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Abstract

Stroke patients commonly suffer from post stroke fatigue (PSF). Despite a general consensus
that brain perturbations constitute a precipitating event in the multifactorial etiology of PSF,
the specific predictive value of conventional lesion characteristics such as size and
localization remain unclear. The current study represents a novel approach to assess the neural
correlates of PSF in chronic stroke patients. While previous research has focused primarily on
lesion location or size, with mixed or inconclusive results, we targeted the extended structural
network implicated by the lesion, and evaluated the added explanatory value of a
disconnectivity approach with regards to the brain correlates of PSF. To this end, we
estimated individual brain disconnectome maps in 84 stroke survivorsin the chronic phase (>
3 months post stroke) using information about lesion location and normative white matter
pathways obtained from 170 healthy individuals. PSF was measured by the Fatigue Severity
Scale (FSS). Voxel wise analyses using non-parametric permutation-based inference were
conducted on disconnectome maps to estimate regional effects of disconnectivity.
Associations between PSF and global disconnectivity and clinical lesion characteristics were
tested by linear models, and we estimated Bayes factor to quantify the evidence for the null
and alternative hypotheses, respectively. The results revealed no significant associations
between PSF and disconnectome measures or lesion characteristics, with moderate evidence
in favor of the null hypothesis. These results suggest that symptoms of post-stroke fatigue are
not simply explained by lesion characteristics or brain disconnectome measures in stroke

patients in achronic phase, and are discussed in light of methodological considerations.
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Between 25 and 85 percent of stroke survivors experience post stroke fatigue (PSF)
(Cumming, Packer, Kramer, & English, 2016), described as an excessive and debilitative
tiredness that can be unrelated to strain and not ameliorated by rest (UK Stroke Association,
2020; de Groot, Phillips, & Eskes, 2003). Persistent PSF can be highly distressing, negatively
impacting quality of life (de Bruijn et al., 2015; Naess, Waje-Andreassen, Thomassen,
Nyland, & Myhr, 2006) and preventing social participation and attendance to rehabilitation
programs (Nadargjah & Goh, 2015). PSF is associated with both poor functional outcome and
increased mortality (Glader, Stegmayr, & Asplund, 2002), and a recent meta-analysis
revealed that the prevalence increases with time since stroke (Cumming et al., 2018). Early
detection, prevention and treatment of fatigue might thus have positive effects on the overall
outcome of stroke rehabilitation and quality of life. As such, identification of risk factorsis
important to facilitate detection and individual tailoring of rehabilitation programs.

A number of biological, psychological, demographical and social risk factors for PSF
have been suggested. Briefly; reduced physical function, female sex, depression (Lerdal et al.,
2011; Aarnes, Stubberud, & Lerdal, 2019), pain, sleep disturbances (Naess, Lunde, Brogger,
& Waje-Andreassen, 2012) and certain lesion characteristics (Mutai, Furukawa, Houri,
Suzuki, & Hanihara, 2017; Wa Kwong Tang et a., 2014; Wa Kwong Tang et al., 2010) are
among the identified risk factors. Depression is the maost consistently correlated factor
(Ponchel, Bombois, Bordet, & Hénon, 2015; Wu, Barugh, Macleod, & Mead, 2014), and,
although PSF is generally conceptualized as an independent condition, the nature of the
relationship between fatigue and depression has been debated. Although efforts have been
made to disentangle the two (Douven et al., 2017; Hagestal et a., 2019; Kunze, Zierath,
Drogomiretskiy, & Becker, 2014), the clinical overlap is substantial (Cumming et a., 2018).

The use of advanced brain imaging to detect the brain correlates of the two clinical syndromes
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may facilitate our understanding of the phenomena through identification of both common
and specific brain mechanisms (Hagestal et al., 2019).

Despite a general consensus that the lesion and the associated brain perturbations
following the stroke constitute causal factors for PSF, little is known about the predictive
value of key lesion characteristics such as extent and neuroanatomical distribution. Fatigueis
more prevalent following a minor stroke compared to atransient ischemic attack (TIA)
(Naess et al., 2012; Winward, Sackley, Metha, & Rothwell, 2009), suggesting that the
vascular lesion itself is of importance with regards to fatigue. Further, stroke survivors
describe the fatigue experienced after stroke as qualitatively different than fatigue before
stroke or normal tiredness (Thomas, Gamlin, De Simoni, Mullis, & Mant, 2019). Lastly,
fatigue is a common sequela or symptom in several neurological conditions, i.e. traumatic
brain injury, multiple sclerosis and postpoliomyelitis, jointly referred to as “central fatigue”
(Chaudhuri & Behan, 2000, 2004).

