize varying data containers to store and retrieve scRNA-seq data®. To facilitate
downstream analysis in multiple platforms, the SCTK-QC pipeline provides several functions to export the data
in one or more data structures or file formats. The exportSCEtoFlatFile function writes assays to MEX files and
the colData, rowData, reducedDims slots into tab-delimited flat files. The metadata is exported as a list in an
RDS file. All exported files can be optionally saved in a gzipped format. The exportSCEtoAnnData() function
exports the data into a Python annotated data matrix (AnnData)*® object. The function stores assay, rowData,
colData and reducedDims slots into X, var, obs and obsm groups of the AnnData object, respectively. The
AnnData object can be written into a .h5ad file format and can subsequently be compressed in a “gzip” or “Izf”

format. These functions can be run by setting the “-F” or “--outputFormat” parameter in the SCTK-QC pipeline.

R/Shiny user interface

Shiny is a R package developed for building interactive web applications. The singleCellTK package
incorporates Shiny Graphical User Interface (GUI) for the interactive analysis of single-cell data. Users are able
to access the user interface by simply executing the singleCellTK() function in the R console. Upon loading the
data, QC algorithms to be run are chosen on the “Data QC & Filtering” page by selecting checkboxes in the

user interface (Figure 3). Upon the completion of the algorithms, QC plots will appear within tabs for each of
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the algorithms selected. The “Filtering” tab can be used to set criteria for filtering. After QC, users are able to
interactively perform other downstream analyses such as batch correction, feature selection, dimensionality

reduction, clustering, differential expression, and pathway analysis.

Comparison to other tools

Several other tools that can perform single-cell RNA sequencing data analysis and quality control have been
created. While many packages only support input data stored in structured format (SingleCellExperiment

object, Seurat***°

object or count matrix stored in csv/txt/mtx file), SCTK-QC also accepts data generated from
different preprocessing tools and .h5ad files. Although other packages can perform general QC metrics
including number of reads and features detected per cell, SCTK-QC includes comprehensive QC analysis
including empty droplet detection, doublet detection and ambient RNA correction (Table 2). Furthermore, no
other software package currently runs multiple doublet detection methods and allows users to easily compare
results. SCTK-QC also visualizes QC metrics in standardized html reports and stores results in several data
formats, which facilitates downstream analysis in different analysis workflows. Currently, SCTK-QC does not

support RSEM as an input format and it does not support other Python objects such as pickle and joblib as

these are not commonly used.

Application of SCTK-OC pipeline to PBMC datasets

To demonstrate the utility of SCTK-QC, we apply the pipeline to the 10x Genomics 1K healthy donor
Peripheral Blood Mononuclear Cell (PBMC) dataset generated with v2 or v3 Chromium chemistries. Each
dataset was processed with two different versions of Gencode GTF files (Gencode v27 and Gencode v34).
The resulting four count matrices (Gencode v27 PBMC 1K v2, Gencode v27 PBMC 1K v3, Gencode v34
PBMC 1K v2, Gencode v34 PBMC 1K v2) were then processed by the SCTK-QC pipeline. Specifically, the
pipeline used the importCellRangerV2() and importCellRangerV3() function by setting the “-cellRangerDirs” as
the path of input data , and the “-dataType” parameter as “filtered” and the runCellQC() function was called to
generate the QC metrics. All of the QC metrics are summarized for each of the four samples in Table 3. The
distributions for some of the general QC metrics and the decontX decontamination scores are displayed in
violin plots. (Figure 4). As expected, the median counts and features detected in the alignments from v3
chemistry PBMC datasets were almost double than those detected from v2 chemistry indicating the higher

capture sensitivity of the 10x v3 chemistry. No significant difference was observed in the total read counts (p =
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0.93; t-test) and the number of features detected per cell between the PBMC datasets aligned to different
versions of Gencode references (p-value: 0.69; t-test). The predicted doublet rate of each dataset varied
among different doublet detection methods. With the exception of DoubletFinder, all other methods
consistently predicted higher doublets rate for v3 chemistry dataset than those for v2 chemistry dataset.

