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Abstract 

Single-cell RNA sequencing (scRNA-seq) can be used to gain insights into cellular heterogeneity within 

complex tissues. However, a variety of technical artifacts can be present in scRNA-seq data and need to be 

assessed before downstream analyses can be performed. While several algorithms and tools have been 

developed to perform individual quality control (QC) tasks, they are scattered in different packages across 

several programming environments. Comprehensive pipelines to streamline the process of generating and 

visualizing QC metrics are lacking. To address this need, we built the SCTK-QC pipeline within the 

singleCellTK R package (https://github.com/compbiomed/singleCellTK). Features in this pipeline include the 

ability to import data from 11 different preprocessing tools or file formats, perform empty droplet detection with 

2 different algorithms, generate standard quality control metrics such as number of UMIs per cell or the 

percentage of mitochondrial counts, predict doublets using 6 different algorithms, and estimate ambient RNA. 

QC data can be exported to R and/or Python objects used in popular down-stream workflows. Results are 

visualized in an easy-to-read HTML report. This pipeline can also be used by non-computational users with an 

interactive graphical user interface developed with R/Shiny. Overall, the SCTK-QC pipeline will streamline and 

standardize QC analysis for scRNA-seq data across a variety of different single-cell transcriptomic platforms 

and preprocessing tools. 
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Introduction 

Single-cell RNA-sequencing (scRNA-seq) has been instrumental in providing detailed insights into cellular 

heterogeneity related to tissue development and disease pathogenesis1. With the advent of microfluidic 

devices, the transcriptome for thousands of individual cells can be measured in a single run2. These devices 

work by partitioning cells into droplets along with beads containing oligonucleotide primers with unique 

barcodes. Within each droplet, reverse transcription is initially used to create barcoded cDNA and then 

additional amplification steps are used to create final sequencing libraries depending on the protocol3. Other 

approaches such as SMART-seq2 and CEL-seq2 can be used to profile cells that have been sorted into 96- or 

384-well plates4,5. Many of these protocols use unique molecular indices (UMIs) to barcode each individual 

mRNA molecule and correct for biases in amplification6.  

 

Despite the advances in scRNA-seq protocols, poor-quality cells can still be present in high-quality runs. 

Technical artifacts related to the cell dissociation process, cell encapsulation, library preparation, or 

sequencing can affect various aspects of data quality. Low quality cells need to be excluded and technical 

artifacts need to be systematically assessed in each sample before downstream analyses can be performed. 

We briefly describe five types of QC analyses and metrics that are commonly utilized in scRNA-seq data 

analysis: 1) Cells in which barcoding or amplification reactions were not successful will have lower numbers of 

UMIs and genes detected. Lower numbers of detected UMIs and genes can hinder downstream analyses such 

as clustering because the genes that are able to distinguish cell populations may not be adequately measured. 

Often, these cells are excluded by setting a minimum threshold on the number of detected UMI and/or genes. 

2) Another aspect unique to droplet-based microfluidic devices is that the majority of the droplets will not 

contain an actual cell7. Despite the absence of a cell, these “empty droplets” may contain low levels of 

background ambient RNA that was present in the cell solution8. An algorithm is needed to determine which 

droplets likely contained a real cell versus those that just contain ambient RNA8. Only droplets predicted to 

contain an actual cell are used in downstream analyses. 3) Doublets and multiplets occur when two or more 

cells are partitioned into a single droplet or well and will result in an artificial hybrid expression profile of each 

individual cell2. Several algorithms have been developed to identify potential doublets by combining expression 

profiles of randomly selected cells and then scoring each cell against the in silico doublets9,10. These tools can 
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be used to flag potentially problematic cell clusters that are actually combinations of two different cell types. 4) 

Ambient RNA in the cell suspension can also be present in droplets containing a cell as well as empty droplets. 

These ambient transcripts will be counted along with a cell’s native RNA and result in contamination of highly-

expressed genes from other cell types. Tools such as DecontX can be used to estimate contamination levels 

and deconvolute each cell into counts derived from native RNA and counts from contaminating ambient RNA11. 