Studies examining associations between lesion characteristics and fatigue in stroke
survivors have generated mixed findings. In line with the hypothesis of fatigue caused by
nervous system disruptions (Chaudhuri & Behan, 2000, 2004), basal ganglia infarcts have
been identified as predictors of fatigue (Wai Kwong Tang et al., 2010) and caudate infarcts
were more frequent in patients with than without PSF (W. K. Tang et al., 2013). Further,
infratentorial infarcts have been associated with increased risk of fatigue (Snaphaan, Van der
Werf, & de Leeuw, 2011), as have right hemisphere lesions, and brainstem and thalamic
lesions (Mutai et al., 2017). Y et the relationship between fatigue and lesion location remains
unresolved (De Doncker, Dantzer, Ormstad, & Kuppuswamy, 2018), and several studies
report no consistent associ ations between lesion characteristics and fatigue (Choi-Kwon, Han,

Kwon, & Kim, 2005; Ingles, Eskes, & Phillips, 1999; Mead et al., 2011).
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It is conceivable that clinical symptoms following a stroke are not mediated primarily
by the localization of the lesion, but rather by the functional neuroanatomy of the extended
brain networks that are affected by the lesion and degree of preserved network function
(Bartolomeo & de Schotten, 2016; Nordin et a., 2016). Neuroi maging suggests that many
psychiatric and neurologic symptoms are related to complex brain networks of anatomically
distant but connected regions (Fox, 2018) that are vulnerable to injuries in arange of
locations. Through processes like diaschisis (remote neurophysiological changes or
dysfunctions of a distant region caused by afocal injury (Carrera & Tononi, 2014; von
Monakow, 1914)), disconnection (Geschwind, 1974) and transneuronal degeneration (Cowan,
1970), stroke lesions may affect brain function and behavior in ways not readily predicted by
the location or size of the damaged tissue. For example, functional MRI has reveaed that
functional network disturbances are observed between remotely connected cortical areas in
both the unaffected and affected hemisphere (Rehme & Grefkes, 2013), and abrupted
connectivity may cause impairments that are functionally similar to direct tissue necrosis
(Bonilhaet a., 2014). Probing the extended brain network characteristicsinvolved in alesion
and its associ ations with outcome may therefore provide theoretically and clinically relevant
information of the functional neuroanatomy of specific symptoms post stroke and other brain
disorders.

Recent large-scale collaborative neuroimaging efforts have resulted in remarkable
advances in the characterization of the human brain “connectome” and “disconnectome’
(Thiebaut de Schotten, Foulon, & Nachev, 2020), providing highly valuable roadmaps for
studies attempting to link symptoms, lesions and brain networks. Various approaches for
lesion network mapping (Foulon et al., 2018; Fox, 2018) are now being applied to
neurological conditions such as mania symptoms (Cotovio et a., 2020), amnesia (Ferguson et

al., 2019), and Alzheimer’s disease (Darby, Joutsa, & Fox, 2019). In the context of stroke
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lesions and fatigue, targeting network disconnections in addition to lesion characteristics may
advance our understanding on the relationship between brain perturbations and fatigue
beyond what is revealed by traditional lesion-symptom mapping.

To evaluate the added explanatory value of a disconnectivity based approach with
regards to the brain correlates of PSF, we quantified lesion disconnectivity indirectly using
information about normative white matter pathways in the healthy population to estimate
individual structural disconnection (disconnectome) maps in 84 stroke survivorsin the
chronic phase. The maps were created by a tractography-based procedure (Foulon et al.,
2018) yielding voxel-wise probability of structural disconnection of white matter tracts
(Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut de Schotten, & Corbetta, 2020).

A ssociations between disconnectome maps and PSF (assessed by the Fatigue Severity
Scale (FSS)), were examined using permutation testing. Due to the substantial overlap and
interaction between fatigue and depression and the possibility of common mechanisms across
these conditions, all voxel-wise analyses were done with a) fatigue scores, b) depression
scores (measured using the Pittsburg Health Questionnaire (PHQ-9) (Spitzer, Kroenke,
Williams, & Patient Health Questionnaire Primary Care Study, 1999) and c) fatigue and
depression scores combined. The above described analyses were repeated on the binarized
lesion maps, reflecting atraditional voxel-based lesion symptom mapping (V SLM) approach
(Bates et al., 2003). In addition, we estimated the global disconnectivity for each patient, and
tested for correlations with FSS, using Bayes factor to quantify evidence for the null
hypothesis. Finally, in agreement with a more traditional, clinical approach, we applied linear
models to test for associations between PSF and stroke related factors such as stroke location
(right hemisphere, left hemisphere, brainstem, cerebellum, or both hemispheres), months
since stroke, stroke severity (using National Institute of Health Stroke Scale (NIHSS; Lyden

et a., 2009) score at discharge as a proxy for clinical severity) and etiology as defined by the
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stroke subtype classification system Trial of Org 10172 in Acute Stroke Treatment (TOAST;
Adams Jr et al., 1993).