Finally, lower decontX contamination scores suggest improved processing for the samples profiled with the v3

chemistry.
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Discussion

The wide applicability of single-cell approaches has led to the development of novel computational tools that
allow for clustering and identification of new cell types and trajectory inference of cell populations in
development. Despite the improvements of scCRNA-seq platforms and protocols, low-quality cells and technical
artifacts such as empty droplets, doublets, and ambient RNA still remain present to some degree in most
datasets. Thus, rigorous QC measures are needed to evaluate the quality of individual experiments. The
SCTK-QC pipeline streamlines and standardizes the generation and visualization of metrics important for
assessing data quality. Previous tools like FastQC and RSeQC?*?" have enabled extensive quality assessment
and visualizing of FASTQ and aligned BAM files. Similarly, the SCTK-QC pipeline enables comprehensive
generation and visualization of QC metrics for the initial UMI-corrected count matrix by integrating several
algorithms and tools into a common, easy-to-run framework. Importantly, SCTK-QC pipeline provides a
framework with standardized data structures for computing and storing QC metrics. This modular architecture
of SCTK-QC will allow for easy integration of new tools as they are made available in the future. SCTK-QC is
able to generate HTML reports with publication-ready figures and contains a GUI for interactive QC of single-
cell data. These features will enable users without in-depth programming backgrounds to run these tools and
perform QC on their data. Finally, the SCKT-QC pipeline can export to both R and Python-compatible data

24,25

structures enabling easy integration with other popular analysis frameworks such as Seurat and Scanpy®.

Methods

Accessibility

The SCTK-QC pipeline is executable on the R console, Rstudio or on the Unix command-line with an Rscript
command. The singleCellTK package and quality control pipeline is open sourced through GitHub
(https://github.com/compbiomed/singleCellTK) and the Bioconductor repository. Additionally, we have included
scripts to set up the Conda or Python virtual environments that meet all cross-platform dependency
requirements for convenient portability of the pipeline between operating systems. To encourage reproducibility
and make the computing environment independent, the singleCellTK package and SCTK-QC pipeline is
included in Docker image?® (https://hub.docker.com/r/campbio/sctk_qc). All dependencies of the singleCellTK

package are included in the Docker image and the quality control pipeline can be executed with a single
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docker run. Users can specify parameters used for each QC function by providing a YAML file to the pipeline
with argument “-y” or “--yamlFile”. We have created several vignettes and in-depth walkthroughs for installation
and analysis workflows which are available on the GitHub repository and at https://www.sctk.science.

Quality control of PBMC datasets

The raw reads in the FASTQ format were downloaded from the 10x Genomics Dataset portal and the human
reference genome sequence GRCh38 release versions 27 and 34 in the FASTQ and GTF formats from the
GENCODE website. The “mkref” command in CellRanger v3.1.0 was used to build separate custom
references for Gencode GRCh38 v27 and v34. Droplet and Cell matrices for both PBMC 1k v2 and v3 samples
were then obtained by aligning the raw reads to the reference genomes using CellRanger v3.1.0 running
bcl2fastg v2.20. The summary of the dataset size is summarized in Table 3. Quality control on both matrices

was conducted with SCTK-QC under default parameters for all QC algorithms.
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Figure 1. Overview of the SCTK-QC pipeline. The SCTK-QC pipeline is developed in R and can import
datasets generated from various preprocessing tools. The pipeline incorporates various software and tools to
perform QC for Droplet and/or Cell matrices within each sample. Tools are included for calculation of standard
metrics such as the number of UMIs per cell, detection of empty droplets, prediction of doublets, and
estimation of contamination from ambient RNA. The pipeline utilizes the SingleCellExperiment R object to store
assay data and the derived QC metrics. Data visualization and report generation can be subsequently
performed on the imported dataset based on user specified parameters. All data can be exported to Seurat
object, a Python AnnData object, or as MEX and .txt flat files to facilitate analysis in downstream workflows.
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Figure 2. Generation of HTML reports for visualization and assessment of QC metrics. The functions
reportDropletQC() and reportCellQC() generate the extensive HTML reports to display data generated by the
various QC tools applied by the functions runDropletQC() and runCellQC(), respectively. The
reportDropletQC() report contains figures visualizing identified empty droplets. The reportCellQC() report
contains visualizations of total read counts, total detected, doublet scores, doublet calls, percentages of
ambient RNA detected, and cell clusters identified by DecontX. These reports are run automatically by the
SCTK-QC pipeline. Examples of runDropletQC() (on the left) and runCellQC() (on the right) reports are shown.