5) Perturbations during sample preparation can lead to biological artifacts. For example, cells that become 

stressed during tissue dissociation may express abnormally large proportions of mitochondrial genes in their 

transcriptome12. These cells may appear as a unique cluster in the scRNA-seq data even though they were not 

present in the original tissue sample. If not taken into account, these factors can confound downstream 

analyses or produce erroneous findings. Therefore, performing comprehensive QC is a crucial step in scRNA-

seq data analysis to ensure valid results. 

 

While a large number of QC algorithms and software tools have been produced to address the specific 

challenges inherent in scRNA-seq data, these tools are implemented in different packages across various 

programming environments. In order to generate a comprehensive set of QC metrics, users need to separately 

download, install, and run each tool for each sample and independently assess the results13. Currently, there is 

a lack of standardized workflows that can streamline the process of generating QC metrics from different tools. 

In order to address these limitations, we have developed the SCTK-QC pipeline within the singleCellTK R 

package. This pipeline can import single-cell RNA-seq data from a variety of preprocessing tools, run a 

multitude of different tools to generate comprehensive sets of QC metrics, visualize the results within detailed 

HTML reports, and export the results in an organized manner in various formats.  
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Results 

Overview of SCTK-QC Pipeline 

The SCTK-QC pipeline is accessible through the singleCellTK package in R/Bioconductor. This pipeline 

assumes that the raw sequencing reads have been aligned, a correction for UMI and cell barcodes has been 

applied, and a count matrix containing genes and cells has been created by an upstream preprocessing tool 

such as CellRanger7 or STARsolo14. For data generated with microfluidic devices, the first major step after UMI 

counting is to detect cell barcodes that represent droplets containing a true cell and exclude empty droplets 

that only contain ambient RNA8. We use the terms “Droplet” matrix to denote a count matrix that still contains 

empty droplets, “Cell” matrix to denote a count matrix of cells where empty droplets have been excluded but no 

other filtering has been performed, and “FilteredCell” matrix to indicate a count matrix where poor quality cells 

have also been excluded. The Droplet and Cell matrices have also been called “raw” and “filtered” matrices, 

respectively, by tools such as CellRanger. However, using the term “filtered” can be ambiguous as other forms 

of cell filtering can be applied beyond empty droplets (e.g. excluding poor-quality cells based on low number of 

UMIs). Additionally, even after excluding empty droplets and poor-quality cells, the matrix will still contain 

unnormalized counts, which is also commonly referred to as the “raw” count matrix. To eliminate ambiguity of 

these terms, we adopt the nomenclature of “Droplet”, “Cell”, and “FilteredCell” to describe the level of filtering 

on the dimensions of the count matrix while we prefer the terms “Raw”, “Normalized”, and “Scaled” to denote 

the level of processing for the counts within the matrix.  

 

The major steps in the SCTK-QC pipeline include: 1) importing of the Droplet matrix, 2) detection and 

exclusion of empty droplets to create the Cell matrix, 3) calculation of a comprehensive set of QC metrics on 

the Cell matrix, 4) visualization of results in HTML format, and 5) exporting the data to formats used in 

downstream analysis workflows (Figure 1). Note that several preprocessing tools automatically exclude empty 

droplets and create a Cell matrix. The SCTK-QC pipeline also has the ability to import a Cell matrix and start 

with the calculation of QC metrics in step 3 or import both the Droplet and Cell matrices and perform QC on 

each matrix independently. The single-cell data is stored within the pipeline as a SingleCellExperiment 

object13. Cell-level metrics generated by QC tools are stored in the colData slot alongside other imported cell-

level annotations and corrected raw counts matrices created by any QC tool are stored in the assays slot. For 
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reproducibility, the parameters and seeds used to run the functions within the pipeline will be also stored in the 

metadata slot. Overall, the pipeline supports importing data from 11 different preprocessing tools or file 

formats, empty droplet detection with 2 algorithms, generation of standard QC metrics, doublet detection using 

6 algorithms, and estimation of ambient RNA (Table 1). SCTK-QC integrates numerous tools across different 

programming environments such as R and Python. To streamline installation and minimize challenges with 

package dependencies, we have built Docker and Singularity images which are available through DockerHub 

(campbio/sctk_qc). The specific algorithms and tools used in each step of the pipeline are described in more 

detail below. 