Dueto alack of previous studies applying a disconnectivity approach to PSF, we
remained agnostic about the specific brain networks involved and performed awhole-brain
analysis. Based on recent work demonstrating the benefits of targeting network projections of
alesion (Griffis, Metcalf, Corbetta, & Shulman, 2019; Thiebaut de Schotten et a., 2020), and
the notion that many psychiatric and neurological conditions correspond more closely to brain
networks than specific regions (Fox, 2018), we expected the disconnectivity based approach

to demonstrate higher sensitivity to PSF than conventional lesion-related approaches.

M aterials and methods
Sudy participants
Table 1 summarizes demographic and clinical information. We recruited 84 stroke patients
from the Geriatric Department, Diakonhjemmet Hospital, the Stroke Unit, Oslo University
Hospital and Baarum Hospital. A subsample of the patients (n=66) participated in a
longitudinal intervention study examining the effects of cognitive training and tDCS on
cognitive function (see Kolskaar et al. (2020) for details). All data reported in the current
study were collected prior to the intervention. Criteria were ischemic or hemorrhagic stroke in
a chronic phase defined as >3 months since admission, age above 18 years, no MRI
contraindications and no other severe neurological conditions.

Healthy individuals >18 years were recruited through newspaper ads, word-of-mouth
and social media (Dgrum et al., 2020; Richard et al., 2018). Exclusion criteriaincluded a
history of stroke, neurological or psychiatric disease, medications with significant effects on

central nervous system function and MR contraindications.
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Healthy controls and stroke patients were matched on age and sex, using Matchit in R
(Stuart, King, Imai, & Ho, 2011) and the default method nearest. Applying aratio of 2:1 (two
controls selected for each patient), healthy participants were collected from a pool of 341
controls (age 24 — 92), resulting in an age- and sex matched control group of 155 individuals
(mean age = 64.7, SD = 12.3, 44 femades).

All participants were screened using Montreal cognitive assessment (MoCA). A score
below 25 may indicate mild cognitive impairment (Nasreddine, 2020; Nasreddine et al.,
2005). Oneincluded patient had a MoCA score of 19 and one healthy control a score of 22,
but further neuropsychological assessments indicated sufficient cognitive function and did not
reveal contraindications for study participation.

All participants provided informed consent prior to enrollment. The study was
approved by the Regional Committee for Medical and Health Research Ethics, South-East

Norway.

Fatigue Severity Scale (FSS)

Subjective fatigue was measured by the FSS (Krupp, LaRocca, Muir-Nash, & Steinberg,
1989), which is a self-report scale consisting of 9 statements about impact of fatigue on daily
life. Degree of agreement is indicated on a seven-point Likert scale (lowest possible total
score 7, highest score 63). FSSis one of the most frequently used instruments for measuring
fatiguein neurological conditions (Cumming et al., 2016) and has demonstrated reasonable
psychometric qualities (Whitehead, 2009). A commonly adapted threshold for clinical fatigue
Is amean score of >= 4 (total score >= 36) (Krupp et a., 1989; Nadargjah & Goh, 2015;
Schepers, Visser-Melily, Ketelaar, & Lindeman, 2006), where a higher score is suggested to

indicate a moderate to high impact of fatigue (Schepers et a., 2006).
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Patient Health Questionnaire (PHQ-9)
Depression symptoms were measured by the depression module of the PHQ-9, in which
occurrence of depressive symptoms corresponding to the DSM-IV criteriais rated on a 9-item
Likert scale. Scores range from O (not at all) to 3 (nearly every day), yielding a minimum
score of zero and a maximum score of 27. A cutoff score of > 10 has demonstrated acceptable
sensitivity and specificity for depression (Kroenke, Spitzer, & Williams, 2001).

To establish the degree of symptom load in the stroke sample compared to healthy

individuals, we conducted two tailed t-tests on group differencesin FSS and PHQ-9.