https://doi.org/10.1101/2020.11.16.385328
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385328; this version posted February 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Data QC & Filtering

Qc Filtering

QCMetrics cxds beds cxds_beds_hybrid decontX scrublet
Choose which algorithms Total counts per cell
to run: Median 2194

General 15000

[ GC Meteics (Number of LUMls, mumber of features
derected, enc)

10000

Contamination Estimation

o
]
c
3
[ decantX O

Doublet Detection 5000

[] doubletCelis

ot bods_hybeid Total features detected per cell

Median: 815

| scrublet

doubletfinder
3000

General Parameters

Select assay: 2000

Features

counts g

Select variable containing sample labels
1000
sample -

Quick UMAP Parameters
UMAP Name (default 0C_UMAP) Top 50 gene expression percentage

QC_UMAP Median: 44 15957

-
=]

Size of local neighbarhood used for manifald
approsimation (defaul 30)

30 S

=1
o

Number of iterations performed during layout
optimization (defaul: 200)

5]
=1

200

Inizial value of “Jearning raze” (defaulz 1)

£
s

o

Gene expression percentage (%)

@
o

Effective minimum distance between embedded
paines {default 0.01)

"

0.01

Effective scale of embedded paints {defaulc 1)

Number of dimensions from PCA to use as inpuz
(default 25)



https://doi.org/10.1101/2020.11.16.385328
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385328; this version posted February 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.
Figure 3. Interactive QC of single cell data using a Graphical User Interface (GUI). An R/Shiny GUI can
be used to interactively run QC algorithms in the singleCellTK package. A screenshot of the “Data QC &
Filtering” tab from the interactive GUI is shown. After importing the data, quality control is performed within the
“QC & Filtering” tab (red) of the user interface. QC algorithms are chosen from a list (blue), while specific

parameters may be specified as well (green). Plots displaying metrics generated by each QC tool will appear to
the right in a tab.
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Figure 4. Application of SCKT-QC to PBMC datasets. QC metrics were generated by the SCTK-QC pipeline
for 1K healthy donor Peripheral Blood Mononuclear Cell (PBMC) datasets from 10X Genomics. Violin plots
generated by the pipeline demonstrate higher capture sensitivity of the 10x v3 Chromium chemistry.
Furthermore, lower ambient RNA contamination was observed in the samples run with v3 chemistry compared
to samples profiled with the v2 chemistry.
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SCTK QC modules Methods
runBarcodeRankDrops
runDropletQC runEmptyDrop

runPerCellQC

runScrublet
runScDblFinder
runDoubletFinder
runCellQC
runCxds

runBeds

runCxdsBcdsHybrid

runDecontX

Goal .Packages
integrated
Calculate b d
alculate barcode DropletUtils
ranks
Detection of
DropletUtils
empty droplets
Compute general
quality control scater
metrics
Scrublet

scran

DoubletFinder
Doublet detection

scds

scds

scds

Detect ambient
RNA celda
contamination

Function

barcodeRanks

emptyDrops

addPerCellQC

scrub_doublets*

scDblFinder

doubletFinder_v3

cxds

beds

cxds_bcds_hybrid

decontX

Table 1. Functions available in the singleCellTK package and the SCTK-QC pipeline along with the
corresponding wrapper functions. The diverse algorithms and their corresponding SCTK-QC wrapper

functions that are used to generate quality control QC metrics in SCTK-QC pipeline. The asterisk denotes
Python functions.
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Seur  ascen scRNABatch Adob SCO SCHNAP

iS-CellR Ganatum RS

Sl IPNAGr at d QC [¢] NE Ps browser

Input format
10x CellRanger v v v v
SCE Object v v v v v
Seurat Object v v
AnnData v v
LOOM
BUStools v
SEQC v
STARSolo v
Optimus v
DropEst v
IA)% CvNand v VA v v v v v v
RSEM v
Ambient droplets
detection v
General QC Metrics
Total counts v v v v v v v v v v v
Number of
features v v v v v v v v v v v
detected