1. Data import 

SCTK-QC can automatically import data from a variety of preprocessing tools and file formats. Supported 

preprocessing tools include CellRanger7, BUStools15, STARSolo14, SEQC16, Optimus17, and dropEST18. 

Generally, users will only need to specify the top-level directories for one or more samples and SCTK-QC will 

import and combine each sample into a single matrix. Alternatively, specific file formats such as Market 

Exchange Format (MEX) or a file containing comma-separated values (.csv) can be specified along with 

separate files for feature and cell annotation. By default, SCTK-QC will run QC analysis on both Droplet matrix 

and Cell matrix if both of them are provided. However, users can also choose to run QC only on the Droplet or 

only on the Cell matrix. The sample labels for each cell are stored in a variable called “sample” within the 

colData slot of the SingleCellExperiment object. Each QC algorithm will be applied to cells from each sample 

separately. 

2. Empty droplet detection 

Detection of empty droplets within the Droplet matrix is accomplished using the algorithms barcodeRanks and 

EmptyDrops from the dropletUtils package8. These algorithms are incorporated within the wrapper function 

runDropletQC(), implemented within SCTK-QC. barcodeRanks ranks all barcodes within the Droplet matrix 

based on total UMI counts per barcode. The knee and inflection points are computed from the log-log plot of 

the rank against the total counts. Under the assumption that cells will have a higher number of total UMI counts 

than empty droplets, barcodes with total counts under the knee or inflection points are flagged as empty 

droplets. Rank, total counts, knee and inflection point are all outputted from the algorithm and stored within the 

SingleCellExperiment object. In contrast, emptyDrops differentiates between empty droplets containing 
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ambient RNA from true cells by employing a probabilistic model that assumes a “pool” of ambient RNA from 

the Droplet matrix randomly contaminates each droplet. By comparison with a pool of ambient RNA simulated 

from the counts data, the algorithm determines droplets containing true cells to be those only containing 

ambient RNA. Metrics generated from this model include the total UMI counts per barcode, the log-probability, 

Monte Carlo p-value, and the q-value for a droplet containing a real cell, and a value signaling whether 

increasing the number of iterations within the algorithm will increase the likelihood of identifying a lower p-

value. The SingleCellExperiment object containing the Droplet matrix can be automatically filtered on either the 

barcodeRanks or emptyDrops output to create a new SingleCellExperiment object containing the Cell matrix if 

this matrix was not originally supplied as input to the SCTK-QC pipeline.  

3. Generation of QC metrics 

Wrapper functions for each QC algorithm or tool are included in SCTK-QC. Additionally, the wrapper function 

runCellQC() is capable of executing these algorithms all at once within SCTK-QC. runCellQC() applies 

algorithms available from the scater13 package to the Cell matrix to compute standard metrics. This includes 

the total UMI counts per cell, total number of features detected per cell, and the percentage of library size 

occupied by the most highly expressed genes in each cell. Users may also supply any gene set of their choice 

to calculate the aggregate expression of the gene set per cell. As a specific use case, a list of mitochondrial 

genes may be supplied to runCellQC() to compute the mitochondrial gene expression per cell. Mitochondrial 

gene sets for mouse and human in Gene Symbol, Ensembl and Entrez formats are stored in the package and 

can be supplied to the SCTK-QC pipeline by setting “-M” parameter. The runCellQC() function employs the 

following algorithms for doublet identification in the Cell matrix: scrublet9, scDblFinder19, DoubletFinder10, and 

the cxds, bcds and cxds_bcds_hybrid models from SCDS20 package. All of these algorithms output a doublet 

score. Most of these tools also derive a threshold and make a call as to whether each cell is a doublet or a 

singlet. Running multiple algorithms allows users to set their own criteria for flagging potential doublets that 

works best for their dataset. Finally, the runCellQC() function runs DecontX10 to detect ambient RNA 

contamination for each cell within the Cell matrix. The percentage of estimated contamination is stored within 

the colData and the decontaminated count matrix is stored as an assay in the SingleCellExperiment which can 

be optionally used in downstream analysis. After completion of runCellQC(), users can use any combination of 

these QC metrics to filter the Cell matrix and create a FilteredCell matrix for use in downstream analyses. 
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4. Generation of comprehensive QC HTML reports 