Tablel

Sample characteristics Patients (n=84) Control group (n=155)

Demographic and clinical information Mean(SD) Min-Max Mean(SD) Min-Max t(p) BF**
Age 65.8(12.6) 24-87 64.7(12.3) 24-92 1.0 (.279) 0.16
Males/females (count) 60/24 111/44

Education in years 14.5(3.4) 7-30 15733) 6-25 0.6 (.513) 0.6
FSS 3.9(1.5) 1-7 2.9(1.3) 1-6 -39(<.001) 1911
PHQ-9 5.0(4.5) 0-21 32(3.0) 0-15 -3.2(.001) 30

Montreal cognitive assessment (MoCA) 26.3(2.4) 19-30 274 (17 22-30 3.0 (.002) 171

Stroke related patient information
NIHSS at hospital discharge 1.1(12) 0-6
TOAST classification for ischemic stroke*  Large artery artherosclerosis (26)

Small vessel occlusion (26)

Cardioembolism (13)

Other determined etiology (6)

Undetermined etiology (13)
Lesion location Brainstem/cerebellum (17)

Left Hemisphere (26)

Right Hemisphere (34)

Both Hemispheres (6)
Months since stroke 220(119) 3-45

*all but one patient suffered ischemic stroke
**BF = Bayes factor.
Both frequentist and Bayesian statistics are reported, in line with current pragmatic recommendations (Keysers,

Gazzola, & Wagenmakers, 2020).
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MRI acquisition

Patients were scanned at Oslo University Hospital on a 3T GE 750 Discovery MRI scanner
with a 32-channel head coil. We collected structural (T1w, FLAIR), functional (resting-state
and task-based fMRI) and diffusion MRI data. For lesion demarcation used in the present
analysis T1-weighted images were collected using a 3D IR-prepared FSPGR (BRAVO)
sequence (TR: 8.16 ms; TE: 3.18 ms; Tl: 450 ms; FA: 12°; voxd size: 1x1x1 mm,; slices: 188;
FOV': 256 x 256, 188 sagittal slices), and T2-FLAIR with the following parameters: TR: 8000

ms; TE: 127 ms, Tl: 2240; voxdl size: 1x1x1 mm).

Lesion demar cation

Lesions were demarcated in native space, using the Clusterize toolbox (de Haan et al., 2015)
with SPM8 running under Matlab R2013b (The Mathworks, Inc., Natick, MA). Lesions were
traced by trained personnel (aphysician and a radiographer), based on hyperintensities and
visible damage on FLAIR images, and guided by independent neuroradiological descriptions
of dMRI/FLAIR images (see Dgrum et al. (2020) for details). The binarized lesion masks
were registered to MNI space using nearest neighbor interpolation, using the transformation
parameters obtained using the T1w data. To register the FLAIR images to the T1 images, we
applied alinear transformation with 6 degrees of freedom. T1 images were registered to
MNI152 space by linear affine transformation with 12 degrees of freedom. Figure 1 displays a

probabilistic map of lesion overlap across patients.

Disconnectome maps

To calculate the disconnectome maps we used an automated tractography-based procedure

(Foulon et a., 2018) implemented in the BCBtool kit disconnectome maps ("Brain
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Connectivity Behaviour Toolkit (BCBtoolkit),"). Briefly, atraining set based on full-brain
tractography data obtained from a normative group of 170 individuals from the Human
Connectome Project 7T data (HCP 7T) was used to track fibers passing through each lesion.
Using affine and diffeomorphic deformations (Avants et al., 2011; Klein et al., 2009), each
patient’s MNI 152 space lesions were registered to each control’s native space, and used as
seed for the tractography in Trackvis (Wang, Benner, Sorensen, & Wedeen). Subsequently,
the tractography was transformed to visitation maps, binarized and registered to MNI152
space, before a percentage overlap map was produced by summarizing each point in the
normalized healthy subject visitation maps. The resulting disconnectome maps indicate a
voxel-wise probability of lesion-related disconnection ranging from 0 -100 %. We computed
two simple summary measures of disconnection severity, defined for each patient as @) mean
voxel intensity across the individual disconnectome map and b) number of voxels within the
individual disconnectome map with intensity >.5 (reflecting 50% probability of
disconnection).

lesion overlap
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Figure 1. Heatmap displaying lesion overlap across stroke patients by 70 slices (2 mm thickness) from

z(voxel)=1to z=70. Maximal overlap was 8, but for illustration purposes, the color scale saturates at 5.