Gene set count
(e.g v v v v v v v v
mitochondrial)

Doublet detection

scDblFinder v

Scrublet v

doubletFinder v

cxds v
bcds v
cxds/bcds v

hybrid
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teractve. o v v p
docker v v v v
HTML Report v v v v
Output format

RDS v v v v

AnnData v

hdf5 v v
.txt Flatfile v v

pickle v

joblib v

Table 2. Comparison of features in the SCTK-QC pipeline with other single-cell analysis toolkits. SCTK-
QC pipeline supports various types of input, full sScRNA-seq quality control pipeline and supports common data
structures for data storage.


https://doi.org/10.1101/2020.11.16.385328
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385328; this version posted February 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

GENCODE GENCODE
GRCh38 v27 GRCh38 v34
PBMC1k V2 PBMC1k V3 PBMC1k V2 PBMC 1k V3
Total number of genes 58347 60669 58347 60669
detected
Number of droplets, 737280 6794880 737280 6794880
Droplet matrix
Number of (;ells, Cell 995 1223 996 1222
matrix
Mean counts 3560 7580 3550 7580
Median counts 3370 6640 3380 6640
Mean features 1130 2090 1140 2100
detected
Median features 1110 1960 1110 1980
detected
Scrublet,
Number of doublets 12 16 12 18
Scrublet,
Percentage of doublets 1.21 1.31 12 1.47
ScDblFinder,
Number of doublets 13 16 14 20
SchblFinder, 131 131 1.41 1.64

Percentage of doublets

DoubletFinder,
Number of doublets, 75 92 75 92
Resolution 1.5

DoubletFinder,
Percentage of doublets, 7.54 7.52 7.53 7.53
Resolution 1.5

CXDS - Number of

doublets >1 19 > =
CXDS - Percentage of 513 15.9 522 15
doublets
BCDS - Number of 55 104 64 96
doublets
BCDS - Percentage of 553 8.5 6.43 7.86
doublets
SCDS Hybrid - Number 56 94 71 117
of doublets
SCDS Hybrid -
Percentage of doublets >63 769 b >
DecontX.— M-ean 0.06 0.04 0.06 0.03
contamination
DecontX - Median 0.02 0.01 0.02 0.01

contamination
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Table 3. Summary of QC metrics for each PBMC sample. GENCODE PBMC 1k datasets were analyzed
with the SCTK-QC pipeline. Two datasets of differing 10x Chemistry were taken from GENCODE v27 and v34,
resulting in a total of four datasets. A per-sample summary table is automatically generated by the pipeline.


https://doi.org/10.1101/2020.11.16.385328
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385328; this version posted February 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Preprocessing

tools

CellRanger

BUStools

SEQC

Optimus

STARSolo

DropEst

CountMatrix

SCE
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Supplementary Figure 1. Import strategies of

Commandline

Rseript SCTK_runQC.R \
£ CellRangerV3
b BasePath \
-0 OutDirectary
= mmple ..

Rscript SCTK_run@E.R \
P CellRangerv3 \
-C cellPath \
«R rawPath \
-0 OutDirectory.

Rseript SCTK_runQC.R \
- BUStools |
b BasePath\
0 OutDirectory.

Rscript SCTK_runQC.RY,
-PSEQC )
-bBasePath \

-0 OutDirectory \

s sample ..

Rscript SCTK_runQC.R \
-P Optimus |
-b BasePath'}
-0 OutDirectory ...

Rscript SCTK_runQC.R \
-P STARSolo \
-b BasePath}
-0 OutDirectory ...

Rscript SCTK_runQC.R \
-P DropEst,
-b BasePath |
-0 QutDirectory ...

Rscript SCTK_runQC.R \
-P CountMatrix \
- cellFile \
-r rawFlle \
-0 OutDirectory ...