Rmarkdown documents can be used to create dynamic HTML or PDF reports useful for systematic display and 

evaluation of data21. We include the functions reportDropletQC(), reportCellQC(), and reportQCTool() which 

make use of algorithm-specific Rmarkdown document templates to generate HTML reports with the 

visualizations of QC metrics from all algorithms (Figure 2). reportDropletQC() generates a report including a 

scatterplot annotating all empty droplets flagged by the EmptyDrops algorithm as well as a curve visualizing 

the knee and inflection points identified by BarcodeRanks. For each set of doublet detection algorithm 

executed, reportCellQC() generates a report which visualizes the doublet score and call through violin plots, 

density plots, and dimensionality reduction plots. These plots are also created to visualize the contamination 

percentage of ambient RNAs computed by DecontX if the algorithm has been applied to the data. Additionally, 

both reports include a summary table detailing the outputted quality control metrics for all algorithms run. 

5. Export to common data structures 

Different software packages utilize varying data containers to store and retrieve scRNA-seq data22. To facilitate 

downstream analysis in multiple platforms, the SCTK-QC pipeline provides several functions to export the data 

in one or more data structures or file formats. The exportSCEtoFlatFile function writes assays to MEX files and 

the colData, rowData, reducedDims slots into tab-delimited flat files. The metadata is exported as a list in an 

RDS file. All exported files can be optionally saved in a gzipped format. The exportSCEtoAnnData() function 

exports the data into a Python annotated data matrix (AnnData)23 object. The function stores assay, rowData, 

colData and reducedDims slots into X, var, obs and obsm groups of the AnnData object, respectively. The 

AnnData object can be written into a .h5ad file format and can subsequently be compressed in a “gzip” or “lzf” 

format. These functions can be run by setting the “-F” or “--outputFormat” parameter in the SCTK-QC pipeline.  

R/Shiny user interface 

Shiny is a R package developed for building interactive web applications. The singleCellTK package 

incorporates Shiny Graphical User Interface (GUI) for the interactive analysis of single-cell data. Users are able 

to access the user interface by simply executing the singleCellTK() function in the R console. Upon loading the 

data, QC algorithms to be run are chosen on the “Data QC & Filtering” page by selecting checkboxes in the 

user interface (Figure 3). Upon the completion of the algorithms, QC plots will appear within tabs for each of 
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the algorithms selected. The “Filtering” tab can be used to set criteria for filtering. After QC, users are able to 

interactively perform other downstream analyses such as batch correction, feature selection, dimensionality 

reduction, clustering, differential expression, and pathway analysis. 

Comparison to other tools 

Several other tools that can perform single-cell RNA sequencing data analysis and quality control have been 

created. While many packages only support input data stored in structured format (SingleCellExperiment 

object, Seurat24,25 object or count matrix stored in csv/txt/mtx file), SCTK-QC also accepts data generated from 

different preprocessing tools and .h5ad files. Although other packages can perform general QC metrics 

including number of reads and features detected per cell, SCTK-QC includes comprehensive QC analysis 

including empty droplet detection, doublet detection and ambient RNA correction (Table 2). Furthermore, no 

other software package currently runs multiple doublet detection methods and allows users to easily compare 

results. SCTK-QC also visualizes QC metrics in standardized html reports and stores results in several data 

formats, which facilitates downstream analysis in different analysis workflows. Currently, SCTK-QC does not 

support RSEM as an input format and it does not support other Python objects such as pickle and joblib as 

these are not commonly used.  

Application of SCTK-QC pipeline to PBMC datasets 

To demonstrate the utility of SCTK-QC, we apply the pipeline to the 10x Genomics 1K healthy donor 

Peripheral Blood Mononuclear Cell (PBMC) dataset generated with v2 or v3 Chromium chemistries. Each 

dataset was processed with two different versions of Gencode GTF files (Gencode v27 and Gencode v34). 