https://doi.org/10.1101/2020.11.13.380972
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.380972; this version posted November 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Satistical analysis
V oxel wise analyses on disconnectome maps and binarized |esions were done by non-
parametric permutation-based inference as implemented in the FSL randomise tool (Winkler,
Ridgway, Webster, Smith, & Nichols, 2014). Within the framework of the general linear
model (GLM), linear effects of fatigue and depression (indicated by total score on FSS and
PHQ, respectively) were tested in separate models, covarying for age and sex. A
supplementary FSS-model controlled for depression by excluding patients scoring above
clinical threshold on PHQ (remaining n = 74). To comply with a more common clinical
definition of PSF, we re-ran the model on dichotomized fatigue variables defined as either @)
amean FSS score of > 4, consistent with the common cut off value, or b) the upper tertile of
FSS total score (contrasted with the lowest tertile), reflecting the possibility that more extreme
scores demonstrate increased sensitivity to fatigue related brain correlates. One additional
model tested the effect of fatigue and depression combined, applying the total of the z-
normalized sum scores (zPHQ + zFSS) as predictor. For each contrast, 5000 permutations
were performed. Results were thresholded by threshold free cluster enhancement (TFCE,
Smith and Nichols (2009)) and considered significant at p<.05, two tailed, corrected for
multiple comparisons using permutation testing. One patient suffered a very large stroke and
constituted an outlier in terms of number of affected voxels (~8 SDs above the mean). Main
analyses were therefore repeated with this patient excluded.

Subsequent statistical analyses were performed using R version 3.4.0 (R Core Team,
2017). In afollow-up analysis aiming to increase sensitivity to clinical measures and evaluate
the relationship between global disconnectivity and fatigue, we computed two disconnection
severity measures, defined for each patient as @) mean voxel intensity across the individual
disconnectome map and b) number of voxels within theindividual disconnectome map with

intensity >.5 (reflecting 50% probability), and correlated these with FSS and PHQ-9. To

12
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guantify the evidence in favor of the null and alternative hypothesis, we applied Bayes factor
hypothesis testing, in line with current recommendations (Keysers et al., 2020). We applied
the BayesFactor package (Morey, Rouder, Jamil, & Morey, 2015) with default priors. For
transparency, key analyses were run with different priors.

To test for associations with clinical, stroke-related characteristics (TOAST
classification, months since stroke, lesion volume and lesion location), we applied linear
models with FSS score as dependent variable, controlling for age and depressive symptoms.
Lesion location was clustered by four categories — right or left hemisphere, both hemispheres
or brainstem/cerebellum. Stroke variables were added subsequently, allowing for model
comparison by Bayes factor for each added variable. We applied the ImBF function from the
BayesFactor package to compute Bayes factors. As an additional test of the added predictive
value of global disconnectivity measures compared to clinical stroke characteristics, we also
estimated the models with mean voxel intensity across the individual disconnectome map and

number of voxels within theindividua disconnectome map with intensity >.5.

Results

Fatigue and depression in the stroke sample compared to healthy controls

Figure 2 shows the distributions of FSS and PHQ score in each group. 48 percent of the stroke
patients reported clinically significant fatigue (mean FSS > 4), compared to 23 percent of the
control participants. Severe fatigue (mean FSS > 6) was reported by 9 percent of the patients
and 1 percent of the healthy controls. A two-tailed, two sample t-test (ttestBF in BayesFactor,
with default Cauchy prior) provided compelling evidence (Bayes Factor: BF) > 150) for
higher total FSS scoresin the patient group (mean = 35) compared to healthy controls (mean
= 26, median posterior o =-8.5, 95% credibleinterval (Cl)=[-11—--5]), relative to the null

hypothesis. Stroke patients (mean = 5.0) also reported higher levels of depression symptoms

13
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on the PHQ than controls (mean = 3.2). 18 percent of the patients scored 10 or higher,
indicating clinical depression, compared to 2.4 percent of the controls. The corresponding
Bayes factor provided strong evidence for a group difference in PHQ sum score (BF = 20,

95% Cl = [-2.5—-0.5]).
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Figure 2. Distributions and group differencesin FSS and PHQ for healthy controls (HC) and stroke patients.

Red line denotes cut off value for clinically significant symptom load.

Among patients, Bayes factor estimation for linear correlations provided strong evidence (BF
> 150) for a positive association between FSS and PHQ-9, (median posterior ¢ = 0.67, 95%
Cl =[0.54 — 0.58]), suggesting more depressive symptoms with increasing fatigue. There was
only anecdotal support for an association between FSS and age (BF = 1.75, median

posterior 6 = 0.21, 95% CI = [0.00 — 1.42]).