Rscript SCTK_runQC.R\
-P SceRDS \
-c cellFila \,
-r awFile |
-0 QutDirectory ...

Rseript SCTK_runQCR \
-P AnnData \
-C cellPath \
=R rawPath \
-0 OutDirectory \
-5 sample ...

available under aCC-BY 4.0 International license.

R console

dropletSCE <- importCellRangerV3{ cellRangerDirs = BasePath, .. dataType = "raw")
cellSCE <- impartCellRangerV3(cellRangerDirs = BasePath, ... dataType = "filterad”)

dropletSCE <-ImportCallRangerV3sample (cellRangerDirs =rawPath, ... )
celISCE <- importCellRangerv3sample(cellRangerDirs = celiPath, ... )

dropletSCE <- importBUStools(BUStoolsDirs = BasePath, ..)
dropletSCE <- runDropletQC(inSCE = dropletSCE )

cellSCE <- dropletSCE[ , dropletSCESdropletUtils_emptyDrops_fdr < 0.01]

dropletSCE <- BasePath, pi ple, ..}
dropletSCE <- runDropletQC(nSCE = dropletSCE)
celISCE <-dropletSCE[ , dropletSCESdropletUtils_emptyDrops_fdr <0.01]

dropletSCE <- importOptimus{OptimusDirs = BasePath, ...}

cellSCE <- dropletSCE[ which(dropletSCESdroplatUtils_emptyDrops_lsCell)]

dropletSCE < importSTARsolo (STARsoloDirs = BasePath,
STARsoloOuts = " Gene/raw”, ..)

celiSCE <-importSTARsolo (STARsoloDirs = BasePath,
STARsoloOuts = “Gene/filtered”, ...)

dropletSCE <-importDropEst(sampleDirs = BasePath, dataType="raw”, ...)

cellSCE <-importDropEst (sampleDirs = BasePath, dataType="flltered”, .)

dropletMM <- data.table::fread (dropletFile)
dropletSCE <-constructSCE (data = # = )

cellMM <-data table::fread{cellFile)
cellSCE <- constri E(data = cellMM, =

dropletSCE <- readRDS{rawFile)

cellSCE <- readRDS(cellFile)

dropletSCE <- Imp irs = RawFlle, # il Ty

celISCE <- importAnr irs = CellFie, “sampleCell*, ...)

Input folder layout

BasePath
[BasePath)/samplel/outs/filtered_feature_bc_matrix/
[BasePath]/[sample]/outs/raw_feature_bc_matrix/
rawPath cellPath

[rawPath |/barcodes. tsv.gz
[rawPath |/features.tsv.gz
[rawPath ]/matrix.mtx.gz

[cellPath]fbarcodes.tsv.gz
[cellPath]/features tsv.gz
[cellPath]/matrix.mtx.gz

BasePath
[BasePath |/genes barcades.txt
[BasePath]/genes.genes.txt
[BasePath|/genes.mix
BasePuik [BasePath]/{sample]_sparse_counts_barcades.csv
[BasePath/[sample]_sparse_counts_genes.csv
[BasePath|/sample]_sparse_molecule_counts.mbx
BasePath
|BasePath)/callMergeCountFiles /
[BasePath]/call MergeCellMetrics/
[BasePath]/call-MergeGeneMetric
[BasePath]/call -RunEmptyDrops/
BasePath
[Baserath YGene/raw/
[BasePath |/Gene/ffilterad/
BasePath
[BasePath]/cell.counts.rds
rawFile
pathftofdropletMatrix. mix
cellFile
path/to/celiMatrix. mtx
rawFile
path/to/dropletSCE.rds
cellFile
path/to/cel|SCE rds
rawPath
[rawPath]fsample hSad
cellPath

[cellPath }/sample_hSad

the SCTK-QC pipeline used to import data. The last

column demonstrates folder structure that is recognized by SCTK-QC pipeline for the dataset generated by
each preprocessing tool. The first column shows the command-line implementation of the pipeline. The second
column shows the script used to run the pipeline in the R console.
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