The resulting four count matrices (Gencode v27 PBMC 1K v2, Gencode v27 PBMC 1K v3, Gencode v34 

PBMC 1K v2, Gencode v34 PBMC 1K v2) were then processed by the SCTK-QC pipeline. Specifically, the 

pipeline used the importCellRangerV2() and importCellRangerV3() function by setting the “-cellRangerDirs” as 

the path of input data , and the “-dataType” parameter as “filtered” and the runCellQC() function was called to 

generate the QC metrics. All of the QC metrics are summarized for each of the four samples in Table 3. The 

distributions for some of the general QC metrics and the decontX decontamination scores are displayed in 

violin plots. (Figure 4). As expected, the median counts and features detected in the alignments from v3 

chemistry PBMC datasets were almost double than those detected from v2 chemistry indicating the higher 

capture sensitivity of the 10x v3 chemistry. No significant difference was observed in the total read counts (p = 
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0.93; t-test) and the number of features detected per cell between the PBMC datasets aligned to different 

versions of Gencode references (p-value: 0.69; t-test). The predicted doublet rate of each dataset varied 

among different doublet detection methods. With the exception of DoubletFinder, all other methods 

consistently predicted higher doublets rate for v3 chemistry dataset than those for v2 chemistry dataset. 

Finally, lower decontX contamination scores suggest improved processing for the samples profiled with the v3 

chemistry.  
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Discussion  

The wide applicability of single-cell approaches has led to the development of novel computational tools that 

allow for clustering and identification of new cell types and trajectory inference of cell populations in 

development. Despite the improvements of scRNA-seq platforms and protocols, low-quality cells and technical 

artifacts such as empty droplets, doublets, and ambient RNA still remain present to some degree in most 

datasets. Thus, rigorous QC measures are needed to evaluate the quality of individual experiments. The 

SCTK-QC pipeline streamlines and standardizes the generation and visualization of metrics important for 

assessing data quality. Previous tools like FastQC and RSeQC26,27 have enabled extensive quality assessment 

and visualizing of FASTQ and aligned BAM files. Similarly, the SCTK-QC pipeline enables comprehensive 

generation and visualization of QC metrics for the initial UMI-corrected count matrix by integrating several 

algorithms and tools into a common, easy-to-run framework. Importantly, SCTK-QC pipeline provides a 

framework with standardized data structures for computing and storing QC metrics. This modular architecture 

of SCTK-QC will allow for easy integration of new tools as they are made available in the future. SCTK-QC is 

able to generate HTML reports with publication-ready figures and contains a GUI for interactive QC of single-

cell data. These features will enable users without in-depth programming backgrounds to run these tools and 

perform QC on their data. Finally, the SCKT-QC pipeline can export to both R and Python-compatible data 

structures enabling easy integration with other popular analysis frameworks such as Seurat24,25 and Scanpy23. 

 

Methods 

Accessibility  

The SCTK-QC pipeline is executable on the R console, Rstudio or on the Unix command-line with an Rscript 

command. The singleCellTK package and quality control pipeline is open sourced through GitHub 

(https://github.com/compbiomed/singleCellTK) and the Bioconductor repository. Additionally, we have included 

scripts to set up the Conda or Python virtual environments that meet all cross-platform dependency 

requirements for convenient portability of the pipeline between operating systems. To encourage reproducibility 

and make the computing environment independent, the singleCellTK package and SCTK-QC pipeline is 

included in Docker image28 (https://hub.docker.com/r/campbio/sctk_qc). All dependencies of the singleCellTK 

package are included in the Docker image and the quality control pipeline can be executed with a single 
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docker run. Users can specify parameters used for each QC function by providing a YAML file to the pipeline 

with argument “-y” or “--yamlFile”. We have created several vignettes and in-depth walkthroughs for installation 

and analysis workflows which are available on the GitHub repository and at https://www.sctk.science.  