Permutation based analyses on disconnectivity maps and lesions
Figure 3 shows a selection of stroke lesions and the associated disconnectome maps, for
illustrative purposes.

Permutation testing revealed no significant associations between the disconnectivity
maps and the clinical measures (FSS, PHQ-9, FSS/PHQ combined), or of fatigue status

defined by either @) mean FSS score of > 4, or b) by the lowest vs highest FSS tertile.
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Results were mirrored in the permutation tests on binarized lesion maps, revealing no
association between the clinical measures (fatigue, depression or fatigue/depression
combined, or on group defined by fatigue status (mean FSS score > 4). Dueto the
considerable reduction in sample size when including only the lowest and highest FSS tertile

(n=56), wedid not repeat this analysis on the binarized lesion maps.

01 disconnection probabilit g
| e —

45 =49

Figure 3. Individual lesions (blue) and associated disconnectome maps (yellow-red). Probability for
disconnection ranges from 10 (yellow) to 100 (red). Patient A: right cerebral white matter lesion, Patient B:

brain stem lesion, Patient C: left and right cerebral cortex and white matter lesions.

Associations between global summary measures of disconnectivity and clinical measures
Both measures of global disconnectivity (mean value in disconnectome map and number of
voxels with disconnection probability >50%) were strongly correlated with lesion size
(posterior mean = 0.74, BF >150 and median posterior ¢ = 0.68, BF >150, respectively).
Global disconnectivity (mean value in disconnectome map) was not correlated with FSS

(median posterior 6 =0.03) or PHQ (median posterior 6 = 0.03). Bayesian correlations (using
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default priors) provided moderate evidence (BF = 0.26) for these null effects, relativeto H1
(positive associations between disconnectivity measures and FSS/PHQ). This indication of a
null effect was mirrored in correlations between the alternative measure of disconnectivity
(number of voxels with disconnection probability >50%) and FSS (median posterior ¢ = 0.05,
BF = 0.29), and PHQ (median posterior ¢ = 0.02, BF = 0.26). For transparency, Bayes factors
of the main correlations estimated on different priors are reported in Supplementary Table 1,
while Supplementary Table 2 reports the correlations after removing the most extreme outlier

in terms of lesion size.

Associations between clinical stroke-related characteristics and FSS

Linear models (ImBF) corrected for age and depressive symptoms did not provide evidence
for associations between FSS scores and lesion location (brai nstem/cerebellum, left or right
hemisphere or both hemispheres), lesion volume, months since stroke or TOAST stroke
classification (see Supplementary Table 3 for model comparisons and associated Bayes
factors). No stroke related variable, including global disconnectivity, demonstrated Bayes
factors >1, indicating low predictive value for all. Specifically, all extended models with
stroke lesion variables displayed Bayes factors below 0.33 when compared to the simpler null

model, suggesting moderate evidence of no effect of stroke lesion characteristics.

Discussion

Fatigue following stroke is common and represents a significant clinical burden. Stroke
sequel ae reflect both cell death at the site of the lesion, as well as structural and functional
alterations in extended brain networks. Brain network dysfunction, directly or indirectly
related to the stroke lesion, is a putative mechanism underlying PSF pathophysiology.

Previous studies have primarily assessed lesion characteristics such as volume or location,
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and the added explanatory value of probing the extended brain network connections with the
lesion has been unclear. To this end, hypothesizing that network disruptions in cortico-striatal
networks would be associated with higher levels of fatigue, we calculated disconnectivity
maps for 84 patients in the chronic phase and used permutation testing to evaluate the
association between PSF symptoms and regional network disconnection.

Permutation testing revealed no significant associ ations between symptoms of fatigue
and disconnectome maps or binarized lesion maps. We found no support for our hypothesis
that a disconnectivity approach by disconnectome maps would add predictive value of fatigue
beyond conventional lesion analyses. In line with this, Bayes factor estimations on
correlations between disconnectivity summary measures and FSS score provided moderate
evidence for the null hypothesis (no association) relative to the alternative hypothesis
(association between fatigue and disconnectivity). However, results are not decisive, and
alternative explanations of the absent effects must be considered.