Quality control of PBMC datasets 

The raw reads in the FASTQ format were downloaded from the 10x Genomics Dataset portal and the human 

reference genome sequence GRCh38 release versions 27 and 34 in the FASTQ and GTF formats from the 

GENCODE website. The “mkref” command in CellRanger v3.1.0 was used to build separate custom 

references for Gencode GRCh38 v27 and v34. Droplet and Cell matrices for both PBMC 1k v2 and v3 samples 

were then obtained by aligning the raw reads to the reference genomes using CellRanger v3.1.0 running 

bcl2fastq v2.20. The summary of the dataset size is summarized in Table 3. Quality control on both matrices 

was conducted with SCTK-QC under default parameters for all QC algorithms.  
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Figures and Tables 

 

 

 
Figure 1. Overview of the SCTK-QC pipeline. The SCTK-QC pipeline is developed in R and can import 
datasets generated from various preprocessing tools. The pipeline incorporates various software and tools to 
perform QC for Droplet and/or Cell matrices within each sample. Tools are included for calculation of standard 
metrics such as the number of UMIs per cell, detection of empty droplets, prediction of doublets, and 
estimation of contamination from ambient RNA. The pipeline utilizes the SingleCellExperiment R object to store 
assay data and the derived QC metrics. Data visualization and report generation can be subsequently 
performed on the imported dataset based on user specified parameters. All data can be exported to Seurat 
object, a Python AnnData object, or as MEX and .txt flat files to facilitate analysis in downstream workflows.  
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Figure 2. Generation of HTML reports for visualization and assessment of QC metrics. The functions 
reportDropletQC() and reportCellQC() generate the extensive HTML reports to display data generated by the 
various QC tools applied by the functions runDropletQC() and runCellQC(), respectively. The 
reportDropletQC() report contains figures visualizing identified empty droplets. The reportCellQC() report 
contains visualizations of total read counts, total detected, doublet scores, doublet calls, percentages of 
ambient RNA detected, and cell clusters identified by DecontX. These reports are run automatically by the 
SCTK-QC pipeline. Examples of runDropletQC() (on the left) and runCellQC() (on the right) reports are shown.  
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Figure 3. Interactive QC of single cell data using a Graphical User Interface (GUI). An R/Shiny GUI can 
be used to interactively run QC algorithms in the singleCellTK package. A screenshot of the “Data QC & 
Filtering” tab from the interactive GUI is shown. After importing the data, quality control is performed within the 
“QC & Filtering” tab (red) of the user interface. QC algorithms are chosen from a list (blue), while specific 
parameters may be specified as well (green). Plots displaying metrics generated by each QC tool will appear to 
the right in a tab. 
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Figure 4. Application of SCKT-QC to PBMC datasets. QC metrics were generated by the SCTK-QC p
for 1K healthy donor Peripheral Blood Mononuclear Cell (PBMC) datasets from 10X Genomics. Viol
generated by the pipeline demonstrate higher capture sensitivity of the 10x v3 Chromium che
Furthermore, lower ambient RNA contamination was observed in the samples run with v3 chemistry co
to samples profiled with the v2 chemistry. 
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SCTK QC modules Methods Goal 
Packages 

integrated 
Function 

runDropletQC 

runBarcodeRankDrops 
Calculate barcode 

ranks 
DropletUtils barcodeRanks 

runEmptyDrop 
Detection of 

empty droplets 
DropletUtils emptyDrops 

runPerCellQC 

Compute general 

quality control 

metrics 

scater addPerCellQC 

runCellQC 

runScrublet 

Doublet detection 

Scrublet scrub_doublets* 

runScDblFinder scran scDblFinder 

runDoubletFinder DoubletFinder doubletFinder_v3 

runCxds scds cxds 

runBcds scds bcds 

runCxdsBcdsHybrid scds cxds_bcds_hybrid 

runDecontX 

Detect ambient 

RNA 

contamination 

celda decontX 

Table 1. Functions available in the singleCellTK package and the SCTK-QC pipeline along with the 
corresponding wrapper functions. The diverse algorithms and their corresponding SCTK-QC wrapper 
functions that are used to generate quality control QC metrics in SCTK-QC pipeline. The asterisk denotes 
Python functions. 
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  SCTK PIVOT Seur
at 

ascen
d 

scRNABatch
QC 

Adob
o 

SCO
NE 

SCHNAP
Ps 

iS-CellR Ganatum ASAP 
browser 

Input format                       

 10x CellRanger ✓   ✓   ✓       ✓     

  SCE Object ✓       ✓   ✓ ✓ ✓     

  Seurat Object ✓    ✓                 

  AnnData ✓                   ✓ 

  LOOM                      

  BUStools ✓                     

  SEQC ✓                     

  STARSolo ✓                     

  Optimus ✓                     

  DropEst ✓                     

  TXT, CVN and 
MTX ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

  RSEM             ✓         

Ambient droplets 
detection ✓                     

General QC Metrics                       

 Total counts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
Number of 
features 
detected 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
Gene set count 
(e.g 
mitochondrial) 

✓ ✓ ✓ ✓ ✓ ✓     ✓   ✓ 

Doublet detection                      

  scDblFinder ✓                     

  Scrublet ✓                     

  doubletFinder ✓                     

  cxds ✓                     

 bcds ✓           

 
cxds/bcds 
hybrid ✓           
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Shiny App / 
interactive ✓ ✓         ✓ ✓ ✓ ✓ ✓ 

docker ✓ ✓             ✓   ✓ 

HTML Report ✓     ✓ ✓           ✓ 

Output format                       

  RDS ✓     ✓ ✓     ✓       

 AnnData ✓           

  hdf5 ✓                   ✓ 

  .txt Flatfile  ✓             ✓       

  pickle           ✓           

  joblib           ✓           

Table 2. Comparison of features in the SCTK-QC pipeline with other single-cell analysis toolkits. SCTK-
QC pipeline supports various types of input, full scRNA-seq quality control pipeline and supports common data 
structures for data storage. 
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GENCODE 

 GRCh38 v27 
GENCODE 

 GRCh38 v34 

 PBMC1k V2 PBMC1k V3 PBMC1k V2 PBMC 1k V3 

Total number of genes 

detected 
58347 60669 58347 60669 

Number of droplets, 

Droplet matrix 
737280 6794880 737280 6794880 

Number of Cells, Cell 

matrix 
995 1223 996 1222 

Mean counts 3560 7580 3550 7580 

Median counts 3370 6640 3380 6640 

Mean features 

detected 
1130 2090 1140 2100 

Median features 

detected 
1110 1960 1110 1980 

Scrublet, 
Number of doublets 

12 16 12 18 

Scrublet, 
Percentage of doublets 

1.21 1.31 1.2 1.47 

ScDblFinder, 

Number of doublets 
13 16 14 20 

ScDblFinder, 

Percentage of doublets 
1.31 1.31 1.41 1.64 

DoubletFinder, 
Number of doublets, 

Resolution 1.5 
75 92 75 92 

DoubletFinder, 
Percentage of doublets, 

Resolution 1.5 
7.54 7.52 7.53 7.53 

CXDS - Number of 

doublets 
51 195 52 183 

CXDS - Percentage of 

doublets 
5.13 15.9 5.22 15 

BCDS - Number of 

doublets 
55 104 64 96 

BCDS - Percentage of 

doublets 
5.53 8.5 6.43 7.86 

SCDS Hybrid - Number 

of doublets 
56 94 71 117 

SCDS Hybrid - 

Percentage of doublets 
5.63 7.69 7.13 9.57 

DecontX - Mean 

contamination 
0.06 0.04 0.06 0.03 

DecontX - Median 

contamination 
0.02 0.01 0.02 0.01 
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Table 3. Summary of QC metrics for each PBMC sample. GENCODE PBMC 1k datasets were analyzed 
with the SCTK-QC pipeline. Two datasets of differing 10x Chemistry were taken from GENCODE v27 and v34, 
resulting in a total of four datasets. A per-sample summary table is automatically generated by the pipeline.  
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Supplementary Figure 1. Import strategies of the SCTK-QC pipeline used to import data. T
column demonstrates folder structure that is recognized by SCTK-QC pipeline for the dataset gener
each preprocessing tool. The first column shows the command-line implementation of the pipeline. The 
column shows the script used to run the pipeline in the R console.  
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