The lack of added predictive value from the disconnectivity measures when compared
to more traditional lesion characteristicsisin general agreement with recent studies (Hope,
Leff, & Price, 2018; Salvalaggio et a., 2020) reporting similar predictive value for models
including (dis)connectivity measures compared to models with lesion information only. The
lack of robust associations between disconnectome maps and the clinical measures has several
likely explanations. It has been suggested that the information provided in the disconnectome
maps is largely embedded in the binarized lesion masks (Hope et al., 2018; Salvalaggio et al.,
2020), implying that the two representations of lesion related pathology convey overlapping
variance. Indeed, the correlation between lesion volume and global disconnectivity,
operationalized as the average voxel value across the disconnectome map or the number of
voxels with probability of disconnection >50%, was relatively strong, intuitively supporting

that larger lesions project to alarger proportion of the brain.
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Alternatively, it may be that disconnectome maps and lesion masks convey similar
information primarily when the sample is large and lesion diversity sufficiently high to
capture the variance embedded in the disconnectome maps (Griffis et al., 2019). This could
imply that in many real-life situations where large samples are not always redlistic/feasible,
such asin clinical stroke populations, disconnectome maps may provide relevant,
complimentary and unique information. In agreement with this, a recent study revealed that
structural disconnectivity maps explained alarger proportion of the variance in core
functional connectivity disruptions than did focal lesions, and displayed significant
correlations with behavior (Griffis et al., 2019), thus facilitating the understanding of
individual differencesin outcome. Moreover, a study by Kuceyeski et al. (2016) reported
higher accuracy in cognitive and mobility prediction for models including disconnection
metrics than models based on lesion volume.

A key assumption underlying our analysesis that the indirectly calculated
disconnectome maps provide arealistic estimate of structural network disconnection and that
these disconnections have functional effects. As depicted in Figure 3, the degree of estimated
tract disconnection can be extensive, even for smaller lesions. While such lesion to brain
network mapping supports the notion that lesions in hub-like regions project to and implicates
an extended set of brain regions and networks (Colizza, Flammini, Serrano, & Vespignani,
2006; Van Den Heuvel & Sporns, 2011), the tractography process used to build the normative
training set has several inherent limitations and errors can be introduced in any stage of the
tracking process (Schilling et a., 2019). Noise and artefacts in the image acquisition,
difficulties establishing fiber orientation (Jeurissen, Descoteaux, Mori, & Leemans, 2019) and
choices regarding the tracking algorithm and parameters such as stop criteria and curvature
threshold (Knésche, Anwander, Liptrot, & Dyrby, 2015; Schilling et al., 2019), are among the

commonly recognized pitfalls. Consequently, the reconstructed pathways based on diffusion
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tractography may not necessarily reflect true structural connections, and to which degree
disconnectome maps reflect biologica disconnectionsis still debated (Salvalaggio et al.,
2020), warranting caution when interpreting tractography results without supporting
converging evidence (Jeurissen et al., 2019). These limitations are not specific for the
currently employed algorithm, and further work is needed to overcome general limitation of
biological accuracy and validity of diffusion based tractography.

The added value of disconnectome maps in brain-behavior mapping also depends on
the reliability, validity and functional neuroanatomy of the included clinical and behavioral
measures. For example, primary motor dysfunctions, which may require simpler
operationalizations and measurements than more complex cognitive symptoms, are more
strongly associated with focal damage, while other behaviors, like verbal associative memory,
may be more strongly predicted by extended network function (Griffis et a., 2019; Siegel et
al., 2016). Thelack of significant associations between brain characteristics and behavioral
measures in the current study may therefore be partly related to the properties and
measurement of PSF. Although fatigue is painfully tangible for the individual patient, itisitis
unspecific and difficult to operationalize, and the lack of “gold standard” measures of
subjective fatigue has been characterized as one of the major obstacles to PSF research
(Nadargjah & Goh, 2015). In the current study, we applied the FSS as a general measure of
fatigue interference and severity. As FSS is the most widely used fatigue measure in stroke
research (Cumming et al., 2016), reporting FSS scores facilitates communication and
synthesizing of results across studies. Still, FSS constitutes arather coarse measure of a
complex phenomenon, and does not provide information on other relevant aspects of PSF
such as diurnal fluctuations and fatigue subtypes. It is conceivable that more finely grained

measures of i.e. fatigue subtypes could reveal associations not detected by the FSS.
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Mimicking the results from the disconnectome approach, linear regressions testing for
associations between FSS and lesion characteristics (volume and location) revealed no
significant associations. Thisisin agreement with several previous studies (Choi-Kwon et al.,
2005; Ingles et a., 1999; Mead et a., 2011). Still, the literature is inconclusive, and some
suggest significant associations between PSF and lesion characteristics (Snaphaan et al.,
2011; Wai Kwong Tang et al., 2014; Wai Kwong Tang et al., 2010). The inconsistency
between studies may be attributable to differencesin how lesion site is defined and reported,
aswell astime since stroke and clinical characteristics and severity of the sample. Studies that
do not report significant associations between fatigue and lesion characteristics tend to define
lesion location broadly (Wu, Mead, Macleod, & Chalder, 2015), such as posterior/anterior
circulation or left/right hemisphere, while studies reporting significant associ ations often
apply a more detailed account of lesion site (e.g. which specific structures are affected) and
are conducted within the first few months after stroke. The temporal aspect may be of
particular importance, considering that the character of stroke sequelae and associated brain
correlates change over time through processes of recovery and compensation (Fornito,
Zalesky, & Breakspear, 2015; Fox, 2018). In the present study, fatigue was measured on
average 22 months post stroke. The absence of identified stroke lesion effects may thus
suggest that lesion characteristics play aless critical role in the chronic phase (Aarnes,
Stubberud, & Lerdal, 2020).

In addition to the general limitations related to the interpretation of imaging-based
measures of brain connectivity listed above, the results should be interpreted in light of the
following caveats. First, the recruited patients suffered mild strokes and were drawn from a
highly functioning part of the stroke population, as the extent and type of assessments
prevented the more disabled patients from participating (e.g. severe aphasia, paralysis, severe

neglect). This limits generalizability of results, and we cannot exclude the possibility that
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including more severely fatigued patients would reveal associations not detected in the current
study. However, even in this sample of fairly high functioning stroke patients, levels of
fatigue were significantly higher than in the healthy control group, and comparable to fatigue
levels reported in other samples of chronic stroke patients (Choi-Kwon et al., 2005; Valko,
Bassetti, Bloch, Held, & Baumann, 2008). Moreover, fatigue correlated strongly with
depression, in line with previous reports (Choi-Kwon et al., 2005; van de Port, Kwakkel,
Bruin, & Lindeman, 2007), intuitively indicating that FSS scores reflect arelevant clinical
phenotype.

Second, VSLM analyses are inherently contingent on and restricted by the variability
of the patients’ lesion locations, as a lesion site cannot be identified as important for a
symptomif it is not represented in the sample. With regards to the current sample, the lack of
whole brain representation limits the spatial scope of the analyses, where i.e. right
hemispheric strokes were more densely sampled than left hemispheric strokes, and prefrontal
cortex was marginally affected. This lack of full or random sampling of the brain represents a
common caveat in stroke research, because stroke lesions are not randomly or evenly
dispersed throughout the brain, but are dependent on vascular organization and architecture
and tend to occur in proximity to mgjor arteries (Rorden, Karnath, & Bonilha, 2007; Zhao,
Halai, & Lambon Ralph, 2020). In line with this, degree of voxel-wise lesion overlap between
patients in the current sample was low, and although a sample size of 84 is comparable with
common practice in MRI studies targeting stroke (Nickel & Thomalla, 2017; Nott et al., 2019;
Sihvonen, Ripollés, Rodriguez-Fornells, Soinila, & Sarkamao, 2017), further studies with even
larger samples are needed.

Low power due to small sample sizesis common in neuroscience (Button et al.,
2013), and might be especially pressing in stroke imaging research where inter-patient

variability in lesions and symptomsis high, and large datasets are logistically and financially
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demanding to collect (Liew et al., 2020; Price, Hope, & Seghier, 2017). With reference to this
fundamental constraint, the best hope for future stroke neuroimaging studies may liein large-
scale data-sharing initiatives such asthe ENIGMA Stroke Recovery database (Liew et al.,
2020), where pooled and synthesized data from individual studies facilitates conduction of
well powered studies on large and diverse samples.

However, in smaller samples with low lesion overlap, targeting disconnectivity
through disconnectome maps may be particularly relevant, because such measures reveal
common disruptions across spatially dispersed lesions (Griffis et al., 2019), resultingin a
higher degree of disconnectome overlap compared to lesion overlap.

In conclusion, the current study represents a novel approach to assess the neural
correlates of PSF in chronic stroke patients. By indirectly estimating structural network
disconnections caused by the stroke lesions, we arrived at individual disconnectome maps
capturing distal effects of focal damage. The results did not provide evidence that a
disconnectome based approach demonstrates higher sensitivity to PSF than aVLSM
approach. Nor did the results support the notion that lesions to particular regions or
disconnections to specific networks contribute to PSF in the chronic phase. However,
methodological considerations regarding statistical power, lesion coverage- and overlap

warrants caution when interpreting results.
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